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Abstract

Relation Extraction (RE) models are crucial to001
many Natural Language Processing (NLP) ap-002
plications but often inherit and deepen biases003
in their training data. The underrepresentation004
of certain demographic groups can result in005
performance disparities, particularly when con-006
sidering intersectional fairness, where biases007
intersect across attributes such as gender and008
ancestry. To address this issue, we present IN-009
TERSECTIONRE, a framework to improve the010
representation of underrepresented groups by011
generating synthetic training data. INTERSEC-012
TIONRE identifies gaps in demographic cover-013
age and optimizes data generation, ensuring the014
quality of augmented data through Large Lan-015
guage Models (LLMs), perplexity scoring, and016
factual consistency validation. Experimental017
results on the NYT-10 dataset demonstrate that018
our approach effectively reduces intersectional019
disparities and enhances F1 scores, particularly020
for historically underrepresented groups.021

1 Introduction022

Relation extraction (RE), a key task in natural lan-023

guage processing (NLP), identifies and classifies se-024

mantic relationships between entities (Bunescu and025

Mooney, 2005). It supports downstream tasks like026

knowledge graph construction (Muhammad et al.,027

2020), question-answering (Luo et al., 2020), and028

information retrieval (Khoo and Myaeng, 2002).029

Despite strong performance on benchmarks (Cabot030

and Navigli, 2021; Tang et al., 2022; Orlando et al.,031

2024), modern neural RE models often exhibit bi-032

ases across demographic groups (Li et al., 2021;033

Gaut et al., 2019; Stranisci et al., 2024).034

Biases in RE models often stem from their train-035

ing datasets, directly influencing model predic-036

tions (Barocas and Selbst, 2016; Stoyanovich et al.,037

2020). Poorly curated datasets may underrepre-038

sent certain populations due to biased data col-039

lection, historical inequalities, or sampling imbal-040

ances, leading to discriminatory outcomes and un- 041

reliable predictions (Chen et al., 2018; Firmani 042

et al., 2019; Shahbazi et al., 2023). For instance, 043

an RE model trained mostly on data featuring male 044

individuals may struggle with relationships involv- 045

ing female subjects. This systematic underrepre- 046

sentation, known as representation bias, limits the 047

model’s ability to generalize across diverse popula- 048

tions (Buolamwini and Gebru, 2018). 049

Representation bias becomes more complex 050

when multiple demographic attributes intersect, 051

known as intersectional fairness (Foulds et al., 052

2020). Biases can arise within individual groups 053

(e.g., gender or race) and intensify at their inter- 054

sections. For example, a model may perform well 055

for females and Asians separately but struggle with 056

Asian females due to underrepresentation (Jin et al., 057

2020). These gaps can lead to systematic RE fail- 058

ures, reinforcing societal biases. Addressing them 059

is crucial for equitable model performance and re- 060

ducing errors for marginalized groups. 061

While bias mitigation strategies exist throughout 062

the Machine Learning (ML) pipeline, addressing 063

bias during pre-processing offers a fundamental 064

solution by improving data distribution (Shahbazi 065

et al., 2023). Prior work on analyzing biases in 066

RE, such as (Gaut et al., 2019) revealed gender- 067

based performance disparities, and (Stranisci et al., 068

2024) expanded analysis to intersectional biases 069

through cross-dataset comparisons. However, they 070

do not propose methods to systematically address 071

intersectional representation gaps. 072

To address these challenges, we present INTER- 073

SECTIONRE, a framework for identifying and mit- 074

igating intersectional representation gaps in RE 075

datasets. We use pattern-based coverage analysis to 076

quantify demographic representation and identify 077

Maximal Uncovered Patterns (MUPs) to highlight 078

key coverage gaps. We then apply an Integer Lin- 079

ear Programming (ILP) component to determine 080

the minimal number of synthetic examples needed 081
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for balance. Finally, we generate high-quality syn-082

thetic data using an LLM-based generator, preserv-083

ing data characteristics and feature distributions.084

This approach allows us to balance demographic085

representation across dimensions while maintain-086

ing data integrity.087

This study makes three key contributions: (1)088

INTERSECTIONRE, a framework that detects and089

mitigates intersectional representation gaps in RE090

tasks through pattern-based gap analysis and syn-091

thetic data generation; (2) An ILP-based strategy092

and LLM-based synthetic data generator to en-093

hance demographic representation while preserv-094

ing data integrity; (3) Empirical evidence on the095

NYT-10 dataset (Riedel et al., 2010) showing ef-096

fective bias mitigation and improved model perfor-097

mance across demographic groups.098

2 Background099

ML models trained on biased datasets can am-100

plify societal inequalities through unfair predic-101

tions (Suresh and Guttag, 2021). In RE models,102

biased data often results in missing relationships103

for underrepresented groups. This section exam-104

ines RE biases, their impacts, and introduces ways105

to quantify representation and address dataset gaps.106

2.1 Relation Extraction and Patterns107

Relation Extraction (RE) identifies and classifies108

semantic relationships between entities in text.109

Given a sentence x with subject s and object o,110

the goal is to predict their relation label y ∈ Y ,111

where Y is a set of predefined relation types112

(e.g., founder, employer). For example, in x =113

{Steve Jobs is the founder of Apple},114

with s = {Steve Jobs} and o = {Apple}, an RE115

model identifies y = {founder}.116

A pattern P represents a subgroup of records117

sharing specific attribute values (Asudeh et al.,118

2019). Formally, P is a vector of size d (num-119

ber of attributes), where each element P [i] is either120

a specific value from attribute i’s domain or an121

unspecified value denoted as X . For example, in122

a dataset with three binary attributes {x1, x2, x3},123

the pattern P = X01 includes records with x2 = 0,124

x3 = 1, and any value for x1. A record t matches125

pattern P (denoted as Match(t, P )) if for all i126

where P [i] ̸= X , t[i] = P [i].127

To measure representation bias, we use coverage128

to quantify subgroup representation in a dataset129

D: Cov(P ) = |{t ∈ D | Match(t, P )}|/|D|.130

For example, if |D| = 100 and 21 records match131

pattern P = X01, then Cov(P ) = 0.21. A pattern 132

P is uncovered if Cov(P ) < τ , where τ is the 133

minimum required coverage. 134

Coverage gaps occur when patterns in a dataset 135

are uncovered, leading to potential biases and 136

unfair predictions for these subgroups. Given a 137

dataset D and a coverage threshold τ , the coverage 138

gap for a pattern P is: Gap(P ) = (τ−Cov(P ))× 139

|D|). This represents the minimum number of 140

additional records needed to meet the threshold. 141

For example, if |D| = 100, Cov(P ) = 0.21, and 142

τ = 0.3, the gap is (0.3−0.21)×100 = 9, meaning 143

nine more records are needed for adequate repre- 144

sentation of P . 145

Two patterns are related through a parent-child 146

relationship based on their specified attributes. Pat- 147

tern P1 is a parent of P2 (P1 ∈ parent(P2)) if it 148

can be formed by replacing exactly one specified 149

value in P2 with X . Conversely, P2 is a child of 150

P1 (P2 ∈ child(P1)). A pattern can have multiple 151

parents and children. For example, for P = 101, 152

its parents are parent(P ) = {X01, 1X1, 10X}, 153

each created by replacing one value with X . 154

In analyzing coverage gaps, we identify the most 155

general uncovered patterns, called Maximal Uncov- 156

ered Patterns (MUPs). A pattern P is a MUP if: (1) 157

it is uncovered (Cov(P ) < τ ) and (2) all its par- 158

ents have adequate coverage (∀P ′ ∈ parent(P ) : 159

Cov(P ′) ≥ τ ). MUPs capture broad underrepre- 160

sented subgroups without redundancy from more 161

specific child patterns. 162

2.2 Problem Definition 163

Given a RE dataset D with triples (subject s, rela- 164

tion r, object o) and demographic attributes (gen- 165

der G, ancestry A), the goal is to mitigate biases 166

from coverage gaps, especially intersectional ones, 167

that affect model performance for underrepresented 168

groups. We analyze intersectional representation 169

using patterns P and identify MUPs to address 170

gaps without redundant subpattern analysis. 171

Improving MUP coverage is crucial because 172

MUPs represent the broadest underrepresented sub- 173

groups, and by increasing coverage for these gen- 174

eral patterns, we automatically improve the cover- 175

age of all their more specific child patterns. For 176

each MUP M , at least Gap(M) additional records 177

are needed to meet the coverage threshold τ . This 178

process balances fairness across gender and ances- 179

try while minimizing synthetic data to preserve 180

data quality. 181
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2.3 Synthetic Data Generation182

Synthetic data generation is a key approach to ad-183

dressing representation bias in ML datasets, where184

imbalanced demographics can lead to discrimi-185

natory model behavior (Draghi et al., 2021). It186

helps mitigate biased predictions by balancing de-187

mographic attributes while minimizing generated188

records (Wang et al., 2024). However, balancing189

representation is challenging, especially with inter-190

sectional attributes (Shahbazi et al., 2023), due to191

the difficulty of ensuring proportional representa-192

tion across dimensions (e.g., gender, race) while ad-193

dressing coverage gaps (Fournier-Montgieux et al.,194

2024). For example, if Black females are under-195

represented compared to Black males or Asian fe-196

males, data generation must fill this gap without197

disrupting other balances. Overcompensation can198

create new biases, making it hard to maintain fair-199

ness and data integrity.200

To address these challenges, we optimize syn-201

thetic data generation to minimize records while202

meeting representation goals (Micheletti et al.,203

2023). Traditional greedy algorithms often yield204

suboptimal results and struggle to maintain demo-205

graphic balance (Shahbazi et al., 2024; Erfanian206

et al., 2024). To overcome this, we use Integer207

Linear Programming (ILP) (Nandwani et al., 2022)208

to define coverage and balance constraints, mini-209

mizing synthetic records while ensuring fair rep-210

resentation across all intersections (Dwork et al.,211

2024). This approach is especially effective for212

MUPs, providing globally optimal solutions that213

satisfy all gaps and constraints. The next section214

details our ILP formulation and implementation.215

3 INTERSECTIONRE216

This section presents INTERSECTIONRE for ad-217

dressing intersectional representation bias in RE218

datasets, consisting of five components: (1) a data219

enrichment pipeline adding demographic attributes,220

(2) a pattern identification algorithm detecting un-221

derrepresented groups via MUP analysis, (3) an222

ILP-based planner minimizing required records223

while ensuring balance, (4) an entity collection224

module sourcing data from knowledge bases, and225

(5) an LLM-based generator producing synthetic226

factual samples. The following sections detail each227

component’s role in mitigating bias.228

3.1 Data Enrichment Pipeline229

Analyzing intersectional fairness in RE datasets re-230

quires demographics (e.g., gender, ancestry), which231

are often missing (Stranisci et al., 2024). For exam- 232

ple, a record like (Steve Jobs, Founder, Apple) 233

lacks demographic details. 234

To address this, we developed a data enrich- 235

ment pipeline using Wikidata to extract demo- 236

graphic attributes, consisting of two stages: First, 237

for each record, we focus on relation labels, such 238

as founder, place_of_birth, profession, and 239

nationality that involve human entities, exclud- 240

ing records without them to ensure relevant de- 241

mographic analysis. Then, for identified human 242

entities, we retrieve attributes like gender and cit- 243

izenship from Wikidata. We map each country to 244

a broader ancestry group (e.g., African, Asian, 245

European/Western, Latino/Caribbean, Middle 246

Eastern) using a curated country-to-ancestry map- 247

ping, enabling meaningful aggregation to identify 248

representation patterns and coverage gaps. 249

3.2 Pattern Identification 250

After enriching the dataset with demographic at- 251

tributes, we identify underrepresented groups by 252

analyzing coverage patterns based on gender and 253

ancestry, focusing on MUPs that represent the 254

broadest coverage gaps. Since identifying all 255

MUPs is computationally intensive (Shahbazi et al., 256

2023), we propose an algorithm inspired by DEEP- 257

DIVER (Asudeh et al., 2019). DEEPDIVER uses a 258

hybrid strategy combining downward traversal with 259

immediate upward verification, checking all ances- 260

tor patterns to confirm MUPs, but our approach 261

simplifies this by verifying only the immediate par- 262

ent during downward traversal and deferring full 263

maximality checks to a post-processing phase. We 264

apply two pruning strategies: (1) Coverage-Based 265

Pruning, where patterns meeting or exceeding the 266

threshold have their children explored as poten- 267

tial MUPs, and (2) Parent-Based Pruning, where 268

patterns below the threshold are pruned if their im- 269

mediate parent is also uncovered. This reduces 270

verification overhead, with post-processing ensur- 271

ing only maximal patterns are retained. 272

As shown in Figure 1, consider a dataset with 273

attributes Gender: Male (M ), Female (F )} and An- 274

cestry: {Asian (A), European (E), Latino (L)}, 275

and a threshold τ = 0.3. Starting from the root 276

XX (coverage 1.0), its children MX and FX are 277

explored since XX exceeds the threshold. MX 278

(coverage 0.8) is not a MUP, so its children MA, 279

ME, and ML are explored. FX (coverage 0.2) 280

is a potential MUP, and Coverage-Based Pruning 281

skips its children (FA, FE, FL) since their parent 282
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XX
Cov=1.0

FA
Cov=0.05

FX
Cov=0.2

MA
Cov=0.3

ME
Cov=0.3

ML
Cov=0.2

MX
Cov=0.8

FE
Cov=0.1

FL
Cov=0.05

Figure 1: Tree structure illustrating DFS-based MUP discov-
ery with pruning. Red nodes represent identified MUPs, while
dashed nodes and edges indicate pruned patterns and paths.

is already uncovered. For ML (coverage 0.2), our283

algorithm checks only its immediate parent (MX),284

unlike DEEPDIVER, which checks both MX and285

XX . This streamlined approach flags ML as a286

potential MUP, with maximality verified during287

post-processing.288

3.3 ILP-based Generation Plan289

After identifying MUPs, we propose an ILP-based290

planning component to minimize synthetic records291

while meeting coverage requirements. Unlike292

greedy algorithms (Erfanian et al., 2024), which293

require iterative MUP recalculations and struggle294

to maintain demographic balance, our ILP ensures295

global optimality in a single step. It minimizes syn-296

thetic records under two constraints: (1) generating297

at least Gap(M) records per MUP to meet cover-298

age thresholds and (2) maintaining balanced gender299

ratios within each ancestry group. This prevents300

addressing gaps for one group (e.g., Asian females)301

from creating imbalances in others.302

Let G = {Female, Male} and A = {African,303

Asian, European/Western, Latino/Caribbean,304

Middle Eastern}. To avoid new biases, we track305

for each ancestry a ∈ A the number of female306

records (Fa), total records (Ta), and female ra-307

tio (Ra = Fa/Ta). Simply adding new records308

can skew the balance. For example, for MUP309

M1 = {Female, Asian} with 0.01 coverage in a310

dataset of 1000 records and threshold τ = 0.05311

where the pattern P = {X, Asian} has the cover-312

age of 0.05, the gap Gap(M1) = 40 requires 40313

more records. Adding only female records would314

skew gender balance, so the ILP determines how315

many male Asian records to add to maintain fair-316

ness. To formulate this as an ILP, we define de-317

cision variables (xg,a ≥ 0, ∀g ∈ G, a ∈ A) indi-318

cating the number of synthetic records to generate319

for each gender and ancestry combination. These320

variables are only active for demographic combi-321

nations linked to MUPs, minimizing unnecessary322

data generation.323

The next step in the ILP formulation is 324

defining the objective function. Our primary 325

goal is to minimize the total number of syn- 326

thetic records required to meet demographic cov- 327

erage and intersectional balance requirements: 328

minimize
∑

g∈G
∑

a∈A xg,a. This minimization 329

ensures efficient data generation by creating only 330

the necessary records to address coverage gaps 331

identified by MUPs. 332

Then, we need to define the constraints. Our 333

ILP formulation includes two constraints to ensure 334

adequate coverage and intersectional balance: (1) 335

coverage constraints and (2) gender balance con- 336

straints. To satisfy the coverage constraints, for 337

each MUP (M ∈ M), we ensure coverage gaps are 338

filled:
∑

g∈GM

∑
a∈AM

xg,a ≥ Gap(M), where 339

GM and AM represent the gender and ancestry sets 340

specified in MUP M . For specified attributes (e.g., 341

Female), the set contains only that value, and for 342

unspecified attributes (X), it includes all possible 343

values. 344
To satisfy the gender balance constraints, for 345

each ancestry group a ∈ AM , we implement adap- 346
tive gender balance constraints: 347

min_Ra ≤ Fa + xfemale,a

Ta + xfemale,a + xmale,a
≤ max_Ra, (1) 348

where Fa and Ta represent the current number of 349
female and total records in group a. The variables 350
xfemale,a and xmale,a are decision variables for gen- 351
erating female and male records in ancestry group 352
a. The bounds adapt based on the current ratio (Ra) 353
and the severity of the imbalance: 354

min_Ra =

{
min(α1 ×Ra, 0.5) if Ra < 0.33 (severe)
min(α2 ×Ra, 0.45) otherwise

(2) 355
356

max_Ra =

{
max(β1 ×Ra, 0.5) if Ra < 0.33 (severe)
max(β2 ×Ra, 0.55) otherwise

(3) 357

The threshold of 0.33 reflects a 2:1 male-to- 358

female ratio based on fairness literature (Stranisci 359

et al., 2024). Parameters α1, α2, β1, and β2 control 360

adjustment rates for severe and moderate imbal- 361

ances. The ILP output is a generation plan with 362

decision variables (xg,a,∀g ∈ GM , a ∈ AM ) indi- 363

cating the minimal records needed for each inter- 364

sectional group to close coverage gaps. 365

3.4 Entity Collection from Knowledge Bases 366

To generate realistic records, we convert the ILP- 367

based plan into synthetic data using Wikidata 368

(structured) and Wikipedia (unstructured). For each 369

gender–ancestry pair, we map ancestry to countries 370
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Generate a record for 
relation extraction dataset 
for the following:
Subject: Nelson Mandela
Object: South Africa
Relation Label: 
Place_of_birth

Input Query

You are an expert in creating concise, 
accurate sentences for relation 
extraction tasks. Use only verified 
facts.
…

Instruction
Template

Contextual
Requirements

1. Connect birthplace naturally to 
early achievements or influences
2. Use only facts in the provided 
background
3. … 

Few-shot
Examples

Example1: (curated example)
Example2: (from original dataset)
…

Wikipedia
Background

Born on 18 July 1918 was a South 
African anti-apartheid activist and 
politician who served as the first 
president …

Model

Prompt Management

Perplexity 
Scoring

Tools

ClaimBuster
Scoring

Agent Runtime

In 1918, Nelson Mandela’s early 
life in the rural areas of South 
Africa laid the foundation for 
his enduring commitment to 
justice and the fight against 
apartheid.

Figure 2: LLM-based record generation architecture, featur-
ing prompt management providing relation-specific prompts
for the model, with generated sentences validated by Perplex-
ity Scoring and ClaimBuster tools.

(Section 3.1), distribute entities accordingly, and371

apply per-citizenship limits for diversity. SPARQL372

queries retrieve Wikidata entities with matching373

gender and citizenship, along with biographical374

details (e.g., founder, employer, place_lived,375

religion, profession, nationality). To enrich376

context, we also fetch Wikipedia introductions via377

the MediaWiki API. This blend of structured and378

unstructured data ensures factual accuracy while379

meeting demographic requirements.380

3.5 LLM-based Record Generation381

Our framework’s final stage uses a GPT-4-powered382

AI agent to generate synthetic records. Figure 2383

illustrates the agent’s architecture, which consists384

of prompt management components, a core gener-385

ation model, and validation tools. The agent uses386

GPT-4 to map each relation-specific prompt p to387

synthetic records x. Each prompt p is tailored to388

capture the unique traits of a relation label y ∈ Y ,389

ensuring the generated sentence x accurately re-390

flects the entity relationship. In this process, the391

agent addresses two validation challenges: (1) dis-392

tribution alignment, ensuring x matches the linguis-393

tic and structural patterns of the original dataset D,394

and (2) factual consistency, ensuring x accurately395

reflects input relationships. It uses a Perplexity396

Scoring Tool for language alignment and Claim-397

Buster (Jimenez and Li, 2018) for factual consis-398

tency.399

To guide GPT-4, we design relation-specific400

prompts p with the following components (Fig-401

ure 2): (1) a system prompt & instruction template402

tailored to each relation y, defining constraints and403

guidelines, (2) contextual requirements, focusing404

on verified facts, achievements, or relevance (e.g.,405

lived_in for locations, employer for roles), and406

(3) few-shot examples, combining curated and dy-407

namic samples for diverse, in-context guidance.408

The agent incorporates two key validation mech- 409

anisms to ensure the quality of generated records: 410

distribution alignment and factual consistency. For 411

distribution alignment, we measure perplexity per 412

relation using a pre-trained model (e.g., GPT-2), 413

where lower perplexity indicates better fluency and 414

alignment. Specifically, we ensure that the perplex- 415

ity of any generated sentence does not exceed the 416

mean plus two standard deviations of perplexity 417

values calculated for existing sentences of the same 418

relation label. This method confirms that generated 419

sentences maintain a consistent quality and style 420

with the dataset’s typical variability. 421

For factual consistency, the agent uses Claim- 422

Buster with dynamic thresholding. Let ϕ(x) be 423

the ClaimBuster scoring function assigning a factu- 424

ality score in [0,1]. For each relation y, we set 425

the threshold θr at the 25th percentile of origi- 426

nal dataset scores: θr = percentile25({ϕ(x) | 427

x ∈ D, relation(x) = y}), ensuring generated sen- 428

tences are at least as factual as 75% of the orig- 429

inal dataset. Sentences must meet ϕ(x) ≥ θr; 430

those below are refined with stricter prompts and re- 431

evaluated. Only sentences passing after either stage 432

are accepted, ensuring high factual consistency. 433

The agent iteratively refines and regenerates sen- 434

tences using adjusted prompts until they meet both 435

distributional and factual standards or reach a retry 436

limit, ensuring the generation of high-quality, real- 437

istic synthetic records that effectively address rep- 438

resentation gaps. 439

4 Experimental Results and Analysis 440

This section focuses on evaluating our framework 441

for addressing intersectional representation bias in 442

relation extraction datasets, specifically: (1) im- 443

proving demographic representation, (2) efficient 444

synthetic data generation via ILP, and (3) impact 445

on model performance across subgroups. 446

4.1 Experimental Setup 447

Dataset. We conduct our experiments on the NYT- 448

10 dataset (Riedel et al., 2010), a benchmark for 449

RE tasks with 70,339 records and 52 relation la- 450

bels from the New York Times corpus, annotated 451

via distant supervision from Freebase. To en- 452

able demographic analysis, we filtered for records 453

with at least one human entity, yielding 30,818 454

records and 15 human-centric relation labels, with 455

the most frequent being place_of_birth (21.3%), 456

nationality (18.7%), employer (15.4%), and 457

place_lived (14.2%). We enriched the dataset 458
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with demographic attributes like gender and ances-459

try (Section 3.1), revealing a gender imbalance460

(12.4% females vs. 87.6% males) and ances-461

try disparities (European/Western 71.1%, Middle462

Eastern 11.7%, Asian 9.2%, Latino/Caribbean463

4.9%, African 3.1%). These imbalances highlight464

the need to address intersectional coverage gaps for465

equitable representation.466

Implementation. We queried demographic at-467
tributes from Wikidata using SPARQL, optimized468

via SPARQLWrapper, and pre-designed citizenship469

to ancestry mappings. The ILP was formulated470

using Gurobi, applying dynamic gender balance471

constraints based on Ra (stricter when Ra < 0.33:472

α1 = 1.5, β1 = 2; relaxed otherwise: α2 =473

0.9, β2 = 1.1). Synthetic records were generated474

with GPT-4 (200-token limit, temperature 0.0) and475

validated via GPT-2 perplexity scoring (Radford476

et al., 2019) for fluency and ClaimBuster (Jimenez477

and Li, 2018) for factual consistency. We fine-478

tuned the REBEL-large model (Cabot and Navigli,479

2021) (a seq2seq BART-based RE model (Lewis,480

2019)) on NYT-10, training for 3 epochs with481

AdamW (learning rate 2e− 4, batch size 4).482

4.2 Intersectional Representation Analysis483

We analyzed intersectional representation pat-484

terns in the original dataset and our proposed485

solutions. To evaluate our ILP-based constraints,486

we conducted experiments in three settings: (1)487

the original dataset, (2) our framework with488

intersectional balance constraints, and (3) our489

framework with constraints off, focusing on the490

MUP coverage threshold.491

492
Basleine Coverage Gap in Original Dataset. To493

assess intersectional gaps, we used a coverage494

threshold of 0.15, representing the minimal495

expected coverage per group, given five ancestry496

groups and two genders (ideally 10% each if497

evenly distributed). This value balances real-498

world demographic imbalances with meaningful499

targets for underrepresented groups. Figure 3500

(Left) shows demographic representation in the501

original dataset, with rectangles indicating the502

percentage of each gender-ancestry combination503

and color intensity reflecting coverage (darker504

= higher). European/Western males dominate505

(61.7%), while female representation is minimal,506

peaking at 9.4% and dropping to 0.3% for African507

females. Groups like African males (2.8%) and508

Latino/Caribbean females (0.4%) fall well509

below the threshold, highlighting systemic biases 510

and the need for targeted augmentation. 511

512

Coverage Improvements with Augmentation. 513

Figure 3 also shows the impact of our augmenta- 514

tion strategies in two scenarios: With Intersectional 515

Balance Constraint (middle) and Without Intersec- 516

tional Balance Constraint (right). Each rectangle 517

reflects adjusted percentages after augmentation. 518

With the constraint, demographic representation 519

becomes more equitable, increasing female rep- 520

resentation to 7.8% across ancestries and helping 521

most groups reach the 0.15 threshold. This ap- 522

proach effectively addresses under-representation 523

(e.g., African and Latino/Caribbean females) 524

while maintaining proportionality, ensuring bal- 525

anced improvements without new biases. The With- 526

out Intersectional Constraint scenario results are 527

uneven. Some underrepresented groups improve, 528

but European/Western males disproportionately 529

benefit, rising to 49.4%, while groups like Middle 530

Eastern and Asian females remain below the 0.15 531

threshold. This highlights the need for balance con- 532

straints to achieve fair coverage. 533

Gender Ratios Across Approaches. To eval- 534
uate gender equity across ancestry groups, we 535

computed the female-to-male ratio for each group. 536

An ideal ratio of 0.5 indicates equal representa- 537

tion, yet in the original dataset, ratios are skewed, 538

with females comprising less than 0.15 in most 539

groups, showing severe under-representation. Ap- 540

plying intersectional balance constraints achieves 541

near-parity across ancestries, effectively address- 542

ing these imbalances—for example, African and 543

Middle Eastern groups reach ratios close to 0.5 544

from near-zero. In contrast, the absent of such 545

constraints leads to partial improvements but fails 546

to ensure consistent gender equity. These results 547

highlight the necessity of intersectional balance 548

constraints for equitable representation. 549

Intersectional Coverage vs. Synthetic Records 550
Trade-Off. Figure 4a shows a Pareto analysis of 551

the trade-off between intersectional coverage im- 552

provement and the number of synthetic records 553

added. The With Intersectional Constraint strat- 554

egy achieves the highest improvement (0.076) with 555

27, 913 records, balancing fairness and efficiency. 556

In contrast, the Without Intersectional Constraint 557

strategy shows lower improvement (0.039) with 558

7, 668 records, highlighting its inefficiency in ad- 559

dressing intersectional gaps. The original dataset 560

serves as the baseline with no synthetic records or 561
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Figure 3: Intersectional representation across the original dataset, generated dataset with intersectional constraint, and generated
dataset without intersectional constraint.

improvement. While requiring more records, the562

constrained strategy achieves significantly greater563

coverage improvements than the unconstrained ap-564

proach.565

Intersectional Fairness Metrics. To evaluate566
fairness across the three dataset states, we ana-567

lyzed four normalized metrics ([0, 1]), where higher568

values indicate better representation: (1) Balance569

Score (normalized female-to-male ratio), (2) Gen-570

der Gap (difference in female and male representa-571

tion), (3) Ancestry Gap (standard deviation across572

ancestry groups), and (4) Intersectional Gap (com-573

bined gender and ancestry disparities). Figure 4b574

shows these metrics. The original dataset shows575

significant disparities with consistently low scores576

(≤ 0.15) across all metrics, while the Without In-577

tersectional Constraints approach shows moderate,578

uneven improvements (0.35–0.45). In contrast, our579

With Intersectional Constraints approach achieves580

the highest scores, notably for ancestry (0.75) and581

intersectional gaps (0.65), effectively mitigating582

representation biases. The Balance Score and Gen-583

der Gap improve from 0.124 (original) to 0.569584

(constrained), reducing gender disparities while585

maintaining ancestry balance.586

Statistical Consistency. We compared sentence587
length distributions between the original NYT-10588

and the augmented dataset to assess stylistic con-589

sistency. Figure 4c shows closely aligned density590

curves, supported by a low Jensen-Shannon Di-591

vergence (0.0411) and KS test statistic (0.0491,592

p < 0.0001). Sentence length statistics confirm593

this: the original dataset has a mean of 40.95, a594

median of 39.00, and a standard deviation (SD) of595

78.92, while the augmented dataset shows a mean596

of 39.81, a median of 37.00, and an SD of 75.55,597

indicating minimal deviation.598

For quality assessment, the vocabulary size grew599

Table 1: Model Performance Comparison Across De-
mographic Groups

Original Augmented ∆ F1

Gender Ancestry F1 Score FPR F1 Score FPR Disparity

Overall — 0.782 0.197 0.845 0.265 +0.063
Female African 0.000 1.000 1.000 0.000 +1.000

Asian 0.773 0.074 0.941 0.111 +0.168
European/Western 0.795 0.199 0.890 0.199 +0.095
Latino/Caribbean 0.889 0.200 1.000 0.000 +0.111
Middle Eastern 0.870 0.020 0.950 0.015 +0.080

Male African 0.756 0.179 0.923 0.143 +0.167
Asian 0.902 0.178 0.861 0.200 -0.041
European/Western 0.805 0.323 0.755 0.228 -0.050
Latino/Caribbean 0.911 0.116 0.911 0.163 +0.000
Middle Eastern 0.890 0.025 0.950 0.018 +0.060

from 37, 168 to 42, 862, showing that the aug- 600

mented dataset introduces new vocabulary while 601

maintaining a reasonable growth rate. This sug- 602

gests the generated text preserves the domain- 603

specific language of the original dataset. The Type- 604

Token Ratio (TTR), measuring lexical diversity 605

as the ratio of unique words to total words, rose 606

slightly from 0.0349 to 0.0378 (+8.3%), maintain- 607

ing diversity without excessive repetition. The Ha- 608

pax Percentage, indicating the proportion of words 609

appearing only once, increased from 24.71% to 610

27.60% (+11.7%), reflecting more unique terms, 611

likely from new entity names. These results demon- 612

strate that our augmentation approach effectively 613

enhances coverage and diversity while preserving 614

linguistic and structural integrity. 615

4.3 Model Performance 616

Table 1 shows significant variations in the REBEL 617

model’s performance when fine-tuned on the origi- 618

nal NYT-10 dataset versus the demographically 619

augmented version. The augmented model’s 620

F1 score improves from 0.782 to 0.845, reflect- 621

ing better overall performance, though gains are 622

uneven across demographic groups. Notably, 623
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Figure 4: Analysis of representation improvements across different augmentation strategies. Subfigure (a) shows the trade-off
between coverage improvement and synthetic records added, while subfigure (b) compares intersectional fairness metrics across
dataset states. Subfigure (c) shows the sentence length comparison between the Original NYT-10 and Augmented Dataset.
Statistical tests confirm a high degree of alignment, with minor deviations in mean and variance.

underrepresented groups like African males,624

African females, Middle Eastern females,625

and Latino/Caribbean females see substantial626

improvements, indicating the augmentation effec-627

tively addresses representation gaps. While ma-628

jority groups such as European/Western males629

show a slight F1 decrease (−0.050), this is offset by630

minority group gains. The augmented model also631

reduces false positive rates (FPR) across most de-632

mographics while maintaining strong performance633

for Middle Eastern groups. However, these results634

are influenced by demographic imbalances in the635

test set, potentially affecting metric reliability for636

underrepresented groups. This highlights the need637

for evaluation methods that consider representation638

in both the training and testing phases.639

5 Related Work640

Bias in RE has been widely studied, especially re-641

garding gender disparities. Gender-based biases642

have received particular attention, with WikiGen-643

derBias (Gaut et al., 2019) revealing significant644

performance disparities in occupation and spouse-645

related relations. Similarly, (Stranisci et al., 2024)646

demonstrated that RE datasets systematically un-647

derrepresent non-Western nationalities and female648

entities, leading to biased model behavior. Entity-649

level biases represent another critical challenge in650

RE systems. (Wang et al., 2022) showed that RE651

models disproportionately rely on entity mentions652

rather than contextual information, proposing coun-653

terfactual inference as a mitigation strategy at in-654

ference time. Building on this work, (He et al.,655

2025) developed DREB, a debiased benchmark656

that addresses entity bias through systematic entity657

replacement, and introduced MixDebias, which658

combines data augmentation with model-level de-659

biasing. However, while their approach effectively 660

reduces entity bias, their entity replacement strat- 661

egy can generate factually incorrect relationships 662

and does not address underlying demographic rep- 663

resentation gaps in training data. The quality and 664

fairness of training data itself have also been investi- 665

gated. (Li et al., 2020) identified systematic biases 666

in distantly supervised datasets, noting that con- 667

ventional held-out evaluations may misrepresent 668

model fairness due to label noise. Unlike previous 669

work focusing on bias detection or implementing 670

mitigation strategies at the cost of factual correct- 671

ness, our approach proactively addresses bias at the 672

data level through coverage-driven augmentation, 673

generating synthetic data to create balanced, fairer 674

RE datasets while maintaining factual accuracy. 675

6 Conclusion 676

This work tackles intersectional fairness in relation 677

extraction (RE) datasets, addressing representation 678

bias that leads to disproportionate model errors for 679

underrepresented groups. We propose INTERSEC- 680

TIONRE to identify and mitigate demographic cov- 681

erage gaps, ensuring balanced representation across 682

gender and ancestry while preserving linguistic and 683

factual integrity. Empirical results show that our 684

augmentation strategy improves demographic rep- 685

resentation, reduces disparities, and enhances the 686

REBEL model’s F1 score, especially for under- 687

represented groups. Our findings demonstrate the 688

effectiveness of structured augmentation in mitigat- 689

ing demographic bias. Future work should extend 690

this framework to include more attributes (e.g., age, 691

profession), diversify demographic sources beyond 692

Wikidata, and move beyond binary gender classifi- 693

cations. Our approach offers a scalable, adaptable 694

method for promoting demographic fairness in RE, 695

supporting more equitable AI systems. 696
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7 Limitations697

While this study demonstrates the effectiveness of698

INTERSECTIONRE in mitigating intersectional699

bias in RE, several limitations should be acknowl-700

edged.701

First, our framework relies on external knowl-702

edge bases (e.g., Wikidata) for demographic anno-703

tations. While these sources offer extensive cover-704

age, may contain gaps or inaccuracies, particularly705

for individuals from less-documented regions or706

historical contexts. The quality of demographic707

inference directly impacts the effectiveness of our708

augmentation strategy. The errors in entity anno-709

tation could propagate through the dataset. Future710

research directions could investigate more sophisti-711

cated demographic inference techniques, including712

human-in-the-loop validation mechanisms, to im-713

prove the robustness and reliability of the annota-714

tion process.715

Second, the current implementation models gen-716

der as a binary attribute (male/female) due to con-717

straints in demographic annotations. This oversim-718

plifies real-world gender diversity and may rein-719

force binary assumptions in NLP models. Future720

extensions should explore more inclusive demo-721

graphic attributes, including non-binary and gender-722

fluid identities, to ensure broader fairness.723

Third, the synthetic data generation process us-724

ing generative AI introduces substantial computa-725

tional and financial costs. The generation of high-726

quality synthetic data requires significant compu-727

tational resources, while API access to advanced728

LLMs presents cost barriers. Future research729

could explore more efficient alternatives, such as730

lightweight models or Retrieval-Augmented Gen-731

eration (RAG) techniques, to reduce dependence732

on LLMs while maintaining data quality.733

These limitations suggest directions for future734

research, including a deeper exploration of knowl-735

edge bases, improved demographic annotation736

strategies and cost-efficient synthetic data genera-737

tion methods.738
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A Appendix: Methodology Overview907

To provide a clearer understanding of our approach,908

we include an overview of our methodology in909

Figure 5. Our pipeline consists of five main stages:910

• Enrichment Pipeline: Extracting demo-911

graphic attributes from Wikidata and filtering912

relations relevant for augmentation.913

• Pattern Identification: Identifying MUPs914

and analyzing their coverage.915

• ILP-Based Planning: Formulating an ILP916

model to calculate a generation plan to917

balance demographic representation in the918

dataset.919

• Entity Collection: Retrieving entity details920

from Wikidata using SPARQL queries based921

on the generation plan.922

• LLM-Based Generation: Generating syn-923

thetic data using GPT-4, with validation tools924

ensuring factual accuracy and linguistic flu-925

ency.926

Input

Original Dataset

1. Enrichment Pipeline

Relation Filtering

Demographic Attribute 
Extraction

2. Pattern Identification

MUPs Discovery

Coverage Analysis

3. ILP-based Planning

Generation Plan

Constraints

4. Entity Collection

Entity Info

Wikidata SPARQL

5. LLM-based Generator Agent

Validation Tools

GPT-4

(Steve Jobs, 
Founder, Apple)

…

+Gender: Male
+Ancestry: 
Western

…

MUPs:
{female, Asian}
{male, Latino}

…

Generation Plan:
{female, Asian}: +40
{male, Latino}: +30

…

40 Asian Female &
30 Latino Male: Name, 

Birth Place, 
Profession 

…

A prominent AI researcher, 
Dr. Ming Chen, has been 
advancing the field…

.…

Output

Augmented Dataset

Figure 5: Overview of the data augmentation method-
ology, illustrating the key processing steps from the
original dataset to the final augmented dataset.

B Prompt Templates for Synthetic Data927

Generation928

To ensure high-quality and contextually accurate929

synthetic data generation, we designed relation-930

specific prompts tailored to different relation ex-931

traction tasks. The prompt structure consists of932

four key components:933

• System Prompt: Defines the model’s role934

and ensures that generated sentences adhere935

to desired linguistic and factual constraints.936

• Contextual Requirements: Specifies key937

constraints and stylistic elements to maintain938

factual accuracy and fluency.939

• Few-Shot Examples: Provides real-world ex- 940

amples to guide generation. 941

• Entity-Specific Context: Includes subject, 942

object, relation label, gender, and background 943

information. 944

Figure 6 illustrates our prompt templates for 945

two representative relation labels: place_lived and 946

place_of_birth. Each template is carefully struc- 947

tured to guide the generation of natural sentences 948

that implicitly convey the intended relationship. 949

For instance, the place_lived template emphasizes 950

connecting locations to significant work achieve- 951

ments, while the place_of_birth template focuses 952

on early life influences and cultural context. 953
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You are an expert in crafting concise, natural
sentences about where people lived, focusing on
verified historical facts. Your task is to create a
single sentence that:

• Uses only time periods mentioned in the
provided background

• Connects location naturally to a single
significant aspect of their work

• Maintains historical accuracy without speculation
• Avoids complex, multi-clause structures
• Never invent or infer information not present in

the background
• Creates clear cause-and-effect relationships

between location and achievement
Generate one focused sentence that:

1. Uses only time periods explicitly mentioned in
the background

2. Highlights one specific achievement or activity
from their known history

3. Shows how the location influenced or enabled
this achievement

4. Incorporates verified cultural/social elements
from their background

5. Keeps the relationship between person and
location subtle but clear

Important:

• Focus on one main idea rather than multiple
achievements

• Use only facts provided in the background
• Create a clear but natural connection to the

location
• Aim for 20-30 words for clarity and impact
Given the following examples from real-world text
showing how relations are expressed naturally:

Examples:
Subject: Leonard Bernstein,
Relation label: place_lived,
Object: New York,
Sentence: Throughout the 1960s, many of Bern-
stein’s most innovative compositions took shape
in his Upper West Side studio, where the maestro
would often host late-night rehearsals with the New
York Philharmonic.

Examples from Original Dataset
Now, generate a similar natural sentence for the
following relation. The sentence should avoid
directly stating the relationship and should sound
natural in a relation extraction dataset.

- Subject: subject entity
- Relation: place_lived
- Object: object entity
- Background: entity Wikipedia content

You are an expert in crafting natural sentences
about early life and origins. Your task is to
create a single sentence that:

• Uses only dates and facts mentioned in the
provided background

• Connects birthplace naturally to early
achievements or influences

• Maintains historical accuracy without speculation
• Avoids formulaic birth-related phrases
• Never invents or infers information not present

in the background
Generate one focused sentence that:

1. Uses specific dates/periods from the background
2. Highlights one early achievement or influence
3. Places birthplace naturally within the narrative
4. Incorporates verified cultural or historical

context
5. Keeps the birthplace reference subtle but clear
Important:

• Never use obvious phrases like "was born in"
• Connect location to early life or achievements
• Use only facts provided in the background
• Aim for 20-30 words with natural flow
Given the following examples from real-world text
showing how relations are expressed naturally:

Examples:
Subject: Gabriel García Márquez,
Relation label: place_of_birth,
Object: Aracataca,
Sentence: The magical realism in García
Márquez’s stories drew deep inspiration from his
childhood in Aracataca, where his grandmother’s
storytelling shaped his earliest literary sensibilities.

Examples from Original Dataset
Now, generate a similar natural sentence for the
following relation. The sentence should avoid
directly stating the relationship and should sound
natural in a relation extraction dataset.

- Subject: subject entity
- Relation: place_of_birth
- Object: object entity
- Background: entity Wikipedia content

Figure 6: Prompt templates for generating sentences for place_lived (left) and place_of_birth (right) relation labels.
The templates include instruction template (system prompt), context requirements, and few-shot examples to guide
the generation of natural sentences.
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