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Abstract
Federated multi-view clustering has been pro-
posed to mine the valuable information within
multi-view data distributed across different de-
vices and has achieved impressive results while
preserving the privacy. Despite great progress,
most federated multi-view clustering methods
only used global pseudo-labels to guide the down-
stream clustering process and failed to exploit
the global information when extracting features.
In addition, missing data problem in federated
multi-view clustering task is less explored. To
address these problems, we propose a novel Fed-
erated Incomplete Multi-view Clustering method
with globally Fused Graph guidance (FIMCFG).
Specifically, we designed a dual-head graph con-
volutional encoder at each client to extract two
kinds of underlying features containing global
and view-specific information. Subsequently, un-
der the guidance of the fused graph, the two un-
derlying features are fused into high-level fea-
tures, based on which clustering is conducted
under the supervision of pseudo-labeling. Fi-
nally, the high-level features are uploaded to the
server to refine the graph fusion and pseudo-
labeling computation. Extensive experimental
results demonstrate the effectiveness and superi-
ority of FIMCFG. Our code is publicly available
at https://github.com/PaddiHunter/FIMCFG.

1. Introduction
With the fast development of information collection tech-
niques, data can be obtained from different views, result-
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ing in multi-view data (Chao et al., 2025a). Multi-view
clustering (MVC) is a popular machine learning paradigm
designed to group data using complementary and consis-
tent information from multiple views. In recent years, deep
learning has been widely used in MVC, known as deep
multi-view clustering, which has achieved state-of-the-art
clustering performance due to its excellent representation
learning ability (Chen et al., 2022; Yan et al., 2021; Yu
et al., 2024). In practice, due to the complexity of the data
collection and transmission process, data may be missing for
some views, leading to the Incomplete Multi-view Problem
(IMP) (Lin et al., 2021). To address IMP, some incomplete
multi-view clustering methods adopt data recovery methods
to predict missing data. Recently, graph neural networks
have received much attention for their ability to capture
structural information. In incomplete multi-view clustering
field, graph convolutional neural networks (GCNs) can com-
pute missing data features with the help of graph structural
information and neighboring node attributes, reducing the
impact of missing data (Chao et al., 2024).

Federated learning is a distributed machine learning
paradigm that allows multiple clients to jointly train an en-
semble model without exposing raw data information (Liu
et al., 2020; Qi et al., 2025b). It aims for dual optimiza-
tion objectives of global generalization and local personal-
ization(Meng et al., 2024), and focuses on addressing the
challenges posed by heterogeneous data distributions and
missing classes(Qi et al., 2023; 2025a). Federated multi-
view learning is designed to learn a global model from
multi-view data distributed across different clients. The
main challenges are formulated from privacy preservation
and the heterogeneity of multi-view data. In addition, multi-
view data distributed on different clients is often incomplete
and some views may be missing, exacerbating the complex-
ity (Chen et al., 2023).

There exist some research works combining graph neural
networks (GNN) with federated multi-view clustering (Yan
et al., 2024). However, most of current GNN-based fed-
erated multi-view learning only used the graph structure
information accompanied by noise and didn’t tackle the
missing data problem. In addition, in most federated multi-
view clustering models, the client tends to extract features
for a single view and on the server, the features are fused
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to compute pseudo-labels acting as global self-supervised
information to guide the client training. In summary, most
of these approaches only mine the global information for
downstream clustering, while ignoring the interaction of
multiple views in upstream feature extraction, making it
difficult to capture the global information within multiple
views, degrading the clustering performance.

To solve the above problems, we propose the Federated
Incomplete Multi-view Clustering method with globally
Fused Graph guidance (FIMCFG). Clients include upstream
two-level feature extraction and downstream clustering. To
address incomplete data problem, the global graph structure
migration is proposed, which repairs the incomplete local
graph. With the information propagation mechanism of
GCN, the latent feature of missing data can be learned from
the neighboring nodes in repaired graph. With the guidance
of globally fused graph, two-level feature extraction has
three parts: dual-head graph encoder, decoder and fusion
module. We input the fused graph from the server and the
repaired local graph into the dual-head graph encoder to ex-
tract underlying features including global and view specific
information. Due to rich view specific information included,
underlying features are used by decoder to reconstruct data
and a fusion module is introduced to fuse the underlying
features into a low-dimensional high-level feature under the
guidance of globally fused graph. With the fused graph,
global information is propagated in feature extraction. Then,
we perform clustering on the high-level features and op-
timize the clustering layer with the global supervision of
pseudo-label. At the server, we perform graph fusion, fea-
ture fusion and global clustering to obtain the fused graphs
and pseudo-labels, which are used as global information to
guide the client. The main contributions of our work are
summarized as follows:

• A federated incomplete multi-view clustering frame-
work with dual-head GCN encoders is proposed. By
introducing the globally fused graph guidance, the en-
coders on clients are able to to grasp the global infor-
mation among views.

• The global graph structure migration is proposed to
repair incomplete local graphs, which is used to esti-
mate latent features of missing data. It improves the
accuracy of the estimated features of missing data. Ex-
tensive experiments on real-world multi-view data sets
demonstrate the superior performance of our proposed
model.

2. Related Works
2.1. Incomplete Multi-View Clustering

In real-world applications, multi-view data often suffer from
missing data problems due to uncontrollable data collec-

tion, transmission, or storage factors. Incomplete Multi-
View Clustering (IMVC) addresses this challenge by learn-
ing the robust clustering structures from partially observed
multi-view data. Recent advances in deep learning have
significantly enhanced IMVC performance, with various
innovative approaches proposed. For instance, Completer
(Lin et al., 2021) leverages the autoencoders to maximize
the cross-view mutual information via contrastive learn-
ing, ensuring view-consistent representations. Addition-
ally, it employs the dual prediction to minimize the con-
ditional entropy, effectively recovering the missing views.
Another approach, based on variational autoencoders(Xu
et al., 2024), utilizes the Product-of-Experts (PoE) method
to aggregate multi-view information, deriving a shared latent
representation to handle incompleteness. Further improv-
ing data recovery, AIMC(Xu et al., 2019) integrates the
element-wise reconstruction with Generative Adversarial
Networks (GANs) to generate the plausible missing data.
More recently, Graph Neural Networks (GNNs) have been
introduced to IMVC, capitalizing on their ability to model
relational data. For example, ICMVC(Chao et al., 2024)
tackles the missing data through multi-view consistency rela-
tion transfer combined with Graph Convolutional Networks
(GCNs). Similarly, CRTC(Wang et al., 2022) introduces
a cross-view relation transfer completion module, where
GNNs infer missing data based on transferred relational
graphs.

2.2. GNN based Multi-View Clustering

In recent years, GNNs have been widely used in multi-view
clustering due to their powerful feature extraction ability
to exploit the graph structure and node attribute informa-
tion, and have received more and more attentions (Xia et al.,
2022; Du et al., 2023). GNNs have also been studied to
transfer the inter-view graph structure to deal with the miss-
ing data problem. For instance, Chao et al. (2024) proposed
to use multi-view consistency relation migration and GCN
to tackle the missing data problem in multi-view clustering
task. In addition, several studies have found that propa-
gating information within the single view could limit the
performance. To solve this problem, Xiao et al. (2023)
proposed a dual fusion module and a dual information prop-
agation mechanism to capture multiple information of dif-
ferent views. Wang et al. (2024b) learned the consensus
representations through the unified heterogeneous attribute
graphs, which can propagate structural information across
multiple views to improve the feature representation. Chao
et al. (2025b) proposed a hierarchical information-transfer
incomplete multi-view clustering method that integrates
view-specific representation learning, global graph propaga-
tion, and contrastive clustering.

However, the aforementioned GNN-based MVC methods
can only address the missing data problem and informa-
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tion propagation limitations in centralized environments.
Although some federated learning multi-view clustering
methods have been proposed for distributed scenarios, their
clients often do not explicitly consider the global informa-
tion in the upstream feature extraction process. In addition,
there are fewer studies on how to exploit the multi-view
clustering capability of GNNs in distributed environments.
In this paper, we propose a novel GCN-based federated
multi-view clustering (FedMVC) approach, which solves
the missing data problem and restricted global information
propagation in distributed scenarios.

2.3. Federated Multi-View Clustering

Federated Multi-View Clustering is an emerging task which
aims to conduct clustering task for multi-view data through
collaboration of clients. The heterogeneity of multi-view
data and the importance of privacy preservation make it ex-
tremely difficult to handle. Chen et al. (2023) proposed sam-
ple alignment and data extension techniques to explore the
complementary cluster structures of multiple views. Based
on Chen et al. (2023), Ren et al. (2024) utilized sample
commonality and view generality to adaptively generate
alignment matrices to further address data misalignment
across view clients. To deal with the heterogeneous hybrid
views problem, Chen et al. (2024) designed a local collab-
orative contrastive learning approach to address the client
gaps and a global specific weighted aggregation method to
reduce view gaps. Yan et al. (2024) adopted the heteroge-
neous GNN encoders to address the data heterogeneity at
clients and designed a global pseudo-labeling mechanism
with heterogeneous aggregation in a federated environment
to deal with the incomplete view problem.

Although federated multi-view clustering works have made
great progress, they tend to extract the features at the client
first, and then aggregate the features at the server and
compute the pseudo-labels to transfer to the client as self-
supervised information. Pseudo-labeling often only guides
the downstream clustering process and is not useful for the
upstream feature extraction process, which limits the fea-
ture extraction process from utilizing global information.
To solve this problem, we propose FIMCFG to improve
the feature representation of clients by effectively using the
fused graph from the server, such that the dual-head graph
encoder grasps the global information of multiple views.

3. Proposed Method
3.1. Problem Formulation

We give a formal definition of federated multi-view clus-
tering. Suppose there is a dataset containing N sam-
ples with M views distributed over M clients (denoted
as X = {X1, X2, ..., XM}), which will be divided into

K clusters. Each client has only one view-specific data
Xm = {xm

1 , xm
2 , ..., xm

Nm
} ∈ RNm×Dm , where Dm de-

notes the dimensionality of the samples in view m. Due
to incomplete samples in the clients, Nm ≤ N . In order
to facilitate the processing, for those missing samples, we
use the zero vector 0 to fill in, i.e., Xm ∈ RN×Dm . The
graph structure of the raw data is represented by adjacency
matrices A = {A1, A2, ..., AM}, and Am ∈ {0, 1}N×N .
Am

ij = 1 or 0 denotes the presence or absence of edges
between xm

i and xm
j . The adjacency matrix of the fused

graph from the server is denoted as A ∈ {0, 1}N×N .

Our model architecture consists of M clients and one server.
Each client utilizes its private data for local view training.
The high-level features {Hm}Mm=1 are obtained through two
level feature extraction guided by the globally fused graph
A. Then clustering is performed based on them. Based on
the clustering results, we compute the weights {wm}Mm=1 by
high-level feature. After that, the server receives {Hm}Mm=1

and {wm}Mm=1 from the clients and performs feature fusion,
graph fusion and global clustering. The overview illustration
of the model is shown in Figure 1.

3.2. Client Local Training with Global Guidance

As shown in Figure 1, The client contains two steps with
feature extraction and clustering. client M extracts the un-
derlying features H̃M and high-level features HM under the
guidance of fused graph A, such that they can capture the
global information of multiple views. Through the initializa-
tion of the global clustering center UM and the supervised
training with pseudo-labels P , the clustering layers of dif-
ferent clients are aligned and obtain a consistent clustering
structure. Subsequently, we take client m as an example to
introduce the local training of clients.

3.2.1. GLOBAL GRAPH STRUCTURE MIGRATION

In the beginning, because there is no graph structure in-
formation on client m, the local graph adjacency matrix
Am ∈ {0, 1}N×N needs to be constructed from the raw
data. We use the radial basis function to compute the similar-
ity matrix Sm ∈ [0, 1]N×N , which is calculated as follows:

Sm
ij = e−

∥xm
i −xm

j ∥22
t , (1)

where Sm
ij ∈ [0, 1] denotes the similarity between xm

i and
xm
j . After that, we set the largest k elements of each row

to 1 and the others to 0 in Sm to construct the adjacency
matrix Am, where 1 or 0 denotes the presence or absence
of edges.

To handle the incomplete data problem, global graph struc-
ture migration is proposed. Under the GCN encoder on
clients, each sample estimates single-view features accord-
ing to its attribute and neighboring nodes’ attributes. Since
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Figure 1. Overview of the FIMCFG framework. It contains M clients and a server. (1) Client: M -th client consists of two processes:
feature extraction and clustering. With the guidance of fused graph A, client extracts underlying features H̃M by dual-head graph encoder
and high-level features HM by fusion module. Under the supervision of pseudo-labels P , the clustering centers uM are optimized by
reducing the KL loss between soft distribution QM and P . Based on clustered HM , the silhouette coefficients wM are calculated as
aggregation weights. (2) Server: the server performs feature fusion with {Hm}Mm=1 to obtain global features H and graph fusion with
latent graph {Âm}Mm=1 of {Hm}Mm=1 to obtain fused graph A. Then the server perform K-means algorithm on H to get global clustering
centers U and pseudo labels P .

missing samples are represented by zero vectors, the encoder
automatically ignores them during computation. However,
when using similarity-based calculations for the local adja-
cency matrix, missing samples represented as zero vectors
are isolated from complete samples, making their feature
computation infeasible. To address this issue, we propose a
global graph structure migration technique, which replaces
rows corresponding to missing samples in the local adja-
cency matrix with corresponding rows from the global adja-
cency matrix. This approach enriches the local adjacency
matrix with global structural information, enabling the miss-
ing samples to estimate features based on adjacent complete
samples.

3.2.2. TWO-LEVEL FEATURE EXTRACTION WITH
FUSED GRAPH GUIDANCE

As demonstrated in Figure 1, the client’s feature extraction
consists of three parts: the dual-head graph encoder, the
decoder and the fusion module. Guided by the globally
fused graph, they are jointly trained to extract two-level
features.

Dual-Head Graph Encoder. Dual-head Graph Encoder
contains two parallel graph encoders. The samples Xm,

local graph Am and fused graph A are input to the dual-
head graph encoder to extract two different underlying fea-
tures H̃m

l and H̃m
g . Specifically, stacked GCN layers are

used as encoders and the global graph encoder fm
θm
g

and
local graph encoder fm

θm
l

are used as two heads. Their map-

ping functions are :fm
θm
g
(Xm, A) 7−→ H̃m

g ∈ RN×d̃m and

fm
θm
l
(Xm, Am) 7−→ H̃m

l ∈ RN×d̃m , where H̃m
g and H̃m

l

are the underlying features containing global and local view
information, respectively. The computation process of the
t-th layer of the local graph encoder is denoted as:

H̃m
l (t) =σ(D̃m− 1

2 ÃmD̃m− 1
2 H̃m

l (t−1)W
m
(t) + bm(t))

+ H̃m
l (t−1),

(2)

where σ(·) is activation function. Ãm = Am + I and
D̃m

ii =
∑

j Ã
m
ij . I is the unit matrix, and Wm

(t) and bm(t) are
the trainable parameters of the t-th layer. Am is the fixed
local graph after global graph structure migration. Skip
connections are introduced to prevent model degradation.
The global graph encoder is computed in the same way with
local graph encoder.

The dual-head graph encoder is identified by optimizing

4



Federated Incomplete Multi-view Clustering with Globally Fused Graph Guidance

the graph reconstruction loss such that features retain graph
structure information. The latent graphs Âm

g ∈ [0, 1]N×N

and Âm
l ∈ [0, 1]N×N are constructed by underlying features

H̃m
g and H̃m

l according to Eq. (1). Their elements indicates
the strength of the connection, 0 means no connection and 1
means strong connection. The graph reconstruction loss of
the underlying features is calculated as follows:

Lm
u = ∥Âm

g −A∥22︸ ︷︷ ︸
Lg

u
m

+ ∥Âm
l −Am∥22︸ ︷︷ ︸

Ll
u
m

. (3)

Decoder. In order to enhance the robustness of the model,
we set up a decoder with fully connected layer for the un-
derlying features. The mapping function is gmϕ : H̃m ∈
RN×2d̃m 7−→ X̂m ∈ RN×Dm , where H̃m represents the
underlying feature matrix concatenated by H̃m

g and H̃m
l ,

and X̂m denotes the reconstructed samples. The content
reconstruction loss is used to optimize:

Lm
r = ∥Xm − X̂m∥22. (4)

Due to the rich view information, underlying features are
suitable for reconstructing samples. Note that we compute
the content reconstruction loss only for complete samples
and use the predicted reconstructed samples to replace the
missing samples at the end of training round.

Fusion Module. Since the two underlying features may
contain conflicting components and redundant information
which are not suitable for clustering, we introduce a fusion
module that fuses the two underlying features and maps
them into a low-dimensional high-level feature space. The
fusion module uses fully connected layers with a mapping
function: fm

θm
F

: H̃m ∈ RN×2d̃m 7−→ Hm ∈ RN×dm ,
where Hm is high-level feature. In order to learn a consis-
tent representation, globally fused graph is used to guide the
training of fusion module. The consistent graph reconstruc-
tion loss for high-level features is computed as follows:

Lm
d = ∥Âm −A∥22, (5)

where Âm ∈ [0, 1]N×N is the latent graph constructed from
high-level features Hm by Eq. (1). The fusion module on
each client aligns the fused high-level feature graph closer
to the global graph, while the global graph is collaboratively
updated by all clients. Through iterative updates, the model
converges to a stable state, ultimately resolving conflicting
components. Up to this point, we merge the graph recon-
struction loss of dual-head graph encoder and fusion module
as:

Lm
g = Lm

u + Lm
d . (6)

During the communication phase, the client uploads high-
level features to the server, which protects data privacy.

3.2.3. PSEUDO-LABEL-GUIDED CLUSTERING TRAINING

To obtain the clustering assignment, we construct a cluster-
ing layer cmum with trainable parameters {um

j ∈ Rdm}Kj=1,
where K represents the number of clustering and um

j rep-
resents the clustering center of the j-th cluster on client m.
The soft distribution Qm ∈ RN×K is computed as follows:

qmij =
(1 + ∥hm

i − um
j ∥22)−1∑K

j=1(1 + ∥hm
i − um

j ∥22)−1
, (7)

where qmij denotes the probability that the i-th sample is
assigned to the j-th cluster, and hm

i ∈ Rdm denotes the
high-level feature of the i-th sample. At the beginning of
each training round, the client initializes the clustering layer
with the global clustering center Um to align the classes. We
use pseudo-labels from the server to supervise the training
of the clustering layer such that different clients can obtain
a consistent clustering structure. The KL divergence loss
between the soft distribution Qm and the pseudo-labels P
is used to optimize:

Lm
c = DKL(P ||Qm) =

N∑
i=1

K∑
j=1

pij log
pij
qmij

. (8)

In addition, when not yet communicating, the client has
no available pseudo-labels since the server has not yet per-
formed aggregation. Therefore, during the first round of
training, the client supervises the training of the clustering
layer using the target distribution Pm ∈ RN×K instead of
P . Pm is computed by the following equation:

pmij =
(qmij /

∑
j q

m
ij )

2∑
j(q

m
ij /

∑
j q

m
ij )

2
. (9)

Therefore, the optimization objective of client m consists
of three parts:

Lm = Lm
c + γ1L

m
g + γ2L

m
r , (10)

where γ1 and γ2 are the trade-off parameters to balance
the clustering loss, graph reconstruction loss and content
reconstruction loss.

3.2.4. AGGREGATION WEIGHT

Silhouette comprehensively evaluates clustering quality by
considering both intra-cluster cohesion and inter-cluster
separation (Rousseeuw, 1987). It ranges between [−1, 1],
where values close to 1 indicate that samples are effectively
clustered and well-separated from other clusters, reflecting
strong clustering performance. Conversely, values close
to −1 suggest incorrect cluster assignments and poor clus-
tering quality. Thus we use it as the weights for server
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aggregation. At the end of client’s training, the client com-
putes the silhouettes wm ∈ RN of the high-level feature
and sends them to the server. The silhouettes for the i-th
sample are calculated as follows:

wm
i =

b(i)− a(i)

max{a(i), b(i)})
. (11)

Assume that the i-th sample is assigned to cluster k̂, then
a(i) denotes the average distance of sample i from other
samples belonging to the same cluster k̂. We use d(i, k) to
denote the average distance of sample i from all samples
belonging to cluster k, and then b(i) = min

k ̸=k̂
d(i, k).

3.2.5. PRE-TRAINING

Since there is no fused graph available at the first round of
training, the clients need to conduct pre-training to extract
features for the server to perform graph fusion. For pre-
training, the client only optimizes the local graph encoder
fm
θm
l

to obtain the local underlying features H̃m
l , and uploads

H̃m
l to the server for graph fusion. The local graph recon-

struction loss is used to optimize the local graph encoder
fm
θm
l

:

Lm
pre = ∥τk(Âm

l )−Am∥22, (12)

where Âm
l ∈ [0, 1]N×N indicates the latent graph con-

structed from H̃m
l mentioned above. Am ∈ {0, 1}N×N

is the incomplete local graph before global graph structure
migration. τk(·) is a mask function that retain only the
largest k elements in each row of the latent graph, and set
the rest to zero. Only the strongest k edges are adopted to
solve the incompleteness problem.

3.3. Server Global Aggregation

The server receives the high-level features {Hm}Mm=1 and
weights {wm}Mm=1 from the clients and performs graph
fusion, feature fusion and global clustering.

Graph Fusion. To fuse the graphs, the server extracts
the latent graph {Âm ∈ [0, 1]N×N}Mm=1 from {Hm}Mm=1

by Eq. (1). After that, the server fuses the latent graph
according to {wm}Mm=1. Specifically, it fuses the latent
graphs as follows:

A = fk(
1

M

M∑
m=1

(Wm ⊙ Âm)), (13)

where A ∈ {0, 1}N×N denotes the fused graph, ⊙ denotes
Hadamard product. fk(·) denotes the function that sets the
largest k elements of each row in the matrix to 1 and the
rest to 0. Wm ∈ RN×N denotes the weight matrix by
broadcasting wm ∈ RN .

Feature Fusion. The feature aggregation is conducted as
follows:

H = [w1
′

H1, w2
′

H2, · · · , wM
′

HM ], (14)

where H ∈ RN×
∑M

m=1 dm denotes the global feature, and
[·, · · · , ·] stands for matrix concatenation operation. wm

′
=

1 + log(1 + wm∑M
m=1|wm| ), where wm is the view silhouette

coefficient and is calculated by wm = 1
N

∑N
i=1 w

m
i .

Global Clustering. K-means algorithm is used to
cluster H to obtain the global clustering center U =

[w1
′

U1, w2
′

U2, · · · , wM
′

UM ], where Um denotes the
global clustering center of the m-th view. One point worth
noting is that {Um}Mm=1 is aligned in classes. Based on the
Student-t distribution, the soft distribution for each sample
is:

sij =
(1 + ∥hi − Uj∥22)−1∑K
j=1(1 + ∥hi − Uj∥22)−1

, (15)

where hi denotes the global features of the i-th sample and
Uj denotes the j-th global clustering center. By sharpen-
ing the soft distribution, the pseudo-label P is obtained as
follows:

pij =
(

sij∑
j sij

)2∑
j(

sij∑
j sij

)2
. (16)

Finally, the clustering labels for each sample is obtained.
The category yi for the i-th sample is:

yi = argmax
k

pik. (17)

3.4. Algorithm optimization

Algorithm 1 details the optimization process of FIMCFG
consisting of two parts: clients and server. The client trains
the local model in parallel, which pre-trains to extract local
features before communication and uploads them to the
server for graph fusion. In subsequent rounds of training, the
clients extract the two-level features under the guidance of A
and perform clustering with the supervision of P . The server
fuses the features and latent graphs from the clients and
performs global clustering to obtain the global clustering
results. The client and server iterate alternately for T rounds.

4. Experiments
4.1. Experimental Settings

4.1.1. DATASETS AND METRICS

Our experiments were conducted on four widely used multi-
view datasets. Specifically, Scene-15 (Lazebnik et al., 2006;
Fei-Fei & Perona, 2005) consists of 4485 scene images clas-
sified into 15 classes, with each sample represented by three
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Table 1. Experimental results on the four datasets. The best results in each column are shown in bold and the second best results
are underlined. δ = 0 indicates complete while δ = 0.5 indicates incomplete.

δ Methods HW Scene-15 Landuse-21 100Leaves
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

0

FCUIF 0.965 0.923 0.925 0.471 0.444 0.293 0.274 0.302 0.130 0.910 0.964 0.878
FedMVFPC 0.407 0.528 0.329 0.304 0.327 0.173 0.201 0.205 0.074 0.187 0.574 0.137

HFMVC 0.789 0.732 0.666 0.367 0.381 0.217 0.237 0.272 0.096 0.709 0.880 0.624
DIMVC 0.446 0.533 0.381 0.350 0.309 0.179 0.243 0.301 0.109 0.825 0.922 0.753

DSIMVC 0.759 0.756 0.661 0.281 0.299 0.146 0.177 0.173 0.049 0.401 0.725 0.294
GIGA 0.807 0.853 0.756 0.221 0.263 0.041 0.131 0.257 0.017 0.742 0.877 0.483

GIMVC 0.935 0.886 0.874 0.426 0.465 0.279 0.258 0.337 0.114 0.857 0.952 0.819
CDIMC-net 0.861 0.890 0.827 0.347 0.421 0.198 0.184 0.236 0.054 0.799 0.938 0.751
MRL CAL 0.478 0.526 0.337 0.194 0.168 0.069 0.163 0.169 0.045 0.224 0.587 0.126

Ours 0.976 0.946 0.948 0.475 0.472 0.309 0.304 0.350 0.153 0.960 0.982 0.942

0.5

FCUIF 0.917 0.840 0.827 0.410 0.378 0.234 0.232 0.244 0.098 0.604 0.764 0.431
FedMVFPC 0.313 0.364 0.192 0.203 0.199 0.071 0.134 0.123 0.025 0.134 0.397 0.030

HFMVC 0.516 0.433 0.272 0.221 0.216 0.096 0.166 0.181 0.047 0.325 0.622 0.177
DIMVC 0.322 0.255 0.151 0.310 0.261 0.143 0.226 0.278 0.099 0.579 0.731 0.380

DSIMVC 0.729 0.687 0.586 0.260 0.267 0.125 0.172 0.169 0.048 0.295 0.616 0.171
GIGA 0.764 0.730 0.594 0.146 0.127 0.008 0.182 0.279 0.025 0.418 0.649 0.055

GIMVC 0.911 0.838 0.825 0.385 0.373 0.218 0.228 0.273 0.085 0.688 0.842 0.555
CDIMC-net 0.858 0.861 0.792 0.217 0.268 0.067 0.122 0.161 0.020 0.330 0.643 0.207
MRL CAL 0.358 0.370 0.191 0.189 0.150 0.065 0.162 0.168 0.044 0.145 0.434 0.052

Ours 0.952 0.897 0.896 0.444 0.420 0.264 0.293 0.323 0.139 0.802 0.886 0.696

Algorithm 1 Optimization algorithm for FIMCFG
Require: Data with M views {Xm}Mm=1 distributed across

M clients, number of clusters K, number of communi-
cation rounds T , number of training rounds E.

Ensure: Clustering results Y = {y1, y2, · · · , yN}.
1: Pretrain the clients in parallel via Eq. (12).
2: Upload H̃m

l to the server.
3: Calculate the fused graph A.
4: Distribute A to the clients.
5: while not reaching T do
6: for m = 1 to M in parallel do
7: Migrate the global graph structure.
8: while not reaching E do
9: Update Hm by optimizing Eq. (10).

10: end while
11: Use X̂m to replace missing samples.
12: Calculate silhouette coefficients wm.
13: Upload Hm and wm to the server.
14: end for
15: Update A by Eq. (13).
16: Update H by Eq. (14).
17: Obtain {Um}Mm=1 by K-means.
18: Obtain P by Eq. (16).
19: Distribute A, {Um}Mm=1, P to clients.
20: end while
21: Calculate the clustering label by Eq. (17).

views. HandWritten (HW)1 contains 2000 samples in ten
numeric categories, each consisting of six views. Landuse-
21 (Yang & Newsam, 2010) consists of 2100 satellite images
in 21 categories, 100 images per category, represented by
three views. 100leaves2 consists of 1600 image samples
of 100 plants, each represented by three different views.
Details of the dataset are presented in Table 2.

In the federated learning settings, multiple views of these
datasets are distributed across different clients, each contain-
ing one of the views and isolated from each other. We define
the data missing rate as δ = 1− Nc

N , where Nc represents
the number of overlapping samples in all clients and N
represents the number of all samples in the dataset. To con-
struct the incomplete dataset, we randomly selected N −Nc

samples in the dataset, and set the n views of each sample
among them to 0, where n = [n

′
], [·] denotes rounding

operation and n
′ ∼ U(1,M − 1).

We use three commonly-used metrics to evaluate the ef-
fectiveness of clustering, i.e., clustering accuracy (ACC),
normalized mutual information (NMI), and adjusted random
index (ARI). A higher value of each metric indicates a better
clustering performance.

1https://archive.ics.uci.edu/dataset/72/multiple+features
2https://archive.ics.uci.edu/ml/datasets/One-

hundred+plant+species+leaves+data+set
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Figure 2. Accuracy on four datasets with different missing rates. (a) HW, (b) Scene-15, (c) 100Leaves, (d) Landuse-21.

Table 2. Description of the datasets.

Datasets Samples Views Distribution of dimensions Classes

Scene-15 4485 3 20 59 40 - - - 15
HandWritten 2000 6 240 76 216 47 64 6 10
Landuse-21 2100 3 20 59 40 - - - 21
100leaves 1600 3 64 64 64 - - - 100

4.1.2. COMPARED METHODS

In order to verify the effectiveness and superiority of our
method, seven state-of-the-art methods including three fed-
erated MVC methods and six centralized IMVC methods
are chosen to be compared methods. They are listed as
follows:

• FCUIF(Ren et al., 2024) utilizes sample commonality,
view versatility, and adaptive imputation techniques to
address unaligned and incomplete data under federated
setting.

• FedMVFPC (Hu et al., 2024) is a federated learn-
ing method designed for privacy-preserving multiview
fuzzy clustering.

• HFMVC (Jiang et al., 2024) is a heterogeneity-aware
federated deep multi-view clustering method that lever-
ages contrastive learning to explore consistency and
complementarity across multi-view data.

• DIMVC(Xu et al., 2022) is a imputation-free and
fusion-free deep IMVC framework.

• DSIMVC(Tang & Liu, 2022) proposes a bi-level op-
timization framework that dynamically fills missing
views using learned neighbor semantics.

• GIGA(Yang et al., 2024) adaptively estimates the fac-
tual weight of each available view to mitigate the ef-
fects of missing views.

• GIMVC(Bai et al., 2024) is a graph-guided, imputation-
free incomplete multi-view clustering method.

• CDIMC-net(Wen et al., 2020) combines view-specific
deep encoders and graph embedding strategy to capture
the high-level features and local structure of each view.

• MRL CAL(Wang et al., 2024a) utilizes joint learning
of features in different subspaces for data recovery,
consistent representation and clustering.

We compared FIMCFG with baselines at two missing rate
settings: δ = 0 (complete) and δ = 0.5 (incomplete).

4.2. Experimental Results

Table 1 shows the clustering results of FIMCFG against
the compared methods in both complete and incomplete
scenarios. It can be observed that our method outperforms
all the compared methods on all the datasets in both sce-
narios, demonstrating the superiority of our method. In
particular, in the missing settings, our method significantly
outperforms the second-ranked compared method on all the
four datasets.

To further investigate the robustness of our method to the
missing rate, we conducted experiments on four datasets
with different missing rates ranging from 0.1 to 0.7 with an
interval of 0.2. As shown in Figure 2, our method outper-
forms all the compared methods at almost all the missing
rate settings across all the four datasets, and this advan-
tage becomes more and more significant as the missing rate
increases. The results show that our method is robust to
different missing rates, and can use global information to
estimate the data distribution even with high missing rates.
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(a) (b)

Figure 3. Parameter sensitivity analysis on Landuse-21 when δ =
0.5. (a) Clustering performance with different γ1 values, (b) Clus-
tering performance with different γ2 values.

4.3. Model Analysis

4.3.1. ABLATION STUDY

To further investigate the effectiveness of the global infor-
mation in fused graph, we conducted an ablation study to
explore the impact of each component related to the fused
graph on clustering results. The components related to the
fused graph include: (A) global graph structure migration,
(B) feature fusion module, (C) global graph guidance, and
(D) global graph encoder. We remove each component to
explore its effect. It should be noted that when we remove
the global graph encoder, all these components will be not
exist. The ablation study experimental results are shown
in Table 3. It can be easily seen that each module plays an
important role.

Table 3. Ablation study on Scene-15 when δ = 0.5.

Components Scene-15
A B C D ACC NMI ARI

✓ ✓ ✓ 0.431 0.415 0.258
✓ ✓ ✓ 0.357 0.407 0.205
✓ ✓ ✓ 0.412 0.414 0.251

0.247 0.210 0.095
✓ ✓ ✓ ✓ 0.444 0.420 0.264

4.3.2. PARAMETER ANALYSIS

During the training of clients, the total loss function defined
by Eq. (10) has two hyperparameters γ1 and γ2 to trade-off
the graph reconstruction loss and content reconstruction loss.
We conducted the experiments with various settings of the
two hyperparameters ranging from 10−3 to 103 at δ = 0.5,
as shown in Figure 3. We observe that γ1 in the range of
[10−2, 103] is robust for clustering results. Too small γ1
degrades the clustering performance due to the fact that it
makes the encoder to ignore the global information of the
fused graph. The clustering performance is not sensitivity
to γ2. Based on the experimental results, we recommend
setting γ1 to 1 and γ2 to 0.1 for optimal performance.

4.3.3. HETEROGENEITY ANALYSIS

In order to study the effect of the data heterogeneity in
clients on FIMCFG, we introduced the Dirichlet distribution
in the construction of the incomplete dataset. The smaller
the parameter α of Dirichlet, the larger the imbalance in
the size of samples on the clients. We set up three sce-
narios with different data distributions: α = 10−2 (High),
α = 1.0 (Moderate) and random distribution (None) to illus-
trate three heterogeneous scenarios. The results are shown
in Figure 4, which shows that our model is less affected
by data heterogeneity and performs well even in highly
heterogeneous scenarios.

Figure 4. Sensitivity to imbalanced sample sizes in clients on four
datasets with a missing rate of 0.5.

5. Conclution
In this paper, we propose a novel federated incomplete multi-
view clustering method FIMCFG. We designed the global
graph structure migration to correct the local graphs and es-
timates the missing features with GCN to tackle the missing
data problem. Moreover, we designed the dual-head graph
encoder and fusion module to extract high-level features by
using the fused global graph. Experimental results verified
the effectiveness and superiority of FIMCFG.
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A. More Experiments of FIMCFG
A.1. We show more ablation study results on HW, Landuse-21 and 100Leaves in Table 4.

Table 4. Ablation study results on HW, Landuse-21 and Scene-15 with δ = 0.5.

Components HW Landuse-21 100Leaves
A B C D ACC NMI ARI ACC NMI ARI ACC NMI ARI

✓ ✓ ✓ 0.950 0.896 0.892 0.252 0.277 0.114 0.758 0.870 0.650
✓ ✓ ✓ 0.930 0.889 0.876 0.213 0.284 0.084 0.792 0.885 0.687
✓ ✓ ✓ 0.912 0.865 0.847 0.282 0.325 0.138 0.782 0.880 0.679

0.556 0.543 0.366 0.175 0.179 0.051 0.430 0.666 0.231
✓ ✓ ✓ ✓ 0.952 0.897 0.896 0.293 0.323 0.139 0.802 0.886 0.696

A.2. We show the experimental results in NMI and ARI for all the methods under different missing rates ranging from 0.1 to
0.7 with an interval of 0.2. The results are shown in Figure 5 and Figure 6, respectively.

Figure 5. NMI on four datasets with different missing rates. (a) HW, (b) Scene-15, (c) 100Leaves, (d) Landuse-21.

Figure 6. ARI on four datasets with different missing rates. (a) HW, (b) Scene-15, (c) 100Leaves, (d) Landuse-21.

A.3. We show more parameter analysis experiments on HW, Scene-15 and 100Leaves data sets. Parameter sensitivity
analysis of γ1 are shown in Figure 7. Parameter sensitivity analysis of γ2 are shown in Figure 8.
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(a) (b) (c)

Figure 7. Parameter sensitivity analysis of γ1 when δ = 0.5 on three data sets: (a) HW, (b) Scene-15, (c) 100Leaves.

(a) (b) (c)

Figure 8. Parameter sensitivity analysis of γ2 when δ = 0.5 on three data sets: (a) HW, (b) Scene-15, (c) 100Leaves.
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