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EXTENDED ABSTRACT

INTRODUCTION

Identifying the interactions a small molecule makes with different proteins is an important task in
biology and a critical component of drug discovery. Retrieving the list of protein targets for a small
molecule, a task often referred to as target fishing in the literature Galati et al. (2021), is espe-
cially challenging and important when little is known about the molecule and its biological activity
is being explored. Before experimental testing, other methods must be used to narrow the sheer
number of protein candidates. Recent machine learning based methods for biological representa-
tions have shown strong performance for related modalities and tasks, including joint protein and
small molecule representation learning and binding affinity prediction Gao et al. (2024); Lee et al.
(2022); Gorantla et al. (2024); Singh et al. (2023); McNutt et al. (2024). In this paper, we explore
the application of several common protein and small molecule representations and learning methods
to the task of target fishing. We develop a novel dataset designed to reflect practical scenarios for
target fishing and compare the performance of different combinations of multimodal representations
and contrastive learning techniques, including molecular docking as a domain specific baseline. We
find in our preliminary work that although standard approaches to joint representation learning for
proteins and small molecules may work to distinguish protein and small molecule binding affinities,
they struggle to order protein targets for small molecules in their latent space and perform poorly on
ranking protein targets unseen during training.

RELATED WORK

The success of machine learning representations for protein structure Abramson et al. (2024), protein
sequence ESM Team (2024), and chemistry Chithrananda et al. (2020) have inspired the develop-
ment of joint representations for proteins and small molecules Gao et al. (2024); Lee et al. (2022);
Gorantla et al. (2024); Singh et al. (2023). By combining representations, these methods seek to
capture the protein and small molecule interactions necessary for binding prediction. Often, these
methods leverage contrastive learning objectives. For example, ConPLex Singh et al. (2023) uses
triplet loss to learn drug-target interactions with binary labels and protein language model features.
Other methods, including DrugCLIP Gao et al. (2024) and UniCLIP Lee et al. (2022), aim to pre-
dict binding affinities with the InfoNCEvan den Oord et al. (2018) objective. These methods also
use binary labels and structural representations for proteins. Alternatively, models such as BALM
Gorantla et al. (2024) attempt to directly predict binding affinities as a regression task.

However, binarizing affinity data results in the loss of important rank differences between targets for
a given small molecule. Additionally, the InfoNCE objective when applied to protein and small
molecule binding affinities, implicitly assumes all non-recorded affinity labels are non-binders,
which may also inhibit protein ranking performance. Alternatively, enforcing the direct predic-
tion of protein-small molecule binding affinities, may restrict ranking models too sharply, given that
target fishing only requires proper retrieval of targets and not low absolute error.

DATASET

To investigate target fishing, we develop a new benchmark dataset of over 1 million unique
protein-small molecule binding affinities, for 1,476 unique protein targets, and over 900,000 unique
small molecules. To simulate practical applications of target fishing, where the investigated small
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molecules are often very different from studied molecules and may interact with poorly studied pro-
teins, we clustered and split our molecules between our training and validation set at 0.3 Tanimoto
similarity. Likewise, we held out protein targets clustered and split at 30% sequence similarity.

METHODS

Informed by prior work, we investigate two sets of representation modalities for target fishing. Our
two-modality ML method uses a molecule-level ChemBERTa Chithrananda et al. (2020) embed-
ding and a protein-level ESM-C embedding. Our four-modality ML method also receives chemical
descriptors and an atomic-level graph of the protein pocket which passes through a Graph Neural
Network. All representations are then concatenated and fed through multi-layer perceptrons respec-
tively to get the final molecule and protein embeddings.

We train our models with InfoNCE loss and a new “Hybrid” Margin Rank Loss. Hybrid Mar-
gin Rank Loss tries to balance learning by calculating a margin rank loss on the ranking of binding
affinity across matched examples, using the experimental labels, with a margin rank loss that encour-
ages ranking measured small molecule pairs higher than unmatched examples. Additional details
are listed in the Appendix.

RESULTS

We report results on two holdout sets: an “easy” set where the proteins are in the model’s train set but
the ligands are held out, and a “hard” set where both the ligands and proteins are held out. We report
mean average precision (mAP) and normalized discounted cumulative gain (NDCG), and compare
our predictions to random rankings. We also compare to Smina Koes et al. (2013), a molecular
docking algorithm, as a physics-based and non-machine learning baseline.

Table 1: Model Metrics on Held Out Ligands Only (Easy)
Model Loss Function mAP ↑ NDCG ↑
ChemBERTa/ESM-C InfoNCE 0.46 0.57
GNN/ESM-C/ChemBERTa/Fingerprint InfoNCE 0.48 0.59
GNN/ESM-C/ChemBERTa/Fingerprint Hybrid Margin Rank 0.39 0.52
Random - 0.05 0.21

Table 2: Model Metrics on Held Out Ligands and Proteins (Hard)
Model Loss Function mAP ↑ NDCG ↑
ChemBERTa/ESM-C InfoNCE 0.11 0.28
GNN/ESM-C/ChemBERTa/Fingerprint InfoNCE 0.11 0.28
GNN/ESM-C/ChemBERTa/Fingerprint Hybrid Margin Rank 0.11 0.28
Smina - 0.23 0.38
Random - 0.07 0.23

On the easy split, the ML methods significantly outperform the random baseline. However, on the
hard split, the ML methods barely outperform the random baseline, and significantly underperform
Smina, indicating that the ML methods do not generalize to unseen protein-ligand complexes. These
results highlight the need for new architectures and loss functions for improved performance in the
target fishing problem.

MEANINGFULNESS STATEMENT

A meaningful representation of life is one that captures complex interactions and dependencies
across biological modalities. We believe that building a representation of proteins and small-
molecule ligands that captures their interactions (including interactions that may not be experimen-
tally measured) will be a significant boost in understanding selectivity, off-target interactions, and
drug repurposing. However, in this paper, we find that simply using common machine learning
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strategies such as contrastive loss and ranking loss do not capture the complexity of these interac-
tions, and that this area of research should be explored with more detail.
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A APPENDIX

A.1 DATASET CURATION AND PREPROCESSING

To complete ligand preprocessing, we first merged all entries between ChEMBL and BindingDB.
We dropped all ligands that had a molecular weight below 100 Daltons or above 1,000 Daltons, or
any ligands with SMILES string entries that could not be processed by RDKit. We then filtered
binding affinity measurements from each dataset to reduce the number of mislabeled samples in
our training data; see APPENDIX for more information. After processing we took each remaining
ligand SMILES entry and used Schrodinger’s LigPrep tool to generate relevant tautomers and
ionization states for each input, at physiological pH. Each of these newly generated ligands was
assigned the same binding protein and affinity label as its source ligand SMILES.

To complete protein preprocessing, we sampled up to 50 holoprotein structures for each protein,
as identified by its UniProt ID. We attempted to repair any malformed PDB files by replacing
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missing residues or heavy atoms, addeed hydrogens at physiological pH with PropKA, and
centered the binding pocket of the protein based on the bound ligand in the structure at the ori-
gin. Any PDB structures failing preprocessing were discarded, leaving approximately 35,000 PDBs.

A.2 HYBRID MARGIN RANK LOSS

In a batch, we calculate the total loss as the sum of the single measurement loss
and the pair measurment loss: Ls =

1
n2 (

∑i
n

∑j
n 1(f(mi, pi)− f(mi, pj)) +margins)

in contrast to the more common margin rank loss applied on our measured pairs:
Lp = 1

n2 (
∑i

n

∑j
n max(0, y − (f(mi, pi)− f(mj , pj)) +marginp) In which n is the batch

size, f is the similarity function between the learned molecule and protein embedding (mi, pi) and
proteins and molecules in which the index are the same, are pairs that have had an experimental
measurement. margins and marginp are two parameters that need to be tuned. We chose a larger
margin for the Ls to avoid collapse of the embedding space.
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