

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS GREATER LEVERAGE: SCALING LAWS FOR EFFICIENT MoE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) has become a dominant architecture for scaling Large Language Models (LLMs) efficiently by decoupling total parameters from computational cost. However, this decoupling creates a critical challenge: predicting the model capacity of a given MoE configurations (*e.g.*, expert activation ratio and granularity) remains an unresolved problem. To address this gap, we introduce *Efficiency Leverage (EL)*, a metric quantifying the computational advantage of an MoE model over a dense equivalent. We conduct a large-scale empirical study, training over 300 models up to 28B parameters, to systematically investigate the relationship between MoE architectural configurations and EL. Our findings reveal that EL is primarily driven by the expert activation ratio and the total compute budget, both following predictable power laws, while expert granularity acts as a non-linear modulator with a clear optimal range. We integrate these discoveries into a unified scaling law that accurately predicts the EL of an MoE architecture based on its configuration. To validate our derived scaling laws, we designed and trained `MoE-mini`, a model with only 0.85B active parameters, alongside a 6.1B dense model for comparison. When trained on an identical 1T high-quality token dataset, `MoE-mini` matched the performance of the 6.1B dense model while consuming over 7x fewer computational resources, thereby confirming the accuracy of our scaling laws. This work provides a principled and empirically-grounded foundation for the scaling of efficient MoE models.

1 INTRODUCTION

Mixture-of-Experts (MoE) models (Shazeer et al., 2017; Jiang et al., 2024; DeepSeek-AI, 2024) have emerged as a leading paradigm for constructing large language models (LLMs) (Zhao et al., 2023), primarily due to its remarkable computational efficiency (Clark et al., 2022). By leveraging sparse activation, MoE models can dramatically increase their total parameter count without proportionally increasing the computational cost (FLOPs). For instance, DeepSeekMoE (Deepseek-AI

(a) Definition of Efficiency Leverage (EL)

(b) Estimated EL at 1e22 FLOPs

Figure 1: Illustration of the Efficiency Leverage (EL) metric for MoE architecture versus dense architecture and its estimated values using Eq. 4 for 1e22 FLOPs.

et al., 2024), with 16 billion total parameters, activates only 2.8 billion per token, yet achieves performance comparable to a 7-billion-parameter dense model, showcasing a parameter efficiency gain of approximately 2.5x. However, the decoupling of computational cost from the total parameter count in MoE introduces a new challenge in assessing a model’s capacity. Specifically, neither the total nor the activated parameter count alone serves as a reliable proxy for performance of MoE models. Consequently, predicting the effective capacity of a specific MoE architecture and setting realistic performance expectations before pre-training remains a critical and unresolved problem. While scaling laws are fundamental for predicting language model performance, their application to MoE models remains fragmented. Prior work has largely studied architectural factors like sparsity or granularity in isolation (Clark et al., 2022; Ludziejewski et al., 2024; Abnar et al., 2025; Ludziejewski et al., 2025). This leaves a critical question unanswered: *how do these factors collectively determine an MoE’s true computational advantage over a standard dense model?*

To address this gap, we introduce **Efficiency Leverage (EL)**, a metric that quantifies an MoE’s computational advantage over a dense counterpart. As illustrated in Figure 1a, at compute budget C_{MoE} , we define EL as the ratio of training compute budgets a dense model $\mathcal{X}_{\text{Dense}}$ requires to match the performance (e.g., identical loss) of an MoE model \mathcal{X}_{MoE} : $\text{EL}(\mathcal{X}_{\text{MoE}} \mid \mathcal{X}_{\text{Dense}}; C_{\text{MoE}}) = \frac{C_{\text{Dense}}}{C_{\text{MoE}}}$. This definition provides a powerful and intuitive benchmark for MoE architectural comparison: an EL of 5, for example, means an MoE architecture matches the performance of a dense model trained with five times the compute budget. Consequently, for a fixed compute budget, a higher EL directly translates to greater efficiency, enabling larger and more capable models.

To build a predictive framework for EL, our study follows a three-stage methodology. First, we establish fair training conditions by deriving scaling laws for hyperparameters and data allocation in preliminary experiments. Second, we systematically isolate the impact of core architectural dimensions (such as activation ratio, granularity, and shared experts) on EL. Finally, we synthesize these findings into a unified scaling law that accurately predicts an MoE configuration’s EL, offering a practical guide for designing next-generation efficient models. Applying this methodology, we trained over 300 MoE models up to 28B parameters, using a total of 680k H800-equivalent GPU-hours. This large-scale effort led us to identify several core principles for optimizing the efficiency of MoE models. Our key findings are:

1. **Activation ratio as the primary driver of efficiency.** The expert activation ratio emerges as the primary determinant of EL. We observe a stable power-law relationship: EL increases as the activation ratio decreases (i.e., as sparsity increases). This reveals that sparsely activated pathways yield consistent and predictable gains in computational efficiency.
2. **Expert granularity as a non-linear modulator.** Superimposed on this primary trend, expert granularity introduces a log-polynomial adjustment to EL. This effect is independent of the total compute budget and implies an optimal range for expert size. Our experiments, which utilize a standard load-balancing loss, identify this optimum to be between 8 and 12.
3. **Amplifying effect of the compute budget.** Crucially, the EL of a given MoE architecture is not static; it scales with the training compute budget, also following a power law. This finding underscores the advantage of MoE models in large-scale pre-training, where their efficiency gains become increasingly significant as computational resources expand.
4. **Secondary impact of other architectural factors.** Other design choices, such as shared experts or the specific arrangement of MoE layers, have a secondary impact on EL, as they typically possess broadly applicable, near-optimal settings that require minimal tuning.

Synthesizing these findings, we derive a unified scaling law for EL. This law integrates the effects of compute budget, activation ratio, and expert granularity, providing a predictive framework to guide efficient MoE design. As a practical demonstration, Figure 1b visualizes the predicted EL landscape under a $1e22$ FLOPs budget, highlighting optimal architectural regions.

According to our derived scaling law for EL, we predict that an MoE model with a 3.1 % activation ratio and a granularity of 12 should achieve an efficiency leverage of over 7x at this compute scale. To validate this prediction, we designed and trained MoE-mini (17.5B total, 0.85B active parameters) against a 6.1B dense counterpart on a 1-trillion-token dataset. The results confirmed our hypothesis: MoE-mini achieved a lower final training loss and slightly outperformed the dense model across downstream tasks. This outcome empirically validates our law’s prediction of a $> 7 \times$

108 efficiency gain. These findings establish our scaling law as a solid theoretical and empirical founda-
 109 tion for designing future large-scale, efficient MoE models.
 110

111 2 PRELIMINARY

113 2.1 MIXTURE-OF-EXPERT TRANSFORMERS.

115 **Total and Active Parameters.** We distinguish between a model’s *total parameters* (N), which
 116 include all weights (including all experts), and its *active parameters* (N_a), which comprise only the
 117 non-expert weights and the subset of experts activated for a given token.

119 **Routable and Shared Experts.** An MoE layer contains two types of experts: *E routable experts*,
 120 from which a gate dynamically selects E_a per token, and *E_s shared experts*, which are consistently
 121 activated for all tokens to process common knowledge.

123 **Activation Ratio and Sharing Ratio.** We characterize the expert configuration with two ratios
 124 that quantify utilization. The *Activation Ratio* (A), defined as $A = (E_a + E_s)/(E + E_s)$, measures
 125 the overall sparsity of the MoE layer. The *Sharing Ratio* (S), defined as $S = E_s/(E_a + E_s)$,
 126 represents the proportion of activated experts that are shared.

128 **Granularity of Experts.** While traditionally the expert dimension (d_{expert}) was tied to the FFN
 129 intermediate size (e.g., $4d_{\text{model}}$), recent work decouples them to explore finer-grained experts. We
 130 define *Expert Granularity* (G) as $G = 2d_{\text{model}}/d_{\text{expert}}$ to systematically analyze expert size. A higher
 131 G indicates a shift towards more, smaller experts for a fixed parameter budget, departing from the
 132 conventional practice where d_{expert} was tied to the FFN’s intermediate dimension (e.g., $4d_{\text{model}}$).¹

133 **Model Scale in Computation.** Following prior work (Bi et al., 2024), we define model scale (M)
 134 as the non-embedding FLOPs per token. This metric provides a fair basis for comparing dense and
 135 MoE architectures, as it inherently accounts for sparse activation. The total training compute (C)
 136 for D tokens is then given by $C = M \cdot D$. We provide the exact calculation for M in Appendix I.

138 2.2 SCALING LAWS FOR MOE OPTIMAL HYPER-PARAMETERS

140 To ensure fair architectural comparisons, we first establish scaling laws for the optimal training hy-
 141 perparameters of MoE models. By performing a large-scale hyperparameter search over a wide
 142 range of compute budgets (C), we derived the scaling laws for the optimal learning rate (η^{opt}) and
 143 batch size (B^{opt}). Our analysis, detailed in Appendix E.1, reveals a key distinction from dense mod-
 144 els: at larger compute scales, MoE models favor a significantly larger batch size and a slightly lower
 145 learning rate (Figure 2a). This phenomenon is attributable to MoE’s sparse backpropagation, where
 146 gradients from only a subset of tokens in a batch update each expert’s parameters. We validated
 147 that these derived laws are generalizable across MoE models with varying expert activation ratios
 148 (shown in Figure 8). This confirms that our findings provide a reliable foundation for exploring
 149 diverse MoE architectures under near-optimal training conditions.

150 2.3 SCALING LAWS FOR MOE OPTIMAL MODEL-DATA ALLOCATION

152 To achieve compute-optimal training, the allocation of a fixed FLOPs budget (C) between model
 153 size (M) and data size (D) is critical. We analyze this trade-off for Mixture-of-Experts (MoE)
 154 models and compare them against dense models. Our analysis, detailed in Appendix E.2, yields
 155 two key insights: First, consistent with prior work (Bi et al., 2024; Hoffmann et al., 2022), the
 156 optimal allocation for both MoE and dense models involves splitting the compute budget roughly
 157 equally between model and data scaling (i.e., the scaling exponents are close to 0.5). Second, and
 158 more crucially, at any given compute budget, the optimal MoE model is computationally smaller but
 159 trained on more data than its optimal dense counterpart (Figure 2b). This suggests that MoEs possess
 160 greater capacity per parameter, enabling them to effectively leverage larger datasets with smaller

161 ¹Our definition ($2d_{\text{model}}/d_{\text{expert}}$) differs from Ludziejewski et al. (2024) ($4d_{\text{model}}/d_{\text{expert}}$) to align with recent
 162 models (DeepSeek-AI, 2024; Moonshot-AI, 2025). This choice leads to different observed scaling phenomena.

Figure 2: Scaling laws for optimal hyperparameters and optimal model-data allocation. Blue and red lines represent the fitted laws for MoE and dense models, respectively, derived on the same training dataset. Gray circles are the experimental data points used for fitting.

model sizes. This finding is particularly significant for training in data-rich but compute-limited scenarios, as it highlights a path toward greater efficiency. *The above scaling laws for optimal hyperparameters and optimal model-data allocation provide a principled basis for model and data selection in our subsequent experiments.*

3 EFFICIENCY LEVERAGE: METRIC FOR QUANTIFYING MOE COMPUTE-EFFICIENCY

To quantify the computational advantage of MoEs, we introduce a core metric: **Efficiency Leverage (EL)**. Intuitively, EL measures how many more FLOPs a corresponding dense architecture requires to achieve the same performance as an MoE architecture.

Formally, the EL is defined as the ratio of the compute budgets required for a dense and an MoE architecture to achieve the same target loss value, L^* at the same dataset. Let $L_{\mathcal{X}}(C)$ be the optimal loss scaling function for an architecture \mathcal{X} , representing the best achievable loss for a given compute budget C . Consistent with prior work (Kaplan et al., 2020; Henighan et al., 2020; Achiam et al., 2023), this function is typically modeled as a power law, e.g., $L_{\mathcal{X}}(C) = \alpha_{\mathcal{X}} C^{\beta_{\mathcal{X}}} + b_{\mathcal{X}}$. The compute required to reach a target loss L^* is therefore given by the inverse function, $C_{\mathcal{X}}(L^*) = L_{\mathcal{X}}^{-1}(L^*)$. The EL is then formally expressed as:

$$\text{EL}(\mathcal{X}_{\text{MoE}} \mid \mathcal{X}_{\text{Dense}}; L^*) = \frac{C_{\mathcal{X}_{\text{Dense}}}(L^*)}{C_{\mathcal{X}_{\text{MoE}}}(L^*)}.$$

In our work, we define the target loss L^* as the loss achieved by the MoE model at its own compute budget, C_{MoE} (i.e., $L^* = L_{\mathcal{X}_{\text{MoE}}}(C_{\text{MoE}})$). This practical choice simplifies the EL to a function of the MoE architecture, the dense architecture, and the MoE model’s compute budget:

$$\text{EL}(\mathcal{X}_{\text{MoE}} \mid \mathcal{X}_{\text{Dense}}; C_{\text{MoE}}) = \frac{L_{\mathcal{X}_{\text{Dense}}}^{-1}(L_{\mathcal{X}_{\text{MoE}}}(C_{\text{MoE}}))}{C_{\text{MoE}}} = \frac{C_{\text{Dense}}}{C_{\text{MoE}}},$$

where C_{Dense} is the compute budget required for the dense model to match the MoE’s loss, obtained by inverting the dense model’s loss scaling curve.

Our primary goal is to build a predictive model for EL based on key MoE architectural choices. We focus on three critical dimensions that govern MoE capacity: the *Activation Ratio (A)*, *Expert Granularity (G)*, and *Shared Expert Ratio (S)*. Other factors, like the arrangement of MoE layers, have a secondary impact (detailed in Appendix F.4). To achieve this, we conduct systematic ablation studies, varying one architectural dimension at a time across a range of compute budgets (3×10^{18} to 3×10^{20} FLOPs). Crucially, to ensure a fair comparison, our methodology is guided by the preliminary findings in Sections 2.2 and 2.3. For each experiment, we use our derived scaling laws to set the comparable suboptimal model/data allocation and training hyperparameters. This rigorous protocol ensures that every architecture is evaluated near its peak potential, yielding robust and reliable results. Full experimental details are in Appendix D. The following sections first analyze each factor’s impact on EL individually, then synthesize these findings into a unified scaling law.

216

4 SCALING LAWS FOR EFFICIENT MOE ARCHITECTURE

217
218 To achieve greater leverage, we first conduct an extensive empirical study on the architectural con-
219 figurations of MoE and derive unified scaling laws for efficient MoE architectures.
220221

4.1 EMPIRICAL STUDY ON THE INTERPLAY BETWEEN LOSS AND MOE ARCHITECTURE

222 Our investigation focuses on several critical architectural factors: the expert activation ratio (A),
223 expert granularity (G), and sharing ratio (S). For each architectural dimension, we vary it system-
224 atically while holding other factors and the model scale M constant. To ensure a fair comparison,
225 all models are trained following the training hyperparameters derived from our scaling laws (Sec-
226 tion 2). Guided by the scaling laws for optimal model-data allocation (Section 2.3), we train each
227 model on over three times its optimal number of tokens. This was done to simulate the overtrained
228 state commonly observed in real-world scenarios. A detailed analysis and a complete list of trained
229 models are provided in Appendix F and Appendix J, respectively.
230231 **Expert Activation Ratio (A).** We first investigate the activation ratio (A), which governs model
232 sparsity. By varying the total number of experts while keeping the number of activated experts
233 fixed, our IsoFLOPs experiments reveal a clear power-law relationship: for any given computational
234 budget and any given model scale, training loss monotonically decreases with the activation ratio
235 (Figure 3a). This trend holds consistently down to the lowest ratio tested, 1/128 (0.8%), demon-
236 strating that greater sparsity yields higher parameter efficiency without an observable turning point.
237 Moreover, this efficiency advantage is amplified at larger training scales, confirming that sparser
238 models are increasingly beneficial in high-computation regimes. See Appendix F.1 for details.
239240 **Expert Granularity (G).** Next, we analyzed expert granularity (G), which defines the trade-off
241 between employing numerous small experts versus fewer large ones. Our experiments reveal a
242 distinct U-shaped relationship between granularity and training loss, demonstrating the existence of
243 an optimal point that maximizes performance per FLOP (Figure 3b). This optimum proved to be
244 remarkably stable across different compute budget (e.g., $G=12$ in our tests). **This suggests that while**
245 **overly coarse-grained experts fail to effective specialization (Deepseek-AI et al., 2024), excessively**
246 **fine-grained experts is also often suboptimal.** Crucially, we find that routing quality is a key factor,
247 as poor load balancing shifts the optimal point toward coarser granularities (details in Appendix F.2).
248249 **Shared Expert Ratio (S).** Our analysis of the shared expert ratio (S) reveals a U-shaped perfor-
250 mance curve, where a small but non-zero ratio minimizes training loss (Figure 3c). Furthermore, we
251 identify a subtle scaling trend: the optimal S decreases as the compute budget grows. This leads to a
252 practical heuristic for large-scale training (e.g., $> 10^{20}$ FLOPs): a “one shared expert” design, rep-
253 resenting the minimal effective non-zero ratio, is the most efficient choice (details in Appendix F.3).
254255 **Other Architectural Factors.** We further analyzed two design dimensions to enhance MoE effi-
256 ciency: layer arrangement and compute allocation between attention and FFN. We found that incor-
257 porating dense layers in the early stages of MoE has minor impact on efficiency but helps mitigate
258 routing imbalances and reduces overall parameters. For compute allocation, allocating 30%-40%
259 of FLOPs to the attention mechanism achieves optimal or near-optimal performance, with minor
impact outside this range. Detailed results are available in Appendix F.4.
260261

4.2 SCALING LAWS FOR MOE EFFICIENCY LEVERAGE

262 Based on the empirical study in Section 4.1, shared experts and other design factors have a secondary
263 impact on EL, as they typically have robust, near-optimal settings. Therefore, we focus on deriving
264 a parametric scaling law for EL as a function of activation ratio A , granularity G , and FLOPs C .
265266

4.2.1 UNIVARIATE SCALING LAWS FOR EFFICIENCY LEVERAGE

267 To systematically analyze each core architectural dimension, we vary it while holding the others and
268 the total compute budget (i.e., FLOPs per token, M) constant. This controlled approach is essential,
269 as a full combinatorial exploration would be prohibitively complex and unaffordable.
270

(a) IsoFLOPs curves for varying A (b) IsoFLOPs curves for varying G (c) IsoFLOPs curves for varying S

Figure 3: Impact of MoE architectural choices on performance. **(a) Activation Ratio (A):** At a fixed compute budget, loss monotonically decreases with a lower activation ratio. The advantage of sparsity is magnified at scale. **(b) Expert Granularity (G):** A U-shaped relationship between granularity and loss reveals an optimal point (marked by orange stars) that maximizes efficiency. **(c) Shared Expert Ratio (S):** A U-shaped loss curve shows that a low, non-zero S is optimal.

Our procedure for deriving the scaling law for each architectural dimension follows three stages, as detailed in Algorithm 1. First, we generate a dataset of ‘(compute, loss)‘ pairs by training a suite of MoE models (Tables 8–10) and their dense counterparts. Second, we fit these points to loss scaling curves for each architectural setting. From these curves, we compute the EL for various MoE architectures and FLOPs budgets, as illustrated in Figures 10b, 11b, and 12b. Finally, we collect the resulting EL values from different settings and use them to derive the univariate scaling laws for activation ratio A , granularity G , and FLOPs C , as presented in Figure 6.

Interaction of Efficiency Leverage and Activation Ratio. Our preceding analysis identifies the activation ratio (A) as the primary factor influencing EL. As illustrated in Figure 4a, reducing the activation ratio (*i.e.*, increasing sparsity) consistently yields substantial efficiency gains, following a similar power-law relationship across all FLOPs budgets. This leads us to hypothesize: for a given FLOPs budget and granularity, there exists a power-law dependence between EL and activation ratio.

$$\log EL_{C,G}(\hat{A}) = a_A \log \hat{A}, \quad \text{i.e. } EL_{C,G}(\hat{A}) = \hat{A}^{a_A},$$

$$\text{where } \hat{A} = \frac{1}{A + (1/A_{start} - 1/A_{max})^{-1}} + \frac{1}{A_{max}}, \quad (1)$$

where \hat{A} is a saturating transformation of A , as defined in Clark et al. (2022), and we set the lower bound of meaningful activation ratio as 0. Clearly, when $A = 1$, we have $EL = 1$, indicating that the EL of the dense model is 1, which satisfies the dense equivalence. We fit Eq. 1 to the data for each compute budget, and the resulting predictions (dotted lines in Figure 4a) align well with our observations. Notably, the fitted exponent a_A is not constant. It increases as A decreases, indicating a diminishing benefit from increased sparsity, consistent with prior work (Clark et al., 2022). Furthermore, a_A also increases with the compute budget C , suggesting greater leverage for larger models. We will analyze the relationship between FLOPs and EL in the following paragraph.

Interaction of Efficiency Leverage and Expert Granularity. As previously observed, an optimal expert granularity exists that maximizes the EL. Thus, we hypothesize that for a fixed FLOPs budget C and activation ratio A , the relationship between EL and G follows a log-polynomial pattern:

$$\log EL_{C,A}(G) = a_G + b_G (\log G (\log G + c_G)), \quad (2)$$

where a_G is the granularity-independent base EL, representing the theoretical value when granularity is 1. b_G controls the strength of the curvature in the relationship between EL and granularity, reflecting the sensitivity of the model architecture to changes in expert granularity. c_G determines the position of the optimal granularity that maximizes EL. We fit Eq. 2 to each FLOPs budget and plot the predictions for varying granularity as dotted lines in the Figure 4b. As shown, the curves under different FLOPs budgets are highly similar (*i.e.*, with similar values of b_G and c_G), indicating that the impact of expert granularity on MoE efficiency is consistent across various compute budgets.

Figure 4: Scaling behavior of efficiency leverage (EL). (a) With fixed granularity ($G = 2$), EL follows a power law with respect to activation ratio \hat{A} across all tested compute budgets (C). (b) With a fixed activation ratio ($A = 3.1\%$), EL’s scaling with granularity G conforms to a log-polynomial law across all compute budgets. (c) With both activation ratio (A) and granularity (G) held constant, EL scales with compute according to a standard power law. **Points below 3e20 FLOPs represent experimental data, while points beyond this threshold are predictions extrapolated from scaling law.**

Interaction of Efficiency Leverage and Compute Budget. Based on the analysis presented in Section 4.1 and Section 4.2.1, we observe that the efficiency advantage of MoE increases as the computational budget grows. To formalize the relationship between the FLOPs budget and EL, we assume a standard power-law pattern as follows:

$$\log EL_{A,G}(C) = a_C \log C + c_C, \quad \text{i.e. } EL_{A,G}(C) = \exp(c_C) \cdot C^{a_C}, \quad (3)$$

where a_C reflects the scaling capability of MoE efficiency with respect to the compute budget under given configurations A and G . We collect the values of the EL corresponding to different model architectures under the granularity setting of 2, and fit Eq. 2 to each architectures. The predictions for varying granularity are plotted as dotted lines in the Figure 4c. The results indicate that all tested MoE architectures show a trend of higher EL as the FLOPs budget increases, demonstrating the potential of MoE in large-scale pre-training.

Our choice for each univariate scaling law is justified by a goodness-of-fit comparison against simpler alternatives. The specifics of the comparative analysis are presented in Appendix N.

4.2.2 JOINT SCALING LAW FOR EFFICIENCY LEVERAGE

Based on the preceding observations and univariate scaling laws, we identify three key insights:

- The activation ratio (or sparsity) is the primary driver of MoE efficiency, establishing a foundational power-law relationship.
- Building upon this power law, expert granularity imposes a non-linear adjustment that operates independently of the compute budget.
- Furthermore, the efficiency advantage of MoE over dense models is amplified by the compute budget C through the power-law pattern.

To unify these interconnected effects, we propose the following joint scaling law for EL:

$$EL(A, G, C) = \hat{A}^{\alpha+\gamma(\log G)^2+\beta \log G}, \quad (4)$$

where $\alpha = a + d \log C$ is the compute-dependent exponent that captures the primary power-law relationship between EL and FLOPs ratio. The term a represents the base scaling exponent at a reference compute budget, while d is a positive constant that quantifies how the EL is amplified by a larger compute budget C . The parameters β and γ model the non-linear impact of granularity G . This quadratic form in $\log G$ directly reflects the log-polynomial pattern observed in our initial analysis, capturing the existence of an optimal granularity.

4.2.3 FIT AND VALIDATION

To validate the proposed scaling law for EL, we fit Eq. 4 using Huber loss and the BFGS optimization algorithm (Hoffmann et al., 2022). We use data points with an EL factor below 6 for training,

378 while those are reserved as a validation set.
 379 As depicted in Figure 5, the resulting model
 380 achieves an R^2 of 0.9858 and demonstrates
 381 strong predictive power. This is evidenced by
 382 a low RMSE on both the training set (0.2169
 383 over 200 points) and the validation set (0.5275
 384 over 24 points). The quality of the fit is further
 385 corroborated by the residuals, which are ap-
 386 proximately normally distributed and centered
 387 at zero (mean = -0.0273, std. = 0.2803). The fit-
 388 ted coefficients and a more detailed goodness-
 389 of-fit analysis can be found in Appendix G and
 390 Appendix N.4, respectively.

391 The alignment between the scaling law and
 392 both the training data and validation set pro-
 393 vides strong empirical support for the proposed
 394 relationship. More importantly, the scaling law exhibits remarkable extrapolation capabilities, as it
 395 accurately models performance trends for high-leverage validation points outside the training range.
 396 These results confirm that Eq. 4 effectively captures the underlying interaction between MoE archi-
 397 tecture and EL.

398 Furthermore, we select $1e22$ FLOPs compute budget, and apply our fitted scaling laws to predict EL
 399 across various MoE configurations. As shown in Figure 1, our analysis predicts that an EL exceeding
 400 7x can be achieved at a budget of $1e22$ FLOPs with an activation ratio of 3.1% and a granularity of
 401 12. This claim is experimentally validated in the following section.

402 5 MOE-MINI: MORE EFFICIENT MOE LANGUAGE MODEL

403 To validate the scaling laws derived in Section 4, we designed a new MoE model, MoE-mini , con-
 404 figured with architectural parameters predicted to be highly efficient. It features a total of 17.5B
 405 parameters but only 0.85B active parameters, achieved through a granularity of $G = 12$ and a low
 406 activation ratio of $A = 3.4\%$. Referring to Figure 1, at the $1e22$ FLOPs compute budget, we hy-
 407 pothesize that MoE-mini achieves **more than 7x in compute-efficiency leverage** over a comparable
 408 dense model. Concurrently, we train a traditional dense model with 6.1 billion parameters (named
 409 “ Dense-6.1B ”) for comparison. This section presents a detailed analysis of the performance dif-
 410 ferences between MoE-mini and the conventional dense model Dense-6.1B , highlighting that
 411 the active parameter count, training costs, and downstream inference costs of Dense-6.1B are
 412 more than seven times those of MoE-mini . The architectures of MoE-mini and Dense-6.1B are
 413 given in Table 1, while their detailed architectures and training setting are provided in Appendix D.

414 Table 1: Detailed Architectures of MoE-mini and Dense-6.1B for Comparison.

415 Model	n_{layers}	d_{model}	d_{ffn}	d_{expert}	n_{heads}	$n_{kv.head}$	E	E_a	E_s	N	N_a
416 Dense-6.1B	28	4096	14336	-	32	8	-	-	-	6.11B	6.11B
417 MoE-mini (A0.8B)	20	2048	5120	384	16	4	384	12	1	17.5B	0.85B

421 5.1 TRAINING DYNAMICS

422 **The Dynamic of Training Loss** The training loss curves for MoE-mini and Dense-6.1B ,
 423 shown in Figure 6a, illustrate a clear difference in their convergence behavior. The dense model
 424 exhibits faster convergence during the early training phases, indicating an aptitude for rapid initial
 425 learning. In contrast, MoE-mini ’s loss decreases more gradually at the start. However, over the full
 426 course of training, MoE-mini steadily improves and ultimately achieves a performance level
 427 comparable to that of the dense model, highlighting its ability to reach high performance with sufficient
 428 training. Focusing on the final 100 billion tokens of training provides further insight. In this con-
 429 cluding stage, the performance gap between MoE-mini and Dense-6.1B narrows to a negligible
 430 difference of about 0.01 in loss value. This confirms that MoE-mini can nearly match the dense

431 Figure 5: Validation of the Scaling Laws for Ef-
 432 ficiency Leverage. We fit Eq. 4 to the data points
 433 with an efficiency leverage of less than 6, using
 434 the remaining points as the validation set.

435 The alignment between the scaling law and
 436 both the training data and validation set pro-
 437 vides strong empirical support for the proposed
 438 relationship. More importantly, the scaling law exhibits remarkable extrapolation capabilities, as it
 439 accurately models performance trends for high-leverage validation points outside the training range.
 440 These results confirm that Eq. 4 effectively captures the underlying interaction between MoE archi-
 441 tecture and EL.

442 Furthermore, we select $1e22$ FLOPs compute budget, and apply our fitted scaling laws to predict EL
 443 across various MoE configurations. As shown in Figure 1, our analysis predicts that an EL exceeding
 444 7x can be achieved at a budget of $1e22$ FLOPs with an activation ratio of 3.1% and a granularity of
 445 12. This claim is experimentally validated in the following section.

446 5 MOE-MINI: MORE EFFICIENT MOE LANGUAGE MODEL

447 To validate the scaling laws derived in Section 4, we designed a new MoE model, MoE-mini , con-
 448 figured with architectural parameters predicted to be highly efficient. It features a total of 17.5B
 449 parameters but only 0.85B active parameters, achieved through a granularity of $G = 12$ and a low
 450 activation ratio of $A = 3.4\%$. Referring to Figure 1, at the $1e22$ FLOPs compute budget, we hy-
 451 pothesize that MoE-mini achieves **more than 7x in compute-efficiency leverage** over a comparable
 452 dense model. Concurrently, we train a traditional dense model with 6.1 billion parameters (named
 453 “ Dense-6.1B ”) for comparison. This section presents a detailed analysis of the performance dif-
 454 ferences between MoE-mini and the conventional dense model Dense-6.1B , highlighting that
 455 the active parameter count, training costs, and downstream inference costs of Dense-6.1B are
 456 more than seven times those of MoE-mini . The architectures of MoE-mini and Dense-6.1B are
 457 given in Table 1, while their detailed architectures and training setting are provided in Appendix D.

458 Table 1: Detailed Architectures of MoE-mini and Dense-6.1B for Comparison.

459 Model	n_{layers}	d_{model}	d_{ffn}	d_{expert}	n_{heads}	$n_{kv.head}$	E	E_a	E_s	N	N_a
460 Dense-6.1B	28	4096	14336	-	32	8	-	-	-	6.11B	6.11B
461 MoE-mini (A0.8B)	20	2048	5120	384	16	4	384	12	1	17.5B	0.85B

Figure 6: Dynamic of Training Loss (left) and Benchmarks (right).

model’s effectiveness while operating with significantly fewer computational resources. Crucially, this near-equal performance underscores MoE-mini’s ability to deliver over 7x gains in training efficiency, making it a highly cost-effective and powerful alternative for large-scale pre-training.

The Dynamic of Benchmarks Throughout training, MoE-mini and Dense-6.1B demonstrated remarkably synchronous performance gains on standard benchmarks, shown in Figure 6b. The data reveals a clear and consistent trend: the two models improved almost synchronously. At no point during training did one model show a decisive or lasting advantage over the other. This lockstep progression continued until the end of the training cycle, where they posted nearly identical final scores on the evaluation leaderboard. This synchronous dynamic and convergent outcome suggest a fundamental parity in their learning efficiency and final performance ceiling under our experimental conditions.

5.2 EVALUATION

Evaluation Benchmarks To provide a holistic assessment of our model’s capabilities, we evaluate it on a diverse suite of downstream benchmarks. These tasks are grouped into five key categories: General Knowledge and Reasoning, Language Understanding, Professional Knowledge, Math, and Code. A detailed list of all benchmarks used in each category is provided in Appendix H.

Evaluation Results The comparative evaluation, summarized in Table 2, reveals that MoE-mini achieves a superior overall score of 45.5, outperforming Dense-6.1B’s 44.0. This result demonstrates that MoE-mini achieves a “small yet powerful” feat: while its activated parameters constitute only about 13% of its competitor’s during inference, it strikes an exceptional balance between performance and efficiency. Beyond the overall average, MoE-mini demonstrates consistent advantages across most key domains, including reasoning, language understanding, code generation, and advanced mathematics. Its superiority is particularly pronounced in tasks requiring high coding proficiency and deep contextual understanding. While there are minor variations on specific benchmarks, the general trend confirms its strong potential in solving complex problems. This result validates that MoE-mini achieves an impressive 7x efficiency leverage, delivering performance comparable to a 6.1B dense model that uses over 7 times the active parameters. A detailed, benchmark-by-benchmark comparison is provided in Appendix H.

Table 2: Performance comparison of MoE-mini (17B-A0.8B) and Dense-6.1B.

Model	General/Reasoning	Professional	Language	Code	Math	Overall Avg.
Dense-6.1B	55.8	44.0	69.2	36.9	32.9	44.0
MoE-mini (A0.8B)	56.2	44.7	71.6	39.8	34.7	45.5

486

6 RELATED WORK AND DISCUSSION

488 We provide a broader survey of related work in Appendix B and compare our findings with key
 489 prior studies in Appendix C. Our work formulates scaling laws in terms of Efficiency Leverage (EL),
 490 diverging from prior loss-centric studies. This EL-based approach offers a more direct and practical
 491 framework for understanding MoE efficiency for two key reasons: **1) EL directly quantifies an**
 492 **MoE’s compute advantage.** Unlike absolute loss, which is dataset-specific and hard to interpret,
 493 EL provides a generalizable architectural insight. **2) EL can Simplify Model Selection.** Instead of
 494 fitting multiple complex loss functions, practitioners can use our scaling laws to directly compare
 495 the efficiency of different MoE configurations. This dramatically simplifies architectural design
 496 choices. In short, while traditional laws predict *what* the loss will be, our formulation quantifies
 497 *how much more efficient* an MoE architecture is, offering actionable design guidance.

498

7 LIMITATIONS AND FUTURE WORK

500 Our study has four primary limitations, which also point to valuable directions for future research.
 501
 502 First, following standard practice (Clark et al., 2022; Kaplan et al., 2020; Hoffmann et al., 2022),
 503 we measure computational cost in theoretical FLOPs. This hardware-agnostic metric overlooks
 504 practical wall-clock effects (communication, memory, kernel efficiency, parallelization). Our work
 505 thus establishes a theoretical upper bound on efficiency, a necessary first step before optimizing for
 506 real-world costs. Second, to make a systematic analysis feasible, we assume that MoE architectural
 507 factors are independent. This allowed us to pragmatically study each factor in isolation and syn-
 508 thesized the results into a unified law. However, this approach may overlook interaction effects that
 509 could unlock further optimizations. Third, due to resource constraints, we applied a single hyper-
 510 parameter scaling law to all MoE models, regardless of their sparsity. While effective, developing
 511 a sparsity-aware hyperparameter law that tailors settings to each model is a promising avenue for
 512 future work. Fourth, our scaling laws focus on compute budget rather than its allocation between
 513 training data and model size. Establishing a *Chinchilla-like* scaling law in term of model size and
 514 dataset size for MoEs’ efficiency to guide this trade-off is an important next step.

515 Despite these limitations, our findings confirm the significant potential of MoE models, which pro-
 516 vide a clear path toward more capable and efficient models in terms of theoretical compute cost.

518

8 CONCLUSION

519 In this work, we introduce Efficiency Leverage (EL), a metric quantifying an MoE model’s computa-
 520 tional advantage over a dense counterpart, to analyze how architectural choices govern performance.
 521 Our large-scale study of over 300 models reveals that MoE efficiency follows predictable principles:
 522 EL scales as a power-law with activation ratio and compute budget, while expert granularity has
 523 a non-linear effect with a distinct optimal range. Other factors, like shared experts, have a sec-
 524 ondary impact. We unified these principles into a single scaling law that accurately predicts MoE
 525 efficiency. To validate it, we designed a 0.85B activated parameter MoE model which, as predicted,
 526 achieved over 7x efficiency leverage, confirming our law’s robust predictive power. For future work,
 527 our framework can be extended in several key directions: (1) Incorporating memory constraints
 528 and communication overhead into the EL framework, particularly for distributed training scenar-
 529 os where these factors dominate practical efficiency. (2) Developing a unified metric that balances
 530 training compute with inference latency, enabling end-to-end efficient architecture co-design. We
 531 hope this work inspires continued innovation in MoE architectures toward greater leverage.

534

535 USE OF LARGE LANGUAGE MODELS

536 During the preparation of this work, we used LLMs (e.g., GPT-5 and Gemini-2.5-pro) to assist with
 537 editing and polishing the manuscript for clarity and readability. Furthermore, the plotting code for
 538 the figures presented in this paper was generated with the assistance of these models.

540 REFERENCES

542 Samira Abnar, Harshay Shah, Dan Busbridge, Alaaeldin Mohamed Elnouby Ali, Josh Susskind,
 543 and Vimal Thilak. Parameters vs flops: Scaling laws for optimal sparsity for mixture-of-experts
 544 language models. *arXiv preprint arXiv:2501.12370*, 2025.

545 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 546 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 547 report. *arXiv preprint arXiv:2303.08774*, 2023.

548 Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
 549 Sanghi. Gqa: Training generalized multi-query transformer models from multi-head check-
 550 points. *arXiv preprint arXiv:2305.13245*, 2023.

551 Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
 552 Tworek, and Mark Chen. Efficient training of language models to fill in the middle. *CoRR*,
 553 abs/2207.14255, 2022. doi: 10.48550/ARXIV.2207.14255. URL <https://doi.org/10.48550/arXiv.2207.14255>.

556 Tamay Besiroglu, Ege Erdil, Matthew Barnett, and Josh You. Chinchilla scaling: A replication
 557 attempt. *arXiv preprint arXiv:2404.10102*, 2024.

558 Sumithra Bhakthavatsalam, Daniel Khashabi, Tushar Khot, Bhavana Dalvi Mishra, Kyle Richard-
 559 son, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord, and Peter Clark. Think you have
 560 solved direct-answer question answering? try arc-da, the direct-answer AI2 reasoning challenge.
 561 *CoRR*, abs/2102.03315, 2021. URL <https://arxiv.org/abs/2102.03315>.

562 Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
 563 Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
 564 longtermism. *arXiv preprint arXiv:2401.02954*, 2024.

565 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
 566 about physical commonsense in natural language. In *The Thirty-Fourth AAAI Conference on
 567 Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intel-
 568 ligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artifi-
 569 cial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020*, pp. 7432–7439. AAAI
 570 Press, 2020. doi: 10.1609/AAAI.V34I05.6239. URL <https://doi.org/10.1609/aaai.v34i05.6239>.

571 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
 572 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 573 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 574 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavari-
 575 an, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
 576 pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
 577 Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
 578 Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
 579 Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
 580 ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
 581 Zaremba. Evaluating large language models trained on code. *CoRR*, abs/2107.03374, 2021.
 582 URL <https://arxiv.org/abs/2107.03374>.

583 Yangyi Chen, Binxuan Huang, Yifan Gao, Zhengyang Wang, Jingfeng Yang, and Heng Ji. Scaling
 584 laws for predicting downstream performance in llms. *arXiv preprint arXiv:2410.08527*, 2024.

585 Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoff-
 586 mann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling
 587 laws for routed language models. In *International conference on machine learning*, pp. 4057–
 588 4086. PMLR, 2022.

589 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 590 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 591 Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021. URL
 592 <https://arxiv.org/abs/2110.14168>.

594 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

595

596

597 Deepseek-AI, Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Ji-

598 ashi Li, Wangding Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert

599 specialization in mixture-of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.

600 Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Worts-

601 man, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al. Language models scale

602 reliably with over-training and on downstream tasks. *arXiv preprint arXiv:2403.08540*, 2024.

603

604 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad

605 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd

606 of models. *arXiv preprint arXiv:2407.21783*, 2024.

607 Alex Gu, Baptiste Rozière, Hugh James Leather, Armando Solar-Lezama, Gabriel Synnaeve,

608 and Sida Wang. Cruxeval: A benchmark for code reasoning, understanding and execution.

609 In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,*

610 *July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=Ffp52swvg>.

611

612 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob

613 Steinhardt. Measuring massive multitask language understanding. In *9th International Confer-*

614 *ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenRe-

615 view.net, 2021a. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

616

617 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,

618 Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with

619 the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), *Proceedings*

620 *of the Neural Information Processing Systems Track on Datasets and Benchmarks*

621 *1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual*, 2021b. URL

622 <https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html>.

623

624 Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo

625 Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative

626 modeling. *arXiv preprint arXiv:2010.14701*, 2020.

627

628 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza

629 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-

630 ing compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

631

632 Shengding Hu, Xin Liu, Xu Han, Xinrong Zhang, Chaoqun He, Weilin Zhao, Yankai Lin, Ning

633 Ding, Zebin Ou, Guoyang Zeng, et al. Predicting emergent abilities with infinite resolution eval-

634 uation. *arXiv preprint arXiv:2310.03262*, 2023.

635

636 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,

637 Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models

638 with scalable training strategies. *arXiv preprint arXiv:2404.06395*, 2024.

639

640 Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng

641 Liu, Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, Maosong Sun, and Junxian He. C-eval:

642 A multi-level multi-discipline chinese evaluation suite for foundation models. In Alice Oh,

643 Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),

644 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-*

645 *formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10*

646 *- 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html.

647

648 Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and

649 Sanmi Koyejo. Scaling laws for downstream task performance in machine translation. In *The*

650 *Thirteenth International Conference on Learning Representations*, 2025.

648 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 649 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 650 evaluation of large language models for code. In *The Thirteenth International Conference on*
 651 *Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025.
 652 URL <https://openreview.net/forum?id=chfJJYC3iL>.

653 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
 654 ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
 655 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

656 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 657 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 658 models. *arXiv preprint arXiv:2001.08361*, 2020.

659 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard H. Hovy. RACE: large-scale
 660 reading comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and Se-
 661 bastian Riedel (eds.), *Proceedings of the 2017 Conference on Empirical Methods in Natural*
 662 *Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017*, pp. 785-
 663 794. Association for Computational Linguistics, 2017. doi: 10.18653/V1/D17-1082. URL
 664 <https://doi.org/10.18653/v1/d17-1082>.

665 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 666 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
 667 computation and automatic sharding. *arXiv preprint arXiv:2006.16668*, 2020.

668 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 669 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 670 reasoning problems with language models. *Advances in neural information processing systems*,
 671 35:3843-3857, 2022.

672 Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and
 673 Timothy Baldwin. CMMLU: measuring massive multitask language understanding in chi-
 674 nese. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Associa-*
 675 *tion for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August*
 676 *11-16, 2024*, pp. 11260-11285. Association for Computational Linguistics, 2024. doi: 10.
 677 18653/V1/2024.FINDINGS-ACL.671. URL <https://doi.org/10.18653/v1/2024.findings-acl.671>.

678 Houyi Li, Wenzhen Zheng, Jingcheng Hu, Qiufeng Wang, Hanshan Zhang, Zili Wang, Shijie
 679 Xuyang, Yuantao Fan, Shuigeng Zhou, Xiangyu Zhang, et al. Predictable scale: Part i-optimal hy-
 680 perparameter scaling law in large language model pretraining. *arXiv preprint arXiv:2503.04715*,
 681 2025.

682 Seng Pei Liew, Takuya Kato, and Sho Takase. Scaling laws for upcycling mixture-of-experts lan-
 683 guage models. *arXiv preprint arXiv:2502.03009*, 2025.

684 Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong Duan, Zhiwei Fei, Fengzhe Zhou, Wenwei
 685 Zhang, Songyang Zhang, Dahua Lin, and Kai Chen. Mathbench: Evaluating the theory and ap-
 686 plication proficiency of llms with a hierarchical mathematics benchmark. In Lun-Wei Ku, Andre
 687 Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics,*
 688 *ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 6884-6915. Associa-
 689 tion for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.411. URL
 690 <https://doi.org/10.18653/v1/2024.findings-acl.411>.

691 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
 692 chatGPT really correct? rigorous evaluation of large language models for code generation. In
 693 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=1qv610Cu7>.

694 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 695 *arXiv:1711.05101*, 2017.

702 Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon
 703 Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdż, Piotr Sankowski, et al. Scaling
 704 laws for fine-grained mixture of experts. In *Forty-first International Conference on Machine
 705 Learning*, 2024.

706 Jan Ludziejewski, Maciej Pióro, Jakub Krajewski, Maciej Stefaniak, Michał Krutul, Jan Małaśnicki,
 707 Marek Cygan, Piotr Sankowski, Kamil Adamczewski, Piotr Miłoś, et al. Joint moe scaling laws:
 708 Mixture of experts can be memory efficient. *arXiv preprint arXiv:2502.05172*, 2025.

710 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 711 electricity? A new dataset for open book question answering. In Ellen Riloff, David Chiang,
 712 Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical
 713 Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018*,
 714 pp. 2381–2391. Association for Computational Linguistics, 2018. doi: 10.18653/V1/D18-1260.
 715 URL <https://doi.org/10.18653/v1/d18-1260>.

716 Moonshot-AI. Kimi k2: Open agentic intelligence, 2025. URL <https://moonshotai.github.io/Kimi-K2/>.

717

718 Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
 719 jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
 720 language models. *arXiv preprint arXiv:2409.02060*, 2024.

721

722 Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna Budhiraja, Mutsumi Nakamura, Neeraj Varsh-
 723 ney, and Chitta Baral. Multi-logieval: Towards evaluating multi-step logical reasoning ability of
 724 large language models. *arXiv preprint arXiv:2406.17169*, 2024.

725

726 Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation bench-
 727 mark for cross-lingual natural language generalization. In Nicoletta Calzolari, Min-Yen Kan,
 728 Véronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), *Proceedings of
 729 the 2024 Joint International Conference on Computational Linguistics, Language Resources and
 730 Evaluation, LREC/COLING 2024, 20-25 May, 2024, Torino, Italy*, pp. 8383–8394. ELRA and
 731 ICCL, 2024. URL <https://aclanthology.org/2024.lrec-main.735>.

732 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 733 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
 734 benchmark. *CoRR*, abs/2311.12022, 2023. doi: 10.48550/ARXIV.2311.12022. URL <https://doi.org/10.48550/arXiv.2311.12022>.

735

736 Yangjun Ruan, Chris J Maddison, and Tatsunori Hashimoto. Observational scaling laws and the
 737 predictability of language model performance. *arXiv preprint arXiv:2405.10938*, 2024.

738

739 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
 740 of chain-of-thought. In *The Eleventh International Conference on Learning Representations*,
 741 2023. URL <https://openreview.net/forum?id=qFVVBzXxR2V>.

742

743 Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
 744 Accounting for inference in language model scaling laws. *arXiv preprint arXiv:2401.00448*,
 745 2023.

746 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
 747 subword units. *arXiv preprint arXiv:1508.07909*, 2015.

748

749 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 750 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 751 *arXiv preprint arXiv:1701.06538*, 2017.

752 Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
 753 Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Lan-
 754 guage models are multilingual chain-of-thought reasoners. In *The Eleventh International Confer-
 755 ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net,
 2023. URL <https://openreview.net/forum?id=fR3wGCK-IXp>.

756 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 757 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

758

759 Xingwu Sun, Yanfeng Chen, Yiqing Huang, Ruobing Xie, Jiaqi Zhu, Kai Zhang, Shuaipeng Li,
 760 Zhen Yang, Jonny Han, Xiaobo Shu, et al. Hunyuan-large: An open-source moe model with 52
 761 billion activated parameters by tencent. *arXiv preprint arXiv:2411.02265*, 2024.

762

763 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 764 Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
 765 bench tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan L. Boyd-
 766 Gruber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023*, pp. 13003–13051. Association for Computational
 767 Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.824. URL <https://doi.org/10.18653/v1/2023.findings-acl.824>.

768

769 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 770 answering challenge targeting commonsense knowledge. *arXiv preprint arXiv:1811.00937*, 2018.

771

772 Ning Tao, Anthony Ventresque, Vivek Nallur, and Takfarinas Saber. Enhancing program synthesis
 773 with large language models using many-objective grammar-guided genetic programming. *Algo-
 774 rithms*, 17(7):287, 2024. doi: 10.3390/A17070287. URL <https://doi.org/10.3390/a17070287>.

775

776 Siqi Wang, Zhengyu Chen, Bei Li, Keqing He, Min Zhang, and Jingang Wang. Scaling laws across
 777 model architectures: A comparative analysis of dense and moe models in large language models.
 778 *arXiv preprint arXiv:2410.05661*, 2024a.

779

780 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
 781 Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
 782 Zhuang, Rongqi Fan, Xiang Yue, and Wenhui Chen. Mmlu-pro: A more robust and chal-
 783 lenging multi-task language understanding benchmark. In Amir Globersons, Lester Mackey,
 784 Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
 785 *Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
 786 formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10
 787 - 15, 2024*, 2024b. URL http://papers.nips.cc/paper_files/paper/2024/hash/ad236edc564f3e3156e1b2feafb99a24-Abstract-Datasets_and_Benchmarks_Track.html.

788

789 Tianwen Wei, Jian Luan, Wei Liu, Shuang Dong, and Bin Wang. CMATH: can your language model
 790 pass chinese elementary school math test? *CoRR*, abs/2306.16636, 2023. doi: 10.48550/ARXIV.
 791 2306.16636. URL <https://doi.org/10.48550/arXiv.2306.16636>.

792

793 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 794 chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Márquez
 795 (eds.), *Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers*, pp. 4791-
 796 4800. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL
 797 <https://doi.org/10.18653/v1/p19-1472>.

798

799 Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying, Liang He, and Xipeng Qiu. Evaluating the
 800 performance of large language models on GAOAKAO benchmark. *CoRR*, abs/2305.12474, 2023.
 801 doi: 10.48550/ARXIV.2305.12474. URL <https://doi.org/10.48550/arXiv.2305.12474>.

802

803 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 804 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv
 805 preprint arXiv:2303.18223*, 1(2), 2023.

806

807 Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
 808 Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foun-
 809 dation models. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), *Find-
 ings of the Association for Computational Linguistics: NAACL 2024, Mexico City, Mexico*,

810 June 16-21, 2024, pp. 2299–2314. Association for Computational Linguistics, 2024. doi:
 811 10.18653/V1/2024.FINDINGS-NAACL.149. URL <https://doi.org/10.18653/v1/2024.findings-naacl.149>.
 812
 813

814 Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
 815 William Fedus. St-moe: Designing stable and transferable sparse expert models. *arXiv preprint*
 816 *arXiv:2202.08906*, 2022.

818 A NOTATION

820 To aid readability, we provide a list of key symbols used throughout this paper.

822 Table 3: Notation.

824 Symbol	825 Description
E	Number of routable experts.
E_a	Number of activated experts.
E_s	Number of shared experts.
N	Number of non-vocabulary parameters.
N_a	Number of activated parameters.
d_{model}	Model hidden dimension.
d_{expert}	Expert hidden dimension.
C	Total training compute in FLOPs
M	Compute (w/o embedding) per token in FLOPs.
D	Dataset size in tokens.
A	Activation ratio, <i>i.e.</i> , $(E_a + E_s)/(E + E_s)$.
G	Granularity of experts, <i>i.e.</i> , $2d_{model}/d_{expert}$
S	Shared expert ratio, <i>i.e.</i> , $E_s/(E_a + E_s)$

838 B RELATED WORK

840 B.1 SCALING LAWS FOR LANGUAGE MODELS

842 Scaling laws provide a framework for understanding and predicting the performance of language
 843 models under varying conditions. Kaplan et al. (2020) laid the foundation by demonstrating that
 844 model performance adheres to predictable power-law relationships involving model size, dataset
 845 size, and compute budget. Building on this, Hoffmann et al. (2022) introduced the Chinchilla scaling
 846 laws, highlighting the importance of balancing model size and training data volume for compute-
 847 optimal training. They showed that scaling model size without a corresponding increase in data
 848 leads to diminishing performance gains. Sardana et al. (2023) advanced this understanding by in-
 849 corporating inference costs into compute-optimal frameworks, proposing strategies for optimizing
 850 performance under fixed inference constraints. Additionally, Bi et al. (2024) emphasized the crit-
 851 ical role of data quality, demonstrating that higher-quality datasets enable more efficient scaling,
 852 particularly with larger models. Recent advancements have applied these scaling laws to various
 853 specialized areas. For example, hyperparameter optimization has been explored in the context of
 854 scaling laws (Bi et al., 2024; Li et al., 2025), while Gadre et al. (2024) investigated the phenomena
 855 of over-training and its implications on model performance. Furthermore, scaling laws have been an-
 856 alyzed for their impact on downstream task performance across a range of applications (Chen et al.,
 857 2024; Ruan et al., 2024; Isik et al., 2025; Hu et al., 2023; Grattafiori et al., 2024; Li et al., 2025),
 858 underscoring their adaptability and relevance in addressing both theoretical and practical challenges
 859 in language modeling.

860 B.2 SCALING LAWS FOR MIXTURE-OF-EXPERTS (MOE)

862 Mixture-of-Experts (MoE) models (Shazeer et al., 2017; Lepikhin et al., 2020) have emerged as
 863 a powerful architecture for language modeling, primarily due to their ability to decouple computa-
 864 tional cost from parameter count. Recent research has further explored optimizations within the MoE

864 paradigm. For instance, DeepSeekMoE (Deepseek-AI et al., 2024) investigated the impact of fine-
 865 grained expert settings on model performance, proposing a novel design that incorporates shared
 866 experts and a hybrid structure combining dense layers with MoE layers. Complementing this, Zoph
 867 et al. (2022) highlighted that the performance gains from increased sparsity diminish significantly
 868 once the number of experts exceeds 256, suggesting a practical limit for highly sparse models. With
 869 the widespread adoption of the MoE architecture, the scaling laws governing MoE models have
 870 been extensively studied. Early work by Clark et al. (2022) examined scaling by varying model
 871 size and the number of experts on a fixed dataset, concluding that routed models offer efficiency
 872 advantages only up to a certain scale. This analysis was subsequently extended by Ludziejewski
 873 et al. (2024), who incorporated variable dataset sizes and explored the effects of expert granularity.
 874 Additionally, Wang et al. (2024a) investigated the transferability and discrepancies of scaling laws
 875 between dense models and MoE models. Abnar et al. (2025) advanced this line of inquiry by deriv-
 876 ing scaling laws for optimal sparsity, explicitly considering the interplay between training FLOPs
 877 and model size. They also analyzed the relationship between pretraining loss and downstream task
 878 performance, noting distinct behaviors between MoE and dense models on certain tasks. More re-
 879 cently, Ludziejewski et al. (2025) derived joint scaling laws applicable to both dense Transformers
 880 and MoE models, demonstrating that MoE architectures can outperform dense counterparts even
 881 under constraints of memory usage or total parameter count. Liew et al. (2025) derive empirical
 882 scaling laws for upcycling LLMs to MoE models, relating performance to both dataset size and
 883 architectural choices.

884 C COMPARISON WITH PREVIOUS WORKS.

885 **Comparison with Clark et al. (2022).** Clark et al. (2022) used a fixed dataset and concluded that
 886 the efficiency of MoE models over dense models diminishes beyond a certain scale. In contrast, our
 887 results (Figure 10) demonstrate that MoE models are consistently more compute-efficient across all
 888 scales we tested. The discrepancy may lie in their experimental design: using a fixed dataset. As
 889 our scaling laws establish (Section 2.3), MoE models require proportionally more training data than
 890 dense models for compute-optimal training. A fixed dataset therefore systematically under-trains
 891 MoEs, leading to an unfair comparison and flawed conclusions. Our convergence curves (Figure 6a)
 892 and findings from Ludziejewski et al. (2024) confirm this: MoEs, despite a slower start, eventually
 893 surpass dense models. Unlike prior work, we follow scaling laws to allocate resources, dynamically
 894 scaling training tokens with compute. This ensures the fairness and reliability of our comparison.

895 **Comparison with Ludziejewski et al. (2024).** Our findings on expert granularity differ from
 896 Ludziejewski et al. (2024) in two key ways. First, we find a log-polynomial relationship suggesting
 897 an optimal granularity, not their reported monotonic trend where finer is always better. Second, our
 898 MoE’s efficiency loss (EL) is typically under 10x, substantially lower than their reported $\gtrsim 10x$ “Rel-
 899 ative FLOPs to train equivalent Transformer”. These discrepancies stem from three core differences
 900 in experimental design: (1) Granularity definition: Our definition ($G = 2d_{\text{model}}/d_{\text{expert}}$), aligned with
 901 leading models (DeepSeek-AI, 2024; Moonshot-AI, 2025), uses experts half the size of theirs at the
 902 same nominal granularity. This allows us to test a truly finer spectrum. (2) Hyperparameter strate-
 903 gies: We optimize hyperparameters for each compute budget, unlike their fixed-setting approach,
 904 which is crucial for fair comparison as optimal settings vary with scale (Section 2.2). (3) Base MoE
 905 architectures: Our MoE uses a denser activation ratio (1/32 vs. their sparser 1/64). Their inherently
 906 more efficient baseline may inflate their reported gains. In summary, our differing conclusions arise
 907 from exploring a finer granularity spectrum under fairer, optimized training conditions.

908 **Comparison with Abnar et al. (2025).** While our findings align with Abnar et al. (2025) on the
 909 principle that larger, sparser models perform better under a fixed compute budget, our work extends
 910 theirs in two crucial ways. First, methodologically, we optimize training hyperparameters and sys-
 911 tematically analyze architectural factors like expert granularity, uncovering its log-polynomial effect
 912 on performance. Second, and more importantly, our primary contribution is the derivation of a novel
 913 scaling law for the *efficiency leverage* of MoE models over their dense counterparts, rather than for
 914 loss. This law’s key advantage is its independence from specific datasets. It directly quantifies
 915 the relationship between MoE architecture and relative efficiency, yielding more generalizable and
 916 actionable principles for model design.

918 **Comparison with Ludziejewski et al. (2025).** Our work and Ludziejewski et al. (2025) are
 919 complementary, as we investigate different aspects of MoE scaling laws. We focus on optimizing ar-
 920 chitectural parameters (*i.e.*, granularity, activation ratio) within a fixed compute budget and model
 921 scale. They, in contrast, determine the optimal allocation between model size and data volume under
 922 both compute and memory constraints. While we also explored model-data allocation, our analysis
 923 was intentionally limited. Its purpose was not to derive a comprehensive allocation strategy, but
 924 rather to establish that MoE and dense models have fundamentally different resource needs. This
 925 foundational insight was critical, justifying our approach of providing ample, near-optimal training
 926 budgets to ensure a fair and reliable comparison across all models in our main experiments.
 927
 928

929 **Reconciling Findings on Shared Expert Effectiveness with OLMoE(Muennighoff et al., 2024).** Contrary to the findings of Muennighoff et al. (2024) with OLMoE, our scaling law analysis sug-
 930 gests a shared expert is generally beneficial. We attribute this discrepancy primarily to our broader
 931 scope of analysis and distinct model architecture. While the OLMoE conclusion stems from a single
 932 data point, ours is derived from a trend across numerous models and scales. This broader perspec-
 933 tive reveals that although specific configurations in our study perform best without a shared expert
 934 (*e.g.*, $M=2e9$, Figure 3c)—aligning with OLMoE’s observation—the dominant trend favors its use.
 935 Furthermore, our 256-expert architecture features significantly higher sparsity and finer granularity
 936 than OLMoE’s, a key structural difference that, along with varying training parameters, can alter
 937 its impact. Therefore, we conclude that while its benefit is context-dependent, a shared expert is a
 938 robust choice from a general scaling perspective.
 939

941 D EXPERIMENTAL SETUP

942 **Architecture and Tokenizer** We adopt a Grouped Query Attention (GQA) (Ainslie et al., 2023)
 943 architecture based on the standard decoder-only Transformer, consisting of an embedding layer,
 944 multiple alternating layers of attention mechanisms and feed-forward networks, and a final de-
 945 embedding layer. Additionally, we use the BPE (Byte-Pair Encoding) algorithm (Sennrich et al.,
 946 2015) and RoPE (Rotary Positional Embedding) (Su et al., 2024) to handle positional information.
 947 The vocabulary size is 126,464, and the sequence length is 4,096.
 948

949 **Expert Routing Strategy** In our MoE layers, a routing network assigns each token’s hidden state
 950 h_t to the top- N_a experts. This is achieved by generating gating scores $g_t = \text{Softmax}(W_g \cdot h_t)$,
 951 where W_g is a learnable matrix. The final output is a weighted sum of the selected experts’ outputs:
 952 $o_t = \sum_{i \in \text{TopK}(g_t)} g_{t,i} \cdot E_i(h_t)$, where E_i is the i -th expert in total N experts. To ensure balanced
 953 expert utilization and stable training, we incorporate two standard auxiliary losses: a load balancing
 954 loss (Lepikhin et al., 2020) (coefficient of 0.01) to encourage uniform token distribution, and a router
 955 z-loss (Zoph et al., 2022) (coefficient of 0.001) to regularize the magnitude of the gating logits.
 956

957 **Optimizer and Scheduler** The parameters of experimental models are initialized from a distribu-
 958 tion with a standard deviation of 0.006 and optimized using the AdamW optimizer (Loshchilov &
 959 Hutter, 2017). The optimizer’s hyperparameters are set to $\beta_1 = 0.9$ and $\beta_2 = 0.95$, with 0.1 weight
 960 decay applied. The learning rate schedule employs a WSD (warmup-stable-decay) strategy (Hu
 961 et al., 2024): the first 1% of training steps use linear warm-up, followed by exponential decay that
 962 reduces the learning rate to 10% of its peak value.
 963

964 **Pre-training Data** The training data is sourced from a large-scale multilingual corpus, primarily
 965 covering English and Chinese, while also including various other languages. This corpus encom-
 966 passes web text, mathematical materials, programming scripts, published literature, and diverse
 967 textual content. To validate model performance, we extracted a 2T-token subset from this corpus for
 968 training. In Table 4, we present the composition of the training datasets for all experiments. Unless
 969 otherwise specified, this configuration is used throughout.
 970

972
973
974 Table 4: Pre-training data composition.
975
976
977

Type	Web	Books	Wiki	Academic	Code	News	Social	Domain	SFT	Math	Exam
Ratio	46.0%	5.0%	4.0%	6.0%	25.0%	0.1%	1.9%	1.0%	4.0%	6.0%	1.0%

978
979 **Other Training Configurations** Our implementation is built on Megatron-LM and employs a
980 hybrid parallel strategy combining Expert Parallelism (EP), Tensor Parallelism (TP), and Pipeline
981 Parallelism (PP). We utilized bfloat16 precision for all forward and backward passes to maximize
982 throughput, while maintaining float32 for the master weights and optimizer states to ensure numerical
983 stability. The representative parallelism configurations in our experiments are as follows.
984
985

E DETAILED PRELIMINARY EXPERIMENTS

E.1 SCALING LAWS FOR MOE OPTIMAL HYPER-PARAMETERS

986 The performance of a MoE model is sensitive to its hyperparameters. To ensure that our subsequent
987 architectural comparisons are reliable, it is crucial to evaluate each configuration under its optimal
988 hyperparameter settings. Therefore, we first conduct a preliminary study to establish the scaling
989 laws for optimal MoE hyperparameters. Previous research (Bi et al., 2024) has established that the
990 optimal hyperparameters are primarily a function of the total computational budget. Accordingly,
991 we performed a hyperparameter search across a compute range of $3e17$ to $3e20$ FLOPs, using a
992 Warmup-Stable-Decay (WSD) learning rate schedule (Hu et al., 2024). We trained multiple models,
993 varying both learning rate and batch size, which were sampled from a log-base-2 grid. Specifically,
994 the exponents for the learning rate ranged from -11 to -9.0, and for the batch size, from 18 to 21.
995 To make this analysis tractable, we initially fixed the MoE configuration to one with 64 experts,
996 of which 4 are activated per token, plus an additional shared expert (resulting in an activation ratio
997 $A = 7.8\%$ and a granularity $G = 2$). Detailed settings of the experimental models are available
998 in the Appendix D. We then verified that the conclusions from this configuration generalize across
999 different activation ratios.
1000

1001 Figure 7 illustrates the fitting process. To ensure robustness, we identify “near-optimal” configu-
1002 rations as those achieving a loss within 0.25% of the minimum for a given compute budget. After
1003 removing outliers, we fitted the optimal batch size, B^{opt} , and learning rate, η^{opt} , against the compute
1004 budget C . The resulting scaling laws reveal clear trends: B^{opt} increases and η^{opt} decreases with
1005 larger C . The final formulas obtained from the fitting process are as follows:
1006
1007

$$\eta^{\text{opt}} = 1.1576 \cdot C^{-0.1529} \quad (5)$$

$$B^{\text{opt}} = 0.0694 \cdot C^{0.3644}$$

1008 A key finding emerges when comparing these laws to those of dense models. As shown in Figure 7,
1009 MoE models favor a significantly larger batch size and a slightly lower learning rate at large compute
1010 scales. This phenomenon is attributable to MoE’s sparsity: during backpropagation, each expert’s
1011 parameters are updated using only a subset of the tokens in a batch, whereas dense parameters
1012 receive gradients from the entire batch (Sun et al., 2024).
1013

1014 To validate the generalizability of these laws, we conduct experiments on MoE models with varying
1015 activation ratios. We used the derived laws to predict optimal hyperparameters at a compute budget
1016 of $3e20$ FLOPs, after fitting them on data up to $1e20$ FLOPs. As shown in Figure 8, the predicted
1017 optimal regions effectively capture the best-performing hyperparameters for activation ratios from
1018 4.7% to 10.9%, demonstrating that the laws can be applied to MoE models within this range of
1019 activation rates. This confirms that our hyperparameter scaling laws provide a reliable foundation
1020 for exploring diverse MoE architectures under fair and near-optimal training conditions.
1021

E.2 SCALING LAWS FOR MOE OPTIMAL MODEL-DATA ALLOCATION

1022 To determine optimal allocation between model size and data size, we analyze loss trajectories across
1023 FLOPs budgets from hyperparameter scaling experiments. By identifying the (M, D) combination
1024 that yields the minimum loss for a fixed FLOP budget, we derive optimal allocation strategies for
1025

Figure 7: Scaling laws for optimal hyperparameters. Blue and red lines represent the fitted laws for MoE and dense models, respectively, derived on the same training dataset. Gray circles are the experimental data points used for fitting.

Figure 8: Validation of MoE hyperparameters scaling laws across different activation ratios (A). “Near-optimal” refers to hyperparameters achieving a loss within 0.25% of the optimal ones.

1080 specific MoE configurations activating 4 of 64 experts and an additional shared expert ($A = 7.8\%$,
 1081 $G = 2$). Crucially, MoE capacity exhibits strong dependence on activation ratio. Thus, this analysis
 1082 aims to deepen our understanding of MoE architectures and to provide general guidance for model
 1083 selection in subsequent experiments. The problem can be formally defined as:

$$(M^{\text{opt}}, D^{\text{opt}}) = \arg \min_{M, D} \mathcal{L}(M, D; C, A, G, S) \quad \text{s.t.} \quad C = M \cdot D \quad (6)$$

1086 The resulting scaling laws for the optimal model size (M^{opt}) and data size (D^{opt}) are presented in
 1087 Figure 9 and summarized in Table 5. For comparison, we derive the same laws for dense models.
 1088 Our analysis yields two key insights:

- 1090 1. The optimal allocation coefficients for different architectures are similar and close to 0.5.
 1091 This aligns with findings from previous studies (Bi et al., 2024; Hoffmann et al., 2022),
 1092 indicating that for compute-optimal training, the budget should be split roughly equally
 1093 between increasing model size and data volume.
- 1094 2. Crucially, at any given compute budget, the optimal MoE model is computationally smaller
 1095 (lower M^{opt}) but trained on more data (larger D^{opt}) than its optimal dense counterpart.
 1096 This suggests that MoEs possess greater capacity, enabling them to support larger training
 1097 datasets with smaller model sizes. In real-world scenarios where data is abundant but
 1098 computational resources are limited, this is significant for improving efficiency.

1099 While practical training strategies may deviate from this compute-optimal allocation, these scaling
 1100 laws provide a crucial reference. They offer a principled basis for determining the necessary amount
 1101 of training data for a given model to approach convergence, designing informative ablation studies,
 1102 and ultimately, developing more efficient MoE architectures.

1103 Table 5: Scaling law parameters for compute-optimal allocation of model scale (M^{opt}) and data size
 1104 (D^{opt}) for MoE and dense models on identical datasets.

	Optimal Model Scale (M^{opt})	Optimal Data Size (D^{opt})
Dense	$M^{\text{opt}} = 0.0655 \cdot C^{0.5422}$	$D^{\text{opt}} = 15.2582 \cdot C^{0.4578}$
MoE	$M^{\text{opt}} = 0.1915 \cdot C^{0.5095}$	$D^{\text{opt}} = 5.2232 \cdot C^{0.4905}$

1111 Figure 9: Scaling laws for optimal model scale (M^{opt}) and data size (D^{opt}) on identical datasets. For
 1112 a given budget, MoE models (blue) optimally allocate more resources to data and fewer to model
 1113 size compared to dense models (red).

1128 F DETAILED EXPERIMENTAL ANALYSIS OF MOE ARCHITECTURE

1131 F.1 OPTIMAL EXPERT ACTIVATION RATIO

1133 We begin by investigating the activation ratio (A), a critical factor governing MoE efficiency. Our
 1134 experimental design isolates the effect of A by holding the computational cost per token (M) con-

stant. This is achieved by fixing the number of activated experts and their granularity, while varying the total number of experts in the pool from 2 to 256. This setup allows us to explore a wide range of activation ratios (from 0.8% to 100%, where 100% represents a dense model) without altering the forward pass FLOPs. The optimization problem for a given compute budget C is thus:

$$A^{\text{opt}} = \arg \min_A \mathcal{L}(A; C, M, G, S) \quad (7)$$

The IsoFLOPs curves, presented in Figure 10a, reveal a clear and consistent trend. Across all tested FLOPs budgets (from $1e18$ to $3e20$), loss monotonically decreases with activation ratio, following a power-law pattern. For all configurations, the lowest tested ratio of 0.8% consistently yields the minimum loss. This finding suggests a core principle: for a fixed computational cost, greater model sparsity (*i.e.*, lower activation ratio) leads to higher parameter efficiency.

To quantify this efficiency improvement, we fit a series of loss scaling curves at different activation ratios. Based on these curves, we compute the efficiency leverage for different activation ratios and FLOPs budgets, as illustrated in Figure 10b. The results reveal two key trends. First, for a fixed FLOPs budget, the EL consistently increases as the activation ratio decreases, indicating that sparse activation can always enhance computational efficiency. Second, for a fixed activation ratio, the EL grows with the computational budget, demonstrating that the MoE advantage is amplified at larger scales. These findings confirm that reducing the activation ratio yields substantial efficiency gains, and these benefits are magnified in large-scale, high-computation regimes.

Figure 10: Impact of the Activation Ratio A on Loss and Efficiency. (a) At any fixed compute budget (each colored line), lower activation ratios yield lower loss. The orange stars mark the optimal loss point. (b) Loss and EL scaling curves illustrate that EL increases with both higher compute budgets and lower activation ratios, showing that MoE advantages are magnified at scale.

Key Takeaway 1

- **Monotonic Relationship Between Efficiency and Activation Ratio.** For a fixed computational cost, model performance consistently improves as the activation ratio decreases. This indicates a direct, monotonic relationship between sparsity and efficiency.
- **Efficiency Gains Amplify with Scale.** The efficiency advantage of MoE models (their EL) grows with the total training budget. This highlights their suitability for large-scale training, where their benefits become even more significant.

F.2 OPTIMAL GRANULARITY OF EXPERTS

The granularity of experts is a critical factor in the efficiency of MoE. While prior works (Ludziejewski et al., 2024; Deepseek-AI et al., 2024) suggests that finer-grained experts improve performance, the optimal balance remains an open question. To investigate the influence of expert granularity on MoE efficiency, for a fixed model size M and activation ratio A , we vary the expert granularity from 2 to 16 by increasing the total number of experts from 64 to 512 while proportionally decreasing the

size of each expert to keep computational cost (FLOPs) per token constant. This creates a spectrum of models from coarse-grained (fewer, larger experts) to fine-grained (more, smaller experts). By training these models and comparing their final training losses, we can identify the granularity that yields the best performance for a given FLOPs budget. This problem is formalized as:

$$G^{\text{opt}} = \arg \min_G \mathcal{L}(G; C, M, A, S) \quad (8)$$

where G^{opt} is the optimal granularity that minimizes the training loss \mathcal{L} under a fixed FLOPs budget C , model size M , activation ratio A , and shared expert ratio S . As shown in Figure 11a, our experiments across a range of FLOPs budgets (10^{18} to 10^{20}) reveal a distinct trend. For any given budget, as we increase expert granularity, the training loss first decreases and then, after reaching a minimum, begins to increase. This demonstrates the existence of an optimal expert granularity that maximizes computational efficiency of MoE. To further analyze this relationship, we fit loss scaling curves for different granularities (Figure 11b), quantifying their impact on EL.

Our study yields two primary insights: First, for a fixed FLOPs budget, the training loss follows a U-shaped (polynomial) relationship with respect to expert granularity, which confirms an optimal point for maximizing model performance per FLOP. This finding contrasts with the conclusions of Ludziejewski et al. (2024), and we detail the reasons for this discrepancy in Section C. Second, across different FLOPs budget, the optimal granularity remains within a stable range (around 12 in our experiments), offering a reliable heuristic for model design. Furthermore, we find that routing balance significantly impacts the choice of optimal granularity. Poor routing balance shifts the optimal point towards coarser granularities and degrades overall model performance (see Appendix F.4 for details). This suggests that improving routing mechanisms could unlock the potential of even more fine-grained MoEs, marking a promising direction for future work.

Figure 11: Impact of the Experts Granularity G on Loss and Efficiency. (a) IsoFLOPs curves reveal a U-shaped (polynomial) relationship between expert granularity and training loss. Orange stars mark the optimal granularity for each FLOPs budget. (b) Loss and EL scaling curves show that MoE efficiency improves as FLOPs increase and expert granularity approaches the optimal range.

Key Takeaway 2

- Existence of Optimal Expert Granularity.** For a fixed FLOPs budget and model scale, training loss exhibits a U-shaped (polynomial) relationship with expert granularity, indicating an optimum that maximizes efficiency.
- Stable Range of Optimal Expert Granularity.** The optimal granularity (e.g., around 12 in our experiments) is stable across a wide range of FLOPs budgets. However, poor routing balance shifts this optimum toward coarser granularity.

The Impact of Routing Balance on the Optimal Expert Granularity. To investigate how routing quality influences the optimal expert granularity, we induce a state of routing imbalance. This is achieved by setting the coefficient of load balancing loss to 0.001, a setup known to cause load imbalance. In this setting, we train MoE models with a varying expert granularity while maintaining a

constant total parameter count. As shown in Figure 12, our results reveal that a coarser expert granularity becomes optimal under such imbalanced routing. Specifically, the IsoFLOPs curves (Figure 12a) demonstrate that models with coarser granularity ($G = 6, 8$) achieve lower loss for a given computational budget. This trend is consistently observed in the loss scaling curves (Figure 12b). This phenomenon indicates that when the routing mechanism becomes a performance bottleneck, a fine-grained architecture with numerous specialized experts is counterproductive. The weakened router cannot distribute tokens effectively, nullifying the benefits of specialization. Consequently, the model benefits more from a coarser-grained design with fewer, more generalized experts, as this simplifies the routing task and mitigates the detrimental effects of the load imbalance.

Figure 12: Impact of Expert Granularity on Loss Under Weakened Routing Balance.

Summary of Expert Granularity Analysis. Our analysis of expert granularity reveals a trade-off between specialization and load balancing. On one hand, prior work has shown that finer-grained partitioning enhances expert specialization (Deepseek-AI et al., 2024). On the other hand, our experiments demonstrate that increasing granularity leads to a greater load imbalance. We quantify this imbalance using the coefficient of variation (CV) of the expert loads, where a higher value indicates a greater imbalance. As detailed in Table 15, increasing the number of experts (E) directly correlates with a higher CV. These results were obtained while holding the balancing loss coefficient constant, in order to isolate the effect of granularity. This controlled setting highlights the inherent challenge of routing tokens to a larger set of smaller experts, thereby distinguishing the benefits of specialization from the practical difficulties of utilization.

F.3 OPTIMAL SHARED EXPERT RATIO

Shared experts are always active to capture common knowledge (Deepseek-AI et al., 2024). To determine the optimal proportion of shared experts, we designed a series of experiment to isolate the impact of the shared expert ratio S . We fix the total model size M , the activation ratio A , and the total number of active experts ($E_s + E_a$). We then systematically vary S by substituting routed experts (E_a) with shared experts (E_s), exploring configurations from fully specialized ($S = 0\%$) to highly shared ($S = 83.3\%$). This allows us to identify the optimal ratio that minimizes training loss for a given computational budget. The problem is formalized as:

$$S^{\text{opt}} = \arg \min_S \mathcal{L}(S; C, M, A, G) \quad (9)$$

where S^{opt} is the optimal shared expert that minimizes the training loss \mathcal{L} under a fixed FLOPs budget C , model size M , activation ratio A , and granularity G . Our experiments, as depicted in Figure 13a, reveal a U-shaped relationship between the shared expert ratio and training loss. The minimum loss is generally achieved at a relatively low shared expert ratio, while having no shared experts ($S = 0\%$) usually results in suboptimal performance. Furthermore, we observe a subtle trend where the optimal sharing ratio appears to scale with the compute budget. This is supported by our empirical scaling law (EL) analysis in Figure 13b, which shows that lower FLOPs budgets

($\leq 10^{20}$) benefit from a slightly higher sharing ratio ($S = 16.7\%$), whereas larger budgets ($> 10^{20}$) achieve greater efficiency with a lower ratio ($S = 8.3\%$).

Since large-scale pre-training runs typically exceed 10^{20} FLOPs, this suggests a practical heuristic: the optimal design choice is to use the lowest possible non-zero sharing ratio. Assuming the dimensions of shared and regular experts are equal, this can be heuristically implemented by setting the number of shared experts to one.

Figure 13: Impact of the Shared Ratio S on Loss and Efficiency. (a) Loss curves demonstrate that a low, non-zero sharing ratio minimizes training loss, outperforming both no shared experts ($S = 0\%$) and highly shared configurations. (b) EL analysis reveal that the optimal sharing ratio is higher ($S = 16.7\%$) for smaller FLOPs ($< 10^{20}$) and decreases to $S = 8.3\%$ for larger FLOPs ($> 10^{20}$).

Key Takeaway 3

- **Optimal Sharing Ratio Exhibits a Subtle Scaling Trend.** We identify a subtle scaling trend between the optimal shared expert ratio and the compute budget: the ideal ratio decreases as the compute budget increases.
- **“One Shared Expert” Rule for Large-Scale Training.** For large-scale pre-training with uniformly sized experts, the optimal design heuristic is to employ a single shared expert. This configuration establishes the minimal non-zero sharing ratio.

F.4 OTHER CONFIGURATIONS OF MoE ARCHITECTURE

Arrangement of MoE and Dense Layers To ensure balanced routing in the early layers, mainstream MoE models typically replace all FFNs except for the first few layers with MoE layers. We investigate the impact of this design decision on the efficiency of MoE models. To ensure a meaningful exploration space, we extend all models in our experiments to 60 layers and set the first 1, 2, or 3 layers as dense layers sequentially. The dimension of these dense layers is set to match the total dimension of the activated experts in the corresponding MoE layers, ensuring the overall computational cost (FLOPs/token) remains constant. This design allows us to isolate and study the effect of the proportion of dense layers on MoE efficiency. The experimental results, presented in Figure 14a and 14b, reveal the following key findings: 1) From a model performance perspective, replacing the first few layers with dense layers has a minor impact. Using a dense proportion of zero as the baseline, we estimated the efficiency leverage for each configuration. Within a FLOPs budget of up to 1×10^{24} FLOPs, the efficiency leverage remains close to 1. This indicates that configuring the initial layers as dense offers negligible efficiency improvement. However, this adjustment effectively reduces the total number of parameters in the model and mitigates routing imbalances in the early layers. Thus, despite its limited efficiency gains, this remains a valuable design optimization. 2) Further investigation into the optimal proportion of dense layers under varying computational budgets reveals a trend: as FLOPs budgets increase, the optimal dense proportion also grows. For example, in our experiments, when the compute budget is 1×10^{18} FLOPs, the optimal dense proportion is

zero. As the compute budget increases to 3×10^{20} FLOPs, the optimal dense layer proportion shifts to approximately 2/60 or 3/60.

Figure 14: Impact of Dense Layers Proportion and Compute Budget Allocation between Attention and FFN. (a,b) Replacing the first few layers with dense layers shows minor impact on model performance. As computational budgets increase, the optimal proportion of dense layers also gradually rises. (c,d) Modifying the attention FLOPs ratio within a broad range (20%-50%) has a negligible influence on model performance, demonstrating the robustness of this configuration.

Compute Resource Allocation between Attention and FFN As two core components of the Transformer model, the attention mechanism (Attention) and FFN account for the majority of the model’s computational load. To this end, we explore the impact of computational allocation between the attention mechanism and the FFN on the efficiency of the MoE model. Specifically, we construct a series of models with fixed model scale M but varying compute budgets by increasing the hidden layer size of the attention module while reducing the hidden layer size of each expert in the MoE. We then observe the performance changes of these models under different computational allocations and evaluate their scaling trends. The experimental results are illustrated in Figure 14c and 14d, revealing the following key findings: 1) When the attention FLOPs ratio is between 30% and 40%, it represents a relatively stable and reliable configuration. Models tend to achieve optimal or near-optimal performance within this range. This configuration is consistent with the default settings of mainstream open-source MoE models. 2) Adjusting the attention FLOPs ratio within a broader range (20%-50%) has minor impact on model performance. As shown in Figure 14d, the loss scaling curves and efficiency leverage of these models are nearly identical. Since the attention mechanism generally has a higher computational density (*i.e.*, FLOPs-per-parameter) compared to the FFN, increasing the attention FLOPs ratio while keeping the overall model size constant reduces the total number of model parameters, resulting in higher knowledge density. However, this also implies potentially higher downstream inference costs.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Key Takeaway 4

- **Introducing Dense Layers is a Valuable Design Optimization.** Incorporating dense layers in the early stages of MoE has minor impact on efficiency but helps mitigate routing imbalances and reduces overall parameters. The optimal proportion of dense layers increases with higher FLOPs budgets, though it offers limited efficiency gains.
- **Robustness of Compute Budget Allocation between Attention and FFN** Allocating 30%-40% of FLOPs to the attention mechanism achieves optimal or near-optimal performance, with minor impact outside this range. Increasing attention FLOPs proportion enhances knowledge density but reduces downstream inference efficiency.

G VALUES OF THE FITTED COEFFICIENTS.

To validate the proposed scaling law for EL, we fit Eq. 4 using Huber loss and the BFGS optimization algorithm (Hoffmann et al., 2022). We use data points with an EL factor below 6 for training, while those are reserved as a validation set. The values are presented in Appendix 6.

Table 6: **Values of the Fitted Coefficients.**

a	d	γ	β	A_{start}	A_{max}
1.23	-7.61e-2	1.67e-2	-1.17e-1	1.63e-2	5.28e+16

H DETAILED RESULTS OF MOE-MINI EVALUATION

Evaluation Benchmarks To evaluate performance, we consider a diverse suite of downstream tasks designed to provide a holistic assessment of model capabilities. These tasks are grouped into several categories, such as: (a) General Knowledge/Reasoning (*e.g.*, ARC (Bhakthavatsalam et al., 2021), AGIEval (Zhong et al., 2024), OpenBookQA (Mihaylov et al., 2018), BBH (Suzgun et al., 2023), ProntoQA (Saparov & He, 2023), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), Multi-LogiEval (Patel et al., 2024)) (b) Language Understanding (*e.g.*, RACE (Lai et al., 2017)) (c) Professional Knowledge (*e.g.*, MMLU (Hendrycks et al., 2021a), CMMLU (Li et al., 2024), MMLU-Pro (Wang et al., 2024b), GPQA (Rein et al., 2023), C-Eval (Huang et al., 2023), CommonsenseQA (Talmor et al., 2018)) (d) Math (*e.g.*, GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021b), GAOKAO (Zhang et al., 2023), Gaokao2023-Math-En, MGSM (Shi et al., 2023), CMATH (Wei et al., 2023), MathBench (Liu et al., 2024), Minerva-Math (Lewkowycz et al., 2022), CN-Middle School 24) (e) Code (*e.g.*, HumanEval (Chen et al., 2021), HumanEval-cn (Peng et al., 2024), HumanEval-plus (Liu et al., 2023), HumanEval-FIM (Bavarian et al., 2022), LiveCodeBench (Jain et al., 2025), MBPP (Tao et al., 2024), MBPP-Plus (Liu et al., 2023), CruxEval (Gu et al., 2024)).

Evaluation Results The comparative evaluation in Table 7 reveals that MoE-mini achieves an average score of 45.5, surpassing Dense-6.1B’s 44.0. This result compellingly demonstrates that MoE-mini accomplishes a “small yet powerful” feat with significantly lower inference costs, its activated parameters amount to only about 13% of its competitor’s, striking an exceptional balance between performance and efficiency.

Upon closer examination of performance across specific dimensions, MoE-mini’s advantages are both comprehensive and focused. In general knowledge and reasoning tasks, it exhibits notable advantages in open-ended question answering tasks such as OpenBookQA and complex logical reasoning benchmarks like Multi-LogiEval. This trend continues in specialized knowledge domains, where MoE-mini delivers better results on comprehensive academic benchmarks like MMLU and MMLU-Pro. Its superiority is particularly evident in language understanding tasks, as it consistently outperforms its competitor in the RACE series of reading comprehension tests, showcasing stronger contextual understanding capabilities. In tasks requiring high coding proficiency, MoE-mini stands out significantly, especially in the HumanEval-Plus benchmark, which measures code robustness,

1458 Table 7: Detailed performance comparison of MoE-mini (17B-A0.8B) and Dense-6.1B.
1459

	Metric	Dense-6.1B	MoE-mini (A0.8B)
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469	ARC-challenge	59.7	57.0
	ARC-easy	78.0	78.7
	AGIEval	33.4	34.9
	OpenBookQA	68.6	75.2
	BBH	48.0	35.7
	ProntoQA	16.5	19.5
	Multi-LogiEval	55.6	61.3
	HellaSwag	65.6	66.6
	PIQA	76.6	77.2
	Average	55.8	56.2
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479	MMLU	51.1	53.1
	MMLU-Pro	21.7	24.0
	CMMLU	50.7	51.9
	C-Eval	52.5	51.1
	CommonsenseQA	63.6	60.6
	GPQA	24.8	27.3
	Average	44.0	44.7
	1480 1481 1482 1483 1484 1485 1486 1487 1488	RACE-middle	75.6
		RACE-high	67.6
		Average	71.6
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498	HumanEval	31.7	35.4
	HumanEval-cn	34.2	32.3
	HumanEval-Plus	35.4	51.8
	HumanEval-FIM	62.8	61.3
	MBPP	41.0	44.6
	MBPP-Plus	50.0	51.6
	LiveCodeBench	7.5	7.4
	CruxEval	32.9	34.1
	Average	36.9	39.8
	1499 1500 1501 1502 1503 1504 1505 1506 1507 1508	GSM8K	59.2
		MATH	23.7
		CMATH	60.5
		MGSM-zh	35.6
		CN-Middle School 24	41.6
		Minerva-Math	3.3
		MathBench	27.5
		Gaokao2023-Math-En	33.1
		GAOKAO-Math24	12.1
		Average	32.9
	Overall Average		44.0
			45.5

1501 achieving an impressive lead of over *16 points*. Similarly, in mathematical reasoning, while slightly
1502 lagging in basic arithmetic tasks like GSM8K, it excels in challenging benchmarks such as MATH
1503 and GAOKAO-Math24, demonstrating strong potential in solving complex problems. Collectively,
1504 MoE-mini achieves a 1.5-point overall advantage, validating its parameter-efficient MoE design. It
1505 not only drastically reduces inference costs through sparse activation but, more critically, its "expert
1506 networks" seem to enable higher performance ceilings in key areas such as language understanding,
1507 code generation, and advanced reasoning.

1508
1509 **Pre-training Evaluation of MoE-mini** We present a detailed evaluation of MoE-mini's training
1510 process. Figure 15 provides a comprehensive comparison across datasets and categories, as outlined
1511 in the main experiments in Section 5.2. The results show that MoE-mini achieves comparable
1512 performance to Dense-6.1B on the majority of datasets.

Figure 15: Overall and category-wise performance comparison between MoE-mini (17B-A0.8B) and Dense-6.1B.

1566 I ESTIMATING FLOPS

1568 To analyze the efficiency of our models, we quantify the computational cost in terms of total training
 1569 Floating Point Operations (FLOPs). Following standard practice (Kaplan et al., 2020), we estimate
 1570 the total training FLOPs as approximately three times the cost of a single forward pass ($C_{\text{train}} \approx 3 \cdot C_{\text{fwd}}$). The forward pass FLOPs are the sum of computations from the attention and feed-forward
 1571 network (FFN) layers, plus a final logit projection.

1573 For a model with hidden size d_{model} , batch size B , and sequence length s , the cost of the attention
 1574 block per layer, C_{attn} , which includes Grouped-Query Attention (GQA) (Ainslie et al., 2023) and all
 1575 projections, is approximately:

$$1577 C_{\text{attn}} \approx 2Bs d_{\text{model}}^2 \left(1 + \frac{2}{n_h/n_{kv}} \right) + 4Bs^2 d_{\text{model}} \quad (10)$$

1579 where n_h and n_{kv} are the number of attention and key-value heads, respectively. The FFN cost
 1580 varies by layer type. A dense layer with intermediate size d_{ffn} requires $C_{\text{dense_ffn}} = 6Bs d_{\text{model}} d_{\text{ffn}}$
 1581 FLOPs. A MoE layer activating E_a experts, each with size d_{expert} , requires:

$$1583 C_{\text{moe_ffn}} \approx 6Bs d_{\text{model}} (E_a \cdot d_{\text{expert}}) \quad (11)$$

1584 If a shared expert of size d_{shared} is used, its cost, $4Bs d_{\text{model}} d_{\text{shared}}$, is added. For a model with L
 1585 layers (of which the first L_{dense} are dense) and a vocabulary of size V , the total forward FLOPs are:

$$1587 C_{\text{fwd}} = \sum_{i=1}^L (C_{\text{attn}} + C_{\text{ffn},i}) + 2Bs d_{\text{model}} V \quad (12)$$

1590 where $C_{\text{ffn},i}$ is the FFN cost for the i -th layer, which can be either $C_{\text{dense_ffn}}$ or $C_{\text{moe_ffn}}$.

1592 J LIST OF EXPERIMENTAL MODELS

1594 The detailed configurations for all experiments conducted in this study are presented in Tables 8
 1595 (activation ratio), Tables 9 (expert granularity), Tables 10 (shared experts), Tables 11 (layer arrange-
 1596 ment), and Tables 12 (compute allocation between attention and FFNs).

1598 K METHODOLOGY FOR CALCULATING EFFECTIVE LEVERAGE (EL)

1601 Our methodology for obtaining EL datapoints does not involve training a unique dense model to
 1602 match the loss of each individual MoE run. Instead, we employ a more systematic and scalable
 1603 approach based on modeling the loss-compute scaling behavior for each model family. For a specific
 1604 MoE architecture (e.g., for a fixed activation ratio and granularity), as show in Algorithm 1, the
 1605 process of obtaining data points for EL is as follows:

1606 **1. Collecting (compute budget, optimal loss) Data:** We first train a suite of MoE models (see
 1607 Tables 8 to 12) and a corresponding suite of dense counterparts. For a given MoE configuration,
 1608 its dense counterpart is defined as a standard Transformer architecture, equivalent to an MoE model
 1609 with a 100% activation rate. **As shown in Table 8, the model architecture with an activation**
 1610 **rate of 1.0 serves as the dense counterpart for all other MoE configurations in our study.** All
 1611 models are trained on the same dataset with the same recipe, for up to 3×10^{20} FLOPs. This process
 1612 generates a set of (compute, optimal loss) data points $\{(C, \ell)\}$ for both the specific MoE architecture
 1613 \mathcal{X}_{MoE} and dense architecture $\mathcal{X}_{\text{Dense}}$. This is illustrated in Figure 10a, Figure 11a, and Figure 13a.

1615 **2. Fitting Loss Scaling Curves:** We then fit separate loss scaling functions, $L_{\mathcal{X}_{\text{MoE}}}(\cdot)$ and
 1616 $L_{\mathcal{X}_{\text{Dense}}}(\cdot)$, to the collected data for the specific MoE and dense architecture, respectively. We use a
 1617 standard power-law form, $L_{\mathcal{X}}(C) = \alpha_{\mathcal{X}} C^{\beta_{\mathcal{X}}} + b_{\mathcal{X}}$, consistent with prior work (Kaplan et al., 2020;
 1618 Henighan et al., 2020; Achiam et al., 2023). This process yields smooth loss scaling functions that
 1619 can predict the architecture’s optimal loss at any given compute budget C . These fitted curves are
 shown in the left panels of Figure 10b, Figure 11b, and Figure 13b.

1620
 1621 **3. Computing EL via Interpolated Loss Matching** For an MoE model at a compute budget
 1622 C_{MoE} , we first use its fitted curve to calculate the predicted loss: $\mathcal{L}^* = L_{\mathcal{X}_{\text{MoE}}}(C_{\text{MoE}})$. Next, we use
 1623 the dense model’s loss curve, $L_{\mathcal{X}_{\text{Dense}}}(C)$, to find the compute required to achieve the same loss by
 1624 solving $C_{\text{Dense}} = L_{\mathcal{X}_{\text{Dense}}}^{-1}(\mathcal{L}^*)$. Finally, we compute the EL as defined: $\text{EL} = C_{\text{dense}}/C_{\text{MoE}}$. These
 1625 EL values are shown in the right panels of Figure 10b, Figure 11b, and Figure 13b. This methodology based loss scaling curves on allows us to systematically evaluate EL across a continuous range
 1626 of compute budgets.
 1627

Algorithm 1 Calculating Efficiency Leverage (EL)

1628 **Require:** $P_{\text{dense}}, P_{\text{MoE}}$: Sets of (compute, loss) data points from dense and MoE training runs.
 1629 **Require:** C_{MoE} : The target MoE compute budget for which to calculate EL.
 1630 **Ensure:** EL: The calculated Efficiency Leverage value.
 1631
 1632 1: ▷ Part 1: Fit Loss Scaling Functions from Data
 1633 2: **for** each model family $\mathcal{X} \in \{\text{Dense, MoE}\}$ **do**
 1634 3: Fit a continuous loss scaling function $L_{\mathcal{X}}(C)$ to the corresponding data points $P_{\mathcal{X}}$.
 1635 ▷ Typically uses a parametric model like a power law, e.g., $L(C) = aC^{-b} + c$.
 1636 4: **end for**
 1637
 1638 5: ▷ Part 2: Calculate EL via Loss Matching
 1639 6: $\mathcal{L}^* \leftarrow L_{\mathcal{X}_{\text{MoE}}}(C_{\text{MoE}})$ ▷ Calculate the target loss achieved by the MoE model.
 1640 7: **if** \mathcal{L}^* is not attainable by the dense model (e.g., below its loss floor) **then**
 1641 8: **return undefined**
 1642 9: **end if**
 1643 10: Solve for $C_{\mathcal{X}_{\text{Dense}}}$ such that $L_{\mathcal{X}_{\text{Dense}}}(C_{\text{Dense}}) = \mathcal{L}^*$.
 1644 ▷ This is done by inverting the parametric function or using a numerical root-finder.
 1645 11: $\text{EL} \leftarrow \frac{C_{\text{Dense}}}{C_{\text{MoE}}}$ ▷ The final EL is the ratio of compute budgets.
 1646 12: **return** EL

1647
 1648
L COMPUTATIONAL RESOURCES

1649 Our study utilized a total of approximately **680,000 equivalent H800 GPU-hours**. The allocation
 1650 of this computational budget is detailed below:
 1651

1652

- 1653 • A total of **360,000 hours** were used for preliminary experiments. This phase involved
 1654 extensive hyperparameter tuning and explorations into optimal model and data allocation.
- 1655 • The main architectural scaling experiments, which form the core contribution of this work,
 1656 required **200,000 hours**.
- 1657 • Final validation runs, including the complete training of our 16-billion parameter MoE and
 1658 dense models on 1T tokens, consumed the remaining **120,000 hours**.

1659
 1660 This substantial investment underpins the reliability and scale of our empirical findings.
 1661

1662
 1663
M IMPACT OF THE NUMBER OF ATTENTION HEADS

1664 To investigate the impact of the number of attention heads (n_{head}), we conducted a series of supple-
 1665 mentary experiments. For each model size, we systematically varied n_{head} while keeping all other
 1666 hyperparameters constant, as detailed in Table 14. The results, visualized in Figure 16, reveal that
 1667 model performance is not sensitive to a single specific number of heads. Instead, we identified a
 1668 range of “near-optimal” values, defined as configurations achieving a final validation loss within
 1669 0.5% of the minimum observed loss for that model size. Based on this observation, and in line with
 1670 common practice in scaling law studies (Hoffmann et al., 2022; Ludziejewski et al., 2024), we scale
 1671 n_{head} proportionally with the model dimension (d_{model}) in our main experiments (see Tables 8 to 12).
 1672 This approach ensures a robust and fair comparison across different model scales.
 1673

Figure 16: Impact of the Number of Attention Heads. Red stars denote “near-optimal” configurations, defined as those achieving a final loss within 0.5% of the minimum for each model size.

N GOODNESS-OF-FIT ANALYSIS FOR SCALING LAWS

Our methodology is empirical, aligning with established practices in scaling law research (Clark et al., 2022; Hoffmann et al., 2022; Ludziejewski et al., 2024; Abnar et al., 2025; Besiroglu et al., 2024). For each component of the scaling law, we first identified the underlying trend through data visualization. We then selected a functional form that best captures this trend and rigorously validated our choice by comparing its goodness-of-fit (e.g., R^2), against simpler alternatives.

N.1 SATURATING TRANSFORM FOR ACTIVATION RATIO (A)

We empirically observed a trend of diminishing returns when decreasing the activation ratio (A); that is, the performance gains from a smaller ratio lessen as A approaches zero. A saturating transformation, which has been successfully employed to model similar phenomena (Clark et al., 2022), is well-suited to capture this effect. To validate this choice, we compared the fit of our proposed form (Eq. 1) against a standard power-law model. As shown in Table 16, the saturating transformation achieves a significantly higher R -squared value, confirming its superior fit to the data.

N.2 LOG-POLYNOMIAL FUNCTION FOR EXPERT GRANULARITY (G)

Our analysis revealed a U-shaped relationship between expert granularity (G) and model performance, where the EL first increases and then decreases as G grows. A quadratic polynomial function is a standard and parsimonious choice for modeling such non-monotonic trends and is widely used in prior work (Ludziejewski et al., 2024; Abnar et al., 2025). We confirmed its suitability by comparing its fit against a standard power-law and a saturating transform. The results in Table 17 demonstrate that the log-polynomial form provides the most accurate fit to our empirical observations.

N.3 POWER LAW FOR COMPUTE BUDGET (C)

The selection of a power law for the compute budget (C) was directly motivated by our empirical data. As visualized in Figure 4c, the log-log plot of Effective Loss versus training FLOPs exhibits a distinct linear relationship. This linearity is the hallmark of a power-law dependency, making it the natural and most appropriate functional form for this component of our model.

N.4 JOINT SCALING LAW FOR EFFICIENCY LEVERAGE

Finally, the joint scaling law (Eq. 4) is an empirical composite model designed to synthesize our individual findings. Its structure is not arbitrary but reflects the observed interactions: The term for Activation Ratio (A) serves as the primary driver of efficiency. This is then modulated by the independent, non-linear adjustment from Granularity (G). Finally, the entire efficiency gain is amplified

1728 by the Compute Budget (C) through the overarching power-law pattern. This composite structure
 1729 provides the most comprehensive explanation of the joint effects. Its high accuracy is empirically
 1730 validated in Figure 5, achieving an R-squared of 0.9858. The model demonstrates strong predic-
 1731 tive power with a low RMSE on both the training set (0.2169 over 200 points) and the validation
 1732 set (0.5275 over 24 points). We further analyzed the residuals of the fitted scaling law, as shown
 1733 in Figure 17. The residuals are approximately normally distributed and centered at zero (mean =
 1734 -0.0273, std. dev. = 0.2803), which confirms the high quality of the fit.

1749 Figure 17: Plot of residuals of our estimated joint scaling law.
 1750

1751 Table 8: Experimental configurations for the expert activation ratio analysis. Within each group, the
 1752 number of activated experts ($E_a = 2$) is fixed, while the total number of experts (E) is varied to
 1753 study the effect of the activation ratio.
 1754

<i>n</i> layers	<i>d</i> _{model}	<i>d</i> _{expert}	<i>n</i> heads	<i>n</i> _{kv,head}	<i>E</i>	<i>E</i> _s	η	<i>B</i>	Max training FLOPs
1757 8	384	320	8	2	[2,4,8,16,32,64,128,256]	1	1.52e-3	98	2e18
1758 8	512	512	8	2	[2,4,8,16,32,64,128,256]	1	1.31e-3	147	6e18
1759 10	640	640	10	2	[2,4,8,16,32,64,128,256]	1	1.11e-3	228	2e19
1760 14	768	768	12	4	[2,4,8,16,32,64,128,256]	1	9.5e-4	342	6e19
1761 16	1024	1024	16	4	[2,4,8,16,32,64,128,256]	1	8.1e-4	531	2e20
1762 22	1280	1280	20	4	[2,4,8,16,32,64,128,256]	1	7.0e-4	795	6e20

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793

Table 9: Experimental configurations for the expert granularity analysis. Within each group, the base model architecture is fixed while the MoE configuration (total experts E , activated experts E_a , shared experts E_s , and expert dimension d_{expert}) is varied to study the effect of granularity.

n_{layers}	d_{model}	n_{heads}	E	E_a	E_s	d_{expert}	B	η	Max training FLOPs
8	384	8	64	2	1	384	98	1.52e-3	2e18
			128	4	2	192			
			192	6	3	128			
			256	8	4	96			
			384	12	6	64			
			512	16	8	48			
8	512	8	64	2	1	512	147	1.31e-3	6e18
			128	4	2	256			
			192	6	3	170			
			256	8	4	128			
			384	12	6	85			
			512	16	8	64			
10	640	10	64	2	1	640	228	1.11e-3	2e19
			128	4	2	320			
			192	6	3	213			
			256	8	4	160			
			384	12	6	106			
			512	16	8	80			
14	768	12	64	2	1	768	342	9.5e-4	6e19
			128	4	2	384			
			192	6	3	256			
			256	8	4	192			
			384	12	6	128			
			512	16	8	96			
16	1024	16	64	2	1	1024	531	8.1e-4	2e20
			128	4	2	512			
			192	6	3	341			
			256	8	4	256			
			384	12	6	170			
			512	16	8	128			
22	1280	20	64	2	1	1280	795	7.0e-4	6e20
			128	4	2	640			
			192	6	3	426			
			256	8	4	320			
			384	12	6	213			
			512	16	8	160			

1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843

1844 Table 10: Experimental configurations for the shared expert ratio analysis. Within each group, we fix
 1845 the total number of experts ($E = 256$) and the total number of activated pathways ($E_a + E_s = 12$),
 1846 while varying the ratio between specialized experts (E_a) and shared experts (E_s) to study its impact
 1847 on performance.

1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860

<i>nlayers</i>	<i>d_{model}</i>	<i>nheads</i>	<i>E</i>	<i>E_a</i>	<i>E_s</i>	<i>d_{expert}</i>	<i>B</i>	η	Max training FLOPs
8	384	8	256	2	10	96	98	1.52e-3	2e18
			256	4	8	96			
			256	6	6	96			
			256	8	4	96			
			256	11	1	96			
			256	12	0	96			
8	512	8	256	2	10	128	147	1.31e-3	6e18
			256	4	8	128			
			256	6	6	128			
			256	8	4	128			
			256	11	1	128			
			256	12	0	128			
10	640	10	256	2	10	160	228	1.11e-3	2e19
			256	4	8	160			
			256	6	6	160			
			256	8	4	160			
			256	11	1	160			
			256	12	0	160			
14	768	12	256	2	10	192	342	9.5e-4	6e19
			256	4	8	192			
			256	6	6	192			
			256	8	4	192			
			256	11	2	192			
			256	12	0	192			
16	1024	16	256	2	10	256	531	8.1e-4	2e20
			256	4	8	256			
			256	6	6	256			
			256	8	4	256			
			256	11	1	256			
			256	12	0	256			
22	1280	20	256	2	10	320	795	7.0e-4	6e20
			256	4	8	320			
			256	6	6	320			
			256	8	4	320			
			256	11	1	320			
			256	12	0	320			

1883
 1884
 1885
 1886
 1887
 1888
 1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

Table 11: Experimental configurations for the arrangement of MoE and dense layers analysis. Within each group, the total number of layers is fixed at 60, while the mix of dense layers (n_{dense_layers}) and MoE layers (n_{moe_layers}) is varied to study the impact of their ratio and placement on performance.

1905

1906

1907

1908

n_{layers}	n_{dense_layers}	n_{moe_layers}	d_{model}	d_{ffn}	n_{heads}	E	E_a	E_s	d_{expert}	B	η	Max training FLOPs
60	0	60	384	1280	8	64	2	1	384	98	1.52e-3	2e18
	1	59										
	2	58										
	3	57										
60	0	60	512	2048	8	64	2	1	512	147	1.31e-3	6e18
	1	59										
	2	58										
	3	57										
60	0	60	640	2560	10	64	2	1	640	228	1.11e-3	2e19
	1	59										
	2	58										
	3	57										
60	0	60	768	3072	12	64	2	1	768	342	9.5e-4	6e19
	1	59										
	2	58										
	3	57										
60	0	60	1024	4096	16	64	2	1	1024	531	8.1e-4	2e20
	1	59										
	2	58										
	3	57										
60	0	60	1280	5120	20	64	2	1	1280	795	7.0e-4	6e20
	1	59										
	2	58										
	3	57										

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944
 1945 Table 12: Experimental configurations for analyzing the compute allocation between attention and
 1946 FFNs. Within each group, the core MoE structure is held constant, while we systematically vary the
 1947 model’s hidden dimension (d_{model}) and the expert dimension (d_{expert}) to explore the optimal trade-off
 1948 in compute allocation between the attention mechanism and the FFN experts.

<i>layers</i>	d_{model}	d_{expert}	n_{heads}	n_{kv_head}	E	E_s	E_a	η	B	Max training FLOPs
8	352	450	8	2	64	1	2	1.52e-3	96	2e18
8	368	380	8	2	64	1	2	1.52e-3	96	2e18
8	384	320	8	2	64	1	2	1.52e-3	96	2e18
8	400	260	8	2	64	1	2	1.52e-3	96	2e18
8	416	208	8	2	64	1	2	1.52e-3	96	2e18
8	480	626	8	2	64	1	2	1.31e-3	160	6e18
8	512	512	8	2	64	1	2	1.31e-3	160	6e18
8	544	410	8	2	64	1	2	1.31e-3	160	6e18
8	560	364	8	2	64	1	2	1.31e-3	160	6e18
8	576	320	8	2	64	1	2	1.31e-3	160	6e18
10	600	766	10	2	64	1	2	1.11e-3	224	2e19
10	640	640	10	2	64	1	2	1.11e-3	224	2e19
10	680	528	10	2	64	1	2	1.11e-3	224	2e19
10	700	476	10	2	64	1	2	1.11e-3	224	2e19
10	740	380	10	2	64	1	2	1.11e-3	224	2e19
14	696	988	12	4	64	1	2	9.5e-3	320	6e19
14	768	768	12	4	64	1	2	9.5e-3	320	6e19
14	816	642	12	4	64	1	2	9.5e-3	320	6e19
14	840	584	12	4	64	1	2	9.5e-3	320	6e19
14	888	474	12	4	64	1	2	9.5e-3	320	6e19
16	896	1378	16	4	64	1	2	8.1e-3	512	2e20
16	1024	1024	16	4	64	1	2	8.1e-3	512	2e20
16	1088	876	16	4	64	1	2	8.1e-3	512	2e20
16	1152	742	16	4	64	1	2	8.1e-3	512	2e20
16	1184	680	16	4	64	1	2	8.1e-3	512	2e20
22	1120	1686	20	4	64	1	2	7.0e-3	768	6e20
22	1280	1280	20	4	64	1	2	7.0e-3	768	6e20
22	1360	1110	20	4	64	1	2	7.0e-3	768	6e20
22	1440	956	20	4	64	1	2	7.0e-3	768	6e20
22	1520	816	20	4	64	1	2	7.0e-3	768	6e20

1976
 1977 Table 13: Representative parallelism configurations in our experiments.
 1978

Model	<i>n_{layers}</i>	d_{model}	d_{ffn}	d_{expert}	E	E_a	EP	TP	PP
Experimental Model Example 1	8	384	-	96	256	8	8	1	1
Experimental Model Example 2	8	512	-	128	256	8	8	1	1
Experimental Model Example 3	10	640	-	160	256	8	8	1	1
Experimental Model Example 4	14	768	-	192	256	8	8	1	1
Experimental Model Example 5	16	1024	-	256	256	8	8	1	1
Experimental Model Example 6	22	1280	-	320	256	8	8	1	2
Dense-6.1B	28	4096	14336	-	-	-	-	2	1
MoE-mini	20	2048	5120	384	384	12	8	2	1

1989
 1990 Table 14: Experimental configurations for analyzing the impact of the number of attention heads
 1991 (n_{head}). Within each experimental group, only n_{head} is varied while other parameters remain fixed.

<i>n_{layers}</i>	d_{model}	d_{expert}	n_{heads}	n_{kv_head}	E	E_a	E_s	η	B	Max training FLOPs
8	384	320	[2,4,6,8,12]	2	64	2	1	1.52e-3	98	2e18
8	512	512	[2,4,8,12,16]	2	64	2	1	1.31e-3	147	6e18
10	640	640	[2,4,8,10,16,20]	2	64	2	1	1.11e-3	228	2e19
14	768	768	[6,8,12,16,24]	4	64	2	1	9.5e-4	342	6e19
16	1024	1024	[4,8,16,24,32]	4	64	2	1	8.1e-4	531	2e20

1998
1999
2000
2001
2002

2003
2004
2005

2006
2007
2008
2009
2010
2011

2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

2022
2023
2024

Table 15: **Impact of granularity on load balancing.** Finer granularity (more experts) increases the coefficient of variation (CV), indicating greater load imbalance.

<i>n_{layers}</i>	<i>d_{model}</i>	<i>n_{heads}</i>	<i>E</i>	<i>E_a</i>	<i>E_s</i>	<i>d_{expert}</i>	<i>B</i>	η	Training FLOPs	CV
14	768	12	192	6	3	384	342	9.5e-4	6e19	0.033
14	768	12	256	8	4	192	342	9.5e-4	6e19	0.052
14	768	12	384	12	6	128	342	9.5e-4	6e19	0.061
14	768	12	512	16	8	96	342	9.5e-4	6e19	0.093

Table 16: **Goodness-of-fit comparison for the functional form relating EL and Activation Ratio (*A*).** The saturating transformation provides a better fit.

Functional Form	<i>R</i> ²
Power-law with saturating transformation (ours, Eq. 1)	0.9915
Standard power-law (i.e., $\log \text{EL}(A) \propto \log A$)	0.9772

Table 17: **Goodness-of-fit comparison for the functional form relating Effective Loss (EL) and Expert Granularity (*G*).** The log-polynomial function best captures the U-shaped trend.

Functional Form	R-squared
Log-polynomial (ours, Eq. 2)	0.9575
Standard power-law (i.e., $\log \text{EL}(G) \propto \log G$)	0.8276
Power-law with saturating transformation	0.9432