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ABSTRACT

Policy entropy regularization is commonly used for better exploration in deep
reinforcement learning (RL). However, policy entropy regularization is sample-
inefficient in off-policy learning since it does not take the distribution of previous
samples stored in the replay buffer into account. In order to take advantage of
the previous sample distribution from the replay buffer for sample-efficient ex-
ploration, we propose sample-aware entropy regularization which maximizes the
entropy of weighted sum of the policy action distribution and the sample action
distribution from the replay buffer. We formulate the problem of sample-aware
entropy regularized policy iteration, prove its convergence, and provide a practi-
cal algorithm named diversity actor-critic (DAC) which is a generalization of soft
actor-critic (SAC). Numerical results show that DAC significantly outperforms
SAC baselines and other state-of-the-art RL algorithms.

1 INTRODUCTION

Reinforcement learning (RL) aims to maximize the expectation of the discounted reward sum under
Markov decision process (MDP) environments (Sutton & Barto, 1998). When the given task is
complex, i.e. the environment has high action-dimensions or sparse rewards, it is important to well
explore state-action pairs for high performance (Agre & Rosenschein, 1996). For better exploration,
recent RL considers various methods: maximizing the policy entropy to take actions more uniformly
(Ziebart et al., 2008; Fox et al., 2015; Haarnoja et al., 2017), maximizing diversity gain that yields
intrinsic rewards to explore rare states by counting the number of visiting states (Strehl & Littman,
2008; Lopes et al., 2012), maximizing information gain (Houthooft et al., 2016; Hong et al., 2018),
maximizing model prediction error (Achiam & Sastry, 2017; Pathak et al., 2017), and so on. In
particular, based on policy iteration for soft Q-learning, (Haarnoja et al., 2018a) considered an off-
policy actor-critic framework for maximum entropy RL and proposed the soft actor-critic (SAC)
algorithm, which has competitive performance for challenging continuous control tasks.

In this paper, we reconsider the problem of policy entropy regularization in off-policy learning
and propose a generalized approach to policy entropy regularization. In off-policy learning, we
store and reuse old samples to update the current policy (Mnih et al., 2015), and it is preferable
that the old sample distribution in the replay buffer is uniformly distributed for better performance.
However, the simple policy entropy regularization tries to maximize the entropy of the current policy
irrespective of the distribution of previous samples. Since the uniform distribution has maximum
entropy, the current policy will choose previously less-sampled actions and more-sampled actions
with the same probability and hence the simple policy entropy regularization is sample-unaware
and sample-inefficient. In order to overcome this drawback, we propose sample-aware entropy
regularization, which tries to maximize the weighted sum of the current policy action distribution
and the sample action distribution from the replay buffer. We will show that the proposed sample-
aware entropy regularization reduces to maximizing the sum of the policy entropy and the α-skewed
Jensen-Shannon divergence (Nielsen, 2019) between the policy distribution and the buffer sample
action distribution, and hence it generalizes SAC. We will also show that properly exploiting the
sample action distribution in addition to the policy entropy over learning phases will yield far better
performance.
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2 RELATED WORKS

Entropy regularization: Entropy regularization maximizes the sum of the expected return and
the policy action entropy. It encourages the agent to visit the action space uniformly for each given
state, and the regularized policy is robust to modeling error (Ziebart, 2010). Entropy regularization is
considered in various domains for better optimization: inverse reinforcement learning (Ziebart et al.,
2008), stochastic optimal control problems (Todorov, 2008; Toussaint, 2009; Rawlik et al., 2013),
and off-policy reinforcement learning (Fox et al., 2015; Haarnoja et al., 2017). (Lee et al., 2019)
shows that Tsallis entropy regularization that generalizes usual Shannon-entropy regularization is
helpful. (Nachum et al., 2017a) shows that there exists a connection between value-based and policy-
based RL under entropy regularization. (O’Donoghue et al., 2016) proposed an algorithm combining
them, and it is proven that they are equivalent (Schulman et al., 2017a). The entropy of state mixture
distribution is better for pure exploration than a simple random policy (Hazan et al., 2019).

Diversity gain: Diversity gain is used to provide a guidance for exploration to the agent. To achieve
diversity gain, many intrinsically-motivated approaches and intrinsic reward design methods have
been considered, e.g., intrinsic reward based on curiosity (Chentanez et al., 2005; Baldassarre &
Mirolli, 2013), model prediction error (Achiam & Sastry, 2017; Pathak et al., 2017; Burda et al.,
2018), divergence/information gain (Houthooft et al., 2016; Hong et al., 2018), counting (Strehl &
Littman, 2008; Lopes et al., 2012; Tang et al., 2017; Martin et al., 2017), and unification of them
(Bellemare et al., 2016). For self-imitation learning, (Gangwani et al., 2018) considered the Stein-
variational gradient decent with the Jensen-Shannon kennel.

Off-policy learning: Off-policy learning can reuse any samples generated from behaviour policies
for the policy update (Sutton & Barto, 1998; Degris et al., 2012), so it is sample-efficient as compared
to on-policy learning. In order to reuse old samples, a replay buffer that stores trajectories generated
by previous policies is used for Q-learning (Mnih et al., 2015; Lillicrap et al., 2015; Fujimoto et al.,
2018; Haarnoja et al., 2018a). To enhance both stability and sample-efficiency, several methods are
considered, e.g., combining on-policy and off-policy (Wang et al., 2016; Gu et al., 2016; 2017), and
generalization from on-policy to off-policy (Nachum et al., 2017b; Han & Sung, 2019).

In order to guarantee the convergence of Q-learning, there is a key assumption: Each state-action
pair must be visited infinitely often (Watkins & Dayan, 1992). If the policy does not visit diverse
state-action pairs many times, it converges to local optima. Therefore, exploration for visiting differ-
ent state-action pairs is important for RL, and the original policy entropy regularization encourages
exploration (Ahmed et al., 2019). However, we found that the simple policy entropy regulariza-
tion can be sample-inefficient in off-policy RL, so we aim to propose a new entropy regularization
method that significantly enhances the sample-efficiency for exploration by considering the previous
sample distribution in the buffer.

3 BACKGROUND

In this section, we briefly introduce the basic setup and the soft actor-critic (SAC) algorithm.

3.1 SETUP

We assume a basic RL setup composed of an environment and an agent. The environment follows
an infinite horizon Markov decision process (S,A, P, γ, r), where S is the state space, A is the
action space, P is the transition probability, γ is the discount factor, and r : S × A → R is the
reward function. In this paper, we consider a continuous state-action space. The agent has a policy
distribution π : S × A → [0,∞) which selects an action at for a given state st at each time
step t, and the agent interacts with the environment and receives reward rt := r(st, at) from the
environment. Standard RL aims to maximize the discounted return Es0∼p0,τ0∼π[

∑∞
t=0 γ

trt], where
τt = (st, at, st+1, at+1 · · · ) is an episode trajectory.

3.2 SOFT ACTOR-CRITIC

Soft actor-critic (SAC) (Haarnoja et al., 2018a) includes a policy entropy regularization term in the
objective function for better exploration by visiting the action space uniformly for each given state.
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The entropy-augmented policy objective function of SAC is given by

JSAC(π) = Eτ0∼π

[ ∞∑
t=0

γt(rt + βH(π(·|st)))

]
, (1)

where H is the entropy function and β ∈ (0,∞) is the entropy coefficient. SAC is a practical off-
policy actor-critic based on soft policy iteration (SPI) that alternates soft policy evaluation to esti-
mate the true soft Q-function and soft policy improvement to find the optimal policy that maximizes
(1). In addition, SPI theoretically guarantees convergence to the optimal policy that maximizes (1).

4 THE DIVERSITY ACTOR-CRITIC ALGORITHM

4.1 MOTIVATION OF THE SAMPLE-AWARE ENTROPY

As explained in Section 2, the policy should visit diverse samples to learn the policy without con-
verging to the local optima. In off-policy learning, we can reuse previous samples stored in the replay
buffer to learn the policy, so it is efficient to draw diverse samples while avoiding frequently selected
samples before. The policy entropy maximization enhances exploration to yield better performance,
but it is sample-inefficient for off-policy RL because it does not take advantage of the previous sam-
ple action distribution obtainable from the replay buffer: If we assume bounded action space, the
simple policy entropy maximization will choose all actions with the equal probability without con-
sidering the previous action samples because maxπH(π) = minπ DKL(π||U) is achieved when
π = U , where U is a uniform distribution and DKL is the Kullback-Leibler (KL) divergence.

In order to overcome the limitation of the simple policy entropy maximization, we consider maxi-
mizing a sample-aware entropy defined as the entropy of a mixture distribution of the policy distri-
bution π and the current sample action distribution q in the replay buffer. Here, q is defined as

q(·|s) :=

∑
a∈DN(s, a)δa(·)∑
a′∈DN(s, a′)

, (2)

where D is the replay buffer that stores previous samples (st, at, rt, st+1) at each time t, δa(·) is the
Dirac measure at a ∈ A, and N(s, a) is the number of state-action pair (s, a) in D.

Then, we define a target distribution qπ,αtarget as the mixture distribution of π and q, which is expressed
as qπ,αtarget := απ + (1 − α)q, where α ∈ [0, 1] is the weighting factor. Note that we draw samples
from policy π and store them in the replay buffer, so the target distribution can be viewed as the
updated sample action distribution in the future replay buffer. Then, maximizing the sample-aware
entropy H(qπ,αtarget) can encourage sample-efficient exploration because π will choose actions rare
in the buffer with high probability and actions stored many times in the buffer with low probability
in order to make the target distribution uniform. We provide a simple example below:

Let us consider a simple 1-step MDP in which s0 is the unique initial state, there exist Na actions
(A = {A0, · · · , ANa−1}), s1 is the terminal state, and r is a deterministic reward function. Then,
there exist Na state-action pairs in total and let us assume that we already have Na − 1 state-action
samples in the replay buffer as R = {(s0, A0, r(s0, A0)), · · · , (s0, ANa−2, r(s0, ANa−2))}. In
order to estimate the Q-function for all state-action pairs, the policy should sample the last action
ANa−1 (After then, we can reuse all samples infinitely to estimate Q). Here, we will compare two
exploration methods.

1) First, if we consider the simple entropy maximization, the policy that maximizes its entropy will
choose all actions with equal probability 1/Na (uniformly). Then, Na samples should be taken on
average by the policy to visit the action ANa−1.

2) Consider the sample-aware entropy maximization. Here, the sample action distribution q in the
buffer becomes q(a0|s0) = 1/(Na − 1) for a0 ∈ {A0, · · · , ANa−2} and q(ANa−1|s0) = 0, the
target distribution becomes qπ,αtarget = απ + (1 − α)q, and we set α = 1/Na. Then, the policy that
maximizes the sample-aware entropy becomes π(ANa−1|s0) = 1 to make qπ,αtarget uniform because
maxπH(qπ,αtarget) = minπ DKL(qπ,αtarget||U). In this case, we only needs one sample to visit the
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action ANa−1. In this way, the simple entropy maximization is sample-inefficient for off-policy
RL, and the proposed sample-aware entropy maximization can enhance the sample-efficiency for
exploration by using the previous sample distribution and choosing a proper α. With this motivation,
we propose the sample-aware entropy regularization for off-policy RL and the corresponding α-
adaptation method.

4.2 SAMPLE-AWARE ENTROPY REGULARIZATION

Our approach is to maximize the return while maximizing the sample-aware entropy. Under this
approach, previously many times sampled actions will be given low probabilities and previously less
taken actions will be given high probabilities by the current policy π for sample-efficient exploration
as shown in Section 4.1. Hence, we set the objective function for the proposed sample-aware entropy
regularization as

J(π) = Eτ0∼π

[ ∞∑
t=0

γt(rt + βH(qπ,αtarget(·|st)))

]
. (3)

Here, the sample-aware entropyH(qπ,αtarget) for given st can be decomposed as

H(qπ,αtarget) = −
∫
a∈A

(απ + (1− α)q) log(απ + (1− α)q) = αH(π) +Dα
JS(π||q) + (1− α)H(q), (4)

whereDα
JS(π||q) := αDKL(π||qπ,αtarget)+(1−α)DKL(q||qπ,αtarget) is the α skew-symmetric Jensen-

Shannon (JS) divergence (Nielsen, 2019). Note that Dα
JS reduces to the standard JS divergence for

α = 1
2 and to zero for α = 0 or 1. Hence, for α = 1, (4) reduces to the simple entropy, but for α 6= 1,

it is a generalization incorporating the distribution q. Thus, our objective function aims to maximize
the return while simultaneously maximizing the discounted sum of policy entropy, sample entropy,
and the divergence between π and q. In this way, the policy will choose more diverse actions that are
far from the samples stored in the replay buffer while maintaining its entropy for better exploration.

4.3 DIVERSE POLICY ITERATION WITH THE PROPOSED OBJECTIVE

In this section, we derive the diverse policy evaluation and diverse policy improvement to maximize
the objective function with the sample-aware entropy regularization (3). Note that the sample action
distribution q is updated as the iteration goes on. However, it changes very slowly since the buffer
size is much larger than the time steps of one iteration. Hence, for the purpose of proof we regard
the action distribution q as a fixed distribution in this section.

First, we define the true diverse Q-function Qπ as Qπ(st, at) := 1
β rt +

Eτt+1∼π

[∑∞
l=t+1 γ

l−t−1
(

1
β rl + αH(π(·|sl)) +Dα

JS(π(·|sl)||q(·|sl)) + (1− α)H(q(·|sl))
)]
.

We defined the sample distribution q in equation (2), but we do not want to compute actual q, which
requires a method such as discretization and counting for continuous samples. Even if q is obtained
by counting, a generalization of q for arbitrary state-action pairs is needed again to estimate Qπ . We
circumvented this difficulty by defining the ratio Rπ,α of απ to qπ,αtarget as

Rπ,α(st, at) =
απ(at|st)

απ(at|st) + (1− α)q(at|st)
, (5)

and we will show later that all objective (or loss) functions for practical implementation can be
represented by using the ratio only, without using the explicit q in Appendix B.

Then, we can decompose Dα
JS(π(·|sl)||q(·|sl)) as

Dα
JS(π||q) = αEal∼π(·|sl)[logRπ,α(sl, al)] + (1− α)Eal∼q(·|sl)[log(1−Rπ,α(sl, al))] +H(α),

(6)

where H(α) = −α logα− (1− α) log(1− α) is the binary entropy function.

The modified Bellman backup operator for Qπ estimation is given by

T πQ(st, at) :=
1

β
rt + γEst+1∼P [V (st+1)], (7)
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where V (st) = Eat∼π[Q(st, at) + α logRπ,α(st, at)− α logαπ(at|st)] + (1− α)Eat∼q[log(1−
Rπ,α(st, at))− log(1− α)q(at|st)] is an estimated diverse state value function, Q : S ×A → R is
an estimated diverse state-action value function.

Proof of the convergence of diverse policy evaluation that estimates Qπ by repeating the Bellman
operator (7) is provided in Appendix A. Then, the policy is updated from πold to πnew as πnew =
arg maxπ Jπold(π), where Jπold(π) is the objective of π estimated under Qπold defined as1

Jπold(π(·|st)) := β{Eat∼π [Qπold(st, at) + α logRπ,α(st, at)− α logαπ(at|st)]
+ (1− α)Eat∼q [log(1−Rπ,α(st, at))− log(1− α)q(at|st)]}. (8)

The monotone improvement of this step is proved in Appendix A. Now, we can find the optimal
policy that maximizes J(π)(= Jπ(π)) by the following theorem:

Theorem 1 (Diverse Policy Iteration) By repeating iteration of the diverse policy evaluation
and the diverse policy improvement, any initial policy converges to the optimal policy π∗ s.t.
Qπ
∗
(st, at) ≥ Qπ

′
(st, at), ∀ π′ ∈ Π, ∀ (st, at) ∈ S × A. Also, such π∗ achieves maximum J ,

i.e., Jπ∗(π∗) ≥ Jπ(π) for any π ∈ Π.

Proof. See Appendix A.1.

Note that Jπold(π) for diverse policy iteration above requires the ratio function Rπ,α of the current
policy π, but we can only estimate Rπold,α for the previous policy πold in practice. Thus, we
circumvent this difficulty by defining a practical objective function Jπold(π) given by

J̃πold(π(·|st)) := βEat∼π[Qπold(st, at) + α logRπold,α(st, at)− α log π(at|st)], (9)

Regarding the practically computable objective function J̃πold(π), we have the following result:

Theorem 2 Suppose that the policy is parameterized with parameter θ. For parameterized policy
πθ, two objective functions Jπθold (πθ(·|st)) and J̃πθold (πθ(·|st)) have the same gradient direction
for θ at θ = θold for all st ∈ S.

Proof. See Appendix A.2.

By Theorem 2, we can replace the objective function Jπold(π) of policy improvement with the prac-
tically computable objective function J̃πold(π) for parameterized policy without loss of optimality.

4.4 DIVERSITY ACTOR CRITIC IMPLEMENTATION

We first define Rα as an estimate for the ratio function Rπold,α. For implementation, we parameter-
ize π, Rα, Q, and V by neural network parameters θ, η, φ, and ψ, respectively. Then, we setup the
practical objective (or loss) functions Ĵπ(θ), ĴRα(η), L̂Q(φ), and L̂V (ψ) for the parameter update.
Detailed DAC implementation based on Section 4 is provided in Appendix B. The proposed DAC
algorithm is summarized in Appendix C. Note that DAC becomes SAC when α = 1, and becomes
standard off-policy RL without entropy regularization when α = 0.

5 α-ADAPTATION

In the proposed sample-aware entropy regularization, the weighting factor α plays an important role
in controlling the ratio between the policy distribution π and the sample action distribution q. How-
ever, it is difficult to estimate optimal α directly. Hence, we further propose an adaptation method
for α based on max-min principle widely considered in game theory, robust learning, and decision
making problems (Chinchuluun et al., 2008). Since we do not know optimal α, an alternative for-
mulation is that we maximize the return while maximizing the worst-case sample-aware entropy,
i.e., minαH(qπ,αtarget). Then, the max-min approach can be formulated as follows:

max
π

Eτ0∼π

[∑
t

γt(rt + βmin
α

[H(qπ,αtarget)− αc])

]
(10)

1Note that if we replace πold with π and view every state st as an initial state, then (8) reduces to J(π).
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where c is a control hyperparameter for α adaptation. We learn α to minimize H(qπ,αtarget) − αc,
so the role of c is to maintain the target entropy at a certain level to explore the state-action well.
Detailed implementation for α-adaptation is given in Appendix B.1.

6 EXPERIMENTS

In this section, we evaluate the proposed DAC algorithm on various continuous-action control tasks
and provide ablation study. In order to see the superiority of the sample-aware entropy regulariza-
tion, we here focus on comparison with two SAC baselines: SAC and SAC-Div. SAC-Div is SAC
combined with the method in (Hong et al., 2018) that diversifies policies from buffer distribution
by simply maximizing J(π) + αdD(π||q) for J(π) in (1) and some divergence D. Note that the
key difference between SAC-Div and DAC is that SAC-Div simply adds the single divergence term
to the policy objective function J(π), whereas DAC considers the discounted sum of target entropy
terms as seen in (3). For SAC-Div, we consider KL divergence (MSE if the policy is Gaussian) and
adaptive scale αd with δd = 0.2 for the divergence term as suggested in (Hong et al., 2018). In order
to rule out the influence of factors other than exploration, we use the common simulation setup for
DAC and SAC baselines except for the parts about entropy or divergence.

In addition, we provide comparison of DAC to random network distillation (RND) (Burda et al.,
2018) and MaxEnt (Hazan et al., 2019), which are the recent exploration methods based on finding
rare states in Appendix F.2, and to other recent RL algorithms in Appendix F.3. The result shows
that DAC yields the best performance for all considered tasks as compared to recent RL algorithms.
We also provide the source code of DAC implementation that requires Python Tensorflow. Detailed
simulation setup for experiments is summarized in Appendix E.
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Figure 1: Pure exploration task: Continuous 4-room maze

6.1 PURE EXPLORATION COMPARISON

In order to see the exploration performance of DAC (α = 0.5) as compared to the SAC baselines,
we compare state visitation on a 100 × 100 continuous 4-room maze task. The maze environment
is made by modifying a continuous grid map available at https://github.com/huyaoyu/
GridMap, and it is shown in Fig. 1(a). State is (x, y) position in the maze, action is (dx, dy)
bounded by [−1, 1], and the agent location after the action becomes (x + dx, y + dy). The agent
starts from the left lower corner (0.5, 0.5) and explores the maze without any reward, and Fig. 1(b)
shows the mean number of new state visitations over 30 seeds, where the number of state visitation
is obtained for each integer interval. As seen in Fig. 1(b), DAC visited much more states than
SAC/SAC-Div, which means that the exploration performance of DAC is superior to that of the SAC
baselines. In addition, Fig. 1(c) shows the corresponding state visit histogram of all seeds. Here,
as the color of the state becomes brighter, the state is visited more times. Note that SAC/SAC-Div
rarely visit the right upper room even at 500k time steps for all seeds, but DAC starts visiting the
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right upper room at 5k time steps and frequently visit the right upper room at 500k time steps. Thus,
Fig. 1(c) clearly shows that DAC has better sample-efficiency for exploration than SAC/SAC-Div.

6.2 PERFORMANCE COMPARISON WITH THE SAC BASELINES

The final goal of RL is to achieve high scores for given tasks. For this, exploration techniques are
needed to ensure that the policy does not converge to local optima, as explained in Section 2. We
first showed the improvement of the exploration performance in a pure exploration task (continuous
4-room maze), and experiments in this section will show that DAC has better return performance
than SAC baselines on several sparse-rewarded tasks. Note that having high scores on the sparse-
reward tasks means that the policy can get rewards well without falling into local optima, which
implies that the agent successfully explores more state-action pairs that have positive (or diverse)
rewards. Therefore, the performance comparison on sparse tasks fits well to the motivation and also
note that sparse-rewarded tasks has been widely used as a verification method of exploration in many
previous exploration studies (Hong et al., 2018; Mazoure et al., 2019; Burda et al., 2018).
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Figure 2: Performance comparison: Fixed α case
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Figure 3: α-skewed JS divergence for DAC and SAC/SAC-Div

Fixed α case: In order to see the advantage of the sample-aware entropy regularization for rewarded
tasks, we compare the performance of DAC with α = 0.5 and the SAC baselines on simple MDP
tasks: SparseMujoco tasks. SparseMujoco is a sparse version of Mujoco and the reward is 1 if the
agent exceeds the x-axis threshold, otherwise 0 (Hong et al., 2018; Mazoure et al., 2019).

The performance results averaged over 10 random seeds are shown in Fig. 2. As seen in Fig. 2, DAC
has significant performance gain for most tasks as compared to SAC. On the other hand, SAC-Div
also enhances the convergence speed compared to SAC for some tasks, but it fails to enhance the final
performance. Fig. 3 shows the α-skewed JS divergence curve (α = 0.5) of DAC and SAC/SAC-Div
for sparse Mujoco tasks and we provide Fig. F.1 in Appendix F.1 that shows the corresponding
mean number of discretized state visitation curve on sparse Mujoco tasks. For SAC/SAC-Div, the
ratio function R is estimated separately from (B.2) in Appendix B and the divergence is computed
from R. The performance table for all tasks is given by Table F.1 in Appendix F.1. As seen in
Fig. 3, the divergence of DAC is much higher than that of SAC/SAC-Div throughout the learning
time. It means that the policy of DAC choose more diverse actions from the distribution far away
from the sample action distribution q, then DAC visits more diverse states than the SAC baselines as
seen in Fig. F.1. Thus, DAC encourages better exploration and it yields better performance. Thus,
we can conclude that the proposed sample-aware entropy regularization is superior to the simple
policy entropy regularization of SAC and single divergence regularization of SAC-Div in terms of
exploration and the convergence.

Adaptive α case: Now, we compare the performance of DAC with α = 0.5, 0.8, α-adaptation, and
the SAC baselines to see the need of α-adaptation. To maintain controllability and prevent saturation

7



Under review as a conference paper at ICLR 2021

0 2 4 6 8 10
Time Steps (1e6)

120000

140000

160000

180000

200000

220000

Av
er

ag
e 

Ep
iso

de
 R

ew
ar

d 
Su

m
SAC
SAC-Div
DAC( = 0.5)
DAC( = 0.8)
DAC( -adapt.)

(a) HumanoidStandup-v1

0 1 2 3 4 5
Time Steps (1e6)

0

2000

4000

6000

8000

Av
er

ag
e 

Ep
iso

de
 R

ew
ar

d 
Su

m

SAC
SAC-Div
DAC( = 0.5)
DAC( = 0.8)
DAC( -adapt.)

(b) DelayedHalfCheetah-v1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e6)

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e 

Ep
iso

de
 R

ew
ar

d 
Su

m

SAC
SAC-Div
DAC( = 0.5)
DAC( = 0.8)
DAC( -adapt.)

(c) DelayedHopper-v1

0 1 2 3 4 5
Time Steps (1e6)

0

1000

2000

3000

4000

5000
Av

er
ag

e 
Ep

iso
de

 R
ew

ar
d 

Su
m

SAC
SAC-Div
DAC( = 0.5)
DAC( = 0.8)
DAC( -adapt.)

(d) DelayedWalker2d-v1

0 1 2 3 4 5
Time Steps (1e6)

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Ep
iso

de
 R

ew
ar

d 
Su

m

SAC
SAC-Div
DAC( = 0.5)
DAC( = 0.8)
DAC( -adapt.)

(e) DelayedAnt-v1

Figure 4: Performance comparison: Adaptive α case
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Figure 5: Averaged learning curve for ablation study

of Rαη , we used regularization for α learning and restricted the range of α as 0.5 ≤ α ≤ 0.99 for
α adaptation so that a certain level of entropy regularization is enforced. Here, we consider more
complicated tasks: HumanoidStandup and delayed Mujoco tasks (DelayedHalfCheetah, Delayed-
Hopper, DelayedWalker2d, and DelayedAnt). HumanoidStandup is one of high-action dimensional
Mujoco tasks. Delayed Mujoco tasks suggested by (Zheng et al., 2018; Guo et al., 2018) have the
same state-action spaces with original Mujoco tasks but reward is sparsified. That is, rewards for D
time steps are accumulated and the accumulated sum is delivered to the agent once every D time
steps, so the agent receives no reward during the accumulation time. The performance results aver-
aged over 5 random seeds are shown in Fig. 4. The result of the max average return of these Mujoco
tasks for DAC and SAC/SAC-Div is provided in Table F.2 in Appendix F.1. As seen in Fig. 4, all
versions of DAC outperform SAC. Here, SAC-Div also outperforms SAC for several tasks, but the
performance gain by DAC is much higher. In addition, it is seen that the best α depends on the
tasks in the fixed α case. For example, α = 0.8 is the best for DelayedHalfCheetah, but α = 0.5 is
the best for DelayedAnt. Thus, we need to adapt α for each task. Finally, DAC with α-adaptation
has the top-level performance for most tasks and the best performance for HumanoidStandup and
DelayedHopper tasks. Further consideration for α is provided in Section 6.3.

6.3 ABLATION STUDY

In this section, we provide ablation study for important parameters in the sample-aware entropy
regularization on the DelayedHalfCheetah task. Ablation studies on the other DelayedMucoco tasks
are provided in Appendix G.

Weighting factor α: As seen in Section 6.2, α-adaptation is necessary because one particular value
of α is not best for all environments. Although the proposed α-adaptation in Section 5 is sub-
optimal, it shows good performance across all the considered tasks. Thus, we study more on the
proposed α-adaptation and the sensible behavior of sample-awareness in entropy regularization.
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Fig. 5(a) shows the averaged learning curve of α, α-skewed JS divergenceDJS(π||q) and the policy
entropy H(π) for DAC with the proposed α-adaptation method on DelayedHalfCheetah. Here, we
fix the control coefficient c as −2.0dim(A). As seen in (3), the return, the policy entropy and the
JS divergence are intertwined in the cost function, so their learning curves are also intertwined over
time steps. Here, the learned policy entropy term decreases and the learned α increases to one as
time step goes on. Then, the initially nonzero JS divergence term DJS(π||q) diminishes to zero,
which means that the sample action distribution is exploited for roughly initial 2.5M time steps, and
then DAC operates like SAC. This adaptive exploitation of the sample-aware entropy leads to better
overall performance across time steps as seen in Fig. 4, so DAC with α-adaptation seems to properly
exploit both the policy entropy and the sample action distribution depending on the learning stage.

Control coefficient c: In the proposed α-adaptation (10), the control coefficient c affects the learn-
ing behavior of α. Since H(π) and Dα

JS are proportional to the action dimension, we tried a few
values such as 0, −0.5d, −1.0d and −2.0d where d = dim(A). Fig. 5(b) shows the corresponding
performance of DAC with α-adaptation on DelayedHalfCheetah. As seen in Fig. 5(b), the perfor-
mance depends on the change of c as expected, and c = −2.0 ·dim(A) performs well. We observed
that −2.0d performed well for all considered tasks, thus we set c = −2.0d in (B.8).

Entropy coefficient β: As mentioned in (Haarnoja et al., 2018a), the performance of SAC depends
on β. It is expected that the performance of DAC depends on β too. Fig 5(c) shows the performance
of DAC with fixed α = 0.5 for three different values of β: β = 0.1, 0.2 and 0.4 on Delayed-
HalfCheetah. It is seen that the performance of DAC indeed depends on β. Although there exists
performance difference for DAC depending on β, the performance of DAC is much better than SAC
for a wide range of β. One thing to note is that the coefficient of pure policy entropy regularization
term for DAC is αβ, as seen in (3). Thus, DAC with α = 0.5 and β = 0.4 has the same amount of
pure policy entropy regularization as SAC with β = 0.2. However, DAC with α = 0.5 and β = 0.4
has much higher performance than SAC with β = 0.2, as seen in Fig. 5(c). So, we can see that
the performance improvement of DAC comes from joint use of policy entropyH(π) and the sample
action distribution from the replay buffer via Dα

JS(π||q).

The effect of JS divergence: In order to see the effect of the JS divergence on the performance,
we also provide an additional ablation study that we consider a single JS divergence for SAC-Div
by using the ratio function in Section 4.3. 5(d) shows the performance comparison of SAC, SAC-
Div(KL), SAC-Div(JS), and DAC. For SAC-Div(JS), we used δd = 0.5 for adaptive scaling in (Hong
et al., 2018). As a result, there was no significant difference in performance between SAC-Div with
JS divergence and SAC-Div with KL divergence. On the other hand, the DAC still shows a greater
performance increase than both SAC-Div(KL) and SAC-Div(JS), and this means that the DAC has
more advantages than simply using JS divergence.

7 CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a sample-aware entropy framework for off-policy RL to overcome
the limitation of simple policy entropy for sample-efficient exploration. With the sample-aware en-
tropy regularization, we can achieve diversity gain by exploiting sample history in the replay buffer
in addition to policy entropy. For practical implementation of sample-aware entropy regularized
policy optimization, we have proposed the DAC algorithm with convergence proof. We have also
provided an adaptation method for DAC to control the ratio of the sample action distribution to the
policy action entropy. DAC is an actor-critic algorithm for sample-aware regularized policy opti-
mization and generalizes SAC. Numerical results show that DAC significantly outperforms SAC
baselines in Maze exploration and various Mujoco tasks.

For further study, we consider a generalization of our method in order to deal with the entropy of
the state-action distribution. Currently, many recent papers only consider one of the entropy of
state distribution dπ(s) or that of action distribution π(a|s) only since they have much different
properties (e.g. the state-based entropy is non-convex on π and the action-based entropy is convex
on π). However, both entropies can be handled simultaneously as one fused entropy that deals with
the entropy of the state-action distribution, factorized as log dπ(s, a) = log dπ(s) + log π(a|s).
Then, the generalization of our method for the fused entropy may be able to further enhance the
exploration performance by considering the exploration on the entire state-action space.
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A PROOFS

A.1 PROOF OF THEOREM 1

For a fixed policy π, Qπ can be estimated by repeating the Bellman backup operator by Lemma 1.
Lemma 1 is based on usual policy evaluation but has a new ingredient of the ratio condition in the
sample-aware case.

Lemma 1 (Diverse Policy Evaluation) Define a sequence of diverse Q-functions as Qk+1 =
T πQk, k ≥ 0, where π is a fixed policy and Q0 is a real-valued initial Q. Assume that the ac-
tion space is bounded, and Rπ,α(st, at) ∈ (0, 1) for all (st, at) ∈ S ×A. Then, the sequence {Qk}
converges to the true diverse state-action value Qπ .

Proof. Let rπ,t := 1
β rt+γEst+1∼P [Eat+1∼π[α logRπ,α(st+1, at+1)−α logαπ(at+1|st+1)]+(1−

α)Eat+1∼q[log(1 − Rπ,α(st+1, at+1)) − log(1 − α)q(at+1|st+1)]]. Then, we can formulate the
standard Bellman equation form for the true Qπ as

T πQ(st, at) = rπ,t + γEs+1∼P, at+1∼π [Q(st+1, at+1)] (A.1)

Under the assumption of a bounded action space and Rπ,α ∈ (0, 1), the reward rπ,t is bounded and
the convergence is guaranteed as the usual policy evaluation (Sutton & Barto, 1998; Haarnoja et al.,
2018a).

Now, we prove diverse policy improvement in Lemma 2 and diverse policy iteration in Theorem 1
by using Jπold(π) in a similar way to usual RL or SAC.

Lemma 2 (Diverse Policy Improvement) Let πnew be the updated policy obtained by solving
πnew = arg max

π∈Π
Jπold(π). Then, Qπnew(st, at) ≥ Qπold(st, at), ∀ (st, at) ∈ S ×A.

Proof. We update the policy to maximize Jπold(π), so Jπold(πnew) ≥ Jπold(πold). Hence,

Eat∼πnew [Qπold(st, at) + α logRπnew,α(st, at)− α logαπnew(at|st)]
+ (1− α)Eat∼q[log(1−Rπnew,α(st, at))− log(1− α)q(at|st)]

≥Eat∼πold [Qπold(st, at) + α logRπold,α(st, at)− α logαπold(at|st)]
+ (1− α)Eat∼q[log(1−Rπold,α(st, at))− log(1− α)q(at|st)]

=V πold(st) (A.2)

By repeating the Bellman equation (7) and (A.2) at Qπold ,

Qπold(st, at) =
1

β
rt + γEst+1∼P [V πold(st+1)]

≤ 1

β
rt + γEst+1∼P [Eat+1∼πnew [Qπold(st+1, at+1) + α logRπnew,α(st+1, at+1)

− α logαπnew(at+1|st+1)] + (1− α)Eat+1∼q[log(1−Rπnew,α(st+1, at+1))

− log(1− α)q(at+1|st+1)]]

...
≤ Qπnew(st, at), (A.3)

for each (st, at) ∈ S ×A.
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Theorem 1 (Diverse Policy Iteration) By repeating iteration of the diverse policy evaluation
and the diverse policy improvement, any initial policy converges to the optimal policy π∗ s.t.
Qπ
∗
(st, at) ≥ Qπ

′
(st, at), ∀ π′ ∈ Π, ∀ (st, at) ∈ S × A. Also, such π∗ achieves maximum J ,

i.e., Jπ∗(π∗) ≥ Jπ(π) for any π ∈ Π.

Proof. Let {πi : i ≥ 0, πi ∈ Π} be a sequence of policies s.t. πi+1 = arg maxπ∈Π Jπi(π). For ar-
bitrary state action pairs (s, a) ∈ S×A, {Qπi(s, a)}monotonically increases by Lemma 2 and each
Qπi(s, a) is bounded. Also, πi+1 is obtained by the policy improvement that maximizes Jπi(π(·|s)),
so Jπi(πi+1(·|s)) ≥ Jπi(πi(·|s)) as stated in the proof of Lemma 2. From the definition of Jπold(π)
in (8), all terms are the same for Jπi+1

(πi+1(·|s)) and Jπi(πi+1(·|s)) except βEa∼πi+1
[Qπi+1(s, a)]

in Jπi+1
(πi+1(·|s)) and βEa∼πi+1

[Qπi(s, a)] in Jπi(πi+1(·|s)). Since {Qπi(s, a)} monotonically
increases, Jπi+1

(πi+1(·|s)) ≥ Jπi(πi+1(·|s)). Finally, Jπi+1
(πi+1(·|s)) ≥ Jπi(πi+1(·|s)) ≥

Jπi(πi(·|s)) for any state s ∈ S, so the sequence {Jπi(πi(·|s)} also monotonically increases, and
each Jπi(πi(·|s)) is bounded because Q-function and the target entropy are bounded.

By the monotone convergence theorem, {Qπi} and {Jπi(πi)} pointwisely converge to their optimal
functions Q∗ : S ×A → R and J∗ : S → R, respectively. Here, note that J∗(s) ≥ Jπi(πi(·|s)) for
any i because the sequence {Jπi(πi)} is monotonically increasing. From the definition of convergent
sequence, for arbitrary ε > 0, there is a large N ≥ 0 s.t. Jπi(πi(·|s)) ≥ J∗(s)−

ε(1−γ)
γ satisfies for

all i ≥ N and any s ∈ S.

Now, we can easily show that Jπk(πk(·|s)) ≥ Jπk(π(·|s))− ε(1−γ)
γ for any k > N , any policy π ∈

Π, and any s ∈ S. (If not, Jπk(πk+1) = maxπ′ Jπk(π′) ≥ Jπk(π), and then Jπk+1
(πk+1(·|s′)) ≥

Jπk(πk+1(·|s′)) ≥ Jπk(π(·|s′)) > Jπk(πk(·|s′)) + ε(1−γ)
γ ≥ J∗(s′) for some s′ ∈ S . Clearly, it

contradicts the monotone increase of the sequence {Jπi(πi)}.)
Then, by the similar way with (A.3),

Qπk(st, at) =
1

β
rt + γEst+1∼P [V πk(st+1)] =

1

β
rt + γEst+1∼P [Jπk(πk(·|st+1))]

≥ 1

β
rt + γEst+1∼P

[
Jπk(π(·|st+1))− ε(1− γ)

γ

]
=

1

β
rt + γEst+1∼P [Eat+1∼π[Qπk(st+1, at+1) + α logRπ,α(st+1, at+1)− α logαπ(at+1|st+1)]

+ (1− α)Eat+1∼q[log(1−Rπ,α(st+1, at+1))− log(1− α)q(at+1|st+1)]]− ε(1− γ)

...
≥ Qπ(st, at)− ε. (A.4)

Note that the state action pair (s, a), the policy π, and ε > 0 were arbitrary, so we can conclude that
Qπ∞(s, a) ≥ Qπ(s, a) for any π ∈ Π and (s, a) ∈ S×A. In addition, we show that Jπk(πk(·|s)) ≥
Jπk(π(·|s)) − ε(1−γ)

γ , so Jπ∞(π∞(·|s)) ≥ Jπ(π(·|s)) for any π ∈ Π and any s ∈ S. Thus, π∞ is
the optimal policy π∗, and we can conclude that {πi} converges to the optimal policy π∗.

A.2 PROOF OF THEOREM 2

Theorem 2 Suppose that the policy is parameterized with parameter θ. Then, for parameterized
policy πθ, two objective functions Jπθold (πθ(·|st)) and J̃πθold (πθ(·|st)) have the same gradient
direction for θ at θ = θold for all st ∈ S.

Proof. Under the parameterization of πθ, the two objective functions become

Jπθold (πθ(·|st)) = β(Eat∼πθ [Qπθold (st, at) + α logRπθ,α(st, at)− α log πθ(at|st)]
+ (1− α)Eat∼q[log(1−Rπθ,α(st, at))− log q(at|st)]) +H(α)

J̃πθold (πθ(·|st)) = βEat∼πθ [Qπold(st, at) + α logRπold,α(st, at)− α log πθ(at|st)].
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We can ignore the common Q-function and log πθ terms, and the constant terms w.r.t. θ that leads
zero gradient in both objective functions. Thus, we only need to show

∇θ[αEat∼πθ [logRπθ,α] + (1− α)Eat∼q[log(1−Rπθ,α)]] = ∇θEat∼πθ [α logRπθold ,α] (A.5)

at θ = θold. Now, the gradient of the left term in (A.5) at θ = θold can be expressed as

∇θ[αEat∼πθ [logRπθ,α] + (1− α)Eat∼q[log(1−Rπθ,α)]]

= αEat∼πθ [logRπθ,α · ∇θ log πθ]

+ αEat∼πθ [∇θ logRπθ,α] + (1− α)Eat∼q[∇θ log(1−Rπθ,α)]

= ∇θαEat∼πθ [α logRπθold ,α]

+ αEat∼πθ [∇θ logRπθ,α] + (1− α)Eat∼q[∇θ log(1−Rπθ,α)]. (A.6)

Here, the gradient of the last two terms in (A.6) becomes zero as shown below:

αEat∼πθ [∇θ logRπθ,α] + (1− α)Eat∼q[∇θ log(1−Rπθ,α)]

= αEat∼πθ [∇θRπθ,α/Rπθ,α] + (1− α)Eat∼q[∇θ(1−Rπθ,α)/(1−Rπθ,α)]

= αEat∼πθ [∇θRπθ,α/Rπθ,α]− (1− α)Eat∼q[∇θRπθ,α/(1−Rπθ,α)]

= αEat∼πθ [∇θRπθ,α/Rπθ,α]− (1− α)Eat∼q
[
απθ + (1− α)q

(1− α)q
· ∇θRπθ,α

]
(1)
= αEat∼πθ [∇θRπθ,α/Rπθ,α]− αEat∼πθ

[
απθ + (1− α)q

απθ
· ∇θRπθ,α

]
= αEat∼πθ [∇θRπθ,α/Rπθ,α]− αEat∼πθ [∇θRπθ,α/Rπθ,α] = 0, (A.7)

where we used an importance sampling technique at Eat∼q[f(st, at)] = Eat∼πθ
[
q(at|st)
πθ(at|st)f(st, at)

]
for Step (1). By (A.6) and (A.7), Jπθold (πθ(·|st)) and Jπθold (πθ(·|st)) have the same gradient at
θ = θold.
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B DETAILED DAC IMPLEMENTATION

To compute the final objective function (9), we need to estimate Qπold and Rπold,α. Qπold can
be estimated by diverse policy evaluation. For estimation of Rπold,α, we use function Rα. If we
set the objective function of the ratio function as J(Rα(st, ·)) = αEat∼π[logRα(st, at)] + (1 −
α)Eat∼q[log(1−Rα(st, at))]. In the α = 0.5 case, Generative Adversarial Network (GAN) (Good-
fellow et al., 2014) has shown that the ratio function for α = 0.5 can be estimated by maximizing
J(R0.5). By a similar way, we can easily show that maximizing J(Rα) can estimate our ratio
function as below:

For given s, J(Rα(s, ·)) =
∫
a
απ(a|s) logRα(s, a) + (1 − α)q(a|s) log(1 − Rα(s, a))da. The

integrand is in the form of y → a log y + b log(1 − y) with a = απ and b = (1 − α)q. For any
(a, b) ∈ R2\(0, 0), the function y → a log y+ b log(1− y) has its maximum at a/(a+ b). Thus, the
optimal R∗,α maximizing J(Rα(s, ·)) is R∗,α(s, a) = απ/(απ + (1− α)q) = Rπ,α(st, at). Here,
note that J(Rα) becomes just an α-skewed Jensen-Shannon (JS) divergence except some constant
terms if Rα = Rπ,α.

For implementation we use deep neural networks to approximate the policy π, the diverse value
functions Q, V , and the ratio function Rα, and their network parameters are given by θ, φ, ψ, and
η, respectively. Based on Section 4.3 and we provide the practical objective (or loss) functions for
parameter update as Ĵπ(θ), ĴRα(η), L̂Q(φ), and L̂V (ψ). The objective functions for the policy π
and the ratio function Rα are respectively given by

Ĵπ(θ) = Est∼D, at∼πθ [Qφ(st, at) + α logRαη (st, at)− α log πθ(at|st)], (B.1)

ĴRα(η) = Est∼D[αEat∼πθ [logRαη (st, at)] + (1− α)Eat∼D[log(1−Rαη (st, at))]]. (B.2)

Furthermore, based on the Bellman operator, the loss functions for the value functions Q and V are
given respectively given by

L̂Q(φ) = E(st, at)∼D

[
1

2
(Qφ(st, at)− Q̂(st, at))

2

]
, (B.3)

L̂V (ψ) = Est∼D
[

1

2
(Vψ(st)− V̂ (st))

2

]
, (B.4)

where the target values are defined as

Q̂(st, at) =
1

β
rt + γEst+1∼P [Vψ̄(st+1)] (B.5)

V̂ (st) = Eat∼πθ [Qφ(st, at) + α logRαη (st, at)− α logαπθ(at|st)]
+ (1− α)Eat∼D[log(1−Rαη (st, at))− log(1− α)q(at|st)]. (B.6)

By using the property of ratio function that satisfies log(1−Rπ,α)− log(1−α)q = − log(απ+(1−
α)q) = logRπ,α− logαπ, we can replace the last term in V̂ (st) as (1−α)Eat∼D[logRαη (st, at)−
logαπ(at|st)]. However, the probability of π for actions sampled from D can have high variance,
so we clip the term in the expectation over at ∼ D by action dimension for stable learning, then the
final target value becomes

V̂ (st) = Eat∼πθ [Qφ(st, at) + α logRαη (st, at)− α logαπθ(at|st)]
+ (1− α)Eat∼D[clip(logRαη (st, at)− logαπ(at|st),−d, d)], (B.7)

where d = dim(A) is the action dimension. We will use (B.7) for implementation. Then, note that
all objective (or loss) functions does not require the explicit q, and they can be represented by using
the ratio function Rα only as explained in Section 4.3.

In addition, Rα ∈ (0, 1) should be guaranteed in the proof of Theorem 1, and Rα ∈ (0, 1) satisfies
when π and q are non-zero for all state-action pairs. For practical implementation, we clipped the
ratio function as (ε, 1− ε) for small ε > 0 since some q values can be close to zero before the replay
buffer stores a sufficient amount of samples. π is always non-zero since we consider Gaussian policy.

Here, ψ̄ is the network parameter of the target value Vψ̄ updated by exponential moving average
(EMA) of ψ for stable learning (Mnih et al., 2015). Combining all up to now, we propose the
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diversity actor-critic (DAC) algorithm summarized as Algorithm 1 in Appendix C. Note that DAC
becomes SAC when α = 1, and becomes standard off-policy RL without entropy regularization
when α = 0.

To compute the gradient of Ĵπ(θ), we use the reparameterization trick proposed by (Kingma &
Welling, 2013; Haarnoja et al., 2018a). Note that the policy action at ∼ πθ is the output of the
policy neural network with parameter θ. So, it can be viewed as at = fθ(εt; st), where f is a function
parameterized by θ and εt is a noise vector sampled from spherical normal distribution N . Then,
the gradient of Ĵπ(θ) is represented as∇θĴπ(θ) = Est∼D, εt∼N [∇a(Qφ(st, a) +α logRαη (st, a)−
α log πθ(a|st))|a=fθ(εt;st)∇θfθ(εt; st)− α(∇θ log πθ)(fθ(εt; st)|st)].
For implementation, we use two Q-functions Qφi , i = 1, 2 to reduce overestimation bias as pro-
posed in (Fujimoto et al., 2018), and each Q-function is updated to minimize their loss function
L̂Q(φi). For the policy and the value function update, the minimum of two Q-functions is used
(Haarnoja et al., 2018a).

Note that one version of SAC (Haarnoja et al., 2018b) considers adaptation of the entropy control
factor β by using the Lagrangian method with constraint H(π) ≥ c. In our case, this approach can
also be generalized, but it is beyond the scope of the current paper and we only consider fixed β in
this paper.

B.1 DETAILED IMPLEMENTATION OF THE α-ADAPTATION

In order to learn α, we parameterize α as a function of st using parameter ξ, i.e., α = αξ(st), and
implement αξ(st) with a neural network. Then, ξ is updated to minimize the following loss function
deduced from (10):

L̂α(ξ) = Est∼D[αξH(πθ) +D
αξ
JS(πθ||q) + (1− αξ)H(q)− αξc] (B.8)

Here, all the updates for diverse policy iteration is the same except that α is replaced with αξ(st).
Then, the gradient of L̂α(ξ) with respect to ξ can be estimated as below:

The loss function of α is defined as L̂α(ξ) = Est∼D[αξH(πθ)+D
αξ
JS(πθ||q)+(1−αξ)H(q)−αξc].

The gradient of L̂α(ξ) can be computed as

∇ξL̂α(ξ) = ∇ξEst∼D[αξH(πθ) +D
αξ
JS(πθ||q) + (1− αξ)H(q)− αξc]

=∇ξEst∼D[αξEat∼πθ [− log(αξπθ + (1− αξ)q)− c] + (1− αξ)Eat∼q[− log(αξπθ + (1− αξ)q)]]
=Est∼D[(∇ξαξ)(Eat∼πθ [− log(αξπθ + (1− αξ)q)− c]− Eat∼q[− log(αξπθ + (1− αξ)q)])]

+ Est∼D[αξEat∼πθ [−∇ξ log(αξπθ + (1− αξ)q)] + (1− αξ)Eat∼q[−∇ξ log(αξπθ + (1− αξ)q)]]
=Est∼D[(∇ξαξ)(Eat∼πθ [− logαξπθ + logRπθ,αξ − c]− Eat∼q[log(1−Rπθ,αξ)− log(1− αξ)q])]

+ Est∼D
[∫

at∈A
(αξπθ + (1− αξ)q)[−∇ξ log(αξπθ + (1− αξ)q)︸ ︷︷ ︸

=0

]

]

=Est∼D[(∇ξαξ)(Eat∼πθ [− logαξπθ + logRπθ,αξ − c]− Eat∼q[logRπθ,αξ − logαξπθ])] (B.9)

Note that Rπθ,αξ can be estimated by the ratio function R
αξ
η . Here, we use the same clipping

technique as used in (B.7) for the last term of (B.9).
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C ALGORITHM

Algorithm 1 Diversity Actor Critic
Initialize parameter θ, η, ψ, ψ̄, ξ, φi, i = 1, 2
for each iteration do

Sample a trajectory τ of length N by using πθ
Store the trajectory τ in the buffer D
for each gradient step do

Sample random minibatch of size M from D
Compute Ĵπ(θ), ĴRα(η), L̂Q(φi), L̂V (ψ) from the minibatch
θ ← θ + δ∇θĴπ(θ)

η ← η + δ∇ηĴRα(η)

φi ← φi − δ∇φiL̂Q(φi), i = 1, 2

ψ ← ψ − δ∇ψL̂V (ψ)
Update ψ̄ by EMA from ψ
if α-Adpatation then

Compute L̂α(ξ) from the minibatch
ξ ← ξ − δ∇ξL̂α(ξ)

end if
end for

end for

D HYPERPARAMETER SETUP AND ENVIRONMENT DESCRIPTION

In Table D.1, we provide the detailed hyperparameter setup for DAC and the SAC baselines: SAC,
and SAC-Div. Table D.2 shows the environment description, the corresponding entropy control
coefficient β, threshold for sparse Mujoco tasks, and reward delay D for delayed Mujoco tasks.

SAC / SAC-Div DAC
Learning rate δ 3 · 10−4

Discount factor γ 0.99 (0.999 for pure exploration)
Horizon N 1000
Mini-batch size M 256
Replay buffer length 106

Smoothing coefficient of EMA for Vψ̄ 0.005
Optimizer Adam
Num. of hidden layers (all networks) 2
Size of hidden layers (all networks) 256
Policy distribution Independent Gaussian distribution
Activation layer ReLu
Output layer for πθ, Qφ, Vψ , Vψ̄ Linear
Output layer for αξ, Rαη · Sigmoid
Regularize coefficient for αξ · 10−3

Control coefficient c for α-adaptation · −dim(A)

Table D.1: Hyperparamter setup
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State dim. Action dim. β Threshold
SparseHalfCheetah-v1 17 6 0.02 5.0
SparseHopper-v1 11 3 0.04 1.0
SparseWalker2d-v1 17 6 0.02 1.0
SparseAnt-v1 111 8 0.02 1.0

State dim. Action dim. β Delay D
HumanoidStandup-v1 376 17 1 ·
DelayedHalfCheetah-v1 17 6 0.2 20
DelayedHopper-v1 11 3 0.2 20
DelayedWalker2d-v1 17 6 0.2 20
DelayedAnt-v1 111 8 0.2 20

Table D.2: State and action dimensions of Mujoco tasks and the corresponding β

E SIMULATION SETUP

We compared our DAC algorithm with the SAC baselines and other RL algorithms on various types
of Mujoco tasks with continuous action spaces (Todorov et al., 2012) in OpenAI GYM (Brockman
et al., 2016). For fairness, both SAC/SAC-Div and DAC used a common hyperparameter setup that
basically follows the setup in (Haarnoja et al., 2018a). Detailed hyperparameter setup and environ-
ment description are provided in Appendix D, and the entropy coefficient β is selected based on
the ablation study in Section 6.3. For the policy space Π we considered Gaussian policy set widely
considered in usual continuous RL. For the performance plots in this section, we used deterministic
evaluation which generated an episode by deterministic policy for each iteration, and the shaded
region in the figure represents standard deviation (1σ) from the mean.

F PERFORMANCE COMPARISONS

In this section, we provide more performance plots and tables. In Section F.1, Fig. F.1 shows the
mean number of discretized state visitation curve of DAC and SAC/SAC-Div. For discretization,
we simply consider 2 components of observations of Mujoco tasks, which indicate the position of
the agent: x, z axis position for SparseHalfCheetah, SparseHopper, and SparseWalker, and x, y axis
position for SparseAnt. We discretize the position by setting the grid spacing per axis to 0.01 in
range (−10, 10). Table. F.1 shows the performance on sparse Mujoco tasks. Table F.2 shows max
average return for HumanoidStandup and delayed Mujoco tasks. In Section F.3, Fig. F.3 and Table.
F.3 shows the performance comparison to other RL algorithms on HumanoidStandup and delayed
Mujoco tasks.

F.1 PERFORMANCE COMPARISON WITH THE SAC BASELINES
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Figure F.1: The number of discretized state visitation on sparse Mujoco tasks
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DAC (α = 0.5) SAC SAC-Div
SparseHalfCheetah 915.90±50.71 386.90±404.70 394.70±405.53
SparseHopper 896.90±10.57 900.60±5.22 901.40±4.25
SparseWalker2d 573.10±404.96 301.30±408.15 373.10±433.13
SparseAnt 935.80±37.08 870.70±121.14 963.80±42.51

Table F.1: Max average return of DAC algorithm and SAC baselines for fixed α setup

DAC (α = 0.5) DAC (α = 0.8) DAC (α-adapt.) SAC SAC-Div

HumanoidS 202491.81
±25222.77

170832.05
±12344.71

197302.37
±43055.31

167394.36
±7291.99

165548.76
±2005.85

Del. HalfCheetah 6071.93±1045.64 6552.06±1140.18 7594.70±1259.23 3742.33±3064.55 4080.67±3418.07
Del. Hopper 3283.77±112.04 2836.81±679.05 3428.18±69.08 2175.31±1358.39 2090.64±1383.83
Del. Walker2d 4360.43±507.58 3973.37±273.63 4067.11±257.81 3220.92±1107.91 4048.11±290.48
Del. Ant 4088.12±578.99 3535.72±1164.76 4243.19±795.49 3248.43±1454.48 3978.34±1370.23

Table F.2: Max average return of DAC algorithms and SAC baselines for adaptive α setup

F.2 COMPARISON TO RND AND MAXENT

We first compared the pure exploration performance of DAC to random network distillation (RND)
(Burda et al., 2018) and MaxEnt (Hazan et al., 2019), which are state-of-the-art exploration methods,
on the continuous 4-room maze task described in Section 6.1. RND adds an intrinsic reward rint,t
to MDP extrinsic reward rt as rRND,t = rt+ cintrint,t based on the model prediction error rint,t =

||f̂(st+1) − f(st+1)||2 of prediction network f̂ and random target network f for given state st+1.
The parameter of the target network is initially given randomly and the prediction network learns to
minimize the MSE of the two models. Then, the agent goes to rare states since rare states have higher
prediction errors. On the other hand, MaxEnt considers maximizing the entropy of state mixture
distribution dπ

mix

by setting the reward functional in (Hazan et al., 2019) as − log dπmix(s) + cM ,
where dπ is a state distribution of the trajectory generated from π and cM is a smoothing constant.
Here, MaxEnt mainly considers large or continous state space, so the reward functional is computed
based on several projection/discretization methods. Then, MaxEnt explores the state space better
than a simple random policy on various tasks with continuous state space.

For RND, for both the prediction network and the target network, we use MLP with 2 ReLu hidden
layers of size 256, where the input dimension is equal to the state dimension and the output dimen-
sion is 20, and we use cint = 1. For MaxEnt, we compute the reward functional at each iteration by
using Kernel density estimation with a bandwidth 0.1 as stated in (Hazan et al., 2019) on previous
10000 states stored in the buffer, and we use cM = 0.01. For RND and MaxEnt, we change the
entropy term of SAC/DAC to the intrinsic reward and the reward functional term respectively, and
we use the Gaussian policy with fixed standard deviation σ = 0.1. Fig. F.2(a) shows the mean
number of state visitation curve over 30 seeds of the 4-room maze task and Fig. F.2(b) shows the
corresponding state visit histogram of all seeds. As seen in Fig. F.2, DAC explores more number of
states than RND and MaxEnt on continuous 4-room maze task, so it is seen that the exploration of
DAC is more sample-efficient than that of RND/MaxEnt on the maze task.
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Figure F.2: Pure exploration comparison with RND/MaxEnt

F.3 COMPARISON TO OTHER RL ALGORITHMS

We also compare the performance of DAC with α-adaptation to other state-of-the-art RL algorithms.
Here, we consider various on-policy RL algorithms: Proximal Policy Optimization (Schulman et al.,
2017b) (PPO, a stable and popular on-policy algorithm), Actor Critic using Kronecker-factored
Trust Region (Wu et al., 2017) (ACKTR, actor-critic that approximates natural gradient by using
Kronecker-factored curvature), and off-policy RL algorithms: Twin Delayed Deep Deterministic
Policy Gradient (Fujimoto et al., 2018) (TD3, using clipped double-Q learning for reducing over-
estimation); and Soft Q-Learning (Haarnoja et al., 2017) (SQL, energy based policy optimization
using Stein variational gradient descent). We used implementations in OpenAI baselines (Dhariwal
et al., 2017) for PPO and ACKTR, and implementations in author’s Github for other algorithms. We
provide the performance results as Fig. F.3 and Table F.3.
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Figure F.3: Performance comparison to other RL algorithms
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DAC PPO ACKTR SQL TD3 SAC

HumanoidS 197302.37
±43055.31

160211.90
±3268.37

109655.30
±49166.15

138996.84
±33903.03

58693.87
±12269.93

167394.36
±7291.99

Del. HalfCheetah 7594.70
±1259.23

2247.92
±640.69

3295.30
±824.05

5673.34
±1241.30

4639.85
±1393.95

3742.33
±3064.55

Del. Hopper 3428.18
±69.08

2740.15
±719.63

2864.81
±1072.64

2720.32
±127.71

2276.58
±1471.66

2175.31
±1358.39

Del. Walker2d 4067.11
±257.81

2859.27
±1938.50

1927.32
±1647.49

3323.63
±503.18

3736.72
±1806.37

3220.92
±1107.91

Del. Ant 4243.19
±795.49

1224.33
±521.62

2956.51
±234.89

6.59
±16.42

904.99
±1811.78

3248.43
±1454.48

Table F.3: Max average return of DAC and other RL algorithms
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G ABLATION STUDIES

Here, we provide more ablation studies for remaining delayed Mujoco tasks. Fig. G.2 shows the
averaged learning curves of α, Dα

JS , and H(π) of DAC considering α-adaptation, where the con-
trol coefficient c is −2.0d and d = dim(A). Fig. G.2 shows the performance of DAC considering
α-adaptation with control coefficient c = 0,−0.5d,−1.0d, and −2.0d. Fig. G.3 shows the per-
formance of DAC with α = 0.5 and β = 0.1, 0.2, 0.4. Fig. G.4 shows the performance of
SAC, SAC-Div with KL-divergence (SAC-Div(KL)), SAC-Div with JS-divergence (SAC-Div(JS)),
and DAC to see the effect of JS divergence on the performance as explained in Section 6.3. Other
hyperparameters follow the default setup given in Table D.1.
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Figure G.1: Ablation study for α

Control coefficient c
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Figure G.2: Ablation study for c
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Entropy coefficient β
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Figure G.3: Ablation study for β

The Effect of JS divergence
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Figure G.4: Ablation study for JS divergence
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