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Abstract

Relation Extraction (RE) models are crucial to
many Natural Language Processing (NLP) ap-
plications but often inherit and deepen biases
in their training data. The underrepresentation
of certain demographic groups can result in
performance disparities, particularly when con-
sidering intersectional fairness, where biases
intersect across attributes such as gender and
ancestry. To address this issue, we present IN-
TERSECTIONRE, a framework to improve the
representation of underrepresented groups by
generating synthetic training data. INTERSEC-
TIONRE identifies gaps in demographic cover-
age and optimizes data generation, ensuring the
quality of augmented data through Large Lan-
guage Models (LLMs), perplexity scoring, and
factual consistency validation. Experimental
results on the NYT-10 dataset demonstrate that
our approach effectively reduces intersectional
disparities and enhances F1 scores, particularly
for historically underrepresented groups.

1 Introduction

Relation extraction (RE), a key task in natural lan-
guage processing (NLP), identifies and classifies se-
mantic relationships between entities (Bunescu and
Mooney, 2005). It supports downstream tasks like
knowledge graph construction (Muhammad et al.,
2020), question-answering (Luo et al., 2020), and
information retrieval (Khoo and Myaeng, 2002).
Despite strong performance on benchmarks (Cabot
and Navigli, 2021; Tang et al., 2022; Orlando et al.,
2024), modern neural RE models often exhibit bi-
ases across demographic groups (Li et al., 2021;
Gaut et al., 2019; Stranisci et al., 2024).

Biases in RE models often stem from their train-
ing datasets, directly influencing model predic-
tions (Barocas and Selbst, 2016; Stoyanovich et al.,
2020). Poorly curated datasets may underrepre-
sent certain populations due to biased data col-
lection, historical inequalities, or sampling imbal-

ances, leading to discriminatory outcomes and un-
reliable predictions (Chen et al., 2018; Firmani
et al., 2019; Shahbazi et al., 2023). For instance,
an RE model trained mostly on data featuring male
individuals may struggle with relationships involv-
ing female subjects. This systematic underrepre-
sentation, known as representation bias, limits the
model’s ability to generalize across diverse popula-
tions (Buolamwini and Gebru, 2018).

Representation bias becomes more complex
when multiple demographic attributes intersect,
known as intersectional fairness (Foulds et al.,
2020). Biases can arise within individual groups
(e.g., gender or race) and intensify at their inter-
sections. For example, a model may perform well
for females and Asians separately but struggle with
Asian females due to underrepresentation (Jin et al.,
2020). These gaps can lead to systematic RE fail-
ures, reinforcing societal biases. Addressing them
is crucial for equitable model performance and re-
ducing errors for marginalized groups.

While bias mitigation strategies exist throughout
the Machine Learning (ML) pipeline, addressing
bias during pre-processing offers a fundamental
solution by improving data distribution (Shahbazi
et al., 2023). Prior work on analyzing biases in
RE, such as (Gaut et al., 2019) revealed gender-
based performance disparities, and (Stranisci et al.,
2024) expanded analysis to intersectional biases
through cross-dataset comparisons. However, they
do not propose methods to systematically address
intersectional representation gaps.

To address these challenges, we present INTER-
SECTIONRE, a framework for identifying and mit-
igating intersectional representation gaps in RE
datasets. We use pattern-based coverage analysis to
quantify demographic representation and identify
Maximal Uncovered Patterns (MUPs) to highlight
key coverage gaps. We then apply an Integer Lin-
ear Programming (ILP) component to determine
the minimal number of synthetic examples needed



for balance. Finally, we generate high-quality syn-
thetic data using an LLM-based generator, preserv-
ing data characteristics and feature distributions.
This approach allows us to balance demographic
representation across dimensions while maintain-
ing data integrity.

This study makes three key contributions: (1)
INTERSECTIONRE, a framework that detects and
mitigates intersectional representation gaps in RE
tasks through pattern-based gap analysis and syn-
thetic data generation; (2) An ILP-based strategy
and LLM-based synthetic data generator to en-
hance demographic representation while preserv-
ing data integrity; (3) Empirical evidence on the
NYT-10 dataset (Riedel et al., 2010) showing ef-
fective bias mitigation and improved model perfor-
mance across demographic groups.

2 Background

ML models trained on biased datasets can am-
plify societal inequalities through unfair predic-
tions (Suresh and Guttag, 2021). In RE models,
biased data often results in missing relationships
for underrepresented groups. This section exam-
ines RE biases, their impacts, and introduces ways
to quantify representation and address dataset gaps.

2.1 Relation Extraction and Patterns

Relation Extraction (RE) identifies and classifies
semantic relationships between entities in text.
Given a sentence x with subject s and object o,
the goal is to predict their relation label y € ),
where ) is a set of predefined relation types
(e.g., founder, employer). For example, in x =
{Steve Jobs is the founder of Apple},
with s = {Steve Jobs} and o = {Apple}, an RE
model identifies y = {founder}.

A pattern P represents a subgroup of records
sharing specific attribute values (Asudeh et al.,
2019). Formally, P is a vector of size d (num-
ber of attributes), where each element P[] is either
a specific value from attribute ¢’s domain or an
unspecified value denoted as X. For example, in
a dataset with three binary attributes {x1, x2, 23},
the pattern P = X 01 includes records with o = 0,
x3 = 1, and any value for x;. A record t matches
pattern P (denoted as Match(t, P)) if for all i
where P[i| # X, t[i] = P[i].

To measure representation bias, we use coverage
to quantify subgroup representation in a dataset
D: Cov(P) = |{t € D | Match(t,P)}|/|D].
For example, if |D| = 100 and 21 records match

pattern P = X 01, then Cov(P) = 0.21. A pattern
P is uncovered if Cov(P) < 7, where 7 is the
minimum required coverage.

Coverage gaps occur when patterns in a dataset
are uncovered, leading to potential biases and
unfair predictions for these subgroups. Given a
dataset D and a coverage threshold 7, the coverage
gap for a pattern P is: Gap(P) = (1 —Cov(P)) x
|D|). This represents the minimum number of
additional records needed to meet the threshold.
For example, if |D| = 100, Cov(P) = 0.21, and
7 = 0.3, the gap is (0.3—0.21) x 100 = 9, meaning
nine more records are needed for adequate repre-
sentation of P.

Two patterns are related through a parent-child
relationship based on their specified attributes. Pat-
tern P is a parent of P (Py € parent(Ps)) if it
can be formed by replacing exactly one specified
value in P, with X. Conversely, P» is a child of
Py (P, € child(Py)). A pattern can have multiple
parents and children. For example, for P = 101,
its parents are parent(P) = {X01,1X1,10X},
each created by replacing one value with X.

In analyzing coverage gaps, we identify the most
general uncovered patterns, called Maximal Uncov-
ered Patterns (MUPs). A pattern P is a MUP if: (1)
it is uncovered (Cov(P) < 7) and (2) all its par-
ents have adequate coverage (VP’ € parent(P) :
Cov(P') > 7). MUPs capture broad underrepre-
sented subgroups without redundancy from more
specific child patterns.

2.2 Problem Definition

Given a RE dataset D with triples (subject s, rela-
tion 7, object 0) and demographic attributes (gen-
der G, ancestry A), the goal is to mitigate biases
from coverage gaps, especially intersectional ones,
that affect model performance for underrepresented
groups. We analyze intersectional representation
using patterns P and identify MUPs to address
gaps without redundant subpattern analysis.

Improving MUP coverage is crucial because
MUPs represent the broadest underrepresented sub-
groups, and by increasing coverage for these gen-
eral patterns, we automatically improve the cover-
age of all their more specific child patterns. For
each MUP M, at least Gap(M) additional records
are needed to meet the coverage threshold 7. This
process balances fairness across gender and ances-
try while minimizing synthetic data to preserve
data quality.



2.3 Synthetic Data Generation

Synthetic data generation is a key approach to ad-
dressing representation bias in ML datasets, where
imbalanced demographics can lead to discrimi-
natory model behavior (Draghi et al., 2021). It
helps mitigate biased predictions by balancing de-
mographic attributes while minimizing generated
records (Wang et al., 2024). However, balancing
representation is challenging, especially with inter-
sectional attributes (Shahbazi et al., 2023), due to
the difficulty of ensuring proportional representa-
tion across dimensions (e.g., gender, race) while ad-
dressing coverage gaps (Fournier-Montgieux et al.,
2024). For example, if Black females are under-
represented compared to Black males or Asian fe-
males, data generation must fill this gap without
disrupting other balances. Overcompensation can
create new biases, making it hard to maintain fair-
ness and data integrity.

To address these challenges, we optimize syn-
thetic data generation to minimize records while
meeting representation goals (Micheletti et al.,
2023). Traditional greedy algorithms often yield
suboptimal results and struggle to maintain demo-
graphic balance (Shahbazi et al., 2024; Erfanian
et al., 2024). To overcome this, we use Integer
Linear Programming (ILP) (Nandwani et al., 2022)
to define coverage and balance constraints, mini-
mizing synthetic records while ensuring fair rep-
resentation across all intersections (Dwork et al.,
2024). This approach is especially effective for
MUPs, providing globally optimal solutions that
satisfy all gaps and constraints. The next section
details our ILP formulation and implementation.

3 INTERSECTIONRE

This section presents INTERSECTIONRE for ad-
dressing intersectional representation bias in RE
datasets, consisting of five components: (1) a data
enrichment pipeline adding demographic attributes,
(2) a pattern identification algorithm detecting un-
derrepresented groups via MUP analysis, (3) an
ILP-based planner minimizing required records
while ensuring balance, (4) an entity collection
module sourcing data from knowledge bases, and
(5) an LLM-based generator producing synthetic
factual samples. The following sections detail each
component’s role in mitigating bias.

3.1 Data Enrichment Pipeline

Analyzing intersectional fairness in RE datasets re-
quires demographics (e.g., gender, ancestry), which

are often missing (Stranisci et al., 2024). For exam-
ple, a record like (Steve Jobs, Founder, Apple)
lacks demographic details.

To address this, we developed a data enrich-
ment pipeline using Wikidata to extract demo-
graphic attributes, consisting of two stages: First,
for each record, we focus on relation labels, such
as founder, place_of_birth, profession, and
nationality that involve human entities, exclud-
ing records without them to ensure relevant de-
mographic analysis. Then, for identified human
entities, we retrieve attributes like gender and cit-
izenship from Wikidata. We map each country to
a broader ancestry group (e.g., African, Asian,
European/Western, Latino/Caribbean, Middle
Eastern) using a curated country-to-ancestry map-
ping, enabling meaningful aggregation to identify
representation patterns and coverage gaps.

3.2 Pattern Identification

After enriching the dataset with demographic at-
tributes, we identify underrepresented groups by
analyzing coverage patterns based on gender and
ancestry, focusing on MUPs that represent the
broadest coverage gaps. Since identifying all
MUPs is computationally intensive (Shahbazi et al.,
2023), we propose an algorithm inspired by DEEP-
DIVER (Asudeh et al., 2019). DEEPDIVER uses a
hybrid strategy combining downward traversal with
immediate upward verification, checking all ances-
tor patterns to confirm MUPs, but our approach
simplifies this by verifying only the immediate par-
ent during downward traversal and deferring full
maximality checks to a post-processing phase. We
apply two pruning strategies: (1) Coverage-Based
Pruning, where patterns meeting or exceeding the
threshold have their children explored as poten-
tial MUPs, and (2) Parent-Based Pruning, where
patterns below the threshold are pruned if their im-
mediate parent is also uncovered. This reduces
verification overhead, with post-processing ensur-
ing only maximal patterns are retained.

As shown in Figure 1, consider a dataset with
attributes Gender: Male (M), Female (F)} and An-
cestry: {Asian (A), European (FE), Latino (L)},
and a threshold 7 = 0.3. Starting from the root
X X (coverage 1.0), its children M X and F'X are
explored since X X exceeds the threshold. M X
(coverage 0.8) is not a MUP, so its children M A,
ME, and ML are explored. F'X (coverage 0.2)
is a potential MUP, and Coverage-Based Pruning
skips its children (F'A, F'E, F'L) since their parent



Figure 1: Tree structure illustrating DFS-based MUP discov-
ery with pruning. Red nodes represent identified MUPs, while
dashed nodes and edges indicate pruned patterns and paths.

is already uncovered. For M L (coverage 0.2), our
algorithm checks only its immediate parent (M X)),
unlike DEEPDIVER, which checks both M X and
X X. This streamlined approach flags ML as a
potential MUP, with maximality verified during
post-processing.

3.3 ILP-based Generation Plan

After identifying MUPs, we propose an ILP-based
planning component to minimize synthetic records
while meeting coverage requirements. Unlike
greedy algorithms (Erfanian et al., 2024), which
require iterative MUP recalculations and struggle
to maintain demographic balance, our ILP ensures
global optimality in a single step. It minimizes syn-
thetic records under two constraints: (1) generating
at least Gap(M) records per MUP to meet cover-
age thresholds and (2) maintaining balanced gender
ratios within each ancestry group. This prevents
addressing gaps for one group (e.g., Asian females)
from creating imbalances in others.

Let G = {Female, Male} and A = {African,
Asian, European/Western, Latino/Caribbean,
Middle Eastern}. To avoid new biases, we track
for each ancestry a € A the number of female
records (F,), total records (1), and female ra-
tio (R, = F,/T,). Simply adding new records
can skew the balance. For example, for MUP
M, = {Female,Asian} with 0.01 coverage in a
dataset of 1000 records and threshold 7 = 0.05
where the pattern P = {X,Asian} has the cover-
age of 0.05, the gap Gap(M;) = 40 requires 40
more records. Adding only female records would
skew gender balance, so the ILP determines how
many male Asian records to add to maintain fair-
ness. To formulate this as an ILP, we define de-
cision variables (z4, > 0,Vg € G,a € A) indi-
cating the number of synthetic records to generate
for each gender and ancestry combination. These
variables are only active for demographic combi-
nations linked to MUPs, minimizing unnecessary
data generation.

The next step in the ILP formulation is
defining the objective function. Our primary
goal is to minimize the total number of syn-
thetic records required to meet demographic cov-
erage and intersectional balance requirements:
minimize ) .5 > e 4 Tg,a- This minimization
ensures efficient data generation by creating only
the necessary records to address coverage gaps
identified by MUPs.

Then, we need to define the constraints. Our
ILP formulation includes two constraints to ensure
adequate coverage and intersectional balance: (1)
coverage constraints and (2) gender balance con-
straints. To satisfy the coverage constraints, for
each MUP (M € M), we ensure coverage gaps are
filled: >0 5., 2 uca,, Tga = Gap(M), where
G and Ay represent the gender and ancestry sets
specified in MUP M. For specified attributes (e.g.,
Female), the set contains only that value, and for
unspecified attributes (X), it includes all possible

values.

To satisfy the gender balance constraints, for
each ancestry group a € A7, we implement adap-
tive gender balance constraints:

min_R, < o+ Tfemale,a < max_Ra, (1)
T, + ZLfemale,a T Tmale,a
where F, and T, represent the current number of
female and total records in group a. The variables
Tfemale,a ANd Tmale o are decision variables for gen-
erating female and male records in ancestry group
a. The bounds adapt based on the current ratio (R,,)
and the severity of the imbalance:

, {min(cn X Ra,0.5)  if Rq < 0.33 (severe)
min_Rq =

min(as X R4, 0.45) otherwise

@)

maz R — max(f1 X Rq,0.5) if Rq < 0.33 (severe)
=7 Y max(B2 x R,,0.55) otherwise

(3)

The threshold of 0.33 reflects a 2:1 male-to-
female ratio based on fairness literature (Stranisci
et al., 2024). Parameters a1, oo, 31, and (35 control
adjustment rates for severe and moderate imbal-
ances. The ILP output is a generation plan with
decision variables (x4, Vg € Gar,a € Apyr) indi-
cating the minimal records needed for each inter-
sectional group to close coverage gaps.

3.4 Entity Collection from Knowledge Bases

To generate realistic records, we convert the ILP-
based plan into synthetic data using Wikidata
(structured) and Wikipedia (unstructured). For each
gender—ancestry pair, we map ancestry to countries



Figure 2: LLM-based record generation architecture, featur-
ing prompt management providing relation-specific prompts
for the model, with generated sentences validated by Perplex-
ity Scoring and ClaimBuster tools.

(Section 3.1), distribute entities accordingly, and
apply per-citizenship limits for diversity. SPARQL
queries retrieve Wikidata entities with matching
gender and citizenship, along with biographical
details (e.g., founder, employer, place_lived,
religion, profession, nationality). To enrich
context, we also fetch Wikipedia introductions via
the MediaWiki API. This blend of structured and
unstructured data ensures factual accuracy while
meeting demographic requirements.

3.5 LLM-based Record Generation

Our framework’s final stage uses a GPT-4-powered
Al agent to generate synthetic records. Figure 2
illustrates the agent’s architecture, which consists
of prompt management components, a core gener-
ation model, and validation tools. The agent uses
GPT-4 to map each relation-specific prompt p to
synthetic records x. Each prompt p is tailored to
capture the unique traits of a relation label y € ),
ensuring the generated sentence x accurately re-
flects the entity relationship. In this process, the
agent addresses two validation challenges: (1) dis-
tribution alignment, ensuring x matches the linguis-
tic and structural patterns of the original dataset D,
and (2) factual consistency, ensuring x accurately
reflects input relationships. It uses a Perplexity
Scoring Tool for language alignment and Claim-
Buster (Jimenez and Li, 2018) for factual consis-
tency.

To guide GPT-4, we design relation-specific
prompts p with the following components (Fig-
ure 2): (1) a system prompt & instruction template
tailored to each relation y, defining constraints and
guidelines, (2) contextual requirements, focusing
on verified facts, achievements, or relevance (e.g.,
lived_in for locations, employer for roles), and
(3) few-shot examples, combining curated and dy-
namic samples for diverse, in-context guidance.

The agent incorporates two key validation mech-
anisms to ensure the quality of generated records:
distribution alignment and factual consistency. For
distribution alignment, we measure perplexity per
relation using a pre-trained model (e.g., GPT-2),
where lower perplexity indicates better fluency and
alignment. Specifically, we ensure that the perplex-
ity of any generated sentence does not exceed the
mean plus two standard deviations of perplexity
values calculated for existing sentences of the same
relation label. This method confirms that generated
sentences maintain a consistent quality and style
with the dataset’s typical variability.

For factual consistency, the agent uses Claim-
Buster with dynamic thresholding. Let ¢(x) be
the ClaimBuster scoring function assigning a factu-
ality score in [0,1]. For each relation y, we set
the threshold 6, at the 25th percentile of origi-
nal dataset scores: 6, = percentile,s({¢p(z) |
x € D, relation(z) = y}), ensuring generated sen-
tences are at least as factual as 75% of the orig-
inal dataset. Sentences must meet ¢(x) > 6,;
those below are refined with stricter prompts and re-
evaluated. Only sentences passing after either stage
are accepted, ensuring high factual consistency.

The agent iteratively refines and regenerates sen-
tences using adjusted prompts until they meet both
distributional and factual standards or reach a retry
limit, ensuring the generation of high-quality, real-
istic synthetic records that effectively address rep-
resentation gaps.

4 Experimental Results and Analysis

This section focuses on evaluating our framework
for addressing intersectional representation bias in
relation extraction datasets, specifically: (1) im-
proving demographic representation, (2) efficient
synthetic data generation via ILP, and (3) impact
on model performance across subgroups.

4.1 Experimental Setup

Dataset. We conduct our experiments on the NY'T-
10 dataset (Riedel et al., 2010), a benchmark for
RE tasks with 70,339 records and 52 relation la-
bels from the New York Times corpus, annotated
via distant supervision from Freebase. To en-
able demographic analysis, we filtered for records
with at least one human entity, yielding 30,818
records and 15 human-centric relation labels, with
the most frequent being place_of_birth (21.3%),
nationality (18.7%), employer (15.4%), and
place_lived (14.2%). We enriched the dataset



with demographic attributes like gender and ances-
try (Section 3.1), revealing a gender imbalance
(12.4% females vs. 87.6% males) and ances-
try disparities (European/Western 71.1%,Middle
Eastern 11.7%, Asian 9.2%, Latino/Caribbean
4.9%, African 3.1%). These imbalances highlight
the need to address intersectional coverage gaps for
equitable representation.

Implementation. We queried demographic at-
tributes from Wikidata using SPARQL, optimized

via SPARQLWrapper, and pre-designed citizenship
to ancestry mappings. The ILP was formulated
using Gurobi, applying dynamic gender balance
constraints based on R, (stricter when R, < 0.33:
a; = 1.5,81 = 2; relaxed otherwise: as =
0.9, B2 = 1.1). Synthetic records were generated
with GPT-4 (200-token limit, temperature 0.0) and
validated via GPT-2 perplexity scoring (Radford
et al., 2019) for fluency and ClaimBuster (Jimenez
and Li, 2018) for factual consistency. We fine-
tuned the REBEL-large model (Cabot and Navigli,
2021) (a seq2seq BART-based RE model (Lewis,
2019)) on NYT-10, training for 3 epochs with
AdamW (learning rate 2e — 4, batch size 4).

4.2 Intersectional Representation Analysis

We analyzed intersectional representation pat-
terns in the original dataset and our proposed
solutions. To evaluate our ILP-based constraints,
we conducted experiments in three settings: (1)
the original dataset, (2) our framework with
intersectional balance constraints, and (3) our
framework with constraints off, focusing on the
MUP coverage threshold.

Basleine Coverage Gap in Original Dataset. To
assess intersectional gaps, we used a coverage
threshold of 0.15, representing the minimal
expected coverage per group, given five ancestry
groups and two genders (ideally 10% each if
evenly distributed). This value balances real-
world demographic imbalances with meaningful
targets for underrepresented groups. Figure 3
(Left) shows demographic representation in the
original dataset, with rectangles indicating the
percentage of each gender-ancestry combination
and color intensity reflecting coverage (darker
= higher). European/Western males dominate
(61.7%), while female representation is minimal,
peaking at 9.4% and dropping to 0.3% for African
females. Groups like African males (2.8%) and
Latino/Caribbean females (0.4%) fall well

below the threshold, highlighting systemic biases
and the need for targeted augmentation.

Coverage Improvements with Augmentation.
Figure 3 also shows the impact of our augmenta-
tion strategies in two scenarios: With Intersectional
Balance Constraint (middle) and Without Intersec-
tional Balance Constraint (right). Each rectangle
reflects adjusted percentages after augmentation.
With the constraint, demographic representation
becomes more equitable, increasing female rep-
resentation to 7.8% across ancestries and helping
most groups reach the 0.15 threshold. This ap-
proach effectively addresses under-representation
(e.g., African and Latino/Caribbean females)
while maintaining proportionality, ensuring bal-
anced improvements without new biases. The With-
out Intersectional Constraint scenario results are
uneven. Some underrepresented groups improve,
but European/Western males disproportionately
benefit, rising to 49.4%, while groups like Middle
Eastern and Asian females remain below the 0.15
threshold. This highlights the need for balance con-
straints to achieve fair coverage.

Gender Ratios Across Approaches. To eval-
uate gender equity across ancestry groups, we

computed the female-to-male ratio for each group.
An ideal ratio of 0.5 indicates equal representa-
tion, yet in the original dataset, ratios are skewed,
with females comprising less than 0.15 in most
groups, showing severe under-representation. Ap-
plying intersectional balance constraints achieves
near-parity across ancestries, effectively address-
ing these imbalances—for example, African and
Middle Eastern groups reach ratios close to 0.5
from near-zero. In contrast, the absent of such
constraints leads to partial improvements but fails
to ensure consistent gender equity. These results
highlight the necessity of intersectional balance
constraints for equitable representation.
Intersectional Coverage vs. Synthetic Records
Trade-Off. Figure 4a shows a Pareto analysis of
the trade-off between intersectional coverage im-
provement and the number of synthetic records
added. The With Intersectional Constraint strat-
egy achieves the highest improvement (0.076) with
27,913 records, balancing fairness and efficiency.
In contrast, the Without Intersectional Constraint
strategy shows lower improvement (0.039) with
7,668 records, highlighting its inefficiency in ad-
dressing intersectional gaps. The original dataset
serves as the baseline with no synthetic records or
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Figure 3: Intersectional representation across the original dataset, generated dataset with intersectional constraint, and generated

dataset without intersectional constraint.

improvement. While requiring more records, the
constrained strategy achieves significantly greater
coverage improvements than the unconstrained ap-
proach.

Intersectional Fairness Metrics. To evaluate
fairness across the three dataset states, we ana-

lyzed four normalized metrics ([0, 1]), where higher
values indicate better representation: (1) Balance
Score (normalized female-to-male ratio), (2) Gen-
der Gap (difference in female and male representa-
tion), (3) Ancestry Gap (standard deviation across
ancestry groups), and (4) Intersectional Gap (com-
bined gender and ancestry disparities). Figure 4b
shows these metrics. The original dataset shows
significant disparities with consistently low scores
(< 0.15) across all metrics, while the Without In-
tersectional Constraints approach shows moderate,
uneven improvements (0.35-0.45). In contrast, our
With Intersectional Constraints approach achieves
the highest scores, notably for ancestry (0.75) and
intersectional gaps (0.65), effectively mitigating
representation biases. The Balance Score and Gen-
der Gap improve from 0.124 (original) to 0.569
(constrained), reducing gender disparities while
maintaining ancestry balance.

Statistical Consistency. We compared sentence
length distributions between the original NYT-10

and the augmented dataset to assess stylistic con-
sistency. Figure 4c shows closely aligned density
curves, supported by a low Jensen-Shannon Di-
vergence (0.0411) and KS test statistic (0.0491,
p < 0.0001). Sentence length statistics confirm
this: the original dataset has a mean of 40.95, a
median of 39.00, and a standard deviation (SD) of
78.92, while the augmented dataset shows a mean
of 39.81, a median of 37.00, and an SD of 75.55,
indicating minimal deviation.

For quality assessment, the vocabulary size grew

Table 1: Model Performance Comparison Across De-
mographic Groups

Original Augmented AF1
Gender  Ancestry F1Score FPR F1 Score FPR Disparity
Overall — 0.782  0.197  0.845 0.265  +0.063
Female African 0.000 1.000 1.000  0.000  +1.000
Asian 0.773  0.074  0.941 0.111  +0.168
European/Western 0.795 0.199 0.890 0.199  +0.095
Latino/Caribbean 0.889  0.200 1.000  0.000 +0.111
Middle Eastern 0.870  0.020 0950  0.015  +0.080
Male African 0756  0.179 0923  0.143  +0.167
Asian 0902  0.178  0.861 0.200  -0.041
European/Western ~ 0.805 0.323 0.755 0.228  -0.050
Latino/Caribbean 0.911 0.116 0911 0.163  +0.000
Middle Eastern 0.890  0.025 0950 0.018  +0.060

from 37,168 to 42,862, showing that the aug-
mented dataset introduces new vocabulary while
maintaining a reasonable growth rate. This sug-
gests the generated text preserves the domain-
specific language of the original dataset. The Type-
Token Ratio (TTR), measuring lexical diversity
as the ratio of unique words to total words, rose
slightly from 0.0349 to 0.0378 (+8.3%), maintain-
ing diversity without excessive repetition. The Ha-
pax Percentage, indicating the proportion of words
appearing only once, increased from 24.71% to
27.60% (+11.7%), reflecting more unique terms,
likely from new entity names. These results demon-
strate that our augmentation approach effectively
enhances coverage and diversity while preserving
linguistic and structural integrity.

4.3 Model Performance

Table 1 shows significant variations in the REBEL
model’s performance when fine-tuned on the origi-
nal NYT-10 dataset versus the demographically
augmented version. The augmented model’s
F1 score improves from 0.782 to 0.845, reflect-
ing better overall performance, though gains are
uneven across demographic groups. Notably,



(a)

Figure 4: Analysis of representation improvements across different augmentation strategies. Subfigure (a) shows the trade-off
between coverage improvement and synthetic records added, while subfigure (b) compares intersectional fairness metrics across
dataset states. Subfigure (c) shows the sentence length comparison between the Original NYT-10 and Augmented Dataset.
Statistical tests confirm a high degree of alignment, with minor deviations in mean and variance.

underrepresented groups like African males,
African females, Middle Eastern females,
and Latino/Caribbean females see substantial
improvements, indicating the augmentation effec-
tively addresses representation gaps. While ma-
jority groups such as European/Western males
show a slight F1 decrease (—0.050), this is offset by
minority group gains. The augmented model also
reduces false positive rates (FPR) across most de-
mographics while maintaining strong performance
for Middle Eastern groups. However, these results
are influenced by demographic imbalances in the
test set, potentially affecting metric reliability for
underrepresented groups. This highlights the need
for evaluation methods that consider representation
in both the training and testing phases.

5 Related Work

Bias in RE has been widely studied, especially re-
garding gender disparities. Gender-based biases
have received particular attention, with WikiGen-
derBias (Gaut et al., 2019) revealing significant
performance disparities in occupation and spouse-
related relations. Similarly, (Stranisci et al., 2024)
demonstrated that RE datasets systematically un-
derrepresent non-Western nationalities and female
entities, leading to biased model behavior. Entity-
level biases represent another critical challenge in
RE systems. (Wang et al., 2022) showed that RE
models disproportionately rely on entity mentions
rather than contextual information, proposing coun-
terfactual inference as a mitigation strategy at in-
ference time. Building on this work, (He et al.,
2025) developed DREB, a debiased benchmark
that addresses entity bias through systematic entity
replacement, and introduced MixDebias, which
combines data augmentation with model-level de-

biasing. However, while their approach effectively
reduces entity bias, their entity replacement strat-
egy can generate factually incorrect relationships
and does not address underlying demographic rep-
resentation gaps in training data. The quality and
fairness of training data itself have also been investi-
gated. (Li et al., 2020) identified systematic biases
in distantly supervised datasets, noting that con-
ventional held-out evaluations may misrepresent
model fairness due to label noise. Unlike previous
work focusing on bias detection or implementing
mitigation strategies at the cost of factual correct-
ness, our approach proactively addresses bias at the
data level through coverage-driven augmentation,
generating synthetic data to create balanced, fairer
RE datasets while maintaining factual accuracy.

6 Conclusion

This work tackles intersectional fairness in relation
extraction (RE) datasets, addressing representation
bias that leads to disproportionate model errors for
underrepresented groups. We propose INTERSEC-
TIONRE to identify and mitigate demographic cov-
erage gaps, ensuring balanced representation across
gender and ancestry while preserving linguistic and
factual integrity. Empirical results show that our
augmentation strategy improves demographic rep-
resentation, reduces disparities, and enhances the
REBEL model’s F1 score, especially for under-
represented groups. Our findings demonstrate the
effectiveness of structured augmentation in mitigat-
ing demographic bias. Future work should extend
this framework to include more attributes (e.g., age,
profession), diversify demographic sources beyond
Wikidata, and move beyond binary gender classifi-
cations. Our approach offers a scalable, adaptable
method for promoting demographic fairness in RE,
supporting more equitable Al systems.



7 Limitations

While this study demonstrates the effectiveness of
INTERSECTIONRE in mitigating intersectional
bias in RE, several limitations should be acknowl-
edged.

First, our framework relies on external knowl-
edge bases (e.g., Wikidata) for demographic anno-
tations. While these sources offer extensive cover-
age, may contain gaps or inaccuracies, particularly
for individuals from less-documented regions or
historical contexts. The quality of demographic
inference directly impacts the effectiveness of our
augmentation strategy. The errors in entity anno-
tation could propagate through the dataset. Future
research directions could investigate more sophisti-
cated demographic inference techniques, including
human-in-the-loop validation mechanisms, to im-
prove the robustness and reliability of the annota-
tion process.

Second, the current implementation models gen-
der as a binary attribute (male/female) due to con-
straints in demographic annotations. This oversim-
plifies real-world gender diversity and may rein-
force binary assumptions in NLP models. Future
extensions should explore more inclusive demo-
graphic attributes, including non-binary and gender-
fluid identities, to ensure broader fairness.

Third, the synthetic data generation process us-
ing generative Al introduces substantial computa-
tional and financial costs. The generation of high-
quality synthetic data requires significant compu-
tational resources, while API access to advanced
LLMs presents cost barriers. Future research
could explore more efficient alternatives, such as
lightweight models or Retrieval-Augmented Gen-
eration (RAG) techniques, to reduce dependence
on LLMs while maintaining data quality.

These limitations suggest directions for future
research, including a deeper exploration of knowl-
edge bases, improved demographic annotation
strategies and cost-efficient synthetic data genera-
tion methods.
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A Appendix: Methodology Overview

To provide a clearer understanding of our approach,
we include an overview of our methodology in
Figure 5. Our pipeline consists of five main stages:

e Enrichment Pipeline: Extracting demo-
graphic attributes from Wikidata and filtering
relations relevant for augmentation.

Pattern Identification: Identifying MUPs
and analyzing their coverage.

ILP-Based Planning: Formulating an ILP
model to calculate a generation plan to
balance demographic representation in the
dataset.

Entity Collection: Retrieving entity details
from Wikidata using SPARQL queries based
on the generation plan.

LLM-Based Generation: Generating syn-
thetic data using GPT-4, with validation tools
ensuring factual accuracy and linguistic flu-
ency.

Input

&

—_—

aset

output

|-y

Augnmented Dataset

Figure 5: Overview of the data augmentation method-
ology, illustrating the key processing steps from the
original dataset to the final augmented dataset.

B Prompt Templates for Synthetic Data
Generation

To ensure high-quality and contextually accurate
synthetic data generation, we designed relation-
specific prompts tailored to different relation ex-
traction tasks. The prompt structure consists of
four key components:

* System Prompt: Defines the model’s role
and ensures that generated sentences adhere
to desired linguistic and factual constraints.

* Contextual Requirements: Specifies key
constraints and stylistic elements to maintain
factual accuracy and fluency.
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* Few-Shot Examples: Provides real-world ex-
amples to guide generation.

* Entity-Specific Context: Includes subject,
object, relation label, gender, and background
information.

Figure 6 illustrates our prompt templates for
two representative relation labels: place_lived and
place_of _birth. Each template is carefully struc-
tured to guide the generation of natural sentences
that implicitly convey the intended relationship.
For instance, the place_lived template emphasizes
connecting locations to significant work achieve-
ments, while the place_of _birth template focuses
on early life influences and cultural context.



You are an expert in crafting concise, natural
sentences about where people lived, focusing on
verified historical facts. Your task is to create a
single sentence that:

e Uses only time periods mentioned in the
provided background

e Connects location naturally to a single

significant aspect of their work

Maintains historical accuracy without speculation

* Avoids complex, multi-clause structures

e Never invent or infer information not present in
the background

¢ Creates clear cause-and-effect relationships
between location and achievement

Generate one focused sentence that:

1. Uses only time periods explicitly mentioned in
the background

2. Highlights one specific achievement or activity
from their known history

3. Shows how the location influenced or enabled
this achievement

4. Incorporates verified cultural/social elements
from their background

5. Keeps the relationship between person and
location subtle but clear

Important:

* Focus on one main idea rather than multiple
achievements

» Use only facts provided in the background

e Create a clear but natural connection to the
location

e Aim for 20-30 words for clarity and impact

Given the following examples from real-world text
showing how relations are expressed naturally:

Examples:

Subject: Leonard Bernstein,

Relation label: place_lived,

Object: New York,

Sentence: Throughout the 1960s, many of Bern-
stein’s most innovative compositions took shape

in his Upper West Side studio, where the maestro
would often host late-night rehearsals with the New
York Philharmonic.

Examples from Original Dataset

Now, generate a similar natural sentence for the
following relation. The sentence should avoid
directly stating the relationship and should sound
natural in a relation extraction dataset.

- Subject: subject entity

- Relation: place_lived

- Object: object entity

- Background: entity Wikipedia content

Figure 6: Prompt templates for generating sentences for place_lived (left) and place_of_birth (right) relation labels.
The templates include instruction template (system prompt), context requirements, and few-shot examples to guide

the generation of natural sentences.
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You are an expert in crafting natural sentences
about early life and origins. Your task is to
create a single sentence that:

e Uses only dates and facts mentioned in the

provided background

Connects birthplace naturally to early

achievements or influences

¢ Maintains historical accuracy without speculation

* Avoids formulaic birth-related phrases

¢ Never invents or infers information not present
in the background

Generate one focused sentence that:

1. Uses specific dates/periods from the background

2. Highlights one early achievement or influence

3. Places birthplace naturally within the narrative

4. Incorporates verified cultural or historical
context

5. Keeps the birthplace reference subtle but clear

Important:

* Never use obvious phrases like "was born in"
* Connect location to early life or achievements
e Use only facts provided in the background

e Aim for 20-30 words with natural flow

Given the following examples from real-world text
showing how relations are expressed naturally:

Examples:

Subject: Gabriel Garcia Marquez,

Relation label: place_of birth,

Object: Aracataca,

Sentence: The magical realism in Garcia
Mairquez’s stories drew deep inspiration from his
childhood in Aracataca, where his grandmother’s
storytelling shaped his earliest literary sensibilities.

Examples from Original Dataset

Now, generate a similar natural sentence for the
following relation. The sentence should avoid
directly stating the relationship and should sound
natural in a relation extraction dataset.

- Subject: subject entity

- Relation: place_of_birth

- Object: object entity

- Background: entity Wikipedia content
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