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ABSTRACT

Generative Flow Networks (GFlowNets) are recently proposed models for learn-
ing stochastic policies that generate compositional objects by sequences of actions
with the probability proportional to a given reward function. The central problem
of GFlowNets is to improve their exploration and generalization. In this work, we
propose a novel path regularization method based on optimal transport theory that
places prior constraints on the underlying structure of the GFlowNet. The prior is
designed to help the GFlowNet better discover the latent structure of the target dis-
tribution or enhance its ability to explore the environment in the context of active
learning. The path regularization controls the flow in the GFlowNet to generate
more diverse and novel candidates via maximizing the optimal transport distances
between two forward policies or to improve the generalization via minimizing the
optimal transport distances. In addition, we derive an efficient implementation
of the regularization by finding its closed-form solutions in specific cases and a
meaningful upper bound that can be used as an approximation to minimize the
regularization term. We empirically demonstrate the advantages of our path reg-
ularization on a wide range of tasks, including synthetic hypergrid environment
modeling, discrete probabilistic modeling, and biological sequence design.

1 INTRODUCTION

Recently proposed by Bengio et al. (2021a), Generative Flow Networks (GFlowNets) are genera-
tive models for compositional objects, which learn a stochastic policy that sequentially modifies a
temporarily constructed object through a sequence of actions to make the generating likelihood pro-
portional to a given reward function. Specifically, GFlowNets aim to solve the problem of generating
a diverse set of good candidates. In biological sequence design, diversity is a crucial consideration
because of improving the chance of discovering candidates that can satisfy many evaluation criteria
later in downstream phases (Jain et al. (2022)). Especially in the multi-round active learning setting,
where the generator was iteratively improved by receiving feedback from an oracle on their pro-
posed candidates, the effect of diverse generation becomes apparent because more diversity means
more exploration and knowledge gained. Besides, the generalization ability of GFlowNets (Zhang
et al. (2022); Malkin et al. (2022)) over structured data makes them a good framework for discrete
probabilistic modeling.

The central problems of GFlowNets are improving exploration and generalization. In this work, we
propose to train the GFlowNet with an additional path regularization via optimal transport (Villani,
2003)), which acts as a prior constraint on its underlying structure. The prior is designed to help
the GFlowNet better discover the latent structure of the target distribution or enhance its ability to
explore the environment in the context of active learning. Precisely, the path regularization via OT
can help the GFlowNet generate more diverse and novel candidates via maximizing OT distances
between two forward policies or improving generalization via minimizing the OT distances.

For generalization: To improve GFlowNet’s generalization, we propose the following prior con-
straints: (i) The forward policies of two neighbor states are expected to be similar in the way that they
both have the focused tendency of choosing the next action, which implicitly forces the GFlowNet
to find states with high rewards rather than exploring, especially in sparse environments. ; (ii) Tra-
jectories related to positive objects (both have high rewards) must share their paths. As a result, the
similarity of states along trajectories with high flow is higher than in other places. From a proba-
bilistic perspective, we propose to measure the similarity of states s and s′ in the GFlowNet by the
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transition probability from s to s′ ; (iii) When the GFlowNet learns something, the sparse flow is
expected to generalize better. Thus, although many solutions exist for learning a GFlowNet, our
proposal priors promote refining the GFlowNet’s flow, i.e., enhance flow on high flow trajectories
and vice versa.

For diversity and exploration: To encourage the GFlowNet’s policy to generate more diverse
candidates, such as in the multi-round active learning settings, we propose to put a prior constraint on
the forward policies of two neighbor states. Specifically, this prior constraint intentionally promotes
the ”dissimilarity” between the forward policies of two neighbor states. In other words, it forces
the children states of two considered neighbor states far from each other in terms of probabilistic
transition, which will help the GFlowNet generate more diverse and novel candidates.

Why OT is a good solution?Indeed, we need a measure of ”distance” between pairs of probability
distributions. The optimal transport (OT) theory (Villani (2003)) studies how probabilistic mass
can be optimally transported from the supports of one probabilistic distribution to the supports of
another distribution given a cost function. The minimum transportation cost, called distance, can be
used as a metric that quantifies the distance between two probability distributions. In the context of
GFlowNets, we want to affect nearby states, which can be done by regularizing on the OT distance
between the forward policies PF (·|s) and PF (·|s′) of two neighbor states s and s′. To compute the
OT distance, we solve an OT problem between two discrete probability measures, whose support
points are the child states of s and s′ correspondingly, given the transportation cost c(ui, vj) from
each child ui of s to each child vj of s′. While the weakness of KL divergence is that it requires two
interested distributions to share the same set of supports, OT can deal with this problem efficiently.
Another reason is that the cost used in our OT distance can capture the given DAG’s structure and
the GFlowNet’s flow, while directly using KL divergence cannot.

Contributions. In this work, we develop a novel path regularization based on OT theory for either
helping the GFlowNet better discover the latent structure of the target distribution or enhancing
its ability to explore the environment in the context of active learning. Our contributions can be
summarized as follows:

1. We propose to train the GFlowNet with an additional path regularization via OT, which acts
as a prior on the underlying structure of the GFlowNets for either improving the general-
ization capability or enhancing the exploration ability of the GFlowNet.

2. We define a new directed distance between two arbitrary states in the GFlowNet, which can
be naturally chosen as the transportation cost for computing the OT distance and link the
proposed regularization to entropy terms.

3. We also derive an efficient implementation of the proposed regularization by finding its
closed-form solutions in specific cases and a meaningful upper bound that can be used as
an approximation when we want to minimize the regularization term.

Organization. The paper is organized as follows. In Section 2, we provide the background of
GFlowNets and OT. In Section 3, we propose a new directed distance between two arbitrary states
in the GFlowNet and then derive the formulation of path regularization via OT. We also explain why
it is the natural and optimal choice for constructing the transportation cost between states. Then,
we derive the upper bound and efficient implementation of the proposed path regularization. We
provide extensive experiment results of our path regularization via OT in Section 4 and conclude the
paper with a few discussions in Section 5. Theoretical proofs, as well as experimental settings and
additional results, are provided in the Appendix.

2 BACKGROUND

2.1 GFLOWNETS

Given a compositional space X , where each object x ∈ X can be constructed by taking a sequence
of discrete actions from the action space A. Specifically, the construct of each object begins from the
source state s0 and ends in the final state sf . Incrementally, the generation process modifies a tem-
porarily constructed object, which is called a state s ∈ S . In addition, a specific action determines
that the object is completely constructed and represents a terminal state, such that s = x ∈ X . These
states and actions correspond to the vertices and edges of a directed acyclic graph G = (S,A). The
construction of an object x ∈ X defines a complete trajectory, which is a sequence of transitions
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τ = (s0 → s1 → . . . → sn = x → sf ). T is defined as the set of all complete trajectories. Follow-
ing Malkin et al. (2022), we may assume that each terminal state s ∈ X has only one outgoing edge,
which is s → sf .

Flows Following Bengio et al. (2021b), a trajectory flow is a nonnegative function F : T 7→ R+,
which represents the probability mass of each complete trajectory τ . Consequently, the flow through
each state can be defined as F (s) =

∑
τ∈T ,s∈τ F (τ), as well as the flow through each edge

F (s → s′) =
∑

τ∈T ,s→s′∈τ F (τ). We can associate a probability measure P with the trajectory
flow F . In which, there are two important conditional probabilities, the forward transition proba-
bilities (forward policy) PF (s

′|s) := F (s → s′)/F (s) is related to adding an element to build the
objects, and the backward transition probabilities (backward policy) PB(s|s′) := F (s → s′)/F (s′)
is related to removing an element.

Learning Objective Theoretically, if the training objective such as flow matching objective (Bengio
et al., 2021a), detail balance objective (Bengio et al., 2021b), or trajectory balance objective (Malkin
et al., 2022) is achieved on all states and possible trajectories respectively, then a GFlowNet can be
trained to completion, i.e., perfectly generating objects proportional to their rewards. In this paper,
we use trajectory balance objective because it brings more efficient credit assignment and faster
convergence (Malkin et al. (2022)). We provide more background of GFlowNets in Appendix B.

2.2 OPTIMAL TRANSPORT DISTANCE

Transportation plans and joint probabilities For two discrete probability measures α and β over
some space X , the admissible couplings set, which can be interpreted as the set of transportation
plans or joint probability distributions, is defined as:

Π(α,β) =
{
π ∈ Rk×l

+ : π1l = α, π⊤
1k = β

}
. (1)

Optimal transportation The Kantorovich optimal transport (Peyré & Cuturi (2019)) between α
and β is defined as follows:

OTC (α,β) := min
π∈Π(α,β)

⟨C, π⟩ (2)

where C is the cost matrix and Cij describes the cost of transport mass from the support ith of
α toward the support jth of β. Whenever the matrix C is itself a metric matrix, the optimum of
this problem, OTC (α,β), can be proved to be also a distance. Assuming that k = l = d, the
worst-case complexity of computing that optimum with any of the algorithms known so far scales
in O

(
d3 log d

)
and turns out to be super-cubic in practice (Pele & Werman (2009), §2.1).

3 PATH REGULARIZATION VIA OPTIMAL TRANSPORT

3.1 OPTIMAL TRANSPORT FORMULATION OF THE PATH REGULARIZATION

Turn transition probability into directed distance We define a new directed distance between
two arbitrary states in the GFlowNet, which is used as transportation cost to compute OT distance.
Specifically, the directed distance from a state s to another state s′ is designed to be inversely propor-
tional to the probability of going from s to s′. And, because we consider two arbitrary states s and
s′, it is trivial that there does not always exist a sequence of forward transitions τ from s to s′ such
as τ = (s = s0 → s1 → ... → sn = s′) where st → st+1 ∈ A. This will result in many entries
of the cost matrix may have infinite values, which can also make the OT cost infinite. Therefore, we
consider a generalized notion of τ as a sequence of transitions τ = (s = s0 → s1 → ... → sn = s′)
where st → st+1 can be a forward or backward transition, i.e, τ can be a back-and-forth trajectory
(Zhang et al. (2022)). In fact, this sequence of transitions always exists because when we do not
regard the direction of each edge, the given DAG can be considered an undirected connected graph.

Definition 3.1 (Directed distance in the GFlowNet) Let τ = (s = s0 → s1 → ... → sn = s′) be
the sequence of transitions from s to s′ where st → st+1 can be a forward or backward transition.
The length of the trajectory τ is defined as follows:

Len(τ) := − log(P (τ | s)), (3)
and the directed distance from s to s′ is also defined as follows:

d(s, s′) := min
τ=(s→...→s′)

− log(P (τ | s)). (4)

where τ = (s = s0 → s1 → ... → sn = s′) is a sequence of transitions from s to s′ where
st → st+1 can be a forward or backward transition and d(s, s′) = 0 when s ≡ s′. Intuitively,
d(s, s′) is the shortest path length from s to s′.
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Although, d(s, s′) does not satisfy conditions of being a ”distance”, it is still a pseudoquasimetric,
which motivates us to use the term ”directed distance” as an analogy with ”directed distance in
digraphs” Chartrand & Tian (1997). Indeed, the proposed directed distance is the natural choice for
distance in the GFlowNet. Firstly, let’s consider two states s and s′. They can be considered the
equivalent of one another, and have zero distance, if P (s′|s), the probability of transitioning from
state s to state s′, is equal to 1. In contrast, if the transition probability is equal to 0, we cannot reach
s′ from s by following the GFlowNet policy, then the distance must be infinite. Another reason is
that distances are additive, whereas probabilities are multiplicative. Consequently, if we want the
length of a trajectory to be related to its likelihood, the transition probabilities between states should
be changed to their distance by a ”negative” logarithmic scale.

Why do we use the proposed directed distance as transportation cost to compute OT distance?
Several reasons exist for using the proposed directed distance as transportation cost to compute the
OT distance. First, as discussed above, it is the natural choice for turning a transition probability into
a distance. Second, with the transportation cost defined as our directed distance, we can decompose
the OT distance into entropy and other terms. Consequently, this property not only gives us an
upper bound for the OT distance but also imposes sparsity prior on the GFlowNet’s structure when
minimizing the OT distance or improves exploration when maximizing the OT distance. Besides,
the construction of the transportation cost makes minimizing OT distance correspond to maximizing
the transition probability between children of neighbor states. Moreover, it also allows us to derive
closed-form solutions for the OT distance under some conditions.

Optimal transport formulation of the path regularization Once we have defined the directed
distance between two states in the GFlowNet, we can define the OT distance between two forward
policies of neighbor states. Consider two neighbor states s and s′ in trajectory τ , such that s →
s′ ∈ A. The forward policy PF (·|s) is a discrete probability measure supported by Child(s) =
{u1, ..., uk} and PF (·|s′) is a discrete probability measure supported by Child(s′) = {v1, ..., vl}.

The OT distance between PF (·|s) and PF (·|s′) can be defined as:
OTC (PF (·|s), PF (·|s′)) := min

π∈
∏

(PF (·|s),PF (·|s′))
⟨C, π⟩, (5)

where the set of admissible couplings is defined as:
Π(PF (·|s), PF (·|s′)) :=

{
π ∈ Rk×l

+ : π1l = PF (·|s), π⊤
1k = PF (·|s′)

}
, (6)

and C is a cost matrix whose each entry is the length of shortest path from ui to vj :
Cij = c(ui, vj) := d(ui, vj) = min

τ=(ui→...→vj)
− log(P (τ | ui)), (7)

However, the underlying DAG is unavailable during training progress because of the enormous
number of states and edges connecting them. Then Cij in Eqn. 7 can only be approximately
computed by using trajectories in the sub-graph containing s, s′, their child states, and the edges
that connecting them. Specifically, rather than going directly from ui to vj if this edge exists, we
can always move from ui to vj along a back-and-forth trajectory, i.e., ui → s → s′ → vj , with
the probability PB(s|ui)PF (s

′|s)PF (vj |s′). Therefore, each entry of the cost matrix C can be
calculated in practice by approximating as follows (note that we abuse the notation of ”=” in Eqn.
8 instead of ”≈” for easier viewing):

Cij =

{
0, if ui ≡ vj

min (− log(PB(s | ui)PF (s
′ | s)PF (vj | s′)),− log(P (vj | ui))) , else if ui → vj ∈ A

− log(PB(s | ui)PF (s
′ | s)PF (vj | s′)), otherwise.

(8)
Definition 3.2 (Optimal Transport Formulation of the Path Regularization) For any complete
trajectory τ = (s0 → s1 → ... → sn), we define the path regularization via OT as follows:

LOT(τ) :=

n−1∑
t=0

OTCt;θ
(PF (·|st; θ), PF (·|st+1; θ)). (9)

where Ct;θ is the cost matrix where each entry is defined in 8.

If πθ is the training policy – usually that given by PF (·|·; θ) or a modified version of it – then the
trajectory loss is updated along trajectories sampled from πθ, i.e., with stochastic gradient:

Eτ∼πθ
∇θ(LTB(τ) + λLOT(τ)). (10)

where λ ∈ R, λ > 0 indicates that we want to minimize the path regularization and vice versa.
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Figure 1: OT distance between PF (·|s) and PF (·|s′). The for-
ward policy PF (·|s) is a discrete probability measure supported by
Child(s) = {u1, u2 := s′, u3}. Similarly, PF (·|s′) is a discrete
probability measure supported by Child(s′) = {v1 ≡ u1, v2, v3}.
The cost matrix is a 3×3 matrix. For example, c11 = d(u1, v1) = 0
(because u1 ≡ v1). There exist many possible paths to move
from u3 to v3. First, going directly from u3 to v3 with a dis-
tance len(u3 → v3) = − log(PF (v3|u3)). Second, we can move
from u3 to v3 along a back-and-forth trajectory, i.e., u3 → s →
s′ → v3, with a distance − log(PB(s|u3)) − log(PF (s

′|s)PF ) −
log(P (v3|s′))). Because the transportation cost from u3 to v3 is
the length of the shortest path from u3 to v3, c33 = d(u3, v3) ≈
min(− log(PB(s|u3)PF (s

′|s)PF (v3|s′)),− log(PF (v3|u3))).

The effect of minimizing the path regularization: Following Eqn. 5, minimizing
OTC (PF (·|s), PF (·|s′)) makes PF (v|s′) closed to PF (u|s), where c(u, v) small. This is because
all probability mass from u can be transferred to v with a smaller cost than other places, reducing
the transportation costs’ expectation. Also, PF (v|s′) and PF (u|s) will increase where c(u, v) is
small, inducing the similarity of the forward policies and making the flow focus on specific direc-
tions. Note that the cost matrix C is not a constant and depends on the forward policies. There-
fore, minimizing the OT distance affects not only the forward policies but also the transportation
cost. However, the effect on the forward policies is also consistent with the effect on the trans-
portation costs. As in Eqn. 14 of Theorem 3.2, increasing PF (u|s) leads to increase PB(s|u).
Besides, − log(PB(s|u)PF (s

′|s)PF (v|s′)) is an upper bound of c(u, v), so increasing PF (u|s) and
PF (v|s′) also makes c(u, v) smaller. Also, the OT distance is equal to zero when all probability
mass PF (v|s′) = PF (u|s) concentrate on u, v where c(u, v) = 0. For examples, PF (st|st−1) = 1
and PF (st+1|st) = 1 is a special case. When the GFlowNet visits a high reward object, the prior by
design helps the GFlowNet quickly adapt its flow to this high reward terminal state. More discussion
about relation with entropy is provided in Theorem 3.1.

The effect of maximizing the path regularization: In contrast, maximizing makes the forward
policies different, so more diverse actions are chosen, leading to more diverse and novel candidates.
As in the Theorem 3.1, the upper bound of the OT distance contains the entropy of forward policy
H(PF (·|s)). Moreover, when the training policy is given by the forward policy PF , the upper bound
also contains the entropy of the path H(P (τ)). Thus, maximizing the OT distance is expected
to increase the upper bound, which increases the entropy as well. This means more diversity and
exploration. Recall that in terms of probabilistic interpretation, we can rewrite the OT distance as the
minimum expectation of the transportation costs minγ∼Π(α,β) Eu,v∼γc(u, v). Thus, maximizing the
OT distance means maximizing the cost c(u, v). Because c(u, v) is an inverse function of transition
probability from u to v, maximizing the OT distance means minimizing P (u → v). Consequently,
the flow is distributed to more states, so more diverse actions are chosen.

3.2 UPPER BOUND AND EFFICIENT IMPLEMENTATION OF THE PATH REGULARIZATION

The cost of computing the OT distance OT (PF (·|s), PF (·|s′)) scales at least in O(d3log(d)), where
d is the number of support points. By using the Sinkhorn algorithm (Cuturi (2013)), which solves
OT with entropic regularization, we can reduce the computational complexity to O(d2) (Altschuler
et al., 2017; Lin et al., 2019; 2022). However, our path regularization’s definition requires computing
the OT distances for all edges in the trajectory τ , which imposes a heavy burden on the computing
resources and capacity. To overcome this problem, in Theorem 3.1, we propose the upper bound
of the OT distance OT (PF (·|s), PF (·|s′)). The upper bound provides an efficient implementation
and can explain the path regularization’s behaviors. The reason is that we can decompose the OT
distance into entropy and other terms. Moreover, when the GFlowNet’s settings satisfy certain
conditions (Section 3.3), we can solve the OT problem with a closed-form solution. Our upper
bound and closed-form formulation both have the computational complexity of O(LV ) where L is
the maximal length of constructed sequences and V is the action space size.
Theorem 3.1 (Upper bound of optimal transport distance) For any trajectory τ = (s0 → s1 →
... → sn). The path regularization via OT LOT(τ) can be upper bound by:

LUB(τ) :=

n−1∑
t=0

 ∑
u∈Child(st)

PF (u|st) log(PB(st|u))− log(PF (st+1|st)) +H(PF (·|st+1))

 .

(11)

5



Under review as a conference paper at ICLR 2023

The proof of Theorem 3.1 is provided in Appendix D.1. The entropy terms in the upper bound
LUB(τ) encourage the sparsity of the GFlowNet’s flow. In addition, when we minimizes the upper
bound LUB(τ), the terms

∑
u∈Child(st) PF (u|st) log(PB(st|u)) can make PB(st|u) become higher

when PF (u|st) is high. As a result, increasing PB(st|u) makes other flows leading to u pruned.
While the meanings of the terms

∑
u∈Child(st) PF (u|st) log(PB(st|u)) and entropy terms are clear,

we now would like to explain the meaning of regularization terms − log(PF (st+1|st)). Direct
calculation indicates that:

n−1∑
t=0

− log(PF (st+1|st)) = − log

(
n−1∏
t=0

PF (st+1|st)

)
= − log(P (τ)), (12)

Moreover, when the training policy πθ is given by the forward policies PF (.|.; θ), we have:
Eτ∼πθ

(− log(P (τ))) = H(P (τ)). (13)
By taking this approach, the upper bound regularizes not only on the forward policy via
H(PF (·|st+1)) but also on the path via H(P (τ)). Besides, we can think − log(P (τ)) =
− log(P (τ |s0)P (s0)) = − log(P (τ |s0)) as the length of τ . Then minimizing path regularization
can result in shorter paths and smaller numbers of paths with high flows.

3.3 CLOSED-FORM FORMULATION FOR THE PATH REGULARIZATION

In some specific circumstances, i.e., synthetic hypergrid environment (Bengio et al. (2021a)), dis-
crete probabilistic modeling (Zhang et al. (2022)), and biological sequence design (Jain et al.
(2022)), Theorem 3.2 allows us to compute OT loss by a closed-form formulation, where the cost
matrix C is re-defined by its approximation as in Eqn. 8. Specifically, the closed-form formula-
tion was derived by taking advantage of the following observations. First, in these cases, each two
neighbor states s and s′ on each sampled trajectory, such that s → s′ ∈ A, don’t share any child
state. In other words, there doesn’t exist any state s′′ satisfying s → s′′ ∈ A and s′ → s′′ ∈ A.
This finding is resulted from the property that each action can not decompose into the composition
of others in the action space. Second, if there exists an edge connecting from a child state u of s,
such that u ̸= s′, to a child state v of s′ then the action of transition from s to u must be the same
action of of transition from s′ to v and the transition action from u to v must be exactly the transition
action from s to s′.

Theorem 3.2 (Closed-form solution for optimal transport distance) Let the OT cost between the
forward policies of two neighbor states be defined as in Eqn. 5 where the cost matrix C is re-
defined by its approximation as in Eqn. 8. For each non-terminal neighbor states s and s′ such
that s → s′ ∈ A, let ai be an action so that the state-action pair (s, ai) leads to ui and (s′, ai)
leads to vi, where ui ∈ Child(s) and vi ∈ Child(s′). Let A∗

s , A∗
s′ be the set of non-terminal

valid actions at state s, s′ and a∗s be the action of moving from s to s′. If the following conditions
are satisfied: (1) ai ̸= ak + ah ∀ai, ak, ah ∈ A, and (2) if ∃ ai, ah, am, an ∈ A such that
ai + ah = am + an, ai ̸= am then ai = an, ah = am; the following result holds:

OT (PF (·|s), PF (·|s′)) =
∑

u∈Child(s)

PF (u|s) log(PB(s|u)) +H(PF (·|s′))

+ PF (s
′|s)(log(PB(s

′|s)) + log(PF (s
′|s)))

+
∑

ai∈A∗
s

⋂
A∗

s′ ,ui ̸=s′,ui+a∗
s=vi

min(PF (ui|s), PF (vi|s′))c′i,
(14)

where we define:

c′i =

{
min(0, log(PB(s|ui)) + log(PF (s

′|s)) + log(PF (vi|s′))− log(PF (vi|ui))), if ui ̸= s′

0, if ui = s′

(15)

The proof of Theorem 3.2 and the closed-form solution for OT distance at terminal states are pro-
vided in Appendix D.2. These closed-form solutions of the OT distance will be used in our experi-
ments in Section 4 (see Appendix D.2 for the reasons).

4 EXPERIMENTAL RESULTS

In this section, we numerically justify the advantage of OT regularization over the baseline
GFlowNet model only trained with trajectory balance loss on a wide range of tasks: hypergrid en-
vironment, discrete probabilistic modeling, and biological sequence design tasks. We aim to show
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that: (i) Minimizing the path regularization via OT improves the GFlowNets’ generalization, and
the upper bound can be used as an efficient approximation when we want to minimize the regular-
ization term (hyper-grid environment, discrete probabilistic modeling); while (ii) Maximizing path
regularization via OT enhances the exploration ability of the GFlowNet (biological sequence tasks).

4.1 HYPER-GRID ENVIRONMENT

Task We follow the framework of Malkin et al. (2022) with slight changes to study a hyper-grid en-
vironment, which evaluates the generalization ability of the GFlowNet to guess and sample unvisited
modes of the interested distribution. Consider a D-dimensional hyper-grid environment with length
of each side is H , where each cell represents non-terminal state of the given DAG: s = (s1, . . . , sD)
where sd ∈ {0, 1, . . . ,H − 1} for d ∈ {1, . . . , D}. The source state is (0, 0, ..., 0). For any non-
terminal state, the available actions are operations of increasing coordinate i by 1 that still satisfies
si ≤ H − 1 and a terminating action that moves to a corresponding terminal state sT , which has its
reward:

R
(
s⊤

)
= R0 + 0.5

D∏
d=1

I [|sd/(H − 1)− 0.5| ∈ (0.25, 0.5]] + 2

D∏
d=1

I [|sd/(H − 1)− 0.5| ∈ (0.3, 0.4)]

(16)
where R0 is the constant that controls the discovery challenge and I is the indicator function. This
reward function indicates that only considerable rewards exist at the environment’s corners, and
there are correct 2D modes. The experiment is conducted for two hyper-grid environments with
the number of dimensions 4 and 8 (a higher number of dimensions means more challenging). We
consider the same side length H = 8 and R0 = 10−3 for both environments. To evaluate the
performance on this task, we use KL divergence and the number of modes found during training
as the main evaluation metrics. More details about architectures, hyper-parameters, and evaluation
criteria are provided in Appendix E.1.

Results We plot the mean results over 10 runs for each configuration in Fig. 2. Generally, the ob-
served behaviors of the proposed regularization methods become more apparent when the hypergrid
environment is sparser. Precisely, although recovering full modes, the GFlowNet model trained by
minimizing the path regularization via OT discovers modes faster than the baseline, which indicates
its focus on finding directions leading to states with high rewards during the training progress rather
than spending time exploring the environment. This also helps the model better discover the latent
structures of the interested distribution and achieve lower KL error. We can also see that the upper
bound is an efficient approximation in terms of complexity when using a positive regularization co-
efficient, whose performance is even better. Meanwhile, Max OT seems unsuitable because of its
motivation to improve the model’s exploration, while we only need the high-reward states near the
corners, and the majority of states have minimal rewards.

Figure 2: Results on the 4 −D (upper) and 8 −D (lower) hyper-grid environment. Left: Number
of modes found during training. Right: KL divergence between the true and empirical distribution.
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4.2 BIOLOGICAL SEQUENCE DESIGN

Task We follow the framework of Jain et al. (2022) to simulate the process of designing biological
sequences, such as anti-microbial peptides (AMP), DNA and protein sequences (TF Bind 8, GFP).
The experiments are conducted in the multi-round active learning setting, with the goal of generating
a diverse set of useful candidates after evaluation rounds. We report the performance score, diversity
score, and novelty score of the TopK scoring candidates to evaluate the performance of each method.
More details about task description, datasets, hyper-parameters, and evaluation criteria are provided
in Appendix E.2.

Performance Diversity Novelty

DynaPPO 0.938 ± 0.009 12.12 ± 1.71 9.31 ± 0.69
COMs 0.761 ± 0.009 19.38 ± 0.14 26.47 ± 1.30
GFlowNet-AL (paper) 0.932 ± 0.002 22.34 ± 1.24 28.44 ± 1.32

GFlowNet-AL 0.874 ± 0.022 31.98 ± 2.27 23.91 ± 1.87
GFlowNet+Min OT-AL 0.847 ± 0.033 20.32 ± 7.38 23.63 ± 1.66
GFlowNet+UB OT-AL 0.828 ± 0.022 29.89 ± 2.80 24.16 ± 1.75
GFlowNet+Max OT-AL 0.917 ± 0.003 31.56 ± 2.43 28.86 ± 0.96

Table 1: Results on the AMP task with K = 100.

AMP The results for AMP design task is shown in Table 1. We see that the GFlowNet-AL model
trained by maximizing the regularization via OT performs better than other baselines in terms of di-
versity and novelty. In addition, the TopK performance of the GFLowNet-AL baseline also increases
from 0.874 to 0.917 when we maximize the OT regularization and is only lower than the reported
performance of DynaPPO. However, DynaPPO has a much lower diversity and novelty score, which
implies that it mostly generates similar candidates from the training dataset.

TF Bind 8 An interesting observation here is that initial dataset D0 contains only half of all possible
DNA sequences of length 8 having lower scores. Specifically, low-quality data is very common in
practice, and in this task, it poses a big challenge for all the methods to have good results. From
Table 2, we can see that MINs have the highest diversity compared to the other methods. However,
this method has a much lower TopK performance and novelty score, which indicates its generated
samples are very similar to the low-quality training dataset. Moreover, although having slightly
lower diversity, the GFlowNet-AL model trained by maximizing the path regularization via OT
performs better than the others when looking at all metrics - it outperforms other baselines in terms
of performance and novelty score.

Performance Diversity Novelty

DynaPPO 0.58 ± 0.02 5.18 ± 0.04 0.83 ± 0.03
COMs 0.74 ± 0.04 4.36 ± 0.24 1.16 ± 0.11
BO-qEI 0.44 ± 0.05 4.78 ± 0.17 0.62 ± 0.23
CbAS 0.45 ± 0.14 5.35 ± 0.16 0.46 ± 0.04
MINs 0.40 ± 0.14 5.57 ± 0.15 0.36 ± 0.00
CMA-ES 0.47 ± 0.12 4.89 ± 0.01 0.64 ± 0.21
AmortizedBO 0.62 ± 0.01 4.97 ± 0.06 1.00 ± 0.57
GFlowNet-AL (paper) 0.84 ± 0.05 4.53 ± 0.46 2.12 ± 0.04

GFlowNet-AL 0.83 ± 0.01 4.66 ± 0.08 1.14 ± 0.03
GFlowNet+Min OT-AL 0.82 ± 0.01 4.72 ± 0.10 1.13 ± 0.04
GFlowNet+UB OT-AL 0.83 ± 0.01 4.68 ± 0.10 1.14 ± 0.05
GFlowNet+Max OT-AL 0.85 ± 0.02 4.52 ± 0.18 1.21 ± 0.10

Table 2: Results on the TF Bind 8 task with K = 128.

GFP Lastly, the results for the GFP task are shown in Table 3, where the objective is to find protein
sequences having high fluorescence. We observe that the GFlowNet-AL model trained by max-
imizing OT regularization generates more diverse and novel candidates than other methods. In
addition, its performance score is only lower than the best one achieved by COMs and higher than
the GFlowNet-AL baseline. However, when looking at all metrics, the GFlowNet-AL model trained
by maximizing the path regularization via OT still outperforms all other baselines.

Note that in all biological sequence tasks, Min OT and UB OT do not improve the performance
of GFlowNets since these methods make the forward policy at each state have a focused tendency,
which seems not to increase the diversity and novelty of the generated candidates.

4.3 SYNTHETIC DISCRETE PROBABILISTIC MODELING TASKS

Task We follow the framework of Zhang et al. (2022), Energy-based Generative Flow Networks
(EB-GFN), to model seven different distributions over 32-dimensional binary data that are dis-
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Performance Diversity Novelty

DynaPPO 0.794 ± 0.002 206.19 ± 0.19 203.20 ± 0.47
COMs 0.831 ± 0.003 204.14 ± 0.14 201.64 ± 0.42
BO-qEI 0.045 ± 0.003 139.89 ± 0.18 203.60 ± 0.06
CbAS 0.817 ± 0.012 5.42 ± 0.18 1.81 ± 0.16
MINs 0.761 ± 0.007 5.39 ± 0.00 2.42 ± 0.00
CMA-ES 0.063 ± 0.003 201.43 ± 0.12 203.82 ± 0.09
AmortizedBO 0.051 ± 0.001 205.32 ± 0.12 202.34 ± 0.25
GFlowNet-AL (paper) 0.853 ± 0.004 211.51 ± 0.73 210.56 ± 0.82

GFlowNet-AL 0.8232 ± 0.0001 218.54 ± 7.88 222.05 ± 5.49
GFlowNet+Min OT-AL 0.8231 ± 0.0001 182.03 ± 0.25 220.56 ± 2.02
GFlowNet+UB OT-AL 0.8232 ± 0.0001 221.64 ± 0.11 218.02 ± 0.79
GFlowNet+Max OT-AL 0.8233 ± 0.0001 225.00 ± 3.76 242.11 ± 1.44

Table 3: Results on the GFP task with K = 128.
cretizations of continuous distributions over the plane. The state space S of the GFlowNet consists
of vectors of length D = 32 with with entries in {0; 1;⊘}. The source state is s0 = (⊘,⊘, ...,⊘).
For any non-terminal state, the available actions are turning a void entry ⊘ to 0 or 1. After D ac-
tions, we reach the terminal states having all entries in {0; 1}. The main evaluation metrics are NLL
score and MMD score. The detailed settings about architectures, hyper-parameters, and evaluation
criteria are provided in Appendix E.3.

Results The results for synthetic discrete probabilistic modeling tasks (Synthetic EB-GFN) are
shown in Table 4. Training the GFlowNet with either minimizing the path regularization via OT
(Min OT) or via the upper bound (UB OT) gains the better NLL and MMD scores than the baseline
and Max OT. We also observe that the performance of training EB-GFN with Min OT and UB OT
are quite similar. Meanwhile, Max OT is not useful due to the same reasons provided in hypergrid
environment modeling task. Because there is a gap between our reproduce results and the baseline
in EB-GFN Zhang et al. (2022), we only take into account the the reproduce results of EB-GFN
when comparing with our methods (Min OT, Max OT, and UB OT).

Metrix Method 2spirals 8gaussians circles moons pinwheel swissroll checkerboard

NLL ↓ PCD 20.094 19.991 20.565 19.763 19.593 20.172 21.214
ALOE 20.295 20.350 20.565 19.287 19.821 20.160 54.653
ALOE + 20.062 19.984 20.570 19.743 19.576 20.170 21.142
EB-GFN (paper) 20.050 19.982 20.546 19.732 19.554 20.146 20.696

EB-GFN 20.0679 19.9862 20.5598 19.7324 19.5735 20.1599 20.6839
EB-GFN + Max OT 20.0673 19.9857 20.5599 19.7319 19.5714 20.1597 20.6837
EB-GFN + UB OT 20.0651 19.9854 20.5600 19.7305 19.5707 20.1596 20.6836
EB-GFN + Min OT 20.0640 19.9855 20.5598 19.7308 19.5699 20.1595 20.6831

MMD ↓ PCD 2.160 0.954 0.188 0.962 0.505 1.382 2.831
ALOE 21.926 107.320 0.497 26.894 39.091 0.471 61.562
ALOE + 0.149 0.078 0.636 0.516 1.746 0.718 12.138
EB-GFN (paper) 0.583 0.531 0.305 0.121 0.492 0.274 1.206

EB-GFN 0.3012 0.0408 −0.1724 −0.1744 0.2056 0.1555 −0.0986
EB-GFN + Max OT 0.3258 0.0197 −0.1919 −0.0456 0.1377 0.0763 −0.0903
EB-GFN + UB OT 0.2902 0.0102 −0.2819 −0.1253 0.1561 0.0257 −0.0923
EB-GFN + Min OT 0.1816 0.0343 −0.2775 −0.1966 0.1220 0.1334 −0.1071

Table 4: Results on the Synthetic EB-GFN tasks. The negative log-likelihood (NLL) and MMD
are displayed in units of 1 × 10−4. ALOE+ uses a 30 larger parametrization than ALOE and EB-
GFN.We only take into account the the reproduce results of EB-GFN when comparing with our
methods (Min OT, Max OT, and UB OT).

5 CONCLUDING REMARKS

In this paper, we propose to train the GFlowNet with an additional path regularization via Optimal
Transport that places prior constraints on the underlying structure of the GFlowNet. We have empiri-
cally shown that minimizing the path regularization via OT improves the GFlowNet’s generalization
while maximizing path regularization via OT enhances the exploration ability of the GFlowNet. In
addition, we derive an efficient implementation of the regularization by finding its closed-form so-
lutions in specific cases and a meaningful upper bound that can be used as an approximation when
we want to minimize the regularization term. A limitation of the current method is computing the
optimal transport distances for all couples of nearest neighbor states. Our proposed Dropout OT (see
in Appendix C) might be a solution. In future works, we aim to develop a more efficient path regu-
larization for high dimensional discrete data or propose a new cost function to compute the optimal
transport distances.
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Supplement to “Improving Generative Flow Networks with Path
Regularization”

A RELATED WORK

GFlowNets The objective of GFlowNets is related to MCMC methods for sampling from a given
unnormalized density function, especially in discrete spaces where exact sampling is intractable (Dai
et al. (2020); Grathwohl et al. (2021)). However, GFlowNets amortize the complexity of iterative
sampling by a training procedure that implies the data’s compositional structure as its learning prob-
lem. Empirically, GFlowNets’ performance is better than other earlier methods in a wide variety of
tasks: small molecules generation (Bengio et al. (2021a)), discrete probabilistic modeling (Zhang
et al. (2022)), Bayesian structure learning (Deleu et al. (2022)) and biological sequence design (Jain
et al. (2022)). On the theoretical side, definitions and properties of GFlowNets are more investigated
in Bengio et al. (2021b).

Optimal Transport The optimal transport theory (OT) (Villani (2003)) has established a natural
and useful geometric tool for comparing measures supported on metric probability spaces. The de-
velopment of OT theory has a long history, where it has been discovered in many settings and under
different forms. And in recent years, another revolution in the spread of OT has been witnessed,
thanks to the emergence of approximate solvers that can scale to the problem of large dimensions.
As a consequence, OT is being widely used to solve various problems in computer graphics (Bon-
neel et al. (2011),Nguyen et al. (2021)), image processing (Xia et al. (2014)), and machine learning
(Courty et al. (2014), Ho et al. (2017) Genevay et al. (2018), Bunne et al. (2019)).

Energy-based models EBMs, or energy functions parameterized by deep neural networks, have
demonstrated effectiveness in generative modeling (Salakhutdinov & Hinton (2009); Hinton et al.
(2006)). Contrastive divergence methods (Hinton (2002); Tieleman (2008); Du et al. (2021)) have
been proposed to handle costly MCMC processes by approximating energy gradient. Recently, it
has been shown that simultaneous learning of the proposal distribution can also be helpful (Dai
et al. (2019); Arbel et al. (2021)). Then this finding has been extended to discrete spaces by using
GFlowNets in Zhang et al. (2022).

Biological sequence design Various methods have been proposed to handle the biological sequence
design tasks: deep model-based optimization (Trabucco et al. (2021)), Bayesian optimization (Be-
langer et al. (2019); Swersky et al. (2020)), reinforcement learning (Angermueller et al. (2020)),
adaptive evolutionary methods (Hansen (2006); Sinai et al. (2020)), and so on. Recently, GFlowNets
also have been proposed as a useful generator of diverse candidates for this problem in Jain et al.
(2022).

B BACKGROUND OF GFLOWNETS

Generative Flow Networks (GFlowNets) are a recently proposed class of generative model, which
aims to sample a structural object x with probability proportional to a given reward function R(x).
From the reinforcement learning viewpoint, GFlowNets learn a stochastic policy to generate object
x ∈ X by applying a sequence of discrete actions a ∈ A where A is the action space. The construc-
tion of an object x ∈ X defines a complete trajectory τ = (s0, s1, ..., sn = x, sf ) where s0 is the
initial state, sn = x ∈ X is the terminal state (indicating entirely constructed object), and sf is the
final state. Note that the same terminal state can be formed by different sequences of actions. These
states and actions correspond to the vertices and edges of a directed acyclic graph G = (S,A). In
addition, for each transition s → s′ ∈ A, we call s a parent of s′, and s′ a child of s. T is defined as
the set of all complete trajectories.

Following Bengio et al. (2021b), a trajectory flow is any nonnegative function defined on the set
of complete trajectories, such as F : T 7→ R+. Correspondingly, the flow through a state (state
flow) is defined as F (s) =

∑
τ∈T ,s∈τ F (τ) and the flow through a edge (edge flow) is defined as

F (s → s′) =
∑

τ∈T ,s→s′∈τ F (τ). Additionally, the forward transition probabilities PF and the
backward transition probabilities PB are defined as follows:

PF (s
′|s) := F (s → s′)

F (s)
, (17)
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PB(s|s′) :=
F (s → s′)

F (s′)
. (18)

Then the training objective of the GFlowNet is to learn a consistent flow (Bengio et al. (2021b);
Malkin et al. (2022)) that has the terminal flow F (x → sf ) approximately equal a given reward
function R(x) for any x ∈ X . In addition, when the flow is consistent, the forward transition
probabilities PF and the backward transition probabilities PB correspondingly define a distribution
over the children and parent of each state, which can be considered as the forward and backward
policy of GFLowNets.

Specifically, followed by Malkin et al. (2022), the GflowNet models the forward policy, backward
policy and total flow of a Markovian flow F by PF (.|.; θ), PB(.|.; θ) and Zθ. The trajectory balance
objective is then optimized for each complete trajectory τ sampled from the training policy πθ:

LTB(τ, θ) =

(
log(Zθ

n∏
t=1

PF (st|st−1; θ))− log(R(x)

n∏
t=1

PB(st−1|st; θ))

)2

. (19)

which is derived from the trajectory balance constraint (Malkin et al. (2022))

Moreover, as already proved by Bengio et al. (2021b), πθ can be chosen as any distribution on the
set of complete trajectories T with full supports, or the GflowNet can be trained with offline policy
as well, such as a mixture between the GFlowNet’s forward policy and an uniform distribution over
allowed actions in each state:

πθ = (1− α)PF (.|.; θ) + α Uniform (20)
There also exist other objectives for learning a GFlowNet, which are based on flow matching con-
straint or detail balance constraint as in Bengio et al. (2021a;b). However, Malkin et al. (2022) em-
pirically shows that the trajectory balance objective improves the training of a GFlowNet in terms
of more efficient credit assignment and faster convergence, compared to the previously proposed
objectives. These advantages make us choose it as the training objective in this paper.

C DROPOUT OPTIMAL TRANSPORT

A limitation of the current method is computing the optimal transport distances for all couples of
nearest neighbor states, especially in high dimensional discrete data. Our proposed dropout OT
might be a solution. This is because rather than sampling trajectories τ and using all edges from
them, we can separately sample edges s → s′ proportional to edge flows, allowing us to efficiently
compute path regularization.

Theorem C.1 For any complete trajectory τ = (s0 → s1 → ... → sn) sampled from the training
policy πθ

Eτ∼πθ
(LOT(τ)) ∝ Es→s′∼πθ

(OT (PF (·|s), PF (·|s′))). (21)

The proof of Theorem C.1 is in Appendix D.3. Here we train GFlowNets with trajectory balance
objective. Therefore, when sampling a trajectory τ , we get a set of edges from τ . We just sample
uniformly a p percentage of edges to compute OT loss.

To sample p percentage of edges, let sample rs ∼ Ber(p).

Es→s′∼πθ
(OT (PF (·|s), PF (·|s′))) =

1

p
Ers∼Ber(p)Es→s′∼πθ

(rs.OT (PF (·|s), PF (·|s′))). (22)

We approximate the path regularization loss via:

LOT(τ) ≃
1

p

n−1∑
t=0

xtOT(PF (.|st), PF (.|st+1)) (23)

with xt drawn independently from Ber(p) for all 0 ≤ t ≤ n−1 . Intuitively, if xt = 0 then we don’t
need to calculate the corresponding optimal transport cost anymore, which reduces a considerable
amount of computing time and memory down to p percentage.

D PROOFS

D.1 PROOF OF THEOREM 3.1

For any trajectory τ = (s0 → s1 → ... → sn), we first prove that for any t ∈ 0, n− 1

OT (PF (·|st), PF (·|st+1)) ≤
∑

u∈Child(st)

PF (u|st) log(PB(st|u))−log(PF (st+1|st))+H(PF (·|st+1)).

(24)
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Consider two neigboor states st and st+1 with the children sets: Child(st) = {u1, ..., uk} and
Child(st+1) = {v1, ..., vl}. By definition 5, the optimal transportation distance between two distri-
butions PF (.|st) and PF (.|st+1) is defined as:

OTC (PF (·|st), PF (·|st+1)) := min
π∈

∏
(PF (·|st),PF (·|st+1))

⟨C, π⟩, (25)

where the admissible couplings set is defined as:

Π(PF (.|st), PF (.|st+1)) =
{
π ∈ Rk×l

+ : π1l = PF (·|st), πT
1k = PF (·|st+1)

}
. (26)

We have,

OT(PF (.|st), PF (.|st+1))

≤
∑
i

∑
j

πijCij

≤ −
∑
i

∑
j

πij log (PB(st|ui)PF (st+1|st)PF (vj |st+1))

= −
∑
i

∑
j

πij log (PB(st|ui))−
∑
i

∑
j

πij log (PF (st+1|st))−
∑
i

∑
j

πij log (PF (vj |st+1)))

= −
∑
i

log (PB(st|ui))
∑
j

πij − log (PF (st+1|st))
∑
i

∑
j

πij −
∑
i

log (PF (vj |st+1)))
∑
j

πij

= −
∑
i

log (PB(st|ui))PF (ui|st)− log (PF (st+1|st))−
∑
j

log (PF (vj |st+1)))PF (vj |st+1)

=
∑

u∈Child(st)

PF (u|st) log(PB(st|u))− log(PF (st+1|st)) +H(PF (.|st+1).

(27)

The first inequality obtained by the definition of optimal transport distance in Eq. 25, the second
inequality comes from Eq. 8, the fifth equality is due to the constraints of admissible couplings in
Eq. 26.

As a consequence, the upper bound loss is obtained by summing up all inequality 24 for all t.

D.2 PROOF OF THEOREM 3.2

Recall from definition 5 the optimal transportation distance between two distributions PF (.|s) and
PF (.|s′) is defined as:

OTC (PF (·|s), PF (·|s′)) := min
π∈Π(PF (·|s),PF (·|s′))

⟨C, π⟩. (28)

Let decompose the total cost ⟨C, π⟩

⟨C, π⟩ =
∑
i,j

πijCij

=
∑
i,j

πij(− log(PB(s|ui))− log(PF (s
′|s))− log(PF (vj |s′)))

+
∑

ui=s′,j

πij(log(PB(s|s′)) + log(PF (s
′|s)))

+
∑

ui ̸=s′,vj∈Child(ui),ai ̸=a⊤

πij(log(PB(s|ui)) + log(PF (s
′|s)) + log(PF (vj |s′) +Cij)

+
∑

ui=vj

πij(log(PB(s|ui)) + log(PF (s
′|s)) + log(PF (vj |s′))).

(29)
We will prove that ui ̸= vj ∀i, j, i.e, Child(s) ∩ Child(s′) = Ø, indeed,

ai ̸= ak + ah ∀ai, ak, ah ∈ A =⇒ ai ̸= a∗s + aj =⇒ s+ ai ̸= s+ a∗s + aj =⇒ ui ̸= vj . ∀i, j
(30)
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We have:
ui ̸= s′, vj ∈ Child(ui), ai ̸= a⊤

=⇒ ai ̸= a∗s, s+ ai + a∗ui
= s+ a∗s + aj , ai ̸= a⊤

=⇒ ai ̸= a∗s, ai + a∗ui
= a∗s + aj , ai ̸= a⊤

=⇒ ai ̸= a∗s, ai = aj ̸= a⊤, a∗ui
= a∗s.

(31)

As a result, we can rewrite Eq. 29 as:

⟨C, π⟩ =
∑
i,j

πij(− log(PB(s|ui))− log(PF (s
′|s))− log(PF (vj |s′)))

+
∑

ui=s′,j

πij(log(PB(s|s′)) + log(PF (s
′|s)))

+
∑

ui ̸=s′,ai=aj ̸=a⊤

πij(log(PB(s|ui)) + log(PF (s
′|s)) + log(PF (vj |s′) +Cii).

(32)

The first term of above equation actually is the upper bound of the optimal transport distance. There-
fore, we can rewrite the total transportation cost as:

⟨C, π⟩ =
∑

u∈Child(s)

PF (u|s) log(PB(s|u))− log(PF (s
′|s)) +H(PF (·|s′))

+ PF (s
′|s).(log(PB(s

′|s)) + log(PF (s
′|s)))

+
∑

ui ̸=s′,ai=aj ̸=a⊤

πij(log(PB(s|ui)) + log(PF (s
′|s)) + log(PF (vj |s′) +Cii).

(33)

From the definition of c′i in Eq. 15, we have

c′i =

{
log(PB(s|ui)) + log(PF (s

′|s)) + log(PF (vj |s′) +Cii, if ui ̸= s′, ai = aj ̸= a⊤

0 if ui = s′ or ai = a⊤.
(34)

From Eq. 33 and Eq. 34, we have∑
ui ̸=s′,ai=aj ̸=a⊤

πij(log(PB(s|ui)) + log(PF (s
′|s)) + log(PF (vj |s′) +Cii) =

∑
i

πij .c
′
i. (35)

Thus, we find that

argmin
π∈

∏
(PF (·|s),PF (·|s′))

⟨C, π⟩ = argmin
π∈

∏
(PF (·|s),PF (·|s′))

⟨C′, π⟩ (36)

where, C′ is a diagonal matrix with the diagonal c′i ≤ 0. For convenience, if action ai is invalid
at state s, we assign PF (ui | s) := 0, so the cost matrix of the optimal transport distance still is a
square matrix with the zero cost a invalid actions, then applying the Lemma 1, we have:

min
π∈

∏
(PF (·|s),PF (·|s′))

⟨C′, π⟩ =
∑
i

min(PF (ui|s), PF (vi|s))C
′

ii. (37)

We obtain the closed-form formulation for optimal transport distance

OT (PF (·|s), PF (·|s′)) =
∑

u∈Child(s)

PF (u|s) log(PB(s|u)) +H(PF (·|s′))

+ PF (s
′|s).(log(PB(s

′|s)) + log(PF (s
′|s)))

+
∑

i∈A∗
s

⋂
A∗

s′

min(PF (ui|s), PF (vi|s′))c′i.
(38)

Lemma 1 Given a squared diagonal cost matrix C′ with non-positive entities in the diagonal, the
solution of optimal transport problem between two distribution PF (·|s) and PF (·|s′), which has the
same number of support points, given cost matrix C′ is given by:

min
π∈Π(PF (·|s),PF (·|s′))

⟨C′, π⟩ =
∑
i

min(PF (ui|s), PF (vi|s))C
′

ii. (39)
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Proof of Lemma 1: Let define
F (π) = ⟨C′, π⟩,

pij =

min(pis, p
i
s′), if i = j

(pi
s−min(pi

s,p
i
s′ ))(p

j

s′−min(pj
s,p

j

s′ ))
1−

∑
k min(pk

s ,p
k
s′ )

if i ̸= j.

where pis := PF (ui|s) and pjs′ := PF (vj |s′).
We will prove that π ∈ Π(PF (·|s), PF (·|s′)) and F (π) ≥ F (π) ∀π ∈ Π(PF (·|s), PF (·|s′)).
It is not difficult to show that πij ≥ 0. From the definition of π, we have

n∑
j

πij =
∑
j ̸=i

πij + πii =
∑
j ̸=i

(
pis −min(pis, p

i
s′)
) (

pjs′ −min(pjs, p
j
s′)
)

1−
∑

k min(pks , p
k
s′)

+ min(pis, p
i
s′). (40)

If min(pis, p
i
s′) = pis then

n∑
j

πij = 0 +min(pis, p
i
s′) = pis. (41)

else min(pis, p
i
s′) = pis′ then∑

j ̸=i

(
pjs′ −min(pjs, p

j
s′)
)
=
∑
j

(
pjs′ −min(pjs, p

j
s′)
)
= 1−

∑
k

min(pks , p
k
s′)

=⇒
n∑
j

πij =
(
pis −min(pis, p

i
s′)
) ∑j ̸=i

(
pjs′ −min(pjs, p

j
s′)
)

1−
∑

k min(pks , p
k
s′)

+ min(pis, p
i
s′) = pis.

(42)

Therefore
∑n

j πij = pis = PF (ui|s). Similarly,
∑n

i πij = pjs = PF (vj |s′), combining with
πij ≥ 0, we have

π ∈ Π(PF (·|s), PF (·|s′)) . (43)

Moreover
F (π) = ⟨C′, π⟩ =

∑
i

πiiC
′
ii ≥

∑
i

min(pis, p
i
s′)C

′
ii = ⟨C′, π⟩ = F (π) ∀π ∈ Π(PF (·|s), PF (·|s′)) .

(44)
As a consequence, we obtained the solution of optimal transport problem.

closed-form solution for optimal transport distance at terminal state. We will derive the closed-
form solution for optimal transport distance in case of two neighbor states s < s′, in which s′

is a terminal state. In the case of Hyper-grid environment, EB-GFN experiments, and Biological
Sequence Design, all terminal state x have only one child that is the final state sf , and PF (sf |x) =
1 ∀x. Thus, the admissible couplings set

∏
(PF (·|s), PF (·|s′)) has only one element. That is

π∗ = PF (·|s). As a result, the optimal transportation distance between PF (.|s) and PF (.|s′) is:
OT (PF (·|s), PF (·|s′)) = min

π∈
∏

(PF (·|s),PF (·|s′))
⟨C, π⟩ = ⟨C, π∗⟩. (45)

Specially, in EB-GFN experiments, all children ui of s is a terminal state so d(ui, sf ) = − log(1) =
0. This makes C = 0 and OT (PF (·|s), PF (·|s′)) = 0. In Hyper-grid environment experiment, for
terminal sate s′ because c′i = 0, we have:

OT (PF (·|s), PF (·|s′)) =
∑

u∈Child(s)

PF (u|s) log(PB(s|u))

+ PF (s
′|s).(log(PB(s

′|s)) + log(PF (s
′|s))). (46)

The Hyper-grid environment (Bengio et al., 2021a) (in section 4.1) and EB-GFN experi-
ments (Zhang et al., 2022) (in section 4.3) satisfy two condition in Theorem 3.2. In Biological
Sequence Design (Jain et al., 2022) (in section 4.2) such as protein and DNA sequences, the action
space consists of actions adding a nucleic acid in {A, T,G,U} and a amino acid respectively. Such
settings satisfy former condition ai ̸= ak + ah ∀ai, ak, ah ∈ A. However, the later condition
ai + ah = am + an, ai ̸= am ⇐⇒ ai = an, ah = am, ai ̸= am is no longer true because the order
property of action space, i.e, ai + aj ̸= aj + ai. In this situation, the third terms in Eq. 14 is zero
and we can still using the formulation in Eq. 14. Generally, the action space is independence and
unique factorization.
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D.3 PROOF OF THEOREM C.1

By definition of the edge flow we have∑
τ :s→s′∈τ

P (τ) =
∑

τ :s→s′∈τ

F (τ)

Z
=

F (s → s′)

Z
= P (s → s′). (47)

From that equation, we find that

Eτ∼πθ
(LOT(τ)) = Eτ∼πθ

( ∑
s→s′∈τ

OT (PF (·|s), PF (·|s′))

)
=
∑
τ

∑
s→s′∈τ

OT (PF (·|s), PF (·|s′)).P (τ)

=
∑
s→s′

∑
τ :s→s′∈τ

OT (PF (·|s), PF (·|s′)).P (τ)

=
∑
s→s′

OT (PF (·|s), PF (·|s′))
∑

τ :s→s′∈τ

P (τ)

=
∑
s→s′

OT (PF (·|s), PF (·|s′)).P (s → s′)

∝ Es→s′∼πθ
(OT (PF (·|s), PF (·|s′))).

(48)

□

E EXPERIMENT SETTINGS

In this part, we report experiment settings, including evaluation metrics for comparing the meth-
ods, hyper-parameter choices, and neural network architectures for all experiments. For biological
sequence design tasks, we also give more details about the task description and datasets used for
training. Note that the regularization coefficients provided in this part are task-specific. Specifically,
λ is chosen from a predefined set of values with different scales in each task. However, because all
tasks in our experiment parts do not change the target distribution between the training and test time,
the reported λ is chosen to have the best model’s performance.

E.1 HYPER-GRID ENVIRONMENT

E.1.1 EVALUATION CRITERIA

To evaluate the performance, we measure the KL divergence between the actual and empirical dis-
tribution of the last 2× 105 visited states. The number of modes found during the training progress
is also used to measure the learned models’ performance.

E.1.2 IMPLEMENTATION DETAILS

GFlowNet: For the implementation of the GFlowNet model, we also follow the framework of
Malkin et al. (2022): an MLP with two hidden layers of 256 dimensions each. The GFlowNet
policy model, which includes both PF and PB , is trained with a learning rate of 0.001 while the
learning rate for total flow Zθ is 0.1. We use a mini-batch size of 16 and 62500 training steps with
the trajectory balance objective.

Proposed OT regularization The regularization coefficient is 0.02 for both Min OT, UB-OT, and
Max OT in 4−D hypergrid environment and 0.1 for both Min OT, UB-OT, and Max OT in 8−D
hypergrid environment.

E.2 BIOLOGICAL SEQUENCE DESIGN

E.2.1 TASK DESCRIPTION & DATASETS

These experiments simulate the process of designing biological sequences, such as anti-microbial
peptides, DNA, and protein sequences..., in drug discovery applications. This process often consists
of an active loop with several rounds of ideating molecules and multiple-stage evaluations for fil-
tering candidates, with rising levels of precision and cost. This characteristic makes the diversity of
proposed candidates a considerable concern in the ideation phase because many similar candidates
can all fail in the later phases.
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Specifically, we consider the problem of finding objects x in the space of discrete objects X , that
maximize a given oracle f : X 7→ R+. Here, we can only query this oracle N times, each with
an input batch of fixed size b. This can form N rounds of evaluation in the active learning setting,
where the generative policy is initially given a dataset D0 =

{(
x0
1, y

0
1

)
, . . . ,

(
x0
n, y

0
n

)}
collected

from the oracle, where y0i = f(x0
i ) for 1 ≤ i ≤ n.

Because the oracle can only be called limited, we also train a supervised proxy model M that
predicts y from x to approximate the oracle f . Specifically, in i-th round, given the current dataset
Di, this proxy model can be used as a reward function R to collect additional observations to train
our generative policy to propose a batch of candidates Bi =

{
xi
1, . . . , x

i
b

}
. Then the current dataset

Di is updated for the next round of evaluation as Di+1 = Di ∪
{(

xi
1, y

i
1

)
, . . . ,

(
xi
b, y

i
b

)}
where

yij = f
(
xi
j

)
.

Following the framework of Jain et al. (2022), we will conduct experiments on the biological se-
quence design tasks:

Anti-Microbial Peptide Design: This task aims to generate short amino-acid sequences of
length lower than 51, which have anti-microbial properties. The vocabulary has 20 amino-acids
[A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y ]. The active learning algorithm is eval-
uated for N = 10 rounds, with the number of candidates generated each round b = 1000. The
initial dataset D0 contains 3219 AMPs and 4611 non-AMP sequences, which is collected from the
DBAASP database Pirtskhalava et al. (2021).

TFBind 8: The goal of this task is to generate DNA sequences of length 8, which have high binding
activity with human transcription factors. The vocabulary has 4 nucleobases [A,C, T,G]. The active
learning algorithm is evaluated for N = 10 round, with the number of candidates generated each
round b = 128. The initial dataset D0 contains 32, 898 samples, which is half of all possible DNA
sequences of length 8 having lower scores. The data and the oracle used are from Barrera et al.
(2016).

GFP: The objective of this task is to generate protein sequences of length 237 that have high
fluorescence. The vocabulary is similar to the one of the AMP task (size 20). The active learning
algorithm is evaluated for N = 10 round, with the number of candidates generated each round
b = 128. The initial dataset D0 contains 5, 000 samples, which is from Rao et al. (2019); Sarkisyan
et al. (2016) together with the oracle.

E.2.2 EVALUATION CRITERIA

To evaluate the performance, we also use the metrics as in Jain et al. (2022). Specifically, considering
a set of candidates D, we have the following metrics:

Performance score: mean score of the candidates in the set

Mean(D) =

∑
(xi,yi)∈D yi

|D|
, (49)

Diversity: a measurement of how well the generated candidates can capture the modes of the
distribution implied by the oracle

Diversity(D) =

∑
(xi,yi)∈D

∑
(xj ,yj)∈D\{(xi,yi)} d (xi, xj)

|D|(|D| − 1)
, (50)

where d is a distance defined over X , such as Levenshtein distance Miller et al. (2009).

Novelty: a measure of the difference between the candidates in D and D0

Novelty(D) =

∑
(xi,yi)∈D minsj∈D0 d (xi, sj)

|D|
. (51)

These metrics will be evaluated on the set of candidates that have top K scores D =
TopK (DN\D0).

E.2.3 IMPLEMENTATION DETAILS

For the implementation of the GFlowNet-AL baseline model, we use the previously published im-
plementation with slight changes, which follows the training setups of Jain et al. (2022):
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Proxy model: We parameterize it as an MLP with two hidden layers, each having 2048 hidden units,
and use ReLU activation. We also use ensembles of 5 models with same architecture for uncertainty
estimation. For the acquisition function, we use UCB (µ+ κσ) with κ = 0.1. The proxy is trained
with MSE loss using mini-batch of size 256 and Adam optimizer with (β0, β1) = (0.9, 0.999) and
learning rate 10−4. During training, early stopping is also used by evaluating the validation set
containing 10% of the data.

GFlowNet generator: We use an MLP with 2 hidden layers of 2048 hidden units each. The model
is trained with trajectory balance objective as the main loss function, by using Adam optimizer with
(β0, β1) = (0.9, 0.999). Additionally, logZ is trained with a learning rate of 10−3 for AMP, TF
Bind 8 task, and 5× 10−3 for GFP task. Other hyper-parameters are shown in the following table:

Hyper-parameter AMP TF Bind 8 GFP
δ : Uniform Policy Coefficient 0.001 0.001 0.05
Learning rate 5× 10−4 10−5 10−3

m : Minibatch size 32 32 32
β : Reward Exponent R(x)β 3 3 3
T : Training steps 10,000 5,000 50,000

Table 5: Hyper-parameters for the GFlowNet.

There are some changes in hyper-parameter choices and the number of active learning rounds in
the TF Bind 8 task and the GFP task compared to the original training setups of Jain et al. (2022).
However, during the experiment, we observed that these settings helped us get the closest results to
the reported one in Jain et al. (2022).

Proposed OT regularization The regularization coefficients for Min OT, UB OT, and Max OT are
the same for each biological sequence design task. Specifically, the coefficients for the AMP, TF
Bind 8, and GFP task are 0.025, 0.1, and 0.02 correspondingly.

E.3 SYNTHETIC DISCRETE PROBABILISTIC MODELING TASKS

E.3.1 EVALUATION CRITERIA

To evaluate the performance, we keep the same evaluation criteria in Zhang et al. (2022), where they
use the NLL of a large independent sample of ground truth data and the exponential Hamming MMD
(Gretton et al. (2012)) between ground truth data and generated samples as performance metrics. To
measure NNL and MMD, we use 10 fixed sets, and each set consists of 4000 ground truth data
samples.

E.3.2 IMPLEMENTATION DETAILS

GFlowNet: For the implementation of the GFlowNet model, we use an MLP with 2 hidden layers
of 512 dimensions each. The GFlowNet policy model, which includes both PF and PB , is trained
with a learning rate of 0.001. We use a mini-batch size of 128 and 1e5 training steps with the
trajectory balance objective.

EBMs: For the implementation of the Energy-Based Model, we use an MLP with 3 hidden layers
of 256 dimensions each. The learning rate is 0.001.

Proposed OT regularization: The regularization coefficient is 0.001 for both Min OT and UB OT
and is the same for all tasks.

F ADDITIONAL EXPERIMENT RESULTS

F.1 ABLATION STUDY ABOUT VARYING λ

Specifically, we will further investigate the proposed path regularization via OT with different values
of the regularization coefficient λ in the 8-D hyper-grid environment in Section 4.1. In addition, the
regularization coefficient is selected from the set (0.001, 0.01, 0.1, 0.4). We plot the mean results
over 10 runs for each configuration in Fig. 3.
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Figure 3: Results on the 8−D hyper-grid environment with λ ∈ (0.001, 0.01, 0.1, 0.4) (from top to
bottom). Left: Number of modes found during training. Right: KL divergence between the true and
empirical distribution.

Note that the good range of values for the regularization coefficient is observed to highly depend on
the specific setting of the experiment task. Here, we can see that when λ is relatively small, such
as λ ∈ (0.001, 0.01), the performance of GFlowNets trained additionally with our proposed regu-
larization via 0T does not seem to be significantly different from the baseline model’s performance,
which holds for both UB OT, Min OT, and Max OT. This may be resulted from the small contribu-
tion of regularization to the regularized training objective, which is caused by the not large enough
value of λ. Specifically, when λ = 0.01, we can still see that the performance of GFlowNets trained
by minimizing the upper bound is slightly better than the baseline’s result.

In addition, when λ is relatively large (λ = 0.4), the result of learned GFlowNets is even worse
than the baseline, which may be due to the large value of λ forces the model’s learning focus on the
regularization part more than necessary, which badly affects the optimization of the main training
objective (trajectory balance objective). Specifically, this can be observed in the lower KL diver-
gence of both UB OT, Min OT, and Max OT compared to the baseline.
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Meanwhile, when λ = 0.1, GFlowNets trained by minimizing the OT regularization and its upper
bound clearly perform better than the baselines regarding the number of modes found and KL diver-
gence between the actual and empirical distribution, which proves our motivation that minimizing
the proposed path regularization is more beneficial in this circumstances.

F.2 ADDITIONAL RESULTS OF THE HYPERGRID ENVIRONMENT

We also plot the mean results over 10 runs for each configuration with variance in Fig. 4.

Figure 4: Results with variance on the 4 − D (upper) and 8 − D (lower) hyper-grid environment.
Left: Number of modes found during training. Right: KL divergence between the true and empirical
distribution.

22


	Introduction
	Background
	GFlowNets
	Optimal Transport Distance

	Path Regularization via Optimal Transport
	Optimal Transport Formulation of the Path Regularization
	Upper Bound and Efficient Implementation of the Path Regularization
	closed-form formulation for the Path Regularization

	Experimental Results
	Hyper-grid environment
	Biological sequence design
	Synthetic discrete probabilistic modeling tasks

	Concluding Remarks
	Related Work
	Background of GFlowNets
	Dropout Optimal Transport
	Proofs
	 Proof of Theorem 3.1
	 Proof of Theorem 3.2
	 Proof of Theorem C.1

	Experiment Settings
	Hyper-grid environment
	Evaluation criteria
	Implementation details

	Biological sequence design
	Task description & Datasets
	Evaluation criteria
	Implementation details

	Synthetic discrete probabilistic modeling tasks
	Evaluation criteria
	Implementation details


	Additional experiment results
	Ablation study about varying 
	Additional results of the hypergrid environment


