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Abstract

Multi-interest recommendation is to predict the
next item by representing diversity of a user prefer-
ence with multiple interest embeddings. Although
existing methods have achieved convincing results
in recommendation tasks, they ignore the continu-
ously changing relations of no-adjacent items in a
sequence. In this paper, we focus on how to fully
capture the changing relations when capturing the
user multi-interest representations. Specifically, we
propose a novel dynamic graph cluster-based multi-
interest model named MDGR, which not only com-
prehensively explores the real changing item re-
lations between no-adjacent items by iteratively
constructing and continuously optimizing interest
sub-graph to update the multiple interest embed-
dings but also collaborates temporal information
and interest weight to model the interactive be-
haviors of users and items. Our model iteratively
constructs and continuously optimizes the interest
sub-graph by comprehensively adopting dynamic
graph cluster to explore the item relations in se-
quences. That is beneficial to dynamically model
user multiple interests and accelerate the model’s
convergence speed. Furthermore, we employ the
attention module to extract different influence of
various interest embeddings. Finally, we use the
refined item embedding and the final multi-interest
embeddings to retrieval the next item that a user
is most likely to interact with. To the best of our
knowledge, this is the first attempt to explore multi-
interest embeddings by iteratively constructing and
continuously optimizing the interest sub-graph. Ex-
tensive experiments on three popular benchmark
datasets demonstrate that MDGR outperforms sev-
eral state-of-the-art methods and accelerates the
convergence speed.

1 INTRODUCTION

With the development of the Internet, recommender sys-
tems have become crucial tools in addressing information
overload and enhancing competitiveness in various online
services such as news recommendation, e-commerce, ad-
vertising, and social media. It is evident that sequential
recommender systems have gained increasing attention [33],
[34], which predict the next item a user might be interested
in by analyzing their historical behaviors. The core chal-
lenge is to accurately capture user interests from complex
user behavioral sequences.

In recent years, researchers have proposed many sequential
recommendation models (GRU4Rec [10], CL4SRec [33]
DCRec [34] and MAERec[35] ) for modelling user interests
to improve performance. Although achieving great success,
all of them represent a user interest with a single embedding.
However, users may engage with different types of items in
interaction history. A single embedding is insufficient for
accurately capturing the diversity of user interests.

Currently, multi-interest solutions are designed to solve this
problem, which are classified into two categories: split by
cluster and split by Graph Neural Networks (GNNs). The
former divides the items interacted by a user into different
clusters according to the item embeddings [22], [19], [2] or
labels [41], and then obtains a single interest embedding for
each cluster. MIP[22], REMI [19] and ComiRec [2] cluster
the item enbeddings of a user behavior history and apply
attention mechanism or CapsNet to generante multiple in-
terest representations, while PinText [41] first clusters the
items by category labels and computes a representation em-
bedding per cluster. The latter constructs user-interaction
item graphs and uses GNN to aggregate neighbor informa-
tion to generate multiple interest representations [4], [24],
[17]. SURGE [4] and MI-GNN [30] build interest sub-graph
according to user historical behavior sequences and learn a
interest embedding for each sub-graph through GNNs, while
BIGCF[38] and MGNM [26] construct item graphs and ap-
ply GNNs to capture high-order relationships to obtain user
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Figure 1: Example of multi-interest

multiple interest embeddings. Although these methods ef-
fectively model a user’s multi-interests, the limitation of the
two approaches is obvious. Split by cluster methods heavily
depend on the initial distribution of item features and ignore
the real relations between items in interaction sequences.
Split by GNN models only capture adjacent relations be-
tween items in a sequence, but ignore the similarities among
non-adjacent items. In fact, the relation between items is
always changing as the interactions continue to happen.
Therefore, it is important to find the real relation between
non-adjacent items when modelling multiple interest models.
For example, Figure 1 shows a user’s interaction behavior
sequence. An edge will be added between mobile phone
and basketball shoes if constructing graph according to ad-
jacent relationship in sequence, which may introduce noise
to decrease recommendation performance when updating
and propagating information between non-correlation nodes.
However, no edge is constructed between iPad and mobile
phone with stronger correlation, which belong to electronic
products. Therefore, we should explore the correlation be-
tween these non-adjacent items like iPad and mobile phone,
basketball shoes and jerseys, which is critical to improve the
recommendation performance. The challenging problem is
to accurately capture the correlations between items to itera-
tively learn user interests with the interactions happening.

To address this issue, we propose a novel method to learn
Multi-interest Embedding with Dynamic Graph Cluster for
Sequential Recommendation (MDGR), which aims to not
only capture actual changing correlations between items by
iteratively constructing and continuously optimizing interest
sub-graph to update the multiple interest embeddings but
also collaborates temporal information and interest weight
to model the interactive behaviors of users and items. Spe-
cially, we construct the multiple interest sub-graph by com-
prehensively clustering the item embeddings obtained from
the processed item IDs, positions and timestamps, which re-
duces the impact of noisy edges between unrelated items and
significantly decreases the complexity of the graph construc-
tion. Then we update item representations by multi-head
clustering attention mechanism to extract the real correla-
tions between items in sub-graph, enabling the acquisition of
more comprehensive item representations by incorporating

related information. Thirdly, we iteratively reconstruct in-
terest sub-graph according to the updated item embeddings
and continuously learn user multiple interest representations
from sub-graph which makes the convergence speed faster.
Finally, we introduce weights for each interest embedding
and combine them with temporal information to predict the
next item a user may be interested in, which better takes
into account the impact of time intervals on the next item
recommendation. In summary, the main contributions of
this paper are as follows:

(1) To the best of our knowledge, this is the first attempt
to iteratively reconstruct and continuously optimize the in-
terest sub-graph by considering comprehensively the item
changing real relation in sequences to dynamically model
the user multiple interests.

(2) We propose MDGR, which not only comprehensively ex-
plores the real changing item relation between no-adjacent
items by iteratively constructing and continuously optimiz-
ing interest sub-graph to update the multiple interest em-
beddings but also collaborates temporal information and
interest weight to model the interactive behaviors of users
and items.

(3) We conduct empirical studies on three public datasets.
The experimental results show the significant performance
improvements compared with the state-of-the-art methods
and our method achieves faster convergence speed.

2 RELATED WORK

2.1 SEQUENTIAL RECOMMENDATION

Sequential recommendation is to predict the next item by
exploiting a user behavior sequences. Traditional sequential
recommendation models [21][9] adopt Markov chains to
model the first- and high-order dependencies in user his-
torical sequences. Although these methods perform better
for short-term behaviour patterns, it is unable to capture
global dependencies . With the great success of deep learn-
ing in recommendation, deep learning-based models (i.e.,
RNN [40][37][18] , CNN [12][3][39]) have been proposed
to model long-term dependencies in users’ whole histori-
cal sequences. However, they fail to explicitly distinguish
the different item impact on user preferences. The introduc-
tion of attention mechanism (i.e., SASRec [11], FSASA [8],
BSA-ST-Rec [6], ARD [1], CARCA [20]) and transformer
(i.e.,UGT [36], STRec [14], TRON [32]) has brought new
insights to address this issue, while most of them ignore
the item transition relationships in session sequences. Cur-
rently, Graph Neural Networks (GNNs) have been widely
used in sequential recommendation to effectively capture the
complex relations and structural information [16], [31], [25].
However, most of these methods ignore the relation between
non-adjacent items within user interaction sequences, which



can assist in improving recommendation performance.

2.2 MULTI-INTEREST RECOMMENDATION
MODELS

Single user embedding methods capture overall user inter-
ests and fail to capture the diverse preferences of users in
different contexts. Therefore, multi-interest recommenda-
tion methods have show their abilities to model the diversity
of a user preference to improve the performance of recom-
mendation systems, which are classified into two categories:
split by cluster and split by Graph Neural Networks (GNNs).
The former clusters a user interaction sequence according
to the item embeddings [41], [19] [29] [28] or labels [22],
[2] [13] [7] and then obtains a single interest embedding
for each cluster. These methods effectively model a user’s
multi-interests, while they often heavily depend on the ini-
tial distribution of item features, ignore the real relations
between items in interaction sequences, and the clustering
results are constant. The latter uses user history behavior
sequences to construct multiple interest graphs [4], [30] and
learns interest embedding for each sub-graph through GNNs
[38], [17], [24]. However, these methods only generate an
edge between adjacent items in the sequence to construct
user-interest graphs. Therefore, these graphs only reflect
adjacent relations between items in a sequence, but ignore
the similarities among non-adjacent items.

Although these aforementioned methods have achieved
promising performance, we argue that they fall short in com-
prehensively exploring the real relations between items in
a user interaction sequences when modelling user multiple
interests. MDGR overcomes this shortcoming by iteratively
constructs and continuously optimizes the interest sub-graph
by comprehensively adopting dynamic graph cluster to ex-
plore the item real relations in sequences.

3 METHODOLOGY

3.1 OVERALL ARCHITECTURE

We propose a Multi-interest embedding model with Dy-
namic Graph cluster for sequential Recommendation
(MDGR) as shown in Figure 2, which mainly consists of
three components: 1) Item embedding encoding and prepro-
cessing, which generates item embeddings from the item
IDs, positions and timestamps and preprocess them by multi-
head attention with Mask M. 2) Dynamic graph clustering,
which firstly constructs the multiple interest sub-graph by
comprehensively clustering the item embeddings and up-
dates item representations by multi-head clustering attention
mechanism to extract the real correlations between items
from sub-graph, and then iteratively reconstruct interest
sub-graph with the updated item embeddings to continu-
ously learn user multiple interest representations. 3) Inter-

est weight module and item prediction, which introduces
weights for each interest embedding and combines them
with temporal information into a unified representation to
predict the next item a user may be interested in.

3.2 PROBLEM DEFINITION

Let U = {u1, u2, ..., uN} and I = {i1, i2, ..., iM} rep-
resent the set of N users and M items, respectively. For
each user u ∈ U , his/her interaction sequence is denoted
as V u = (V u

1 , V u
2 , . . . , V u

|V u|), where V u
i ∈ I and the cor-

responding timestamps is Tu = (tu1 , t
u
2 , . . . , t

u
|V u|). The

purpose of our model is to predict the next item users may
interact with at time t by modeling the users’ interaction
sequences. In general, sequential recommendation limits the
maximum length of V u to l. When it is greater than l, we
take the most recent l items to predict.

3.3 ITEM EMBEDDING ENCODING AND
PREPROCESSING

In the context of recommendation systems, when only the
unique identifier of an item is known ids (one-hot encoded
as vi), we use the embedding layer to transform the unique
ids of the item into a low-dimensional feature vector and to
learn the dense features pi of the item,

pi =

d∑
(i=1)

W
(i)
embvi (1)

W
(i)
emb are the trainable matrices. Furthermore, the item in-

teraction order and timestamps within a sequence can also
reflect a user’s interests. It is reasonable to add positional
and time information to item embeddings,

ei = [pi||τ(ti)||ρ(i)] (2)

|| means concatenation operation. There are many choices of
encodings. Sin and cos functions allow the model to easily
learn by relative positions and their periodicity, which can
efficiently handle longer sequences. Therefore, we select
them to compute the the position (ρ) and time (τ )[27], which
are defined as follows

τ2i(tj)= sin

(
tj

10000
2i
dm

)
τ2i+1(tj)= cos

(
tj

10000
2i
dm

)
ρ2i(j)= sin

(
j

10000
2i
dm

)
ρ2i+1(j)= cos

(
j

10000
2i
dm

)
(3)

where dm = 1 refers to the dimensionality of the model.
The unit of timestamps is day. To effectively represent all
the items with which users interact, we adopt an attention
mechanism to better obtain the representations of items.
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Figure 2: Overview of MDGR framework, which includes item embedding encoding and preprocessing, dynamic graph
cluster and interest weight and prediction.

Si,j =
(Wqei + bq)

⊤ · (Wkej + bk)√
dm

αi,j = softmaxj(Si,j)

(4)

The attention score α is constrained by a mask matrix M.
For any i and j, the element mi,j in the mask matrix M is
equal to 1, which indicates that the model does not ignore
any relations between positions when calculating the atten-
tion score. Consequently, all positions can pay attention to
each other. In order to further enrich the multi-dimensional
information of items, we use multi-head attention mecha-
nism to obtain more comprehensive item representation by
processing the information of multiple subspaces in parallel.
Each attention head φh

i is represented as,

φh
i =

∑
j

ahi,jm
h
i,je

h
j (5)

In order to process the aggregated vector from all attention
heads, a dropout layer is applied to prevent overfitting. Sub-
sequently, the aggregated vectors are further processed by a
feed-forward neural network (FFN) as follow

φi = FFN(Dropout([φ1
i ; ....φ

H
i ] (6)

where i = 1, ...., l. φi ∈ Rd is the embedding vector, d
represents the dimension of the embedding vector, FFN
consists of two fully connected layers, which enhances the
expressiveness and flexibility of the item.

3.4 DYNAMIC GRAPH CLUSTERING

Clustering is an unsupervised learning method, which is
used to divide data points into groups according to similar-
ities between them and is widely applied in user represen-
tation learning. Previous methods analyze raw interaction
sequences with static item embeddings which lead to the
clustering result being constant, and ignore sequential infor-
mation in user behavior sequences. Our proposed dynamic
graph clustering method can extract the real correlations be-
tween adjacent and non-adjacent items by iteratively recon-
structing and continuously optimizing interest sub-graphs
to learn user multiple interest representations.

3.4.1 Constructing Sub-graph by Clustering.

In order to obtain and distinguish multiple interest represen-
tations of users from item sequences, we can convert loose
item sequences into interest sub-graph graph by clustering,
each of which represents an interest of the user.

Clustering. To avoid the propagation of unnecessary in-
formation from items belonging to different interests to
decrease the performance of recommendation, we use clus-
tering methods to process user interaction sequence so that
each item belongs to only one cluster groupi. The clus-
ter may employ a variety of algorithms, including Ward,
K-Means, Birch, and we set the cluster number to be k.



Interest Sub-Graph Construction. We attempt to construct
an undirected interest sub-graph G = {φ, E , A} after clus-
tering the user interaction items, where φ is the set of nodes
in the graph consisting of items interacted by one user, E is
the set of edges representing the correlations between items,
and A represents the adjacency matrix corresponding to the
graph. We learn the edge weights in the adjacency matrix A
through metric learning. Specifically, the edge weights are
calculated using the following weighted cosine similarity,

Li,j = cos(Wi ⊙ φi,Wj ⊙ φj) (7)

where ⊙ represents the Hadamard product, Wi and Wj

are trainable weight vectors used to adjust the dimensions
of the embedding vectors. To enhance expressiveness, we
compute δ different similarity measures by iteratively δ
times, where each matrix captures the relations between
items from a unique perspective. The final similarity score
is then obtained by averaging these matrices,

Li,j =
1

k

δ∑
k=1

Lk
i,j (8)

where Lk
i,j represents the similarity measurement between

items i , j on the k-th head.

Graph Sparsification. Typically, the elements of the ad-
jacency matrix are non-negative, while cosine values Li,j

range from -1 to 1. Direct normalization may fail to ensure
graph sparsity and can yield a fully connected adjacency
matrix. This increases computational complexity, introduces
noise and cannot focus on the most relevant aspects of the
graph. To emphasize important edges with the most vital
connection and keep the graph’s sparsity distribution, a rel-
ative ranking strategy is applied. The element Ai,j in the
metric matrix A is set to 1 if Li,j is greater than a certain
threshold, otherwise Ai,j=0,

Ai,j =

{
1, if Li,j ≥ TopValueγn2(L)

0, otherwise
(9)

where TopValueγn2(L) represents the γn2th largest value
in matrix L after sorting, where γ controls the overall spar-
sity of the graph, and n is the number of nodes. Compared
to the absolute threshold strategy and the relative ranking
strategy of the node neighborhood, it not only keeps sparse
distribution of graphs when hyperparameters are improperly
set, but also makes each node of the generated graph have
a different degree, allowing the downstream GCN to fully
utilize the dense or sparse graph structure information.

3.4.2 Information Propagating and Aggregating in
Sub-graph and Node Updating.

For each node in the sub-graph, we apply a cluster-aware
attention mechanism to extract the correlations between
items in the same cluster. Compared to general attention
mechanisms, it can not only capture the complex relations
between nodes in the graph, but also flexibly capture the

information of direct neighbor and k-hop neighbors of node
i. We obtain the cluster vector φic by computing the average
value of normalized adjacent order matrix between node i
and its k-hop neighbors. We calculate the attention score αi

using node φi and the cluster information φic ,

αi = Attention(Wcφi||φic ||Wcφi ⊙ φic) (10)

Wc is the transformation matrix, || is the concatenation
operator, and ⊙ is the Hadamard product. To understand
changes in user interest between different target items, it
is necessary to consider the relevance between the source
node φj and the target item embedding φt. We adjust the
weight to preserve relevant information,

βj = Attention(Wqφj ||φt||Wqφj ⊙ φt) (11)

Wq is the transformation matrix. Unlike traditional dot-
product attention, here the attention is calculated by multi-
layer perceptron (MLP), which uses multi-layer nonlinear
transformation to capture the complex relations between
nodes and is more flexible in comparison.

We follow the additive attention mechanism to simultane-
ously combine the the the the cluster and query scores. We
calculate the updated weight of source node j to target node
i and use softmax to normalize these weights. Thus, the
attention coefficient Ei,j is derived as follows

Ei,j = softmaxj(αi + βj) (12)

Therefore, we introduce multiple independent attention
heads to update the node representations. We compute the
updated representation φ′

i of node i through using the atten-
tion coefficient Ei,j .

φ′
i =

1

H

H∑
h=1

(Ei,j · φi)
h (13)

Then we obtain the updated node representations φ′
i (i =

1, ...., l ). We iteratively reconstruct the interest sub-graph
according to the latest item representations, propagate infor-
mation and update node embeddings for m times. Finally,
we perform the clustering to obtain the results of dynamic
graph clustering after the m-th iteration.This iterative pro-
cess allows the model to progressively refine the representa-
tion of user interests, ensuring that the evolving preferences
are accurately captured. Additionally, by updating the sub-
graph at each iteration, the model can better adapt to new
information, leading to more accurate recommendations.

3.4.3 Multi-Interest Representations of Users

We obtain l vectors φ1, φ2, . . . , φl, each of which aggre-
gates the item features ei, target item features, and cluster
information. To obtain rich multi-interest representations,
we select the last item φj

i in groupj as the query to obtain
φuj , which represents as the user interest in groupj . There-
fore, the embedding of user interest j is set as zj = φuj

,



and the user’s multi-interest representation Z ∈ Rk×d.

Z = [zT1 : zT2 . . . ; z
T
k ] (14)

3.5 INTEREST WEIGHT AND PREDICTION

In recommendation systems, under the assumption of mul-
tiple interests, the user favors each interest unequally and
each interest varies over time. By prioritizing these interests,
we assign a weight to each interest. It is possible to generate
recommendation candidates more effectively and improve
the overall performance of the recommendation system.

3.5.1 Interest Weight Model

In general, a user pays higher interest to a cluster if the user
interacts with many items belong to it and the interactive
time of items in the cluster is closer. Therefor, we should
assign higher weight for this interest cluster. In order to
utilize both the number of items and their interactive time
in that cluster, we calculate the weight for each interest
component zj using the cluster labels Clabels obtained from
the dynamic graph clustering and the item time embedding τ .
When the cluster tag of an item Ci matches the same groupj ,
we retain zj and its τj . For those items belonging to other
clusters, we mask them to 0 to maintain the consistency
of the input dimensions. The interactive timestamps of all
items in the same cluster are concatenated with zj , and we
use a two-layer feedforward network FFN to capture the
weight ωj ,

ωj = FFN([zj ; 1[C1∈groupj ] · τ1; ..; 1[Cl∈groupj ] · τl]) (15)

where FFN() consists of two fully connected layers that
use the sigmoid function as the activation function between
these two layers. The interests learned from in section 3.4
are all topics that the user is interested in. Therefore, all
their attention scores should be positive. We use the Soft-
plus function (a smooth version of ReLU) to normalize the
weights to the range [0,+∞].

3.5.2 Item Prediction and Optimization

Intuitively, we think a user may like an item if the item
matches one of the user’s interests (not all ). Essentially, this
means that the item’s embedding is close to one user inter-
est embedding, rather than needing to match all interests.
Therefore, a user whether like an item depends on the maxi-
mum similarity score between all user interest embeddings
and the item embedding. Furthermore, the weight of each
interest should also be taken into account when considering
the user’s preference to different interests. Thus, the user’s
preference score y for an item p is calculated as follows,

y = max {ωjLinear(zj · p)}kj=1 (16)

Z = [zT1 ; z
T
2 ; . . . ; z

T
k ] represents the user multi-interest ob-

tained from section 3.4, and ω = [wT
1 ;w

T
2 ; . . . ;w

T
k ] repre-

sents the multi-interest weights obtained from section 3.5.1,
P is the embedding vector of the unseen item. We use the
cross-entropy loss function to calculate the loss L by com-
bining the positive example labels I+ and negative example
labels I−, which adjusts the model parameters to obtain a
high probability for the true target items.

L = −
∑

u∈U

(∑
pi∈Iu

+
log(yu

i )+
∑

pi∈Iu−
log(1−yu

i )

)
∑

u∈U(|Iu
+|+|Iu

−|)
(17)

After obtaining the loss for each batch of training samples,
the model is trained using the back propagation through
time (BPTT) [5] algorithm.

Table 1: Statistics of the three datasets

Datasets Amazon MovieLens Taobao
#Items 425,582 15,243 823,971
#Users 67,165 137,212 363,171
#Interactions 6,716,500 13,721,200 36,317,100
#Training 57.165 127,212 343,171
#Test 5,000 5,000 10,000
#Validation 5,000 5,000 10,000

4 EXPERIMENTS

This section first introduces three real-world datasets which
are widely used to conduct experiments in recommender
systems. Next, it presents the evaluation metrics for measur-
ing the prediction accuracy and compares the performance
of the proposed method with other methods. Finally, a thor-
ough analysis of the contributions of several components,
sensitivities to change in model parameters and convergence
speed for MDGR.

4.1 EXPERIMENTAL SETTINGS

4.1.1 Datasets

We conduct experiments on three challenging public
datasets1. We adopt a 10-core setting and filter out rare
items that appear less than 10 times in the entire dataset, as
well as inactive users who interact with fewer than 100 items.
We split each user’s interaction history into non-overlapping
sequences of 100 items, and use the first 50 items to learn the
user’s embeddings and the last 50 items as positive samples
for ranking. For each sequence, an additional 50 negative
samples are randomly selected from the items the user has
not interacted with. The statistics of the three datasets are
shown in Table 1.

1The code is available at: https://anonymous.4open.
science/r/MDGR/

https://anonymous.4open.science/r/MDGR/
https://anonymous.4open.science/r/MDGR/


Table 2: Performance comparisons between MDGR and all baselines in terms of AUC and Recall@50 . The best result in
each column is boldfaced, and the underline indicates the second best results. The ‘Improve.’ indicates the improvements
that MDGR achieves over the best baselines.

Category Methods Params. Amazon Taobao MovieLens
AUC R@50 AUC R@50 AUC R@50

Sequential
Recommendation

GRU4Rec 66338 68.62 63.44 81.55 74.48 96.13 90.31
BERT4Rec 50242 68.11 63.15 81.47 74.52 95.95 90.11
TiSASRec 67586 72.11 66.67 81.46 74.43 96.02 90.16
DCRec 76952 76.08 63.23 83.21 79.15 93.52 91.57
MAERec 78633 78.26 71.52 84.26 77.49 92.17 90.45

Multi-interest
(GCN)

Surge 71339 79.88 79.06 86.64 84.77 89.06 89.71
BIGCF 50087 69.52 65.65 73.84 71.75 89.51 82.88

Multi-interest
(Cluster)

PinText2 69634 55.83 54.13 71.58 66.88 88.27 81.68
ComiRec 67586 71.72 67.36 70.92 65.61 95.25 90.65
MIP 50824 80.47 78.85 88.49 88.43 92.32 92.97

Ours MDGR 49331 92.03 85.94 90.68 93.28 96.16 95.59
Improve / / 14.36% 8.70% 2.47% 5.48% 0.3% 2.82%

4.1.2 Baselines

To evaluate the performance of MDGR, we compared it
with several well-known baselines, which are classified into
sequential models and multi-interest models. The sequen-
tial models are composed of GRU4Rec [10], BERT4Rec
[23] TiSASRec [15] DCRec[34] and MAERec[35], which
present the user’s dynamic interest as an overall representa-
tions according to exploiting their historical behaviors. The
multi-interest models consist of PinText2 [41], ComiRec [2],
Surge [4], MIP [22] and BIGCF [38], which represent the
user’s interest as multiple embeddings by using graph convo-
lutional network (Surge, BIGCF) and clustering (PinText2,
ComiRec, MIP).

4.1.3 Metrics and Parameter Settings

Metrics. The models are evaluated in the retrieval scenario,
where the recommendation system needs to recommend a
batch of items to a user. We use two commonly used eval-
uation metrics Recall and AUC in our experiments. Recall
describes what proportion of user-item rating records are
included in the final recommendation list. AUC signifies the
probability that the positive item sample’s score is higher
than the negative item sample’s score, which reflects the
model’s ability to distinguish positive and negative samples.

Parameter Settings. The model is implemented using the
Pytorch framework. We initialize the model parameters by
using the default Kaiming initializer and optimize models
with the Adam optimizer. The embedding size is set 32. The
learning rate is set to 0.001 and the batch size is fixed at
128. We set the number of interests to 8 and the number of
cycles of Dynamic Graph Clustering to 9 in Amazon and 5
in Taobao and MovieLens, which leads to the best results
in every training-testing process. We tune hyper-parameters

using the validation set, and terminate training if validation
performance doesn’t improve for 10 epochs.

4.2 EXPERIMENTAL RESULTS

To demonstrate the validity of MDGR, we compare it with
ten representative baselines on three datasets in term of
two metrics. Table 2 shows the performance of MDGR
and all baselines. MDGR achieves the best performance
across all metrics on three datasets, which strongly supports
the effectiveness of it. Specifically, the MDGR achieves
average improvements over the strongest baselines w.r.t.
AUC by 14.36%, 2.47%, 0.3%, Recall by 8.70%, 5.48%,
2.82% on Amazon, Taobao and MovieLens, respectively.
By propagating information between non-adjacent nodes in
the same cluster and eliminating the propagation between
irrelevant nodes, it is able to capture the useful correlations
and weaken the noise during the process of propagating
information, while most other baselines are not capable of
fully and accurately exploring them. MDGR performance
is significantly improved on Amazon. This is because Ama-
zon contains many different categories of items and more
user behavior choices. Our model can better deal with the
relations between these diverse behaviors.

Notably, Surge and MIP are inferior to MDGR but supe-
rior to other baselines in most cases. This may be because
MDGR considers the relations of non-adjacent homoge-
neous vectors and propagates information on the constructed
interest sub-graph, while Surge and MIP ignore it. Surge and
MIP achieve better performance than other baselines, espe-
cially on Amazon and Taobao. The possible reason is that it
not only has a stronger ability to capture the user’s interests
but also recommends items by matching with each interest
embedding. The results of multi-interest models (PinText2,
ComiRec, and BIGCF) are compare to sequential models



(GRU4Rec, BERT4Rec, TiSASRec, DCRec and MAERec)
on Amazon datasets, while being inferior them on Taobao
and MovieLens datasets. We attribute it to the fact that the
multi-interest representations of users can better adapt to
the diversity of Amazon datasets.

4.3 ABLATION STUDY

To study the contributions of different components, we fur-
ther compare our full model with different variants on three
datasets ( that is to say, item embedding module, dynamic
graph clustering module and interest weight module are in-
cluded or excluded in MDGR ). Specifically, MDGR-DGC
represents using the general clustering method (ward) to
replace dynamic graph clustering. MDGR-W represents
removing the interest weight module and the weight of
each interest is equal. MDGR-PT, MDGR-P and MDGR-
T represent removing position and timestamps, position,
timestamps to encode the item embeddings, respectively.

Table3 shows the experimental results. It shows that MDGR
outperforms all variants on three datasets in term of all
metrics, which validates the superiority of introducing item
embedding module, dynamic graph clustering module and
interest weight module. We observe that MDGR achieves
better performance than MDGR-T. We attribute the improve-
ment to comprehensively explore temporal information by
encoding the item timestamps. Meanwhile, the performance
of MDGR-T is inferior to that of MDGR-P, which further
demonstrates ignoring item timestamps will weaken the
model performance and the temporal influence is larger than
that of positions to improve the recommendation perfor-
mance. Furthermore, MDGR-W, MDGR-DGC and MDGR-
PT perform worse than MDGR, so we can conclude that all
components are beneficial to capture the user muti-interests
for improving recommendation performance. It is worth
noting that the results of MDGR-W and MDGR-DGC sig-
nificantly are worse than those of MDGR. That proves we
can get better multi-interest embeddings by using dynamic
graph cluster and interest weights. In summary, MDGR con-
sistently achieves the best performance in most cases. This
illustrates that comprehensively modeling dynamic graph
cluster, interest weight and item encoding are important for
better recommendation.

4.4 PARAMETER SENSITIVITY

To explore the effect of hyperparameter settings on MDGR,
we study how two hyperparameters (cluster number and the
number of iterations ) to affect the performance of MDGR.

Impact of Cluster Number. Choosing the appropriate num-
ber of clusters is an important step for multi-interest user
representation. If the number of cluster is too large, the com-
putational cost will be too high and the average information
learned by each cluster will be reduced. But it is difficult

to distinguish different interests if the number of clusters
is too small. We search for the best-performing result in
the range of {1, 5, 8,10}. Figure 3 depicts the experimental
performance on AUC. According to Figure 3, it can be seen
that as the number of clusters increases, the effects on the
three datasets first increase and then decrease, and the best
effect is achieved at 8 on three datasets.

Impact of Number of Iterations. We vary the number
of iterations m in the range of {1, 5, 10,...,15} on three
datasets. Figure 4 shows the results on AUC. We find that
the performance of MDGR increases first with increase of
m. This proves the effectiveness of iteratively constructing
and continuously optimizing interest sub-graph to mine the
real item relation. However, when further stacking dynamic
graph cluster module, we find that the performance begins
to decrease. That indicates too many layers may introduce
noise or cause over-smoothing. MDGR achieves optimal
results when m is 9, 5, and 5 on Amazon, Taobao and Movie-
Lens, respectively.

5 CONVERGENCE SPEED
COMPARISON

Figure 5 depicts that the overall AUC of MDGR performs
the best on Amazon at the 32th epoch. However, MIP and
Surge peak at the 135th and 110th epoch, respectively. The
ComiRec requires 230 epochs to reach its peak performance.
MDGR requires only a quarter of the epochs needed by MIP
and Surge to reach peak performance, and just one sev-
enths of the epochs required by ComiRec. MDGR exhibits a
faster convergence rate. The reason is that MDGR employs
a dynamic graph clustering module, which updates item pre-
sentations by continuously constructing and optimizing the
interest sub-graph to continuously refine user interest em-
beddings. This iterative optimization allows MDGR to con-
verge faster than those of models that rely on static or less
dynamic representations. Furthermore, the adaptive nature
of the dynamic graph enables MDGR to more effectively
capture evolving user preferences. As a result, MDGR can
better account for the changing patterns of user behavior and
interests, leading to improved recommendation accuracy."

6 MODEL COMPLEXITY ANALYSIS

In this section, we analyze the time complexity of our
MDGR model. In particular, in the encoding process of
item embedding, the computational cost for item embed-
ding, time, and position encoding are all O(Md), where
M is the number of items and d is the embedding di-
mension. During the dynamic graph clustering process,
MDGR costs O(M ∗ K) for clustering computation, and
O(n(MK +HMK +M2) for constructing and optimiz-
ing interest subgraph, where K is the number of clusters
and M2 is the complexity of calculating relationships in the



Table 3: Performance of compared with different variants in terms of AUC and Recall (“-” indicates MDGR does not
consider the setting of this part).

Classification Variants Ablation
Amazon Taobao MovieLens

AUC R@50 AUC R@50 AUC R@50
Weight MDGR-W -Weight 84.16 77.58 81.53 85.31 88.49 87.61
Cluster MDGR-DGC -DGC 80.47 78.85 88.49 88.43 92.32 92.97

Item
Embedding

MDGR-PT -PT 87.35 84.75 86.64 87.22 92.61 92.21
MDGR-P -P 89.47 87.94 88.75 88.56 93.96 93.19
MDGR-T -T 86.19 84.28 84.54 83.71 90.01 89.31

Full MDGR ALL 92.03 85.94 90.68 93.28 96.16 95.59

Figure 3: The effect of cluster number.

Figure 4: The effect of number of iterations.

Figure 5: AUC convergence rate during training in Amazon.

graph during sparsification. Additionally, the complexity for
interest weight calculation and prediction are both O(kd).
Although the time complexity of MDGR is a bit higher than
other baselines such as MIP and Surge, it achieves faster
convergence speed compared to them. Therefore, MDGR
could achieve comparable complexity to the most recently
developed baselines.

7 CONCLUSION

In this paper, we propose a novel dynamic graph cluster
based multi-interest model for sequential recommendation,
which iteratively constructs and continuously optimizes in-
terest sub-graph to update the multiple interest embedding
for better recommendation. It can iteratively construct the
interest sub-graph to comprehensively update the multiple
interest embedding, and explore the changing real item re-
lation between no-adjacent items in a sequence by continu-
ously optimizing interest sub-graph. Extensive experiments
on three real-world datasets verify the effectiveness and
efficiency of MDGR. As for future work, we plan to ex-
ploit more efficient graph propagation methods for better
user modeling. Another plan is to learn interest embeddings
by introducing fuzzy graph cluster to assign one item to
different clusters.
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