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Abstract

Linear attention has attracted interest as a computationally efficient approximation
to softmax attention, especially for long sequences. Recent studies have explored
distilling softmax attention in pre-trained Transformers into linear attention. How-
ever, a critical challenge remains: how to choose the feature dimension that governs
the approximation quality. Existing methods fix this dimension uniformly across
all attention layers, overlooking the diverse roles and complexities of them. In
this paper, we propose a principled method to automatically determine the feature
dimension in linear attention using the concept of statistical degrees of freedom,
which represent the effective dimensionality of the inputs. We provide a theoretical
bound on the approximation error and show that the dimension chosen by our
method achieves smaller errors under a fixed computational budget. Furthermore,
we introduce an efficient layerwise training strategy to learn nonlinear features
tailored to each layer. Experiments on multiple pre-trained transformers demon-
strate that our method improves the performance of distilled models compared to
baselines without increasing the inference cost. Our findings also provide insight
into how the complexity of the attention mechanism evolves across layers.

1 Introduction

Transformers have become the standard for sequence modeling across diverse domains such as
natural language processing (Vaswani et al.| 2017), computer vision (Dosovitskiy, 2020}, and speech
processing (Dong et al., [2018). A key factor in their success is the attention mechanism, which
effectively aggregates the information from input tokens. However, the standard softmax attention
requires computing pairwise interactions between all tokens in a sequence, resulting in quadratic
time and memory complexity with respect to sequence length. This scalability issue poses significant
challenges for large-scale applications.

To address this limitation, numerous efforts have been made to design more efficient alternatives.
One prominent approach is linear attention, which approximates softmax attention by replacing the
kernel between queries and keys with an inner product of finite dimensional features. This reduces
both time and memory complexity to linear in the sequence length, enabling scalable inference. The
idea was initially proposed by [Katharopoulos et al.| (2020)), and has since been extended in subsequent
works (Peng et al.| [2021; |Choromanski et al., 2021 |Qin et al.} 2022)). Recent architectures based on
state space models (SSMs), such as Mamba (Gu and Dao, [2024), are also closely related to linear
attention (Dao and Gul 2024} [Wang et al., [2024; Sieber et al.| 2024} Han et al., [2024).

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



I ]

r

x —

g [ Feed Forward Network J i K(q, k;) o i Ka(a:ki) [ Feed Forward Network J
T i N

é I j=1 Zj’:l K(q, kjr) j=1 Z;/=1 K2(q, k;0) T

“2 [ Softmax Attention K(z,y) = exp (%) Ks(,y) = %(@;%(z) Linear Attention ]

s T o124 ~ Distill — = T ¥

= (Z%d) 35 : Gram Matrix ) LM2 =tr Xp(Zp + M)t

. L 2 (1 —

S [ Feed Forward Network ] T K(q, k;) s 3 Ki(a:k) [ Feed Forward Network ]
z Y =Y

g T =1 Zj’:l K(q, kj’) =1 Z;'=1 Ki(q,kj’) T

“2 [ Softmax Attention K(z,y) = exp (%) — Ki(z,y) = Z;f:;{j%}g? Linear Attention ]

© ‘ ’ 2 . ISt _ ~' ‘ ’

= O(L7d) 3, : Gram Matrix ) (M1 = tr 5(5a + D)L

Figure 1: An overview of our method. We treat exp (wTy / \/g), which appears in softmax attention,

as a kernel K (z,y), and perform distillation by approximating it with the inner product of nonlinear
features. The required feature dimension to achieve a certain error varies depending on the input
distribution, and this can be calculated using degrees of freedom derived from the Gram matrix.
When the error level ) is specified, our method can automatically select the feature dimensions for
linear attention, resulting in different feature dimensions for each layer.

Since linear attention is an approximation of softmax attention, one can directly distill the pre-trained
softmax attention into linear attention. Even though prior studies (Chen et al., 2024; Wang et al.,
2024) have achieved some success in this approach, a critical challenge remains unresolved:

How should we choose the feature dimension that governs the approximation quality?

Most existing works pre-determine the feature dimensions and fix them across all layers, which
ignores the diverse functional roles and input distributions of different attention layers. As observed
in prior studies (Arora et al.|[2018; Ravichandran et al.,|2019; |Suzuki et al., [2020; Massaroli et al.,
2024), the complexity of the roles played by each layer varies greatly. It is thus reasonable to expect
that selecting the feature dimension adaptively, in accordance with each layer’s complexity, can
improve the performance of the distilled model.

In this paper, we propose a principled approach to determining the feature dimension in linear
attention. We begin by theoretically deriving a bound on the approximation error and show that the
number of features required to approximate the original attention kernel is governed by the statistical
degrees of freedom (DoF). Based on this insight, we develop a method to automatically select the
feature dimension for each layer by estimating its DoF. Because the DoF captures the effective
dimensionality of the input distribution, our method enables a data-adaptive and layer-specific
allocation of feature dimensions.

Although our theoretical analysis identifies the optimal feature distribution, this distribution is
generally intractable to compute. To obtain linear attention that achieves optimal approximation
accuracy, we introduce a training strategy for learning nonlinear feature maps. Instead of relying on
costly end-to-end training with the pre-training objective, we propose to train each layer independently.
This layerwise training approach significantly reduces computational cost while allowing each
attention layer to learn features tailored to its input distribution.

We validate our approach through extensive experiments on GPT-2 and Pythia-1B. Our results show
that (1) the optimal feature dimension varies substantially across layers, (2) our method improves the
accuracy of distilled models over fixed-dimension baselines, and (3) our layerwise feature learning
yields competitive performance with significantly reduced training cost.

Our contributions can be summarized as follows:

* We propose a principled method for automatically selecting the feature dimension of linear
attention based on the statistical degrees of freedom, which reflect the complexity of each attention
layer. We provide theoretical guarantees on the approximation error under this selection scheme.

* We introduce an efficient layerwise training strategy to learn nonlinear features tailored to each
layer, which substantially reduces the computational cost compared to end-to-end training.

* We empirically demonstrate that selecting feature dimensions by the proposed method improves
performance of the distilled model and yields results comparable to the original models. The
experimental results also offer insight into how attention complexity varies across layers.



Other related works. Some studies aim to distill the attention mechanism in pre-trained Trans-
formers into models based on linear attention. (Chen et al.| (2024)) propose a method to distill softmax
attention into linear attention by using a quasi Monte Carlo method, which is more accurate than
standard Monte Carlo sampling. Wang et al| (2024) explore a distillation from transformers to
Mamba taking into account the similarities between Mamba and linear attention. Furthermore, Bick
et al.| (2024) and Ralambomihanta et al.| (2024) propose methods for distilling Transformers into
SSM-based models, and Kasai et al.|(2021) develop a method to distill Transformers into RNN-based
models. In all of them, methods for selecting feature dimensions based on the complexity of the
kernels have not been investigated.

Among numerous studies on the distillation of sequence models, including Transformers (e.g.,
‘Wang et al.|(2020b), |Yang et al.| (2021))), [ Massaroli et al.|(2024) and |Sakamoto and Sato| (2024) are
particularly relevant to our research. These studies focus on distilling SSMs into smaller SSMs, and
address the selection of state dimensions in the distilled models. However, their methods are highly
dependent on the properties of SSMs and cannot be directly applied to the distillation from softmax
attention to linear attention.

Wang et al.| (2020a) proposes a method to make softmax attention more efficient, and focus on the
fact that attention matrices tend to be low-rank. They propose compressing the keys and the values
from L x dto L' x d (L' <« L), where L is the sequence length and d is the head size. Our method is
similar in that it focuses on the effective dimension calculated from the Gram matrix of the attention
kernel. However, we use it for dimension selection in linear attention instead of compressing the keys
and values. Furthermore, our method significantly differs from theirs in that the feature dimension is
automatically selected using data and takes different values for each layer.

Notations. Let u be a probability measure on R%. We define L (p) as the space of functions f :
R? — Rsuch that [ f(2)?u(dz) < co. Wedenote [ f(z)u(dz) asE,,[f(z)] and [ f(2)g(2)u(dz)
as (f, 9) La(p)" For probability measures 1¢; and z1o on R?, we denote the product measure as f1; & fio.
For a bounded linear operator A : X — Y, we denote the operator norm as ||A||Op. Form € N, we
define [m] == {1,2,...,m}.

2 Attention Mechanism and its Linearization

In this section, we first introduce the regular attention mechanism, and then explain linear attention,
which is an approximation of the regular one. For simplicity, in this section, we explain only single-
head cases, but the description can be easily extended to multi-head cases as well. Moreover, we
focus on unidirectional cases, which are commonly used in language models.

Attention mechanism. Let [21,25,...,2] be a sequence of L vectors (called fokens), where

x; € R? is the i-th vector. The attention mechanism computes a new sequence [y1, ¥z, - . ., Y] by
taking a weighted sum of the projected tokens as follows:

Yi = v, K(z,y):=explz y/Vd), "
jzz:lzj’:lK(qz‘,kj') ’ (@y) = ex ( / )

where k; = WEz;,q; = Wz, v; = WV x;, which are called the key, query, and value,
respectively, and W W@ WV ¢ R9*9 are the learnable parameters. The kernel K (z,y) is
referred to as the attention kernel.

The time and memory complexity of the attention mechanism is O(L2d) and O(L?+ Ld), respectively.
Since we need to compute the inner products between every pair of keys and queries, the cost increases
quadratically with the sequence length L. Although the attention mechanism is powerful, this becomes
a drawback when dealing with the long sequences typical in language and speech.

Linear attention. To deal with large computational cost, in linear attention, the computation
of (I) is simplified by approximating K (x,y) with a inner product of finite dimensional feature
maps. Specifically, we suppose that K has a form K(z,y) = E..[¢(x; 2)¢(y; z)], where 7 is a
probability measure and ¢(-; z) : R¢ — R is a feature map. Then, we can approximate K using finite

iid. samples z1,...,2y ~ 7, ie., K(z,y) ~ 37 Zn]\le &5 2)D(Y; 2m) = ®(x) T ®(y), where



O(r) = #[qbl( ),---,¢a(x)]T. Linear attention approximates the output of (I) by replacing
K(gi, kj) w1th ®(q;) " P(k;).

This simplification drastically reduces the computational cost. Specifically, we can compute the
outputs in the following form:

o O(k)TO(g) B ®(q :
Yi = Z i . T Uj AT@( 7 = Z q) 7 B’L = Z @(kJ)U]T
j=1 Zj’:l ®(kj) " P(g:) j=1
Since A; and B; (i =1, ..., L) can be computed recursively over ¢, the computational complexity

with respect to input length L is significantly reduced from quadratic to linear: the time and memory
complexities become O(LMd) and O(LM + Ld + Md), respectively.

There are multiple options for the feature map ®. The simplest approach involves using the decompo-

sition exp ( 1 \/;f ) =exp ( Q% ) exp ( l’iﬂ; ) exp (— %) , and subsequently applying Bochner’s the-

.12
orem to break down the final component, exp <— %

method appears convenient, it suffers from learning instability caused by the appearance of negative
values in sin and cos functions. To address this issue, |Choromanski et al.[(2021)) propose using the de-

2
composition of exp (qu/\/ﬁ) =K. n0.1) [0(q; 2) p(k; 2)], where ¢(x; z) = exp ( le/:Z 2% ) .
This feature map is referred to as the Positive Random Feature (PRF). Because its values are consis-
tently positive, it facilitates more stable learning.

), into random Fourier features. While this

3 Optimal Distillation from Softmax Attention to Linear Attention

In this section, we develop a theoretical framework and a practical algorithm to select feature
dimensions for linear attention, followed by a method to train these features efficiently.

3.1 Theoretical Background: Degrees of Freedom for Kernel Approximation

In this subsection, we lay the theoretical groundwork for selecting the optimal feature dimension
in linear attention. Our analysis builds on kernel approximation theory and introduces the concept
of statistical degrees of freedom (DoF), which quantifies the effective dimensionality required to
approximate the attention kernel.

Finite dimensional approximation of kernel. To discuss generally, we consider a continuous
positive definite kernel K& : R¢ x R? — R, and suppose that K admits the representation

K(x’y) = EZ~7[¢(x;z)q5(y;z)], (2)

where 7 is a probability measure on a measurable set Z, and ¢ : R? x Z — R is a feature map.
We further assume that the function « — K (x, ) is integrable with respect to p, and that the map
(x,z) = ¢(x; ) is square-integrable with respect to p ® 7.

The simplest way to approximate K is to use the empirical kernel K’ defined as K'(x,y) =
& Z%zl o(x; 20,)o(y; 21,), where 21, ..., 2}, are i.i.d. samples from 7. According to the strong
law of large numbers, K’ converges to K almost surely as M — oo for any fixed x and y. Rahimi
and Recht (2007) show that, for any translation-invariant kernel K and compact set Z C RY, K’
uniformly converges to K at a rate of O(log M /v M).

Rather than focusing on the global error bound over a compact set, we strive to achieve a more
accurate approximation by leveraging the intrinsic structure of the input vectors. In other words, we
assume that the input vectors z and y are generated from a probability measure p on R?, and adjust
the approximation scheme utilizing the information of p. To this end, we consider approximating K
using i.i.d. samples 21, ..., zp; drawn from a distribution with density ¢ w.r.t. the measure 7:

K(z,y) A3 2m)P(Ys 2m) = q)(x;Z)Tq)(y;Z)a




where ®(z;2) = (M - q(2))"Y2¢(2;2),2 = [z1,...,21]". The kernel K defines a finite-
dimensional Reproducing Kernel Hilbert Space (RKHS) #, which is expected to be an approximation

of the RKHS H defined by K. Bach|(2017) analyze the approximation error between 4 and , and
show that it is characterized by the value Ny » (A > 0) defined as

1 ~1
Nq)\ *jgg@<¢(7z)v(2+)‘1) ¢(.,Z)>L2(dp)7
where ¥ : Ly(p) — L2(p) is an integral operator defined by (Xf)(z) = (K(z,), ), - Specifi-
cally, they provide the following result.

Proposition 1 (Proposition 1 in Bachl (2017)). Suppose that z1,. .., 2y, are i.i.d. samples from
the distribution with density q. Then, for any § € (0,1), if M > 5N, »log 16]}"1’*, it holds

M _ 5
1 ) 60 2 [0y < 25 and

M
sup inf ||f— M z) <an,
Fill 1l <1 IBI13< 57 7n2:1 q(zm)1/? o

with probability at least 1 — 0.

This proposition demonstrates that the necessary number of features M to achieve the approximation
error A is determined by NN, », which depends on the density ¢g. In other words, by effectively
selecting the density g, it is possible to achieve an approximation error of A with a smaller M.

One of the essential part of the proof of Proposition [I]is to bound the error between the operators
Y (corresponding to K) and its empirical approximation X : Lo(p) — Lo(p) (corresponding to K)
defined as (X f)(x) == (K (,-), f)L,(p)- In the proof of Proposition Bach|(2017) analyze the error
between ¥ and ¥ as follows.

Lemma 2 (Bach|(2017)). Let Ay == (S 4 AI)~'/2(2 = £)(Z + M)~ /2. Forany A\, t > 0, it holds

6 Mt?/2 )

PA,\O>t§2N’,\ 14 exp<—
e ey AR

This lemma provides the upper bound of the largest difference of eigenvalues between (X +
A)7Y25(8 + AI)~V/2 and (X + M) ~Y/25(3 + AI)~'/2, which is controlled by N, ».

Error bound between K and K. Proposition shows that the elements of H can be approximated
by those of 7 in terms of the L?(p) norm. However, for the purpose of distilling softmax attention
into linear attention, it is essential to have a error bound between K and K and, ultimately, to
ensure that the output of the attention mechanism is well-approximated. To this end, we establish the
following theorem using Lemma 2]

Theorem 3. Let 6 € (0,1),\ > 0, and t € (0, 3]. Suppose that M > 41\/% log Mgit‘”. Then, the

following two items hold:
(i) It holds

2
% -1 (1) 2~(2)
HK_K‘ L2(p&p) SATCEH PG

with probability 1 — 20, where Cﬁ(l), C’g) are constants depending on K.

(ii) Let o € [0,1/2] and h € L*(p). We define amap v : RY — R by v = (X + ) ~*h. Then, it
holds

| [ ot apte) - [o@Rt )] < VA CR) g,

L2(p)

with probability 1 — §, where C’S) is a constant depending on K.



The proof can be found in Appendix[A] We emphasize that this theorem can be applied to any positive
definite kernel represented as (2)). Item (i) provides a bound on the L?(p ® p) norm of the difference

between the kernels K and K, indicating that the approximation error is governed by N, . This
suggests that a careful choice of the sampling density g efficiently reduce the approximation error.
Item (ii) bounds the error in kernel-based integration against an arbitrary function v. Notably, the
integral [ v(z)K (x,y)dp(z) corresponds to the attention-weighted sum in @ﬂ Thus, this result
guarantees that the required feature dimension M for accurately approximating attention outputs
is effectively controlled by N, . Finally, we remark that the space {(X + AI)~h | h € L?*(p)}
strictly contains L?(p) when o > 0, implying that our bound applies to a broader class of value
functions, including those that may not be square-integrable under p.

Remark 4. We compare our theory with two previous studies on the approximation accuracy of
linear attention. (i) /Choromanski et al.|(2021) analyze the approximation quality of PRF-based linear
attention in terms of the sup-norm error. They showed that the required number of features M scales
as O(dlogd). In contrast, our Theorem 3 bounds the L?(p ® p)-norm to capture the structure of
the input distribution. As a result, the approximation error to depend on the DoF rather than the
dimension d. (ii)[Luo et al.|(2021) shows exponential dependence on the norm bound R of queries
and keys. In our analysis, such dependence is absorbed in constants like C'x and | K'[|2, (pp)- We do
not aim to reduce this exponential dependence, but instead focus on selecting the feature dimension
per layer to minimize approximation error under a fixed computational budget.

Degrees of freedom and their optimality. Next, we aim to optimally reducing the required value
of Ny » for a fixed A. Specifically, we consider the density g defined as follows:

00) = R (9059 B AT,

By setting ¢ = ¢y, we can see that Ny, » = N} = tr £(X + A )~!. The value N} is called the
degrees of freedom (DoF).

When we use the i.i.d. samples z1, .. ., zjs drawn from a distribution with the density gy, the required
number of samples M in Proposition E] and Theorem is proportional to N3 log N5, which is known
to be the optimal (Bach| (2017), Proposition 3). In particular, the degrees of freedom are always
smaller than Ny . This suggests that the approximation error can be reduced by choosing the
distribution q depending on the input distribution p compared to the case we obtain the random
samples from the distribution 7.

The findings above can be summarized as follows:

* The feature dimension M should be set proportional to the degrees of freedom Ny =
tr(X(X + M)~1), up to a logarithmic factor.

* The degrees of freedom Ny depend on the input distribution p, implying that the optimal
feature dimension M varies across layers.

* Optimal feature efficiency can be achieved by sampling 21, ..., zps from ¢ d7, rather than
from 7. The density ¢ also depends on the input distribution p.

3.2 Feature Dimension Selection via Degrees of Freedom

Given that the degrees of freedom Ny determines the minimal required number of features, we now

-
return to the attention kernel K (x,y) = exp (Qﬁ’) and present a practical procedure to estimate it

from data and use it to allocate layerwise dimensions. The overview of our method is presented in
Algorithm ]

Since Ny is defined as the expectation over the data distribution, it cannot be computed in practice.
Therefore, we approximate it using finite samples. Specifically, we define N, as an approximation

'This correspondence becomes exact when W is invertible. Letting p := Wff p denote the pushforward
measure of p by W, the attention-weighted sum of values is represented as [ v(k)K (k,y)dp’ (k) with
E=WEXz, vk) =WV W5k



Algorithm 1 Selecting the Feature Dimension

Input: Set X' of T" sequences with length L, sample size J € N, tolerance A > 0, cost C' € N,
original Transformer with S layers and H heads.
Fed the sequences in X into the pre-trained Transformer and collect the queries @, and keys
K, j, of all layers s € [S] and heads h € [H].
for s =1to S do
for h =1to H do _
Randomly sample x1, ...,z from @, ; U K, j, and compute the Gram matrix ¥ 5 € R7*J.

Compute ]\Nfis’h) =tr is,h(is,h + AL

end for _ ~
Obtain N;\S) = maxpe[q] N)(\s’h').
end for
ooy 1
settt=C- (5L M)
Return: Feature dimension M, = round(t~*N is)) forlayers s =1,..., 5.

of N}, given by Ny = tr 2(X + AI)~*, where ¥ : R — R’ (J € N) is a gram matrix of K, i.e.,

= [K(xy, xi)]ie[J] el which is the approximation of ¥ based on finite samples z1, ...,z ~ p.

For the attention kernel, the inputs are the queries and keys of the attention layers. Therefore, we
compute the approximated degrees of freedom N, for each layer as follows:

1. Prepare T" sequences of length L, and compute queries and keys for all sequences and tokens,
resulting in LT queries and LT keys, respectively.

2. From the collected 2L T queries and keys, randomly sample J elements x1,...,x ;.

3. Compute approximated degrees of freedom N » defined above.

The degrees of freedom obtained through this procedure vary across heads and layers, as shown in
Section 4] In typical Transformer implementations, the heads within the same layer are processed
using a shared tensor, so it is desirable that the feature dimensions be identical as well. Hence, we

define the degrees of freedom N is) of the s-th layer as the maximum degrees of freedom among the
heads.

According to the results of Theorem 3| (excluding the logarithm), we set the feature dimension of the
s-th layer to M(®) = 1N )(\s) for some ¢t > 0. Then, the computational cost of inference matches

that of linear attention with a fixed feature dimension given by % Zle M) =¢=1. % Zle N /{S).
In our experiments, we fixed A in advance. Given a computational cost C', we determine the constant
t such that the inference cost of the model matches the computational cost when we the feature

~ o\ 1
dimension is uniformly set to C' across all layers, which leads t ! = C' - (% Zle N is)) .

3.3 Layerwise Training of Features for Kernel Approximation

Theorem [3| guarantees that we can attain the optimal error between K and K by choosing the density
q appropriately, However, it is difficult to obtain such a density in practice. To obtain features z;
and q(z;) "1 (=: ;) (i € [M]) that approximate the attention kernel as accurately as our theoretical
bound, we propose to learn them from the training data.

One possible strategy is to train the features using the same loss function as the one used in the
standard pre-training of Transformers. That said, this approach is computationally expensive, as
it requires computing gradients across all layers simultaneously. Instead, we propose to train the
features in a layerwise manner. Specifically, we consider two types of loss functions: (i) L? loss and
(i) softmax loss. To describe the details, let us assume that the set of queries Q; = (g+.1,--.,q:,L)
and keys IC; = (k¢ 1, ..., ke 1) of T sequences, each of length L, are given.



Table 1: The dimension of features selected by our method. The feature dimensions of each layer are
determined to match the average cost. For each row, the top three largest dimensions are highlighted
in bold, and the three lowest dimensions are emphasized with underlines.
Model | Cost| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GPT-2 64 [ 130 182 35 44 42 65 92 33 28 34 46 39 - - - -
Pythia-1B | 128 | 277 138 275 132 204 167 115 142 231 64 96 73 40 52 34 9

(i) L? loss. This loss function tries to minimize the error between the attention kernel X and its
approximation K in terms of the L? norm. That is, the features z = (21, ..., zys) are trained using

~ 2
the loss function defined as £(z) = ﬁ Zte[T],le[L],l’e[L] (K(qt’l, ko) — K(qeg, ke 2, a)) .

(ii) Softmax loss. We train the features to make the attention matrix and its approximation closer
in terms of the cross entropy loss. In other words, we train the features z = (z1,...,25) de-
1 ~
fined as ((2) = —77 EtG[T]JG[L],l/G[L} P (g, Ke) log pr(gei, Kt; 2, o), where pr (g, Ki) =
exp(qq k1) K (qe.1ky r52,0)
Siexp(af ki)’

§;4 j%(QtJaktJ§Zva).
In general, L? loss is more efficient than Softmax loss because it does not require additional nonlinear
operations such as exp or normalization. In Section |4, we compare the performance of the two losses
(1) and (ii) with the case where the features are directly learned using the pre-training task. Then, we
demonstrate that learning with our proposed loss is as effective as training using pre-training loss.

P (e, K 2, 0) =

4 Experiments

To evaluate the effectiveness of our method, we conduct experiments on two types of pre-trained
Transformers: GPT-2 (Radford et al.,|2019) and Pythia-1B (Biderman et al.,[2023). As non-linear
features for the linear attention, we use PRF (Choromanski et al., [2021), which we describe in
Section For dimension selection and training of features, we utilize the Wikipedia datasetﬂ

4.1 Optimal Feature Dimensions Vary across Layers and Heads

First, we apply Algorithm Mt Table 2: DoF with A = 28 of each head. The row and column
the two pre-trained models and oy eqent the layer and head, respectively. The maximum value of

determine the feature dimensions each layer is highlighted in bold.
for each layer. We setthe cost TooT 1T 2 3 4 5 6 7 % 9 10 11 12

C' to be the same as the head 47 81 45 20 36 162 45 26 41 64 50 1500
: " 105 285 155.1 446 1738 51.1 99 165 175 8.1 889 195
size .(64 for GPT.Zand.128 for 99 81 18 27 34 25 245 58 28 26 121 64
Pythia-1B), following prior work

151 30 14 17 398 121 16 15 15 25 126 19

that sets the feature dimension of
33 69 689 144 435 172 1074 60 43 18 322 30

GPT-2 and A = 278 for Pythia-
10185 131 159 33 227 299 141 64 202 51 39 62

also show the estimated DoF for

113 18 421 23 40 71 226 33 316 11
each layer to match the head size.
36 119 31 123 76 175 330 91 49 51 23 126
I1B. We present the selected fea- 11079 66 261 198 182 33 87 67 432 23 171 135
each head in GPT-2 in Table[2] We summarize the key findings from these results below.

O 00 1N B WD
—_
oo
—_
el

89 31 37 35 37 30 69 75 47 524 214 666
Furthermore, we set A = 2% for

249 65 196 93 55 32 102 3.1 57 167 224 39
ture dimensions in Table[I] We 12|51 218 225 106 300 398 272 313 50 200 28 26

The evolution of effective dimensionality across layers. The result indicates that the effective
dimensionality varies significantly across layers. This emphasizes the difference of the complexity
of the roles played by each layer. Taking a closer look at the results, we observe that the feature
dimensions selected by our method are generally larger in the early and middle layers, and small
in the latter layers. This shows that Transformers engage in complex token interactions from
the shallow layers to the middle layers, and relatively simple processing in the later layers. This
observation aligns with the insights obtained in previous studies on fully-connected/convolutional
neural networks (Arora et al., 2018} Ravichandran et al., 2019; |Suzuki et al.| |2020). Furthermore,
it is worth noting that, between the early layers and the middle layers, there are several layers with
relatively small dimensions.

’The dataset can be accessed through the Hugging Face library: https://huggingface.co/datasets/
legacy-datasets/wikipedia


https://huggingface.co/datasets/legacy-datasets/wikipedia
https://huggingface.co/datasets/legacy-datasets/wikipedia

Table 3: The results of distillation for GPT-2. Fix, DoF and DoF + Clip in the first column imply the
strategies of dimension selection. For all downstream tasks, the evaluation metric is accuracy. The
top three highest-performing are highlighted in bold.

Strategy Method | PiQA logiQA ARC-E ARC-C Winogrande MMLU  WSC [ Average

Original GPT-2 0.5985 0.3103 0.3325 0.3003 0.5122  0.2789 0.6538 | 0.4266
— DiJiang 0.5065 0.2550 0.2113 0.2244 0.4846  0.2639 0.4615| 0.3409
Performer | 0.5468 0.2934 0.3039 0.2747 0.4996 0.2517 0.5962 | 0.3952
Fix direct 0.5832  0.3195 0.2921 0.2995 0.5335 0.2552 0.6154 | 0.4141
softmax | 0.5718 0.2673 0.2479  0.3029 0.5020 0.2634 0.6154| 0.3958
L? 0.5822 0.3195 0.2483 0.2773 0.5107 0.2520 0.5962 | 0.3980
DoF direct 0.5669 0.3011 0.3241 0.3012 0.5280 0.2712 0.6346 | 0.4182
softmax | 0.5751 0.3026 0.3224  0.2995 0.5328 0.2564 0.6442 | 0.4190
L? 0.5664 0.3088 0.2736 0.2824 0.4972  0.2608 0.5865 | 0.3965
DoF + Clip direct 0.5892 0.3164 0.3136 0.2952 0.5075  0.2993 0.6346 | 0.4223
softmax | 0.5860 0.3026 0.3401 0.2816 0.4996 0.2832 0.6346 | 0.4182
L? 0.5822 0.3164 0.2942 0.3063 0.5091 0.2799 0.5673 | 0.4079

Comparison of DoF across heads in the same layer. We additionally observe that the degrees
of freedom are largely different across heads as well. Interestingly, most of the heads have much
smaller degrees of freedom than the maximum of each layer. This indicates that the heads performing
complex processing are limited to a few within a single layer.

4.2 Dimension Selection with Layerwise Training Ernhances the Performance

We now evaluate the effectiveness of our method in distillation from softmax attention for two
pre-trained models. In these experiments, we examine the following two claims: (i) selecting feature
dimensions using our DoF-based method improve performance compared to using fixed dimensions,
and (ii) our efficient layerwise training match the performance of full end-to-end training.

We consider three types of dimension selection strategies: Fix is the method that sets the feature
dimensions to the same value across all layers, which is conventionally used in existing works. We
set the feature dimensions in Fix to be the same as the head size, as in prior work (Chen et al.,
2024). DoF is the method that selects the feature dimensions using Algorithm 1 (i.e., proportional to
the maximum DoFs among heads). We also consider DoF + Clip, in which we clamp the feature
dimensions to be at most the head size. This strategy is expected to maintain the performance of Fix,
while reducing the computational cost.

For training the feature maps during distillation, we consider three types of loss functions: the first is
direct loss, which we refer to the cross-entropy loss for next-token prediction, which provides the
best performance in the pre-training task but requires full end-to-end training. The remaining two
are softmax loss and L2 loss, which are the layerwise losses introduced in Section and more
efficient and allow independent training per layer. We will show that the layerwise training achieves
performance comparable to the direct loss, while significantly reducing training cost.

As comparison baselines, we evaluate against Performer (Choromanski et al.|2021) and DiJiang (Chen
et al.| 2024). Both methods employ PRF for linear attention but do not incorporate any data-driven
dimension selection. DilJiang additionally utilizes quasi Monte Carlo sampling of features. The
learnable parameters of DilJiang are trained on the same dataset used in distillation.

To assess downstream performance, we fine-tune all distilled models (as well as the original Trans-
formers) on a suite of seven tasks: PiQA (Bisk et al.l [2020), logiQA (Liu et al., [2020), ARC-
Easy/Challenge (Clark et al., [2018)), Winogrande (Sakaguchi et al., [2019), WSC (Levesque et al.|
2011), and MMLU (Hendrycks et al.,[2021)). Further details on the training settings and datasets are
provided in Appendix |C]

Results for GPT-2. We first show the experimental results for GPT-2 in Table [3} We outline the
noteworthy four observations below.

* Enhanced performance through dimension selection: Distilled models using feature dimen-
sions selected by Algorithm [I] (DoF) achieve higher or near-equal performance compared to those
using fixed dimensions (Fix). In particular, in the average performance across all tasks (see the
rightmost column of Table 3), when using direct or softmax loss, the distilled models with DoF
significantly outperforms the ones with Fix (e.g., 75 % mitigation of performance degradation



Table 4: Comparison of the inference time per se- Table 5: Comparison of the consuming time
quence with 1,000 tokens for different feature di- per each sample during training for different

mensions (for GPT-2). loss types (for GPT-2).
Fix DoF  DoF + Clip Type of loss direct softmax L7
Speed (sec/sequence) | 15.589 15.579  14.662 Speed (ms/sample) | 109.4 904  60.6

Table 6: The downstream accuracy for Pythia-1B. We use softmax loss for distillation.

Method [ PiQA 1ogiQA ARC-E ARC-C Winogrande MMLU  WSC [ Average
Original Pythia-1B | 0.6213  0.2995 0.3295 0.3072 0.5146  0.2883 0.6346 | 0.4279
Fix 0.5691 0.2965 0.2849 0.2679 0.5051 0.2903 0.5962 | 0.4014
DoF 0.5860 0.3026 0.3110 0.3106 0.4949 0.2811 0.5962 | 0.4118

from the original model for softmax loss). This indicates that our method effectively captures the
varying complexity of each layer, leading to improved accuracy across downstream tasks.

Effectiveness of DoF + Clip for efficiency: The DoF + Clip strategy, which caps feature
dimensions at the head size, achieves comparable or better performance than the fixed-dimension
approach. Notably, it also yields faster inference (Table [), showing that selectively reducing
feature dimensions based on DoF makes the model efficient without compromising performance.

Stronger results compared to prior baselines: Our distilled models surpass both Performer and
DiJiang, which use fixed-dimension linear attention and (quasi) Monte Carlo feature sampling.
Additionally, the average performace our distilled model is comparable to (and sometimes win)
the original GPT-2 model. This shows that our data-adaptive, layer-specific dimension selection
combined with learned features yields a more accurate approximation of softmax attention.

Efficient and effective layerwise feature training: Using the softmax loss, distilled models
perform comparably to those trained end-to-end with the standard pre-training loss (direct). As
shown in Table[5] layerwise training is more efficient than direct training. Although the L2 loss
yields slightly lower performance than both direct and softmax losses, it still outperforms prior
baselines while offering notable training efficiency gains.

Results for Pythia-1B. We also carried out experiments on distilling Pythia-1B. In this experiment,
the model was distilled using the softmax loss. The results are presented in Table[6] The distilled
model with feature dimensions selected by our method performs better than the model with fixed
dimension on average, and become comparable to the original Pythia-1B. Indeed, when comparing
the average accuracy across all tasks, the performance degradation from the original Pythia-1B (Fix:
—0.0265, DoF: —0.0161) is reduced by 39 %. This result indicates the efficacy of our dimension
selection and layerwise training when distilling large models.

5 Conclusion

We proposed a principled method for selecting feature dimensions in linear attention, grounded in
statistical theory on finite-dimensional kernel approximation, and demonstrated its effectiveness in
distilling softmax attention. Our approach adaptively assigns dimensions to each layer based on
the statistical degrees of freedom of attention kernel, and trains nonlinear features in a layerwise
manner to reduce computation. Experiments on GPT-2 and Pythia-1B show that our method improves
performance without increasing inference cost, highlighting the importance of layer-specific design
for efficient linear attention models.

Limitation and Future Work. While our method assigns feature dimensions adaptively per layer,
we use a shared dimension across all heads within a layer to maintain implementation efficiency.
Interestingly, our analysis revealed that the DoFs vary significantly even among heads in the same
layer. Exploiting this head-level variability—for instance, through head pruning or sparse feature
allocation—could further enhance performance and efficiency. In addition, although our experiments
focus on moderate-scale language models, applying our approach to larger models and models for
other modalities remain an important direction to validate its scalability.

10



Acknowledgements

NN was partially supported by JST ACT-X (JPMJAX24CK) and JST BOOST (JPMJIBS2418).
RH was partially supported by JST CREST (JPMJCR2115). TS was partially supported by JSPS
KAKENHI (24K02905) and JST CREST (JPMJCR2015). This research is supported by the National
Research Foundation, Singapore and the Ministry of Digital Development and Information under the
Al Visiting Professorship Programme (award number AIVP-2024-004). Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do not reflect
the views of National Research Foundation, Singapore and the Ministry of Digital Development and
Information.

References

S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger generalization bounds for deep nets via a
compression approach. In International conference on machine learning, pages 254-263. PMLR,
2018.

F. Bach. On the equivalence between kernel quadrature rules and random feature expansions. Journal
of machine learning research, 18(21):1-38, 2017.

A. Bick, K. Li, E. P. Xing, J. Z. Kolter, and A. Gu. Transformers to ssms: Distilling quadratic
knowledge to subquadratic models. Advances in neural information processing systems, 38, 2024.

S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan,
S. Purohit, U. S. Prashanth, E. Raff, et al. Pythia: A suite for analyzing large language models
across training and scaling. In International Conference on Machine Learning, pages 2397-2430.
PMLR, 2023.

Y. Bisk, R. Zellers, R. L. Bras, J. Gao, and Y. Choi. Piga: Reasoning about physical commonsense in
natural language. In Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020.

H. Chen, Z. Liu, X. Wang, Y. Tian, and Y. Wang. Dijiang: Efficient large language models through
compact kernelization. arXiv preprint arXiv:2403.19928, 2024.

K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins, J. Q.
Davis, A. Mohiuddin, L. Kaiser, et al. Rethinking attention with performers. In International
Conference on Learning Representations, 2021.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think you
have solved question answering? try arc, the ai2 reasoning challenge. arXiv:1803.05457v1, 2018.

T. Dao and A. Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In International Conference on Machine Learning, pages 10041—
10071. PMLR, 2024.

L. Dong, S. Xu, and B. Xu. Speech-transformer: a no-recurrence sequence-to-sequence model
for speech recognition. In 2018 IEEE international conference on acoustics, speech and signal
processing (ICASSP), pages 5884-5888. IEEE, 2018.

A. Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024.

D. Han, Z. Wang, Z. Xia, Y. Han, Y. Pu, C. Ge, J. Song, S. Song, B. Zheng, and G. Huang. Demystify
mamba in vision: A linear attention perspective. Advances in neural information processing
systems, 37, 2024.

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding. Proceedings of the International Conference on
Learning Representations, 2021.

11



J. Kasai, H. Peng, Y. Zhang, D. Yogatama, G. Ilharco, N. Pappas, Y. Mao, W. Chen, and N. A. Smith.
Finetuning pretrained transformers into rnns. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 10630—10643, 2021.

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In International conference on machine learning, pages 5156—
5165. PMLR, 2020.

H. J. Levesque, E. Davis, and L. Morgenstern. The Winograd schema challenge. In AAAI Spring
Symposium: Logical Formalizations of Commonsense Reasoning, volume 46, page 47, 2011.

J. Liu, L. Cui, H. Liu, D. Huang, Y. Wang, and Y. Zhang. Logiqa: A challenge dataset for machine
reading comprehension with logical reasoning. arXiv preprint arXiv:2007.08124, 2020.

S. Luo, S. Li, T. Cai, D. He, D. Peng, S. Zheng, G. Ke, L. Wang, and T.-Y. Liu. Stable, fast and
accurate: Kernelized attention with relative positional encoding. Advances in Neural Information
Processing Systems, 34:22795-22807, 2021.

S. Massaroli, M. Poli, D. Fu, H. Kumbong, R. Parnichkun, D. Romero, A. Timalsina, Q. Mclntyre,
B. Chen, A. Rudra, et al. Laughing hyena distillery: Extracting compact recurrences from
convolutions. Advances in Neural Information Processing Systems, 36, 2024.

H. Peng, N. Pappas, D. Yogatama, R. Schwartz, N. A. Smith, and L. Kong. Random feature attention.
2021.

Z.Qin, W. Sun, H. Deng, D. Li, Y. Wei, B. Lv, J. Yan, L. Kong, and Y. Zhong. cosformer: Rethinking
softmax in attention. In International Conference on Learning Representations, 2022.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. Advances in neural
information processing systems, 20, 2007.

T. R. Ralambomihanta, S. Mohammadzadeh, M. S. N. Islam, W. Jabbour, and L. Liang. Scavenging
hyena: Distilling transformers into long convolution models. arXiv preprint arXiv:2401.17574,
2024.

K. Ravichandran, A. Jain, and A. Rakhlin. Using effective dimension to analyze feature transforma-
tions in deep neural networks. In ICML 2019 Workshop on Identifying and Understanding Deep
Learning Phenomena, 2019.

K. Sakaguchi, L. B. Ronan, B. Chandra, and C. Yejin. Winogrande: An adversarial winograd schema
challenge at scale. 2019.

H. Sakamoto and K. Sato. Data-driven h2 model reduction for linear discrete-time systems. arXiv
preprint arXiv:2401.05774, 2024.

J. Sieber, C. A. Alonso, A. Didier, M. N. Zeilinger, and A. Orvieto. Understanding the differences in
foundation models: Attention, state space models, and recurrent neural networks. Advances in
Neural Information Processing Systems, 37:134534—-134566, 2024.

T. Suzuki, H. Abe, T. Murata, S. Horiuchi, K. Ito, T. Wachi, S. Hirai, M. Yukishima, and T. Nishimura.
Spectral pruning: Compressing deep neural networks via spectral analysis and its generalization
error. International Joint Conferences on Artificial Intelligence, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and 1. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 2017.

J. Wang, D. Paliotta, A. May, A. Rush, and T. Dao. The mamba in the llama: Distilling and
accelerating hybrid models. Advances in Neural Information Processing Systems, 37:62432—
62457, 2024.

S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020a.

12



W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou. Minilm: Deep self-attention distillation for
task-agnostic compression of pre-trained transformers. Advances in neural information processing

systems, 33:5776-5788, 2020b.

J. Yang, B. Martinez, A. Bulat, G. Tzimiropoulos, et al. Knowledge distillation via softmax regression
representation learning. International Conference on Learning Representations (ICLR), 2021.

13



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are clearly aligned with the
theoretical and empirical contributions presented in the paper (see Section [3and [).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a "Limitations and Future Work" paragraph in Section [5}
which discusses several open issues.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The theoretical development includes detailed assumptions and complete
proofs, especially in Section Section [3]and Appendix [A] The derivation builds upon known
kernel approximation theory (e.g., Bach 2017), and all critical assumptions are stated clearly.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed experimental setups including datasets used,
model configurations, batch sizes (Table EI), learning rates, number of epochs, and training
strategies (Appendix [C)). This level of detail supports reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code is provided in the supplemental material. The all data used in the

experiments are publicly available datasets (Wikipedia, PiQA, logiQA, ARC-E, ARC-C,
Winogrande, MMLU and WSC).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix [C|describes the training settings in detail, including learning rates,
number of epochs, batch sizes, and hardware specifications. The dataset and its usage are
also specified.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: While the experimental results are averaged across tasks and compared with
strong baselines, we did not report statistical significance such as error bars or confidence
intervals due to computational constraints.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides detailed information on computational resources in Ap-
pendix [C] It specifies the computational resources used for training and inference, including
the type of compute workers, memory, and time of execution.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research was conducted in accordance with the NeurIPS Code of Ethics.
We used only publicly available datasets and open-source pre-trained models. No personally
identifiable information, private data, or human subjects were involved. We have also
ensured that all evaluations preserve fairness and transparency.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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12.

Answer: [NA]

Justification: Our paper contributes to the efficiency and scalability of Transformer-based
models, which does not have direct societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of a new dataset or a novel pretrained
language model. Instead, we focus on a method to distill existing models using already
public data and models. As such, the paper poses no significant risk of misuse that would
necessitate additional safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the papers or URLs for the datasets and models used in our
experiments. The URLs and licenses for the datasets and models are provided in Table[T0]
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13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets such as datasets or model code. It uses
publicly available datasets and pre-trained models, and focuses on theoretical and empirical
improvements to existing architectures.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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16.

Answer: [NA]

Justification: This paper does not involve any human subjects, and therefore IRB approval is
not applicable.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are not used as tools for developing or augmenting the core methodology.

The work focuses on distilling attention mechanisms and does not involve using LLMs in a
novel or generative capacity within the research method itself.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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—— Appendix

A Proof of Theorem

We begin by recalling the definitions of some symbols used in the proof.

« K : R% x R? — R is the positive definite kernel given by K (z,y) = E.,[6(z; 2)¢(y; 2)],
where 7 is a probability measure on a measurable set Z, and ¢ : R? x Z — R is a feature map.

* ¥ : La(p) — La(p) is an integral operator defined by (Xf)(z) = (K(z,"), f) 1,

p)’
e K : R!x R! — R is the approximation of K, defined as K(z,y) =
= 2%21 O(x; 2m ) d(Y; 2m ), where 21, ..., zpr are i.i.d. samples drawn from a distribution

with density ¢ w.r.t. the measure 7.
R Lo(p) — Lo(p) is the empirical approximation of Y, defined as (f] Hx) =
R f)
(K@.0p),
* Ny (A > 0) is the value defined as Ny» = sup.cz g5y (0(52), (B + M)~ o z)>L2(dP).

We restate Lemma 2] which can be found in the proof of Proposition 1 in[Bach (2017).
Lemma 5. Let Ay == (X + M) ~V/2(2 = £)(Z + M) ~Y2. Forany \,t > 0, it holds

6 Mt2/2 )
P[||A > t] < 2N, 14 e —_— .
[” >\||Op ] — (I»A< t2 10g2(1 + Mt/Nq,A)> Xp < Nq’)\(l ¥+ t/?))

This lemma produces the following high probability bound.
Lemma 6. Forany \,0 € (0,1), if

4N, 4N,
2. log 64Ng,

M > 7
=g 5t2

it holds

[Axllop <t and equivalently, — —t(S + M) X5 — 3 < (X + M)

with probability at least 1 — 0.

Proof. We first note that

6 Mt? /2 )
2N, 1+ e _
"’*( t210g2(1+Mt/Nq7,\)) Xp( Nox(1+1t/3)

_ 2Ng <t2+ 6 )ex (_ Mt?/2 )
G log?(1+ Mt/Nyn) ) 0\ Noa(1+1/3)

(a) (b)

Let us consider

Ny CNg

12 52
for some constants B, C' > 0 which will be determined later. First, we consider the factor (b). Then,
for any ¢ € (0, 3], we have

B/2 B/bt
B/2 . CN,a 512\ TH/B 5t2
< — d < <
® < eXp( 15 1/3 %% 52 ) = (CN,M =\ ON, )

pi = J4 10 /CNgx <1,
2 if 6t2/CNy» > 1.

M >B log

where
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Next, we consider the factor (a). Let D € [3/C, c0) be a constant to be determined later. Then, if
Nga/t > D, we have

Mt B. CN,, B. CD_B. CD_B. CD
> =1 22 > “log — > —log — > —log ——
N~ 1 B o =77 %5 =7 %3 =3 %3

q;

which implies
6

log® (1+ Z1log €2)°

On the other hand, if N, 5/t < D, then Mt/N, » > 1/D since M > 1, which yields
__ 6

log2 (1 + %) .

Finally, we choose B, C, D > 0. If we set B = bf, we obtain the upper bound of the probability as

(@ <9+

(a) <9+

2N, 62 26
2 @ CNgx — © (a).
Moreover, we have
6 6
(a) <max< 9+ 5 - 9+ — I
log (1 + % log CTD) log” (1+ )
6

<9 3)

+ .
log (min {1+ Flog G,1+ 5 })
If we set C' = 64, D = 1/2, then it holds D € [3/C, c0), and the right-hand side of (3] is smaller
than 32, which implies (a) < 32. Thus, if we set
AN, » . 64Ngx _ bIN,» 64N,
t2 log R log otz
we have [|A,[|,, <t with probability at least 1 — 4.

M >

The result [|A,[|,, < ¢ implies that
—tI = (4 X)TV2(E =) (S + M)7Y2 <4
From the right-hand side inequality, we have
Y-8 <X+ ).
Indeed, for any f € Lo(dp), we have
JEE+N) - (-2 >
(6 +An =2 =2)p)

— <f, S+ XDV — (4 M)V2(E =)+ M)V (E + AI)1/2f>L )

= (T +ADY2F, (= (B4 M) TVAT = )(E+AD TS +AD AT w

> 0.

since (X + AI)'/2 is self-adjoint. Similarly, we have & — 33 = —¢(X + AI). This completes the
proof. O

Below, we provide the proofs of Theorem [3|by dividing it into items (i) and (ii).
Theorem 7. Let § € (0,1),A > 0andt > 0. If

AN, 5. 64N,
M2 == los =5
then, it holds
HK - K’ <x-totcl) + 1202,
L2(p)

with probability 1 — 20, where C’S), C’g) are constants depending on K.
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Proof. Using Lemmal[f] we have
2

I . R

<t-tr [(z FA)(S - i)}

L2(p®p)

t( [E(E E)}—Fz\tr[E—Ff}D

<t- (tr[z]Hzi

e [2+§D,

op

which yields

op’

with probability 1 — 4. LemmaHimplies that HZ - iH <t-||X 4 M|
op

HK—K

2

I (t 4 [S]|[S + ALy, + Atr [2 + i})

<t (0[Sl + (DA (] + Au[S])

<A\ t(4tr [ +tr[§D + -t B3],

Now, tr[X] is bounded. Indeed, if the Mercer decomposition of K is given by K(z,y) =
2521 1t ()15 (y). then we have

5= Y = [ (L mwsle)ste) |dota) = [ Kino)dplo) <o,

since © — K (x, ) is integrable with respect to p. Moreover, from the Markov inequality, we have

~ tr[X] ) 8 d
> < . —_ — = 0.
IF’(tr [E} z =5 > S o E.o . o [tr E} w5 tr[X] =4
Therefore, it holds

Jre- &,

1
<A-t(4+ <)o [S] + 2t [DS),, < A0 + 20
oy <A t(44 3 )L+ 2w, <3070 2O,

with probability 1—24, where C’S) = 5tr[X] and C’g) = tr [Z]||X]|,,- This completes the proof. [

Theorem 8. Let § € (0,1),\ > 0,¢t > 0and a € [0,1/2]. If
4N, A 64N\
Mz 2 log 5tz

then, for any v : R — R with ||(X + AL)*0| 2,y < 00, it holds
| [ v@fteaoto) - [o@R G i) < VA(Cra+ X+ AD
L2(p)

with probability 1 — §, where C’S) is a constant depending on K.

(p)?

Proof. The left-hand side can be bounded as

/U(a:)f((x7 Ddp(x) — /v(x)K(x, Jdp(z) o Sv— Yo e H (i - E)v’ L)
Since ¥ — ¥ is a self- adjoint operator, we have
L
= (v >
- < (2 + A\)® (Z+>\I 2)2(2+>\I)*°‘>(2+>\I)%>
H (2 +AD)~(S — D)2(S + AI)~° p||(2+M)%||§2(p).
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Now, let us bound H(E + A" =222+ M) .Let A=Y —3and B =YX+ Al Then,
op
Lemma@implies that | B=1/2AB~1/2 Hop < t with probability 1 — §. Thus, we have

|E+an-eE =22 +an

op

=[|BAzB™|
op

_ HBl/Qfa <B71/2A2371/2>B(Bfl/2AZBfl/2)B1/2fo<

op

< HBl/2—a

2
||BH0pHB_1/2A2B_1/2
op

op
2(1—
<2 B)20 ),

with probability 1 — ¢. Moreover, since 2(1 — «) > 1, we have
2(1—a)
2(1—a) _ 2(1—a)
1BIZ = 15 4 M2 < (ISl + )
< 22(1—@)—1(”2“(31(317(1) I )\2(1—o¢)).

Therefore, we conclude that

] [r@k 0@ - [ o)k a0t)

<=2,

< \/H(E F AN (S — £)2(S + Al)-o

L2(dp)

(3 + A2,

op

2(1—« «
<t JIBIE NS + A0 2

< 21270 [IZ P X200 f]|(S 4 A0 2,
< V2(JIIl " + A7) EIE + AD 0 e,
< V2(max{|||

This completes the proof. O

ISR} + A7) (5 4 AD ] 1o,

op’ op

B The Experimental Results on Next-Token Prediction

In this section, we report the performance of next-token prediction for the distilled models in Sectionf4]
The results are presented in Table[/| Here, we highlight the following two key observations:

* Among the three types of loss, the layerwise losses sometimes underperform compared to the
“direct” loss. This is natural because the cross entropy loss for next-token prediction is used in
“direct”, while L? loss (Softmax loss) just aims to make the attention kernel (attention weights)
and its approximation close. As we reported in Section[d] for the downstream tasks, the models
distilled with layerwise loss have comparable performance to the models distilled with “direct”
loss.

* We observe that the models distilled using (layerwise) softmax loss outperform DilJiang, in
which the learnable parameters are directly trained using next-token prediction loss. This result
emphasizes the validity of our approach in training the features in linear attention.

C More Information of the Experiments

C.1 Computational Resources and Hyperparameters

We provide the details of the experimental settings as follows:
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Table 7: The performance of next-token prediction for the models distilled from GPT-2.

direct  softmax L? Baseline method | Loss

Fix | 3.9657 54082 6.2453 DiJiang | 5.5965

DoF | 52651 4.0170 6.6802 Performer | 8.1586

DoF + Clip | 5.4547 4.0355 6.2378 Original GPT-2 | 3.3558

Table 8: Summary of learning rates.

Model PiQA 1ogiQA ARC-E ARC-C Winogrande MMLU WSC
GPT-2 le-4  5e-5 le-4 le-5 Se-4 le-6  le-6
Pythia-1B | le-5  5e-5 Se-5 5e-5 Se-5 S5e-6  Se-5

Table 9: Summary of batch sizes.

Model Distillation PiQA 10ogiQA ARC-E ARC-C Winogrande MMLU WSC
GPT-2 128 128 64 64 64 128 64 128
Pythia-1B 64 64 32 32 32 64 32 64

Experiments for GPT-2 are conducted on four devices of A100 40GB. Experiments for Pythia-1B
are conducted on four devices of A100 80GB.

For Wikipedia dataset, we randomly sample 10% segment, and use it as one dataset.
The context lengths for GPT-2 and Pythia-1B were set to 1024 and 2048, respectively.

Training for distillation (learning features in proposed method / learning parameters in DiJiang) is
conducted over 1 epoch. This consumes about 0.5 day for GPT-2 and 1 day for Pythia-1B.

For the downstream tasks except for MMLU. training is conducted over three epochs for the tasks
except for MMLU, and the best accuracy among three epochs is reported. For MMLU, we train
the model for one epoch, and the accuracy for the last checkpoint is reported.

As for the learning rates of distillation,

— when using DiJiang, we set 0.02.

— when training feature maps, we set 0.02 for z1,...,23 and 0.2 for ay, ..., a .

The learning rates of downstream task are chosen to maximize the accuracy when we fine-tune
the original model with softmax attention, and the same learning rates are used for the distilled
model. The choices of learning rates are 1e-6, 5e-6, 1e-5, 5e-5, 1le-4, 5e-4 for GPT-2, and
le-7,5e-7, 1e-6, 5e-6, 1le-5, 6e-5 for Pythia-1B. The selected learning rates are summarized
in Table[8]

The batch sizes are summarized in Table E} When out-of-memory error occurs, we utilized
gradient accumulation.

C.2 Datasets

All the datasets used in this paper are publicly available from HuggingFace Datasets library. The
dataset URLs and licenses are summarized in Table

Table 10: Summary of datasets.

Dataset URL

Wikipedia | https://huggingface.
PiQA https://huggingface.
logiQA https://huggingface.
ARC-E https://huggingface.
ARC-C https://huggingface.
Winogrande | https://huggingface.
MMLU https://huggingface.
WSC https://huggingface.

C.3 Additional Results

co/datasets/legacy-datasets/wikipedia
co/datasets/piqa
co/datasets/EleutherAI/logiqa
co/datasets/allenai/ai2_arc
co/datasets/allenai/ai2_arc
co/datasets/allenai/winogrande
co/datasets/mmlu

co/datasets/wsc

License

CCBY-SA 3.0

AFL-3.0

Apache License, Version 2.0
CCBY-SA 4.0

CCBY-SA 4.0

Apache License, Version 2.0
MIT

CCBY 4.0

In this section, we provide the experimental results beyond Section ]
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Table 11: The approximation error when using L? loss for GPT-2. All values are expressed in units
of x1073.

1 2 3 4 5 6 7 8 9 10 11 12 | Total
Fix [8.70 10.60 3.74 239 348 1.77 180 121 1.19 122 132 8.26|45.68
DoF | 7.83 892 4.15 250 348 1.76 176 124 133 129 132 8.52]44.10

Table 12: Training time (in hours and minutes) required for feature training.

Model Fix / DoF direct L2 Softmax

GPT-2 Fix 10h44m 5h57m 8h53m
DoF 10h45m 6h3m 8h 59m
DoF +Clip | 10h35m 5h43m 8hS5Im

Pythia-1B | Fix - - 23h 30m
DoF - - 24h 18m

Approximation error of K. Table[I1]shows the loss values when GPT-2 is distilled into models
whose dimensionality is determined by the Fix and DoF methods using the L? loss. Because the

L2 loss represents the error between K and K, the values in this table directly indicate how well
linear attention approximates softmax attention. From the table, we can see that the layers with small
approximation errors under Fix also achieve small errors under the DoF. At the same time, for the
layers with large approximation errors under the Fix method, the models whose dimensionality is
selected by DoF exhibit smaller approximation errors. As a result, the total error across all layers is
smaller for DoF than for Fix.

Computational cost of Algorithm[I} The total time required to run Algorithm[I]is 105.05 seconds
for GPT-2 and 476.53 seconds for Pythia-1B. These costs are negligible compared to the overall
distillation process, which includes feature map training.

Computational cost of feature training. We have summarized the actual training time required
for feature training in Table[T2] For GPT-2, the maximum training time is approximately 0.5 days,
and for Pythia-1B, it is up to 1 day. Consistent with the trends shown in Table[5] the computational
cost follows the order: L? < softmax < direct.

C.4 Additional Discussion

Why distilled models sometimes outperform the original model. Since the proposed method
performs distillation by approximating the softmax attention with linear attention, the distilled models
are generally expected to perform worse than the original models. However, as shown in Table [3]and
Table[6] the distilled models outperform the original models in some tasks. Here, we discuss possible
explanations for this phenomenon, in case readers are interested in understanding it.

One possible interpretation is that, the original model may not have reached the lowest possible test
loss due to the limited amount of data available during downstream fine-tuning. Consequently, the
error introduced by the approximate attention kernel in the distilled model might have incidentally
contributed to a reduction in test loss. We believe that such a case occurred in our experiments.

Another possible explanation is that the original model may have slightly overfit the fine-tuning data
for the downstream task, thereby limiting its test performance. In contrast, the distilled model might
have benefited from an implicit regularization effect due to its smaller representational capacity,
which could have led to improved generalization performance.
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