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ABSTRACT

Many works in explainable AI have focused on explaining black-box classification
models. Explaining deep reinforcement learning (RL) policies in a manner that
could be understood by domain users has received much less attention. In this paper,
we propose a novel perspective to understanding RL policies based on identifying
important states from automatically learned meta-states. The key conceptual
difference between our approach and many previous ones is that we form meta-
states based on locality governed by the expert policy dynamics rather than based
on similarity of actions, and that we do not assume any particular knowledge
of the underlying topology of the state space. Theoretically, we show that our
algorithm to find meta-states converges and the objective that selects important
states from each meta-state is submodular leading to efficient high quality greedy
selection. Experiments on three domains (four rooms, door-key and minipacman)
and a carefully conducted user study illustrate that our perspective leads to better
understanding of the policy. We conjecture that this is a result of our meta-states
being more intuitive in that the corresponding important states are strong indicators
of tractable intermediate goals that are easier for humans to interpret and follow.

1 INTRODUCTION

Deep reinforcement learning has seen stupendous success over the last decade with superhuman
performance in games such as Go (Silver et al., 2016), Chess (Silver et al., 2018) as well as Atari
benchmarks (Mnih et al., 2015). With increasing superior capabilities of automated (learning) systems,
there is a strong push to understand the reasoning behind their decision making. One motivation is
for (professional) humans to improve their performance in these games (Rensch, 2021). An even
deeper reason is for humans to be able to trust these systems if they are deployed in real life scenarios
(Gunning, 2017). Safety, for instance, is of paramount importance in applications such as self-driving
cars or deployments on unmanned aerial vehicles (UAVs) (Garcia & Fernandez, 2015). The General
Data Protection Regulation (Yannella & Kagan, 2018) passed in Europe demands that explanations
need to be provided for any automated decisions that affect humans. While various methods with
different flavors have been provided to explain classification models (Ribeiro et al., 2016; Lundberg
& Lee, 2017; Lapuschkin et al., 2016; Dhurandhar et al., 2018) and evaluated in application-grounded
manner (Doshi-Velez & Kim, 2017; Dhurandhar et al., 2017), the exploration of different perspectives
to explain reinforcement learning (RL) policies has been limited and user study evaluations comparing
methods are rarely employed in this space.

In this paper, we provide a novel perspective to produce human understandable explanations with a
task-oriented user study that evaluates which explanations help users predict the behavior of a policy
better. Our approach involves two steps: 1) learning meta-states, i.e., clusters of states, based on
the dynamics of the policy being explained, and 2) within eat meta-state, identifying states that act
intermediate goals, which we refer to as strategic states. Contrary to the global nature of recent
explainability works in RL (Topin & Veloso, 2019; Sreedharan et al., 2020; Amir & Amir, 2018),
our focus is on local explanations; given the current state, we explain the policy moving forward
within a fixed distance from the current state. This key distinction allows us to consider richer state
spaces (i.e., with more features) because the locality restricts the size of the state space we consider,
as will be demonstrated. It is also important to recognize the difference from bottlenecks (Menache
et al., 2002; Simsek & Barto, 2004) which are policy-independent and learned by approximating the
state space with randomly sampled trajectories; rather than help explain a policy, bottlenecks are
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used to learn efficient policies such as through hierarchical RL (Botvinick et al., 2008) or options
frameworks (Ramesh et al., 2019). Strategic states, however, are learned with respect to a policy and
identified without assuming access to the underlying topology.

An example of this is seen in Figure 1a. Each position is a state and a meta-state is a cluster of
possible positions (states sharing a color/marker). Within each meta-state, we identify certain states
as strategic states (shown with larger markers), which are the intermediate states that moving towards
will allow the agent to move to another meta-state and get closer to the goal state, which is the final
state that the agent wants to get to. In Figure 1a, each room is (roughly) identified as a meta-state by
our method with the corresponding doors being the respective strategic states. Topology refers to the
graph connecting states to one another; our method only has access to the knowledge of which states
are connected (through the policy), whereas reinforcement learning algorithms might have access to
properties of the topology, e.g., the ability to access similar states using successor representations
(Machado et al., 2018). In Figure 1, the topology is a graph connecting the different positions in each
room or the doors connecting one room to another.

A key conceptual difference between our approach and others is that other methods aggregate insight
(i.e. reduce dimension) as a function of actions (Bastani et al., 2018) or formulas derived over factors
of the state space (Sreedharan et al., 2020) to output a policy summary, whereas we aggregate based
on locality of the states determined by the expert policy dynamics and further identify strategic states
based on these dynamics. Still other summarization methods simply output simulated trajectories
deemed important (Amir & Amir, 2018; Huber et al., 2021) as judged by whether or not the action
taken at some state matters. We use the term policy dynamics to refer to state transitions and high
probability paths. We use the term dynamics because this notion contrasts other methods that use
actions to explain what to do in a state or to identify important states; strategic states are selected
according to the trajectories that lead to them, and these trajectories are implicitly determined by the
policy.

The example in Figure 1 also exposes the global view of our explanations when the state space is small
because local approximations of the state space are not needed. We show that this perspective leads
to more understandable explanations; aggregating based on actions, while precise, are too granular a
view where the popular idiom can’t see the forest for the trees comes to mind. We conjecture that the
improved understanding is due to our grouping of states being more intuitive with strategic states
indicating tractable intermediate goals that are easier to follow. An example of this is again seen in
Figures 1b and 1c, where grouping based on actions for interpretability or for efficiency leads to less
intuitive results (note that Figure 1c replicates Figure 4b from (Abel et al., 2019)). A more detailed
discussion of this scenario can be found in section 5, where yet other domains have large state spaces
and require strategic states to explain local scenarios.

As such, our main contributions are two-fold:
1. We offer a novel framework for understanding RL policies, which to the best of our knowledge,
differs greatly from other methods in this space which create explanations based on similarity of
actions rather than policy dynamics. We demonstrate on three domains of increasing difficulty.
2. We conduct a task-oriented user study to evaluate effectiveness of our method. Task-oriented
evaluations are one of the most thorough ways of evaluating explanation methods (Doshi-Velez &
Kim, 2017; Lipton, 2016; Dhurandhar et al., 2017) as they assess simulatability of a complex AI
model by a human, yet to our knowledge, have rarely been used in the RL space.

2 NOTATION

We use the following notations. Let S define the full state space and s ∈ S be a state in the full state
space. Denote the expert policy by πE(·, ·) : (A,S)→ R where A is the action space. The notation
πE ∈ R|A|×|S| is a matrix where each column is a distribution of actions to take given a state (i.e.,
the policy is stochastic). Note that we assume a transition function fE(·, ·) : (S,S)→ R that defines
the likelihood of going from one state to another state in one jump by following the expert policy.

Let Sφ = {Φ1, ...,Φk} denote a meta-state space of cardinality k and φ(·) : S → Sφ denote a
meta-state mapping such that φ(s) ∈ Sφ is the meta-state assigned to s ∈ S. Denote m strategic
states of meta-state Φ by GΦ = {gΦ

1 , ..., g
Φ
m} where gΦ

i ∈ S ∀i ∈ {1, ...,m}.
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(a) (b) (c)

Figure 1: Illustrations of our SSX (a), VIPER-D (b), and abstract states used for compression (c)
methods based on an expert policy for the Four Rooms game with neither having information about
the underlying topology of the state space. Colors/Shapes denote different meta-states/clusters. The
black X in the upper right is the goal state. SSX clusters the four rooms exactly with strategic states
denoted by larger markers, where the biggest marker implies the priority strategic state. SSX explains
that the expert policy will head towards the open doors in each room preferring the door that leads to
the room with the goal state. VIPER-D clusters states by action (black/plus=up, green/circle=down,
blue/diamond=left, red/square=right) based on the full (discrete) state space, rather than samples,
since it is tractable here. The compressed state space in (c) is also a function of the experts
(conditional) action distribution. Clusters in (b) and (c) are scattered making it challenging for a
human to understand any policy over clusters.

3 METHOD

We now describe our algorithm, the Strategic State eXplanation (SSX) method, which involves
computing shortest paths between states, identifying meta-states, and selecting their corresponding
strategic states. However, we first define certain terms. Recall that all paths discussed below are based
on transitions dictated by an expert policy because we want to explain the policy; the well-known
concept called bottlenecks are identified from paths generated as random walks through the state
space and are meant to help learn policies rather than explain them.

Maximum likelihood (expert) paths: One criterion used below is that two states in the same meta-
state should not be far away from each other. The distance we consider is the most likely path from
state s to state s′ under πE . Consider a fully connected, directed (in both directions) graph where the
states are vertices and an edge from s to s′ has weight − log fE(s, s′). By this definition, the shortest
path is also the maximum likelihood path from s to s′. Denote by γ(s, s′) the value of this maximum
likelihood path and Γ ∈ R|S|×|S| a matrix containing the values of these paths for all pairs of states in
the state space. Γ, along with a predecessor matrix P that can be used to derive the shortest paths, can
be computed using Dijkstra’s shortest path algorithm in O(|S|2 log |S|) because all edge weights are
non-negative. Section 3.4 below discusses how our algorithm is applied with a large state space. Note
that computation of Γ means that SSX requires access to a policy simulator for πE , and in practice,
might require simulation for estimation when Γ cannot be computed exactly. This is a common
requirement among related explanation methods, e.g., in order to simulate important trajectories Amir
& Amir (2018) or samples to train a decision tree Bastani et al. (2018), that are discussed below in
Section 4.

Counts of Out-paths: Another criterion used below for assigning states to meta-states is that if state
s lies on many of the paths between one meta-state Φi and all other meta-states, then s should be
assigned the meta-state Φi, i.e., φ(s) = Φi. We define, for fixed state s and its assigned meta-state
φ(s), the number of shortest paths leaving φ(s) that s lies on. Denote T (s, s′) as the set of states that
lie on the maximum likelihood path between s and s′, i.e., the set of states that define γ(s, s′). Then
1[s ∈ T (s′, s′′)] is the indicator of whether state s lies on the maximum likelihood path between s′
and s′′, and we compute the count of the number of such paths for state s and meta-state φ(s) via

C(s, φ(s)) =
∑
s′ 6=s,

φ(s′)=φ(s)

∑
s′′:

φ(s′′) 6=φ(s)

1[s ∈ T (s′, s′′)]. (1)

C(s, φ(s)) can be computed for all s ∈ S in O(|S|2) by iteratively checking if predecessors of
shortest paths from each node to every other node lie in the same meta-state as the first node on the
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path. Note this predecessor matrix was already computed for matrix Γ above. One may also consider
the likelihood (rather than count) of out-paths by replacing the indicator in eq. (1) with γ(s′, s′′).

3.1 LEARNING META-STATES

We seek to learn meta-states that balance the criteria of having high likelihood paths within the
meta-state and having many out-paths from states within the meta-state. This is accomplished
by minimizing the following objective for a suitable representation of s, which in our case is the
eigen-decomposition of the Laplacian of Γ:

argmin
Sφ

∑
Φ∈Sφ

∑
s∈Φ

[
(s− cΦ)2 − ηC(s,Φ)

]
(2)

where cΦ denotes the centroid of the meta-state Φ and η > 0 balances the trade-off between the
criteria. Note that we are optimizing Sφ over all possible sets of meta-states. Other representations
for s and functions for the first term could be used, but our choice is motivated from the fact that such
formulations are nostalgic of spectral clustering (Shi & Malik, 2000) which is known to partition
by identifying well-connected components, something we strongly desire. Our method for solving
eq. (2) is given by algorithm 1 and can be viewed as a regularized version of spectral clustering. In
addition to clustering a state with others that it is connected to, the regularization term pushes a state
to a cluster, even if there are only a few connections to the cluster, if the policy dictates that many
paths starting in the cluster go through that state.

Algorithm 1: Meta-state function MS(S,A, πE ,Γ, k, εφ, η)

1) Get eigen representation of each state s from eigen decomposition of the Laplacian of Γ
2) Randomly assign states s ∈ S to a meta-state in Sφ = {Φ1, ...,Φk} and compute centroids
c1, ..., ck for meta-states

3) ξcur = current value of objective in eq. (2)
do

4) ξprev = ξcur

5) Reassign states s to the meta-states based on smallest value of (s− cΦ)2 − ηC(s,Φ)
6) Compute centroids c1, ..., ck for meta-states based on current assignment
7) ξcur = current value of objective in eq. (2)

while |ξcur − ξprev| ≥ εφ;
Output: Meta-states {Φ1, ...,Φk}

Algorithm 2: Strategic State function SS(Sφ,Γ, εg). Finds Strategic States with Greedy Selection
(w.l.o.g. assume meta-state Φk contains the goal state).
for i = 1 to k − 1 do

1) Let ξcur = 0 and GΦi = ∅
do

2) ξprev = ξcur

3) GΦi = GΦi ∪ g where g = argmax
s∈Φi\GΦi

of eq. (3) given the current strategic states GΦi

4) ξcur = evaluate eq. (3) with GΦi
while |ξcur − ξprev| ≥ εg;

end
5) GΦk = g, where g denotes the goal state of the expert policy
Output: Strategic states corresponding to each meta-state {GΦ1

, ..., GΦk}

3.2 IDENTIFYING STRATEGIC STATES

Next, strategic states must be selected for each meta-state. Assume that gΦ
1 , ..., g

Φ
m ∈ S are m

strategic states for a meta-state Φ that does not contain the target state. Our method finds strategic
states by solving the following optimization problem for some λ > 0:

G
(m)
Φ = argmax

gΦ
1 ,...,g

Φ
m

m∑
i=1

C(gΦ
i ,Φ)− λ

m−1∑
i=1

m∑
j=i+1

max
(
γ(gΦ

i , g
Φ
j ), γ(gΦ

j , g
Φ
i )
)

(3)
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The first term favors states that lie on many out-paths from the meta-state, while the second term
favors states that are far from each other. Thus, the overall objective tries to pick states that go to
different highly rewarding parts of the state space from a particular meta-state, while also balancing
the selection of states to be diverse (i.e., far from each other). The objective in eq. (3) is submodular
as stated next (proof in appendix) and hence we employ greedy selection in algorithm 2. Note that
for the meta-state that contains the target state, the target state itself is its only strategic state.

Proposition 1. The objective to find strategic states in equation (3) is submodular.

3.3 STRATEGIC STATE EXPLANATION (SSX) METHOD

Our full method is detailed as follows. First, the maximum likelihood path matrix Γ is computed.
Then, algorithm 1 tries to find meta-states that are coherent w.r.t. the expert policy, in the sense that
we group states into a meta-state if there is a high likelihood path between them. Additionally, if
many paths from states in a meta-state go through another state, then the state is biased to belong to
this meta-state. Finally, algorithm 2 selects strategic states by optimizing a trade-off between being
on many out-paths with having a diverse set of strategic states. Code is provided in the Supplement.

3.4 SCALABILITY

Given our general method, we now discuss certain details that were important for making our
algorithm practical when applied to different domains. SSX is applied in Section 5 to games with
state spaces ranging from small to exponential in size. SSX is straightforward for small state spaces
as one can pass the full state space as input, however, neither finding meta-states nor strategic states
would be tractable with an exponential state space. One approach could be to compress the state
space using VAEs as in (Abel et al., 2019), but as shown in Figure 1c, interpretability of the state
space can be lost as there is little control as to how states are grouped. Our approach is to use local
approximations to the state space; given a starting position, SSX approximates the state space by
the set of states within some N > 0 number of moves from the starting position. In this approach,
Algorithms 1 and 2 are a function of N , i.e., increasing N increases the size of the approximate state
space which is passed to both algorithms. One can contrast our approach of locally approximating the
state space with that of VIPER (Bastani et al., 2018) which uses full sample paths to train decision
trees. While the number of states in such an approximation isMN , whereM is the number of possible
agent actions, the actual number of states in a game such a pacman is much smaller in practice.
Indeed, while pacman has 5 possible actions, the growth of the state space in our approximation as N
increases acts similar to a game with between 2-3 actions per move because most states in the local
approximation are duplicates due to both minipacman and the ghost going back and forth. See Figure
5 in the Appendix, where other practical considerations are also discussed.

4 RELATED WORK

While a plethora of methods are proposed in XAI (Ribeiro et al., 2016; Lundberg & Lee, 2017;
Lapuschkin et al., 2016; Dhurandhar et al., 2018), we focus on works related to RL explainability
and state abstraction, as they are most relevant to our current endeavor.

Most global RL methods summarize a policy using some variation of state abstraction where the
explanation uses aggregated state variables that group actions (Bastani et al., 2018) using decision
trees or state features (Topin & Veloso, 2019) using importance measures, or such that an ordering
of formulas based on features is adhered to (Sreedharan et al., 2020). These approaches all intend
to provide a global summary of the policy. Other summaries output trajectories deemed important
according to importance measures (Amir & Amir, 2018; Huber et al., 2021) or through imitation
learning (Lage et al., 2019), or train finite state representations to summarize a policy with an
explainable model (Danesh et al., 2019; 2021). Visualization techniques combined with saliency have
been used to either aggregate states and view the policy from a different perspective (Zahavy et al.,
2016) or create a trajectory of saliency maps (Greydanus et al., 2018). Further, other works try to
find state abstractions or simplify the policy (Abel et al., 2019; Paul et al., 2019; Liang et al., 2016),
and one should not confuse these works with those seeking explainability. State abstraction in these
works is used to compress the state space so that simpler policies can be used; the compressed state
space is not intepretable as seen in Figure 1c.
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Turning towards local explanation methods, some works focus on self-explaining models (Mott et al.,
2019) where the policy has soft attention and so can indicate which (local) factors it is basing its
decision on at different points in the state space. Yau et al. (2020) learns a belief map concurrently
during training which is used to explain locally by predicting the future trajectory. Interestingly, there
are works which suggest that attention mechanisms should not be considered as explanations (Jain
& Wallace, 2019). These directions focus on learning an inherently explainable model rather than
explaining a given model which is our goal. Other works use local explanation methods to explain
reasons for a certain action in a particular state (Olson et al., 2021; Madumal et al., 2020). These are
primarily contrastive where side information such as access to the causal graph may be assumed. Our
approach besides being methodologically different, also differs conceptually from these, where we
form meta-states based on policy dynamics and then identify (strategic) states through which many
policy-driven paths cross.

There are also program synthesis-type methods (Verma et al., 2018; Inala et al., 2020) that learn
syntactical programs representing policies, which although more structured in their form, are typically
not amenable to lay users. There are also methods in safe RL that try to uncover failure points of a
policy (Rupprecht et al., 2020) by generating critical states. Another use of critical states, defined
differently by how actions affect the value of a state, is to establish trust in a system (Huang et al.,
2018). There is also explainability work in the markov decision processes literature which focus
on filling templates according to different criteria such as frequency of state occurrences or domain
knowledge (Khan et al., 2009; Elizalde et al., 2009). A more elaborate discussion of these and other
methods can be found in (Alharin et al., 2020), all of which unequivocally are different from ours.

5 EXPERIMENTS

This section illustrates the Strategic State eXplanation (SSX) method on three domains: four rooms,
door-key, and minipacman. These domains represent different reinforcement learning (RL) regimes,
namely, 1) non-adversarial RL with a small state space and tabular representation for the policy, 2)
non-adversarial RL, and 3) adversarial RL, the latter two both with a large state space and a deep
neural network for the policy. These examples illustrate how strategic states can aid in understanding
RL policies. Experiments were performed with 1 GPU and up to 16 GB RAM. The number of
strategic states was chosen such that additional strategic states increased the objective value by at
least 10%. The number of meta-states was selected as would be done in practice, through cross-
validation to satisfy human understanding. Details about environments are in the Appendix, along
with additional experiments illustrating faithfulness and consistency of SSX.

Four Rooms: The objective of Four Rooms is move through a grid and get to the goal state (upper
right corner). The lack of a marker in a position represents a wall. Our grid size is 11× 11. The state
space consists of the current position of a player and the policy is learned as a tabular representation,
since the state space is not too large, using Value Iteration (Martino & Mostofsky, 2016).

SSX is displayed in Figure 1a with settings that learn four meta-states. Clustering the states using
algorithm 1 according to the policy dynamics (i.e. maximum likelihood path matrix Γ) results in an
(almost) perfect clustering of states according to the rooms. X’s denote strategic states learned in
each meta-state, with a larger X corresponding to the first strategic state found. Clearly either door in
blue, green or red rooms could lead to the goal state in the upper right corner (large yellow diamond),
but it is important to note that higher valued strategic states in the red and blue rooms are those that
lead directly to the yellow room where the goal state is located.

Figure 1b illustrates the results of VIPER-D which is our implementation of VIPER (Bastani et al.,
2018). The explanation is illustrated using different colors per action which effectively offers the
rules of the decision tree. While an explanation based on rules can be informative in continuous state
spaces (as demonstrated in (Bastani et al., 2018)), such rules applied to a discrete state space as done
here may lead to confusion, e.g., groups of green states are split by yellow states in the left two rooms
and allow for an optimal policy but it is not clear how to describe the cluster of states in which to take
each action. Figure 1c illustrates the difference between explainability and compression. The purpose
of (Abel et al., 2019) is to learn abstract states upon which a proxy policy can be learned more
efficiently that replicates the original expert policy on the full state space. The lack of interpretability
of the abstract states is not of concern in that context.
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Locked Door Unlocked Door

Figure 2: Illustration of our SSX method on Door-Key. Policies were trained on two different
environments: Locked Door and Unlocked Door. Each row corresponds to a meta-state and strategic
state (outlined in pink) from running SSX starting at a different number of moves into the same path
(one path for completing the task in each of the two environments).

Door-Key: Door-Key is another non-adversarial game, but differs from Four Rooms because the
state space is exponential in the size of the board. The policy is learned as a convolutional neural
network (CNN) with three convolutional and two linear layers. In this game, one must navigate from
one room through a door to the next room and find the goal location to get a reward. Policies are
trained under two scenarios. In the first scenario, there is a key in the first room that must be picked
up and used to unlock the door before passing through. In the second scenario, the door is closed but
unlocked, so one does not need to first pick up the key to open the door.

SSX is run with local approximations to the state space with the maximum number of steps set to 6
as discussed in Section 3.4. Results are shown in Figure 2. The state space is a 7× 7 grid reflecting
the forward facing perspective of the agent. Walls are light gray and empty space visible to the agent
is dark gray. Grid positions blocked from view by walls are black. The scenes in Figure 2 are exactly
what a user sees. To better understand why the scenes do not appear easily connected, consider the
first two states in the first row - the only difference from the first state is that the agent has changed
directions. When facing the wall, the agent’s view only includes the three positions to the right and
one position to the left. All positions on the other side of the wall are not visible to the agent, which
is depicted as black. When the agent changed directions (row 1, column 2), many more positions in
the room become visible to the agent.

In Figure 2, a sample path was generated using each policy. SSX was run at three different states
along these paths, and one meta-state and corresponding strategic state (outlined in pink) from each
SSX explanation is displayed. The three strategic states for the locked door environment correspond
to the agent looking for the key (row 1), getting the key (row 2), and using it to open the door (row 3).
The three strategic states for the unlocked door environment correspond to the agent immediately
looking for the door (row 1), made it through the door (row 2), and moving toward the target (row 3).

For intuition on how a human would use these explanations, consider the cluster in row 1 for the
Locked Door. Comparing the first three states in the cluster to the strategic state, a human sees that in
this cluster, the policy is suggesting to face the key and move closer to it. As this is a local explanation,
it is limited by the initial state being explained as to how close one get to the key. The cluster in row
1 for the Unlocked Door shows that the policy at these states is to face the door. Perhaps facing the
door within a certain distance is how the policy breaks down the ultimate strategy. While one might
wonder why the strategy is not to get closer to the door (e.g., move up from the second column),
recall that the strategic state is explaining the policy and not human intuition.

Lastly, note that for the Unlocked Door, the third state is the same in rows 2 and 3. The rows
correspond to explanations for two different initial states, but it is very possible that the same state is
encountered in trajectories from each initial state and thus appears in multiple explanations as seen
here. Such occurrences further illustrate that SSX explanations are local to an initial state.

Minipacman: Minipacman is a small version of the classic Pacman game. This game differs from
Door-Key with the addition of an adversary - the ghost. The state space is again exponential in the
size of the board and the policy is learned as a convolutional neural network with two convolutional
and two linear layers. Two policies are trained with different objectives. The first objective, denoted
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EAT Scenario 1 HUNT Scenario 1

Figure 3: Illustration of our SSX method on minipacman. Two policies, EAT and HUNT, are
displayed. Two clusters, one per row, are shown as part of the SSX result. The last board with pink
background is a strategic state for each cluster. The color scheme is as follows: green = pacman, red
= ghost, yellow = edible ghost, cyan = pill, blue = food, black = food eaten, white/pink=wall.

Figure 4: Above (left) we see the percentage (human) accuracy in predicting if the expert policy is
Eat or Hunt based on SSX and Viper-D. As can be seen users perform much better with SSX with
difference in performance being statistically significant (paired t-test p-value=0.01). Above (right)
we see a 5-point Likert scale (higher better) for four qualitative metrics used in previous studies
(Madumal et al., 2020). Here too the difference is statistically significant for all four metrics (p-values
are all less than 2× 10−5 ). Error bars are 1 std error.

EAT, is for minipacman to eat all the food with no reward for eating the ghost. The second objective,
denoted HUNT, is for minipacman to hunt the ghost with no reward for eating food.

SSX is again run with local approximations to the state space with the maximum number of steps set
to 8. The state space is a 10× 7 grid reflecting where food, pacman, a ghost, and the pill are located.
Figure 3 displays one sample scenario under both the EAT and HUNT policies, with two meta-states
and corresponding strategic states highlighted in pink. The two strategic states of EAT Scenario 1
show pacman eating the food (row 1) but then avoiding the ghost and ignoring the pill (row 2). In
HUNT Scenario 1, pacman is either directly moving towards the ghost after having eaten the pill
(row 1) or heading away from the pill while the ghost is near it (row 2). Two additional scenarios for
EAT and HUNT can be found in the Appendix. An additional experiment with a baseline motivated
by Amir & Amir (2018) appears in the Appendix.

6 USER STUDY

We designed a user study to evaluate the utility of our approach relative to the more standard approach
of explaining based on grouping actions. While SSX has thus far been used to give users local
explanations about particular scenarios, we use it here to gain insight as to the general goal of a policy
because the relevant explanations to compare with are global; as previously discussed, other local
literature is about learning inherently explainable models rather than explaining a fixed model or
learning contrastive explanations which should be used complementary to our methods. The global
applicability of SSX can also be seen as another advantage. As with Four Rooms, we again compare
with our implementation of VIPER – a state-of-the-art explanation method for reinforcement learning
policies – with a visual output tailored for the discrete state space. We do not compare with methods
that output trajectories (Amir & Amir, 2018) as they require estimating Q-values to determine state
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importance which relies on sensitive hyperparameter tuning. Among explanation methods, Viper
makes for the best comparison as it requires a similar amount of human analysis of the explanation
(by observing states), and while meant for global explainability, also gives local intuitions, as opposed
to other global methods. The utility of each approach is measured through a task posed to study
participants: users must guess the intent of the expert policy based on provided explanations which
are either output by SSX or Viper-D. Such a task oriented setup for evaluation is heavily encouraged
in seminal works on XAI (Doshi-Velez & Kim, 2017; Lipton, 2016; Dhurandhar et al., 2017).

Setup: We use the minipacman framework with the EAT and HUNT policies trained for Section 5
and each question shows either an SSX explanation or Viper-D explanation and asks the user “Which
method is the explanation of type A (or B) explaining?” to which they must select from the choices
Hunt, Eat, or Unclear. Methods are anonymized (as A or B) and questions for each explanation
type are randomized. Ten questions (five from both the EAT and HUNT policies) are asked for each
explanation type giving a total of twenty questions to each participant. In addition, at the end of the
study, we ask users to rate each explanation type based on a 5-point Likert scale for four qualitative
metrics - completeness, sufficiency, satisfaction and understandability - as has been done in previous
studies on explainable RL (Madumal et al., 2020). For users to familiarize themselves with the two
types of explanations we also provided them with two training examples, one for each type at the
start of the survey.

To be fair to VIPER-D explanations, rather than just displaying rules in text which may not be
aesthetically pleasing, we also created a visualization which not only displayed the (five) rules to the
user, but also three boards, one each for pacman, the ghost, and the pill, highlighting their possible
locations as output by the rule. This is beyond the typical decision tree offered by VIPER, which is
meant for continuous state spaces, and better renders what the explanation looks like in our discrete
setting. Screenshots of sample visualizations along with the instruction page and optional feedback
left by users can be found in the appendix.

The study was implemented using Google Forms and we received 37 responses from people with
quantitative/technical backgrounds, but not necessarily AI experts. We removed 5 responses as they
were likely due to users pressing the submit button multiple times as we twice received multiple
answers within 30 seconds that were identical.

Observations: Figure 4 (left) displays user accuracy on the task for method SSX and Viper-D. Users
clearly were able to better distinguish between the EAT and HUNT policies given explanations from
SSX rather than Viper-D and the difference in percentage correct is statistically significant (paired
t-test p-value is 0.01). Another interesting note is that less than 5% of SSX explanations were found to
be Unclear whereas more than 25% of Viper-D explanations were labeled Unclear, meaning that, right
or wrong, users felt more comfortable that they could extract information from SSX explanations.

Figure 4 (right) displays the results of the qualitative questions (“Was it com-
plete/sufficient/satisfactory/easy to understand?”) for both SSX and Viper-D which users
rate on a 5-point scale ranging from “Not at all” to “Yes absolutely”. All metrics score high for SSX
and differences with Viper-D are statistically significant. These results are consistent with the very
different percentage of Unclear selections for SSX and Viper-D, i.e., users found very few SSX
explanations to be unclear and therefore also scored SSX higher in the qualitative metrics.

7 DISCUSSION

We have seen in this work that our novel approach of identifying strategic states leads to more
complete, satisfying and understandable explanations, while also conveying enough information
needed to perform well on a task. Moreover, it applies to single agent as well as multi-agent
adversarial games with large state spaces. Further insight could be distilled from our strategic states
by taking the difference between the variables in some particular state and the corresponding strategic
state and conveying cumulative actions an agent should take to reach those strategic states (viz. go
2 steps up and 3 steps right to reach a door in Four Rooms). This would cover some information
conveyed by the typical action-based explanations we have seen while possibly enjoying benefits
of both perspectives. Other future directions include experimenting to see if strategic states could
be used as intermediate goals for efficient training of new policies and extension of our idea to
continuous state spaces. While one could discretize the state space which could be suboptimal, it
would be interesting to see if it can be symbiotically done.
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ETHICS STATEMENT

As Deep Reinforcement Learning (DRL) has seen huge success in solving challenging problems
with superhuman performances across multiple domains (Silver et al., 2016; 2018; Mnih et al.,
2015) understanding these policies has implications in human learning as well as safety (Garcia &
Fernandez, 2015). We in this work have provided a mechanism for uncovering the core insights
from such policies. Saying that, though, it is possible that some insights might be missed by our
method as it distills relevant information. This limitation is not specific to our method and applies to
other posthoc explanation methods as well. From a privacy standpoint our method could be used to
decipher sensitive information about an agent. Mitigation may be possible by restricting access of
our method to only desirable parts of the state space that are deemed safe to divulge.

REPRODUCIBILITY DISCUSSION

All datasets used are public. Experimental details are in Section 5 of the main paper and Section C in
the appendix. Code is provided in the supplement.
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APPENDIX

A ALGORITHMIC DETAILS

We first prove Proposition 1.

Proof. Consider two sets U and V consisting of strategic states of meta-state Φ, where U ⊆ V . Let
w be a strategic state 6∈ V and GΦ(.) represent the objective in equation 3, then we have

GΦ(U ∪ w)−GΦ(U) = C(w,Φ)− λ
∑
u∈U

max (γ(w, u), γ(u,w)) (4)

Similarly,
GΦ(V ∪ w)−GΦ(V ) = C(w,Φ)− λ

∑
v∈V

max (γ(v, w), γ(w, v)) (5)
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Subtracting equation (5) from (4) we get,

(4)− (5) = λ

(∑
v∈V

max (γ(v, w), γ(w, v))−
∑
u∈U

max (γ(w, u), γ(u,w))

)
(6)

= λ
∑

v∈V \U

max (γ(v, w), γ(w, v)) ≥ 0 (7)

Thus, the function GΦ(.) has diminishing returns property.

We next comment on the convergence for Algorithm 1 which follows directly since our objective in
equation (2) is bounded and monotonically decreases at each iteration.
Proposition 2. Meta-state finding Algorithm 1 converges.

Figure 5: Illustrations of SSX state space size in minipacman. Worst case state space size for local
approximations is NM where N is the maximum number of moves made and M is the number of
possible actions per move. Pacman’s state space is averaged over 100 random samples for each
N = 1, . . . , 10. The state space of minipacman, while also growing exponentially, grows much
slower (like a game with 2-3 actions per move) which makes SSX a practical method for such games.

B ADDITIONAL PRACTICAL CONSIDERATIONS

Additional information on scalability: SSX is applied in Section 5 to games with state spaces
ranging from small to exponential in size. The SSX algorithm is straightforward for small state spaces
as one can pass the full state space as input, however, neither finding meta-states nor strategic states
would be tractable with an exponential state space. One approach could be to compress the state
space using VAEs as in (Abel et al., 2019), but as shown in Figure 1c, interpretability of the state
space can be lost as there is little control as to how states are grouped. The same phenomenon can be
observed when considering compression versus explainability in other contexts such as classification
models. Our approach is to use local approximations to the state space; given a starting position,
SSX approximates the state space by the set of states within some N > 0 number of moves from the
starting position. Considering different starting positions will offer the user a global explanation for a
fixed policy. In this approach, Algorithms 1 and 2 are a function of N , i.e., increasing N increases
the size of the approximate state space which is passed to both algorithms. One can contrast our
approach of locally approximating the state space with that of VIPER (Bastani et al., 2018) which
uses full sample paths to train decision trees.

Figure 5 displays how the state space size in minipacman, discussed in Section 5, grows in practice as
the number of possible moves N allowed for the local approximation grows. Worst case state space
size for local approximations is MN where M is the number of possible actions per move. At any
position on the board, minipacman has at most 4 possible actions (3 possible directions to move or
stay) and the ghost has an additional 3 potential actions for a total of 7 possible state movements at
most. The state space of minipacman is averaged over 100 random samples for each N = 1, . . . , 10
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EAT HUNT

Figure 6: Illustration of selecting important states on minipacman. Two policies, EAT and HUNT,
are displayed across two scenarios for each. For each scenario, a single cluster is shown. For a
given cluster, the last board with pink background is an important state for that cluster as defined by
equation (D). The color scheme is as follows: green = pacman, red = ghost, yellow = edible ghost,
cyan = pill, blue = food, black = food eaten, white/pink=wall.

and, while growing exponentially, acts similar to a game with between 2-3 actions per move because
most states in the local approximation are duplicates due to both minipacman and the ghost going
back and forth. When enumerating the local state space, duplicates can be removed before increasing
the length of possible trajectories so that the local state space stored does not grow at the maximum
rate in practice. Also note that the size of the local approximation to the state space will not be
affected if the board size increases because only local states are considered.

Storing Paths: The predecessor matrix P is defined such that Pij is the predecessor of state j on
a shortest path from i to j (and infinity if no such path exists). This matrix is used to retrieve the
shortest path between any two states i and j. Then a strategic state is defined as a state s′ such that
Pst = s′ where φ(s) = φ(s′) 6= φ(t), i.e. s′ is the last node on the shortest path between states s and
t that are in two different meta-states that lies in the same meta-state as s. Then, by this definition,
we can penalize the number of strategic states.

Number of Meta-states k: The number of meta-states can be chosen using standard techniques as
trying different k and finding the knee of the objective (i.e. where the objective has little improvement)
or based on domain knowledge. State representations may affect the (appropriate) number.

C REPRODUCING THE EXPERIMENTS

Code for SSX experiments is included. Separate directories and corresponding README files are
available for experiments pertaining to the three domains: Four Rooms, Door-Key, and Minipacman.
Training of all models uses default parameters from the respective github repositories used for each
environment (links in Section 5). Parameters used for the experiments are given in Table 1.

Table 1: Parameters used for Four Rooms, Door-Key, and Minipacman experiments

Domain
Parameter Four Doors Door-Key Minipacman

# strategic states k 2 5 5
λ from eq. (3) 50.0 1.0 0.1

εg from algorithm 2 0.1 0.1 0.1
N # steps used for NA 6 6

local approximation to S

D COMMENTS ON STATE IMPORTANCE

A potential baseline for explanations is motivated by the policy summarization method Amir & Amir
(2018). Explanations in that work are offered as simulated trajectories that are deemed important.
Importance of states along the trajectory is defined by

I(s) = max
a

QπE(s,a) −min
a
QπE(s,a),
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Minipacman
N 3 4 5 6
3 0 0.70 0.92 1.14
4 - 0 0.85 0.78
5 - - 0 1.29

Ghost
N 3 4 5 6
3 0 0.88 1.05 2.59
4 - 0 1.36 2.23
5 - - 0 1.73

Food
N 3 4 5 6
3 0 0.52 0.73 0.84
4 - 0 0.57 0.93
5 - - 0 0.88

Table 2: Faithfulness measures for size of local neighborhood. For Minipacman, measures are
distances of minipacman positions in strategic states when using different local approximations with
varying approximation size N , where N is the maximum number of steps allowed for a state to be
included. Distances are symmetric (hence use of -).

where QπE(s,a) is the Q-value for policy πE for taking action a at state s. By definition, this gives a
measure of variation (by action) for a given state, i.e., the large the potential impact of which action
is taken, the higher the importance value. While this measure can successfully be used to select
important trajectories that give users an idea of what a policy is doing, as done in (Amir & Amir,
2018), such important states are not necessarily good representatives of states that one should aim for,
as is the goal of strategic states in SSX. Figure 6 depicts a few examples to demonstrate this property
on minipacman. Note that there is a negative reward for eating a pill in the EAT scenario because
the policy is to eat all the regular food while avoiding the ghost. Q-values were estimated using the
equation, Q(s,a) = r(s,a) + E[V(t)], where r(s, a) is the reward for taking action a in state s and is
determined by the scenario (EAT or HUNT), t is the state that pacman transitions to by taking taking
action a in state s, and V (t) is the value of being in state t. The expectation is taken with respect to
the new state (because the ghost moves stochastically after pacman takes action a).

In both EAT scenarios, important states are found with pacman located directly next to the food;
indeed, these are important according to the measure in equation (D) because the difference of
whether pacman moves away from the pill or eats it is large. However, these are not positions where
one would expect to guide pacman in the EAT scenario. Similarly, for the HUNT scenarios, the
important states are found where pacman is relatively close to the ghost. For example, in the first row,
if pacman moves left, there is a chance the ghost will move right and eat pacman, whereas if pacman
moves up or down, pacman will continue.

E FAITHFULNESS AND CONSISTENCY OF LOCAL APPROXIMATIONS

We here investigate how sensitive strategic states in SSX are to the size of the local approximation.
Let N be the maximum number of steps that can be taken (as referred to above in the discussion on
Scalability in Section 3.4). We allow N to vary from 3 to 6 steps and run SSX for the minipacman
setup from various starting boards along a trajectory of the HUNT scenario. For each trial, we take
the priority strategic state of the cluster containing the initial board and compare it against trials from
the same initial board but with different N . We consider three distance metrics for each comparison:
the distance between minipacman positions, the distance between ghost positions, and the distance
between remaining food indicators of the boards.

Table 2 displays the results. Distance is measured using l2 norm on the difference of (x,y) coordinates
for minipacman and the ghost and the difference of indicators of whether or not food is present for
the food. For reference, a value of 1 for minipacman means that minipacman was usually 1 position
away (horizontally or vertically) in the two strategic states being compared. Values close to 0 mean
that minipacman was often in the same spot in respective strategic states. We first note that distance
generally increases the larger the difference of N between trials, as expected. The second note is that
the distance of the ghost is larger than that of minipacman, which is also expected as the ghost moves
randomly whereas minipacman is driven by the policy.

We next consider the consistency of local approximations by comparing strategic state results from an
initial state to that when slightly perturbing the initial state. Consistency is illustrated on minipacman,
where perturbations are done by randomly removing 3 pieces of food from the initial state being
considered by SSX. For each initial state, 10 additional random perturbations are used, and various
initial states along a trajectory are used. Distances are measured asThanks described above for
minipacman, the ghost, and the food. Results are given in Table 3. Again, minipacman on average
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Avg Distance
Minipacman 0.63

Ghost 1.61
Food 1.32

Table 3: Consistency measures for perturbations of the initial state. For Minipacman, measures are
distances of minipacman positions in strategic states when using different initial states (comparing a
strategic state from initial state to that of a perturbed initial state).

is less than one position away when comparing SSX results between two initial states that differ by
a minor perturbation. As expected, the ghost moves more since the ghost is not controlled by the
policy. The distance of 1.32 for food corresponds to a difference of close to 3 pieces of food (since
distance is an l2 norm between the indicator matrices of food). This makes sense as the perturbations
make the boards differ by 3 units of food.

F ADDITIONAL MINIPACMAN EXAMPLES

EAT Scenario 2 HUNT Scenario 2

EAT Scenario 3 HUNT Scenario 3

Figure 7: Illustration of our SSX method on two additional scenarios of minipacman. Two policies,
EAT and HUNT, are displayed across the two scenarios. For each scenario, two clusters, one per row,
are shown as part of the SSX result. The last board with pink background is a strategic state for each
cluster. The color scheme is as follows: green = pacman, red = ghost, yellow = edible ghost, cyan =
pill, blue = food, black = food eaten, white/pink=wall. In EAT scenarios, pacman generally ignores
the pill and stays away from the ghost (even if the pill has been eaten). In HUNT, pacman generally
looks for the pill (but stays away if the ghost is near it) and moves toward the ghost (if the pill has
been eaten).

Figure 7 shows results of SSX applied to two additional scenarios for the minipacman example. EAT
Scenario 2 shows pacman willing to take a chance of being eaten in order to get more food and EAT
Scenario 3 shows that, even though pacman already ate the pill (the ghost is yellow when the pill is
eaten), pacman prefers to eat more food rather than head for the ghost. These strategic states contrast
directly with those in the HUNT scenarios. Strategic states in Hunt Scenarios 2 and 3 also show
pacman eating the pill in order to hunt the ghost rather than eating more food.

G ADDITIONAL USER STUDY INFORMATION

Participants in the user study first read a set of instructions where the two environments, hunt and
eat, are explained. Further, participants are detailed the color scheme and what they are expected to
do with each question of the survey. The full set of instructions are given in Figure 8. Participants
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were then first trained on one example each with SSX and Viper-D explanations and were given
the reasoning one might use in making their choices. The respective training examples are given in
Figures 9 and 10. Following the training examples, participants went through a series of 20 questions,
10 from each of SSX and Viper-D explanations. The distribution of correct answers for eat versus
hunt is 50/50. An example of each type of question with the choices, Eat, Hunt, and Unclear, are
shown in Figures 11 and 12.
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Figure 8: Screenshot of user study instructions. SSX explanations are anonymized as Type A
explanations and Viper-D explanations are anonymized as Type B explanations.
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Figure 9: Screenshot of SSX explanation example used to train the participant taken from user study.
SSX explanations are anonymized as Type A explanations.
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Figure 10: Screenshot of Viper-D explanation example used to train the participant taken from user
study. Viper-D explanations are anonymized as Type B explanations.
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Figure 11: Screenshot of SSX explanation survey question taken from user study. SSX explanations
are anonymized as Type A explanations.
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Figure 12: Screenshot of Viper-D explanation survey question taken from user study. Viper-D
explanations are anonymized as Type B explanations.
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