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ABSTRACT

Mixture-of-Experts (MoE) has become a dominant architecture for scaling Large
Language Models (LLMs) efficiently by decoupling total parameters from com-
putational cost. However, this decoupling creates a critical challenge: predicting
the model capacity of a given MoE configurations (e.g., expert activation ratio and
granularity) remains an unresolved problem. To address this gap, we introduce
Efficiency Leverage (EL), a metric quantifying the computational advantage of an
MoE model over a dense equivalent. We conduct a large-scale empirical study,
training over 300 models up to 28B parameters, to systematically investigate the
relationship between MoE architectural configurations and EL. Our findings re-
veal that EL is primarily driven by the expert activation ratio and the total compute
budget, both following predictable power laws, while expert granularity acts as a
non-linear modulator with a clear optimal range. We integrate these discoveries
into a unified scaling law that accurately predicts the EL of an MoE architecture
based on its configuration. To validate our derived scaling laws, we designed and
trained MoE-mini, a model with only 0.85B active parameters, alongside a 6.1B
dense model for comparison. When trained on an identical 1T high-quality token
dataset, MoE-minimatched the performance of the 6.1B dense model while con-
suming over 7x fewer computational resources, thereby confirming the accuracy
of our scaling laws. This work provides a principled and empirically-grounded
foundation for the scaling of efficient MoE models.

1 INTRODUCTION

Mixture-of-Experts (MoE) models (Shazeer et al., 2017; Jiang et al., 2024; DeepSeek-AI, 2024)
have emerged as a leading paradigm for constructing large language models (LLMs) (Zhao et al.,
2023), primarily due to its remarkable computational efficiency (Clark et al., 2022). By leveraging
sparse activation, MoE models can dramatically increase their total parameter count without pro-
portionally increasing the computational cost (FLOPs). For instance, DeepSeekMoE (Deepseek-AI

(a) Definition of Efficiency Leverage (EL) (b) Estimated EL at 1e22 FLOPs

Figure 1: Illustration of the Efficiency Leverage (EL) metric for MoE architecture versus dense
architecture and its estimated values using Eq. 4 for 1e22 FLOPs.
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et al., 2024), with 16 billion total parameters, activates only 2.8 billion per token, yet achieves per-
formance comparable to a 7-billion-parameter dense model, showcasing a parameter efficiency gain
of approximately 2.5x. However, the decoupling of computational cost from the total parameter
count in MoE introduces a new challenge in assessing a model’s capacity. Specifically, neither the
total nor the activated parameter count alone serves as a reliable proxy for performance of MoE
models. Consequently, predicting the effective capacity of a specific MoE architecture and setting
realistic performance expectations before pre-training remains a critical and unresolved problem.
While scaling laws are fundamental for predicting language model performance, their application
to MoE models remains fragmented. Prior work has largely studied architectural factors like spar-
sity or granularity in isolation (Clark et al., 2022; Ludziejewski et al., 2024; Abnar et al., 2025;
Ludziejewski et al., 2025). This leaves a critical question unanswered: how do these factors collec-
tively determine an MoE’s true computational advantage over a standard dense model?

To address this gap, we introduce Efficiency Leverage (EL), a metric that quantifies an MoE’s
computational advantage over a dense counterpart. As illustrated in Figure 1a, at compute budget
CMoE, we define EL as the ratio of training compute budgets a dense model XDense requires to match
the performance (e.g., identical loss) of an MoE model XMoE: EL(XMoE | XDense;CMoE) =

CDense
CMoE

.
This definition provides a powerful and intuitive benchmark for MoE architectural comparison: an
EL of 5, for example, means an MoE architecture matches the performance of a dense model trained
with five times the compute budget. Consequently, for a fixed compute budget, a higher EL directly
translates to greater efficiency, enabling larger and more capable models.

To build a predictive framework for EL, our study follows a three-stage methodology. First, we
establish fair training conditions by deriving scaling laws for hyperparameters and data allocation
in preliminary experiments. Second, we systematically isolate the impact of core architectural
dimensions (such as activation ratio, granularity, and shared experts) on EL. Finally, we synthesize
these findings into a unified scaling law that accurately predicts an MoE configuration’s EL, offer-
ing a practical guide for designing next-generation efficient models. Applying this methodology, we
trained over 300 MoE models up to 28B parameters, using a total of 680k H800-equivalent GPU-
hours. This large-scale effort led us to identify several core principles for optimizing the efficiency
of MoE models. Our key findings are:

1. Activation ratio as the primary driver of efficiency. The expert activation ratio emerges
as the primary determinant of EL. We observe a stable power-law relationship: EL increases
as the activation ratio decreases (i.e., as sparsity increases). This reveals that sparsely acti-
vated pathways yield consistent and predictable gains in computational efficiency.

2. Expert granularity as a non-linear modulator. Superimposed on this primary trend,
expert granularity introduces a log-polynomial adjustment to EL. This effect is independent
of the total compute budget and implies an optimal range for expert size. Our experiments,
which utilize a standard load-balancing loss, identify this optimum to be between 8 and 12.

3. Amplifying effect of the compute budget. Crucially, the EL of a given MoE architecture
is not static; it scales with the training compute budget, also following a power law. This
finding underscores the advantage of MoE models in large-scale pre-training, where their
efficiency gains become increasingly significant as computational resources expand.

4. Secondary impact of other architectural factors. Other design choices, such as shared
experts or the specific arrangement of MoE layers, have a secondary impact on EL, as they
typically possess broadly applicable, near-optimal settings that require minimal tuning.

Synthesizing these findings, we derive a unified scaling law for EL. This law integrates the effects of
compute budget, activation ratio, and expert granularity, providing a predictive framework to guide
efficient MoE design. As a practical demonstration, Figure 1b visualizes the predicted EL landscape
under a 1e22 FLOPs budget, highlighting optimal architectural regions.

According to our derived scaling law for EL, we predict that an MoE model with a 3.1 % activa-
tion ratio and a granularity of 12 should achieve an efficiency leverage of over 7x at this compute
scale. To validate this prediction, we designed and trained MoE-mini (17.5B total, 0.85B active
parameters) against a 6.1B dense counterpart on a 1-trillion-token dataset. The results confirmed
our hypothesis: MoE-mini achieved a lower final training loss and slightly outperformed the dense
model across downstream tasks. This outcome empirically validates our law’s prediction of a > 7×
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efficiency gain. These findings establish our scaling law as a solid theoretical and empirical founda-
tion for designing future large-scale, efficient MoE models.

2 PRELIMINARY

2.1 MIXTURE-OF-EXPERT TRANSFORMERS.

Total and Active Parameters. We distinguish between a model’s total parameters (N ), which
include all weights (including all experts), and its active parameters (Na), which comprise only the
non-expert weights and the subset of experts activated for a given token.

Routable and Shared Experts. An MoE layer contains two types of experts: E routable experts,
from which a gate dynamically selects Ea per token, and Es shared experts, which are consistently
activated for all tokens to process common knowledge.

Activation Ratio and Sharing Ratio. We characterize the expert configuration with two ratios
that quantify utilization. The Activation Ratio (A), defined as A = (Ea +Es)/(E +Es), measures
the overall sparsity of the MoE layer. The Sharing Ratio (S), defined as S = Es/(Ea + Es),
represents the proportion of activated experts that are shared.

Granularity of Experts. While traditionally the expert dimension (dexpert) was tied to the FFN
intermediate size (e.g., 4dmodel), recent work decouples them to explore finer-grained experts. We
define Expert Granularity (G) as G = 2dmodel/dexpert to systematically analyze expert size. A higher
G indicates a shift towards more, smaller experts for a fixed parameter budget, departing from the
conventional practice where dexpert was tied to the FFN’s intermediate dimension (e.g., 4dmodel). 1

Model Scale in Computation. Following prior work (Bi et al., 2024), we define model scale (M )
as the non-embedding FLOPs per token. This metric provides a fair basis for comparing dense and
MoE architectures, as it inherently accounts for sparse activation. The total training compute (C)
for D tokens is then given by C = M ·D. We provide the exact calculation for M in Appendix I.

2.2 SCALING LAWS FOR MOE OPTIMAL HYPER-PARAMETERS

To ensure fair architectural comparisons, we first establish scaling laws for the optimal training hy-
perparameters of MoE models. By performing a large-scale hyperparameter search over a wide
range of compute budgets (C), we derived the scaling laws for the optimal learning rate (ηopt) and
batch size (Bopt). Our analysis, detailed in Appendix E.1, reveals a key distinction from dense mod-
els: at larger compute scales, MoE models favor a significantly larger batch size and a slightly lower
learning rate (Figure 2a). This phenomenon is attributable to MoE’s sparse backpropagation, where
gradients from only a subset of tokens in a batch update each expert’s parameters. We validated
that these derived laws are generalizable across MoE models with varying expert activation ratios
(shown in Figure 8). This confirms that our findings provide a reliable foundation for exploring
diverse MoE architectures under near-optimal training conditions.

2.3 SCALING LAWS FOR MOE OPTIMAL MODEL-DATA ALLOCATION

To achieve compute-optimal training, the allocation of a fixed FLOPs budget (C) between model
size (M ) and data size (D) is critical. We analyze this trade-off for Mixture-of-Experts (MoE)
models and compare them against dense models. Our analysis, detailed in Appendix E.2, yields
two key insights: First, consistent with prior work (Bi et al., 2024; Hoffmann et al., 2022), the
optimal allocation for both MoE and dense models involves splitting the compute budget roughly
equally between model and data scaling (i.e., the scaling exponents are close to 0.5). Second, and
more crucially, at any given compute budget, the optimal MoE model is computationally smaller but
trained on more data than its optimal dense counterpart (Figure 2b). This suggests that MoEs possess
greater capacity per parameter, enabling them to effectively leverage larger datasets with smaller

1Our definition (2dmodel/dexpert) differs from Ludziejewski et al. (2024) (4dmodel/dexpert) to align with recent
models (DeepSeek-AI, 2024; Moonshot-AI, 2025). This choice leads to different observed scaling phenomena.
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(a) Scaling laws for optimal hyperparameters (b) Scaling laws for optimal model-data allocation

Figure 2: Scaling laws for optimal hyperparameters and optimal model-data allocation. Blue and red
lines represent the fitted laws for MoE and dense models, respectively, derived on the same training
dataset. Gray circles are the experimental data points used for fitting.

model sizes. This finding is particularly significant for training in data-rich but compute-limited
scenarios, as it highlights a path toward greater efficiency. The above scaling laws for optimal
hyperparameters and optimal model-data allocation provide a principled basis for model and data
selection in our subsequent experiments.

3 EFFICIENCY LEVERAGE: METRIC FOR QUANTIFYING MOE
COMPUTE-EFFICIENCY

To quantify the computational advantage of MoEs, we introduce a core metric: Efficiency Leverage
(EL). Intuitively, EL measures how many more FLOPs a corresponding dense architecture requires
to achieve the same performance as an MoE architecture.

Formally, the EL is defined as the ratio of the compute budgets required for a dense and an MoE
architecture to achieve the same target loss value, L⋆ at the same dataset. Let LX (C) be the optimal
loss scaling function for an architecture X , representing the best achievable loss for a given compute
budget C. Consistent with prior work (Kaplan et al., 2020; Henighan et al., 2020; Achiam et al.,
2023), this function is typically modeled as a power law, e.g., LX (C) = αXCβX +bX . The compute
required to reach a target loss L⋆ is therefore given by the inverse function, CX (L⋆) = L−1

X (L⋆).
The EL is then formally expressed as:

EL(XMoE | XDense;L
⋆) =

CXDense
(L⋆)

CXMoE
(L⋆)

.

In our work, we define the target loss L⋆ as the loss achieved by the MoE model at its own compute
budget, CMoE (i.e., L⋆ = LXMoE(CMoE)). This practical choice simplifies the EL to a function of
the MoE architecture, the dense architecture, and the MoE model’s compute budget:

EL(XMoE | XDense;CMoE) =
L−1
XDense

(LXMoE
(CMoE))

CMoE
=

CDense

CMoE
,

where CDense is the compute budget required for the dense model to match the MoE’s loss, obtained
by inverting the dense model’s loss scaling curve.

Our primary goal is to build a predictive model for EL based on key MoE architectural choices.
We focus on three critical dimensions that govern MoE capacity: the Activation Ratio (A), Expert
Granularity (G), and Shared Expert Ratio (S). Other factors, like the arrangement of MoE layers,
have a secondary impact (detailed in Appendix F.4). To achieve this, we conduct systematic ablation
studies, varying one architectural dimension at a time across a range of compute budgets (3× 1018

to 3 × 1020 FLOPs). Crucially, to ensure a fair comparison, our methodology is guided by the
preliminary findings in Sections 2.2 and 2.3. For each experiment, we use our derived scaling laws
to set the comparable suboptimal model/data allocation and training hyperparameters. This rigorous
protocol ensures that every architecture is evaluated near its peak potential, yielding robust and
reliable results. Full experimental details are in Appendix D. The following sections first analyze
each factor’s impact on EL individually, then synthesize these findings into a unified scaling law.
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4 SCALING LAWS FOR EFFICIENT MOE ARCHITECTURE

To achieve greater leverage, we first conduct an extensive empirical study on the architectural con-
figurations of MoE and derive unified scaling laws for efficient MoE architectures.

4.1 EMPIRICAL STUDY ON THE INTERPLAY BETWEEN LOSS AND MOE ARCHITECTURE

Our investigation focuses on several critical architectural factors: the expert activation ratio (A),
expert granularity (G), and sharing ratio (S). For each architectural dimension, we vary it system-
atically while holding other factors and the model scale M constant. To ensure a fair comparison,
all models are trained following the training hyperparameters derived from our scaling laws (Sec-
tion 2). Guided by the scaling laws for optimal model-data allocation (Section 2.3), we train each
model on over three times its optimal number of tokens. This was done to simulate the overtrained
state commonly observed in real-world scenarios. A detailed analysis and a complete list of trained
models are provided in Appendix F and Appendix J, respectively.

Expert Activation Ratio (A). We first investigate the activation ratio (A), which governs model
sparsity. By varying the total number of experts while keeping the number of activated experts
fixed, our IsoFLOPs experiments reveal a clear power-law relationship: for any given computational
budget and any given model scale, training loss monotonically decreases with the activation ratio
(Figure 3a). This trend holds consistently down to the lowest ratio tested, 1/128 ( 0.8%), demon-
strating that greater sparsity yields higher parameter efficiency without an observable turning point.
Moreover, this efficiency advantage is amplified at larger training scales, confirming that sparser
models are increasingly beneficial in high-computation regimes. See Appendix F.1 for details.

Expert Granularity (G). Next, we analyzed expert granularity (G), which defines the trade-off
between employing numerous small experts versus fewer large ones. Our experiments reveal a
distinct U-shaped relationship between granularity and training loss, demonstrating the existence of
an optimal point that maximizes performance per FLOP (Figure 3b). This optimum proved to be
remarkably stable across different compute budget (e.g., G=12 in our tests). This suggests that while
overly coarse-grained experts fail to effective specialization (Deepseek-AI et al., 2024), excessively
fine-grained experts is also often suboptimal. Crucially, we find that routing quality is a key factor,
as poor load balancing shifts the optimal point toward coarser granularities (details in Appendix F.2).

Shared Expert Ratio (S). Our analysis of the shared expert ratio (S) reveals a U-shaped perfor-
mance curve, where a small but non-zero ratio minimizes training loss (Figure 3c). Furthermore, we
identify a subtle scaling trend: the optimal S decreases as the compute budget grows. This leads to a
practical heuristic for large-scale training (e.g., > 1020 FLOPs): a “one shared expert” design, rep-
resenting the minimal effective non-zero ratio, is the most efficient choice (details in Appendix F.3).

Other Architectural Factors. We further analyzed two design dimensions to enhance MoE effi-
ciency: layer arrangement and compute allocation between attention and FFN. We found that incor-
porating dense layers in the early stages of MoE has minor impact on efficiency but helps mitigate
routing imbalances and reduces overall parameters. For compute allocation, allocating 30%-40%
of FLOPs to the attention mechanism achieves optimal or near-optimal performance, with minor
impact outside this range. Detailed results are available in Appendix F.4.

4.2 SCALING LAWS FOR MOE EFFICIENCY LEVERAGE

Based on the empirical study in Section 4.1, shared experts and other design factors have a secondary
impact on EL, as they typically have robust, near-optimal settings. Therefore, we focus on deriving
a parametric scaling law for EL as a function of activation ratio A, granularity G, and FLOPs C.

4.2.1 UNIVARIATE SCALING LAWS FOR EFFICIENCY LEVERAGE

To systematically analyze each core architectural dimension, we vary it while holding the others and
the total compute budget (i.e., FLOPs per token, M ) constant. This controlled approach is essential,
as a full combinatorial exploration would be prohibitively complex and unaffordable.

5
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(a) IsoFLOPs curves for varying A (b) IsoFLOPs curves for varying G (c) IsoFLOPs curves for varying S

Figure 3: Impact of MoE architectural choices on performance. (a) Activation Ratio (A): At a
fixed compute budget, loss monotonically decreases with a lower activation ratio. The advantage
of sparsity is magnified at scale. (b) Expert Granularity (G): A U-shaped relationship between
granularity and loss reveals an optimal point (marked by orange stars) that maximizes efficiency. (c)
Shared Expert Ratio (S): A U-shaped loss curve shows that a low, non-zero S is optimal.

Our procedure for deriving the scaling law for each architectural dimension follows three stages,
as detailed in Algorithm 1. First, we generate a dataset of ‘(compute, loss)‘ pairs by training a
suite of MoE models (Tables 8–10) and their dense counterparts. Second, we fit these points to loss
scaling curves for each architectural setting. From these curves, we compute the EL for various MoE
architectures and FLOPs budgets, as illustrated in Figures 10b, 11b, and 12b. Finally, we collect the
resulting EL values from different settings and use them to derive the univariate scaling laws for
activation ratio A, granularity G, and FLOPs C, as presented in Figure 6.

Interaction of Efficiency Leverage and Activation Ratio. Our preceding analysis identifies the
activation ratio (A) as the primary factor influencing EL. As illustrated in Figure 4a, reducing the
activation ratio (i.e., increasing sparsity) consistently yields substantial efficiency gains, following a
similar power-law relationship across all FLOPs budgets. This leads us to hypothesize: for a given
FLOPs budget and granularity, there exists a power-law dependence between EL and activation ratio.

logELC,G(Â) = aA log Â, i.e. ELC,G(Â) = ÂaA ,

where
1

Â
=

1

A+ (1/Astart − 1/Amax)−1
+

1

Amax
,

(1)

where Â is a saturating transformation of A, as defined in Clark et al. (2022), and we set the lower
bound of meaningful activation ratio as 0. Clearly, when A = 1, we have EL = 1, indicating
that the EL of the dense model is 1, which satisfies the dense equivalence. We fit Eq. 1 to the
data for each compute budget, and the resulting predictions (dotted lines in Figure 4a) align well
with our observations. Notably, the fitted exponent aA is not constant. It increases as A decreases,
indicating a diminishing benefit from increased sparsity, consistent with prior work (Clark et al.,
2022). Furthermore, aA also increases with the compute budget C, suggesting greater leverage for
larger models. We will analyze the relationship between FLOPs and EL in the following paragraph.

Interaction of Efficiency Leverage and Expert Granularity. As previously observed, an optimal
expert granularity exists that maximizes the EL. Thus, we hypothesize that for a fixed FLOPs budget
C and activation ratio A, the relationship between EL and G follows a log-polynomial pattern:

logELC,A(G) =aG + bG (logG (logG+ cG)) , (2)

where aG is the granularity-independent base EL, representing the theoretical value when granular-
ity is 1. bG controls the strength of the curvature in the relationship between EL and granularity,
reflecting the sensitivity of the model architecture to changes in expert granularity. cG determines
the position of the optimal granularity that maximizes EL. We fit Eq. 2 to each FLOPs budget and
plot the predictions for varying granularity as dotted lines in the Figure 4b. As shown, the curves
under different FLOPs budgets are highly similar (i.e., with similar values of bG and cG), indicating
that the impact of expert granularity on MoE efficiency is consistent across various compute budgets.
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(a) Scaling with Activation Ratio (b) Scaling with Granularity (c) Scaling with Compute Budget

Figure 4: Scaling behavior of efficiency leverage (EL). (a) With fixed granularity (G = 2), EL
follows a power law with respect to activation ratio A across all tested compute budgets (C). (b) With
a fixed activation ratio (A = 3.1%), EL’s scaling with granularity G conforms to a log-polynomial
law across all compute budgets. (c) With both activation ratio (A) and granularity (G) held constant,
EL scales with compute according to a standard power law. Points below 3e20 FLOPs represent
experimental data, while points beyond this threshold are predictions extrapolated from scaling law.

Interaction of Efficiency Leverage and Compute Budget. Based on the analysis presented in
Section 4.1 and Section 4.2.1, we observe that the efficiency advantage of MoE increases as the
computational budget grows. To formalize the relationship between the FLOPs budget and EL, we
assume a standard power-law pattern as follows:

logELA,G(C) = aC logC + cC , i.e. ELA,G(C) = exp(cC) · CaC , (3)
where aC reflects the scaling capability of MoE efficiency with respect to the compute budget under
given configurations A and G. We collect the values of the EL corresponding to different model
architectures under the granularity setting of 2, and fit Eq. 2 to each architectures. The predictions
for varying granularity are plotted as dotted lines in the Figure 4c. The results indicate that all tested
MoE architectures show a trend of higher EL as the FLOPs budget increases, demonstrating the
potential of MoE in large-scale pre-training.

Our choice for each univariate scaling law is justified by a goodness-of-fit comparison against sim-
pler alternatives. The specifics of the comparative analysis are presented in Appendix N.

4.2.2 JOINT SCALING LAW FOR EFFICIENCY LEVERAGE

Based on the preceding observations and univariate scaling laws, we identify three key insights:

• The activation ratio (or sparsity) is the primary driver of MoE efficiency, establishing a
foundational power-law relationship.

• Building upon this power law, expert granularity imposes a non-linear adjustment that op-
erates independently of the compute budget.

• Furthermore, the efficiency advantage of MoE over dense models is amplified by the com-
pute budget C through the power-law pattern.

To unify these interconnected effects, we propose the following joint scaling law for EL:

EL(A,G,C) = Âα+γ(logG)2+β logG, (4)

where α = a + d logC is the compute-dependent exponent that captures the primary power-law
relationship between EL and FLOPs ratio. The term a represents the base scaling exponent at a
reference compute budget, while d is a positive constant that quantifies how the EL is amplified by
a larger compute budget C. The parameters β and γ model the non-linear impact of granularity
G. This quadratic form in logG directly reflects the log-polynomial pattern observed in our initial
analysis, capturing the existence of an optimal granularity.

4.2.3 FIT AND VALIDATION

To validate the proposed scaling law for EL, we fit Eq. 4 using Huber loss and the BFGS optimization
algorithm (Hoffmann et al., 2022). We use data points with an EL factor below 6 for training,
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Figure 5: Validation of the Scaling Laws for Ef-
ficiency Leverage. We fit Eq. 4 to the data points
with an efficiency leverage of less than 6, using
the remaining points as the validation set.

while those are reserved as a validation set.
As depicted in Figure 5, the resulting model
achieves an R2 of 0.9858 and demonstrates
strong predictive power. This is evidenced by
a low RMSE on both the training set (0.2169
over 200 points) and the validation set (0.5275
over 24 points). The quality of the fit is further
corroborated by the residuals, which are ap-
proximately normally distributed and centered
at zero (mean = -0.0273, std. = 0.2803). The fit-
ted coefficients and a more detailed goodness-
of-fit analysis can be found in Appendix G and
Appendix N.4, respectively.

The alignment between the scaling law and
both the training data and validation set pro-
vides strong empirical support for the proposed
relationship. More importantly, the scaling law exhibits remarkable extrapolation capabilities, as it
accurately models performance trends for high-leverage validation points outside the training range.
These results confirm that Eq. 4 effectively captures the underlying interaction between MoE archi-
tecture and EL.

Furthermore, we select 1e22 FLOPs compute budget, and apply our fitted scaling laws to predict EL
across various MoE configurations. As shown in Figure 1, our analysis predicts that an EL exceeding
7x can be achieved at a budget of 1e22 FLOPs with an activation ratio of 3.1% and a granularity of
12. This claim is experimentally validated in the following section.

5 MOE-MINI : MORE EFFICIENT MOE LANGUAGE MODEL

To validate the scaling laws derived in Section 4, we designed a new MoE model, MoE-mini, con-
figured with architectural parameters predicted to be highly efficient. It features a total of 17.5B
parameters but only 0.85B active parameters, achieved through a granularity of G = 12 and a low
activation ratio of A = 3.4%. Referring to Figure 1, at the 1e22 FLOPs compute budget, we hy-
pothesize that MoE-mini achieves more than 7× in compute-efficiency leverage over a comparable
dense model. Concurrently, we train a traditional dense model with 6.1 billion parameters (named
“Dense-6.1B”) for comparison. This section presents a detailed analysis of the performance dif-
ferences between MoE-mini and the conventional dense model Dense-6.1B, highlighting that
the active parameter count, training costs, and downstream inference costs of Dense-6.1B are
more than seven times those of MoE-mini. The architectures of MoE-mini and Dense-6.1B are
given in Table 1, while ther detailed architectures and training setting are provided in Appendix D.

Table 1: Detailed Architectures of MoE-mini and Dense-6.1B for Comparison.

Model nlayers dmodel dffn dexpert nheads nkv head E Ea Es N Na

Dense-6.1B 28 4096 14336 - 32 8 - - - 6.11B 6.11B
MoE-mini (A0.8B) 20 2048 5120 384 16 4 384 12 1 17.5B 0.85B

5.1 TRAINING DYNAMICS

The Dynamic of Training Loss The training loss curves for MoE-mini and Dense-6.1B,
shown in Figure 6a, illustrate a clear difference in their convergence behavior. The dense model
exhibits faster convergence during the early training phases, indicating an aptitude for rapid initial
learning. In contrast, MoE-mini’s loss decreases more gradually at the start. However, over the full
course of training, MoE-mini steadily improves and ultimately achieves a performance level com-
parable to that of the dense model, highlighting its ability to reach high performance with sufficient
training. Focusing on the final 100 billion tokens of training provides further insight. In this con-
cluding stage, the performance gap between MoE-mini and Dense-6.1B narrows to a negligible
difference of about 0.01 in loss value. This confirms that MoE-mini can nearly match the dense
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MoE-mini (A0.8B)
Dense (6.1B)

(a) Dynamic of Training Loss. (b) Dynamic of Benchmarks.

Figure 6: Dynamic of Training Loss (left) and Benchmarks (right).

model’s effectiveness while operating with significantly fewer computational resources. Crucially,
this near-equal performance underscores MoE-mini’s ability to deliver over 7x gains in training
efficiency, making it a highly cost-effective and powerful alternative for large-scale pre-training.

The Dynamic of Benchmarks Throughout training, MoE-mini and Dense-6.1B demon-
strated remarkably synchronous performance gains on standard benchmarks, shown in Figure 6b.
The data reveals a clear and consistent trend: the two models improved almost synchronously. At
no point during training did one model show a decisive or lasting advantage over the other. This
lockstep progression continued until the end of the training cycle, where they posted nearly identi-
cal final scores on the evaluation leaderboard. This synchronous dynamic and convergent outcome
suggest a fundamental parity in their learning efficiency and final performance ceiling under our
experimental conditions.

5.2 EVALUATION

Evaluation Benchmarks To provide a holistic assessment of our model’s capabilities, we evaluate
it on a diverse suite of downstream benchmarks. These tasks are grouped into five key categories:
General Knowledge and Reasoning, Language Understanding, Professional Knowledge, Math, and
Code. A detailed list of all benchmarks used in each category is provided in Appendix H.

Evaluation Results The comparative evaluation, summarized in Table 2, reveals that MoE-mini
achieves a superior overall score of 45.5, outperforming Dense-6.1B’s 44.0. This result demon-
strates that MoE-mini achieves a “small yet powerful” feat: while its activated parameters consti-
tute only about 13% of its competitor’s during inference, it strikes an exceptional balance between
performance and efficiency. Beyond the overall average, MoE-mini demonstrates consistent ad-
vantages across most key domains, including reasoning, language understanding, code generation,
and advanced mathematics. Its superiority is particularly pronounced in tasks requiring high cod-
ing proficiency and deep contextual understanding. While there are minor variations on specific
benchmarks, the general trend confirms its strong potential in solving complex problems. This
result validates that MoE-mini achieves an impressive 7× efficiency leverage, delivering perfor-
mance comparable to a 6.1B dense model that uses over 7 times the active parameters. A detailed,
benchmark-by-benchmark comparison is provided in Appendix H.

Table 2: Performance comparison of MoE-mini (17B-A0.8B) and Dense-6.1B.

Model General/Reasoning Professional Language Code Math Overall Avg.

Dense-6.1B 55.8 44.0 69.2 36.9 32.9 44.0
MoE-mini (A0.8B) 56.2 44.7 71.6 39.8 34.7 45.5
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6 RELATED WORK AND DISCUSSION

We provide a broader survey of related work in Appendix B and compare our findings with key
prior studies in Appendix C. Our work formulates scaling laws in terms of Efficiency Leverage (EL),
diverging from prior loss-centric studies. This EL-based approach offers a more direct and practical
framework for understanding MoE efficiency for two key reasons: 1) EL directly quantifies an
MoE’s compute advantage. Unlike absolute loss, which is dataset-specific and hard to interpret,
EL provides a generalizable architectural insight. 2) EL can Simplify Model Selection. Instead of
fitting multiple complex loss functions, practitioners can use our scaling laws to directly compare
the efficiency of different MoE configurations. This dramatically simplifies architectural design
choices. In short, while traditional laws predict what the loss will be, our formulation quantifies
how much more efficient an MoE architecture is, offering actionable design guidance.

7 LIMITATIONS AND FUTURE WORK

Our study has four primary limitations, which also point to valuable directions for future research.

First, following standard practice (Clark et al., 2022; Kaplan et al., 2020; Hoffmann et al., 2022),
we measure computational cost in theoretical FLOPs. This hardware-agnostic metric overlooks
practical wall-clock effects (communication, memory, kernel efficiency, parallelization). Our work
thus establishes a theoretical upper bound on efficiency, a necessary first step before optimizing for
real-world costs. Second, to make a systematic analysis feasible, we assume that MoE architectural
factors are independent. This allowed us to pragmatically study each factor in isolation and syn-
thesize the results into a unified law. However, this approach may overlook interaction effects that
could unlock further optimizations. Third, due to resource constraints, we applied a single hyper-
parameter scaling law to all MoE models, regardless of their sparsity. While effective, developing
a sparsity-aware hyperparameter law that tailors settings to each model is a promising avenue for
future work. Fourth, our scaling laws focus on compute budget rather than its allocation between
training data and model size. Establishing a Chinchilla-like scaling law in term of model size and
dataset size for MoEs’ efficiency to guide this trade-off is an important next step.

Despite these limitations, our findings confirm the significant potential of MoE models, which pro-
vide a clear path toward more capable and efficient models in terms of theoretical compute cost.

8 CONCLUSION

In this work, we introduce Efficiency Leverage (EL), a metric quantifying an MoE model’s computa-
tional advantage over a dense counterpart, to analyze how architectural choices govern performance.
Our large-scale study of over 300 models reveals that MoE efficiency follows predictable principles:
EL scales as a power-law with activation ratio and compute budget, while expert granularity has
a non-linear effect with a distinct optimal range. Other factors, like shared experts, have a sec-
ondary impact. We unified these principles into a single scaling law that accurately predicts MoE
efficiency. To validate it, we designed a 0.85B activated parameter MoE model which, as predicted,
achieved over 7x efficiency leverage, confirming our law’s robust predictive power. For future work,
our framework can be extended in several key directions: (1) Incorporating memory constraints
and communication overhead into the EL framework, particularly for distributed training scenar-
ios where these factors dominate practical efficiency. (2) Developing a unified metric that balances
training compute with inference latency, enabling end-to-end efficient architecture co-design. We
hope this work inspires continued innovation in MoE architectures toward greater leverage.

USE OF LARGE LANGUAGE MODELS

During the preparation of this work, we used LLMs (e.g., GPT-5 and Gemini-2.5-pro) to assist with
editing and polishing the manuscript for clarity and readability. Furthermore, the plotting code for
the figures presented in this paper was generated with the assistance of these models.
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Mixture of experts can be memory efficient. arXiv preprint arXiv:2502.05172, 2025.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018,
pp. 2381–2391. Association for Computational Linguistics, 2018. doi: 10.18653/V1/D18-1260.
URL https://doi.org/10.18653/v1/d18-1260.

Moonshot-AI. Kimi k2: Open agentic intelligence, 2025. URL https://moonshotai.
github.io/Kimi-K2/.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
language models. arXiv preprint arXiv:2409.02060, 2024.

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna Budhiraja, Mutsumi Nakamura, Neeraj Varsh-
ney, and Chitta Baral. Multi-logieval: Towards evaluating multi-step logical reasoning ability of
large language models. arXiv preprint arXiv:2406.17169, 2024.

Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation bench-
mark for cross-lingual natural language generalization. In Nicoletta Calzolari, Min-Yen Kan,
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A NOTATION

To aid readability, we provide a list of key symbols used throughout this paper.

Table 3: Notation.

Symbol Description

E Number of routable experts.
Ea Number of activated experts.
Es Number of shared experts.
N Number of non-vocabulary parameters.
Na Number of activated parameters.
dmodel Model hidden dimension.
dexpert Expert hidden dimension.
C Total training compute in FLOPs
M Compute (w/o embedding) per token in FLOPs.
D Dataset size in tokens.
A Activation ratio, i.e., (Ea + Es)/(E + Es).
G Granularity of experts, i.e., 2dmode;/dexpert
S Shared expert ratio, i.e., Es/(Ea + Es)

B RELATED WORK

B.1 SCALING LAWS FOR LANGUAGE MODELS

Scaling laws provide a framework for understanding and predicting the performance of language
models under varying conditions. Kaplan et al. (2020) laid the foundation by demonstrating that
model performance adheres to predictable power-law relationships involving model size, dataset
size, and compute budget. Building on this, Hoffmann et al. (2022) introduced the Chinchilla scaling
laws, highlighting the importance of balancing model size and training data volume for compute-
optimal training. They showed that scaling model size without a corresponding increase in data
leads to diminishing performance gains. Sardana et al. (2023) advanced this understanding by in-
corporating inference costs into compute-optimal frameworks, proposing strategies for optimizing
performance under fixed inference constraints. Additionally, Bi et al. (2024) emphasized the crit-
ical role of data quality, demonstrating that higher-quality datasets enable more efficient scaling,
particularly with larger models. Recent advancements have applied these scaling laws to various
specialized areas. For example, hyperparameter optimization has been explored in the context of
scaling laws (Bi et al., 2024; Li et al., 2025), while Gadre et al. (2024) investigated the phenomena
of over-training and its implications on model performance. Furthermore, scaling laws have been an-
alyzed for their impact on downstream task performance across a range of applications (Chen et al.,
2024; Ruan et al., 2024; Isik et al., 2025; Hu et al., 2023; Grattafiori et al., 2024; Li et al., 2025),
underscoring their adaptability and relevance in addressing both theoretical and practical challenges
in language modeling.

B.2 SCALING LAWS FOR MIXTURE-OF-EXPERTS (MOE)

Mixture-of-Experts (MoE) models (Shazeer et al., 2017; Lepikhin et al., 2020) have emerged as
a powerful architecture for language modeling, primarily due to their ability to decouple computa-
tional cost from parameter count. Recent research has further explored optimizations within the MoE
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paradigm. For instance, DeepSeekMoE (Deepseek-AI et al., 2024) investigated the impact of fine-
grained expert settings on model performance, proposing a novel design that incorporates shared
experts and a hybrid structure combining dense layers with MoE layers. Complementing this, Zoph
et al. (2022) highlighted that the performance gains from increased sparsity diminish significantly
once the number of experts exceeds 256, suggesting a practical limit for highly sparse models. With
the widespread adoption of the MoE architecture, the scaling laws governing MoE models have
been extensively studied. Early work by Clark et al. (2022) examined scaling by varying model
size and the number of experts on a fixed dataset, concluding that routed models offer efficiency
advantages only up to a certain scale. This analysis was subsequently extended by Ludziejewski
et al. (2024), who incorporated variable dataset sizes and explored the effects of expert granularity.
Additionally, Wang et al. (2024a) investigated the transferability and discrepancies of scaling laws
between dense models and MoE models. Abnar et al. (2025) advanced this line of inquiry by deriv-
ing scaling laws for optimal sparsity, explicitly considering the interplay between training FLOPs
and model size. They also analyzed the relationship between pretraining loss and downstream task
performance, noting distinct behaviors between MoE and dense models on certain tasks. More re-
cently, Ludziejewski et al. (2025) derived joint scaling laws applicable to both dense Transformers
and MoE models, demonstrating that MoE architectures can outperform dense counterparts even
under constraints of memory usage or total parameter count. Liew et al. (2025) derive empirical
scaling laws for upcycling LLMs to MoE models, relating performance to both dataset size and
architectural choices.

C COMPARISON WITH PREVIOUS WORKS.

Comparison with Clark et al. (2022). Clark et al. (2022) used a fixed dataset and concluded that
the efficiency of MoE models over dense models diminishes beyond a certain scale. In contrast, our
results (Figure 10) demonstrate that MoE models are consistently more compute-efficient across all
scales we tested. The discrepancy may lie in their experimental design: using a fixed dataset. As
our scaling laws establish (Section 2.3), MoE models require proportionally more training data than
dense models for compute-optimal training. A fixed dataset therefore systematically under-trains
MoEs, leading to an unfair comparison and flawed conclusions. Our convergence curves (Figure 6a)
and findings from Ludziejewski et al. (2024) confirm this: MoEs, despite a slower start, eventually
surpass dense models. Unlike prior work, we follow scaling laws to allocate resources, dynamically
scaling training tokens with compute. This ensures the fairness and reliability of our comparison.

Comparison with Ludziejewski et al. (2024). Our findings on expert granularity differ from
Ludziejewski et al. (2024) in two key ways. First, we find a log-polynomial relationship suggesting
an optimal granularity, not their reported monotonic trend where finer is always better. Second, our
MoE’s efficiency loss (EL) is typically under 10x, substantially lower than their reported ¿10x “Rel-
ative FLOPs to train equivalent Transformer”. These discrepancies stem from three core differences
in experimental design: (1) Granularity definition: Our definition (G = 2dmodel/dexpert), aligned with
leading models (DeepSeek-AI, 2024; Moonshot-AI, 2025), uses experts half the size of theirs at the
same nominal granularity. This allows us to test a truly finer spectrum. (2) Hyperparameter strate-
gies: We optimize hyperparameters for each compute budget, unlike their fixed-setting approach,
which is crucial for fair comparison as optimal settings vary with scale (Section 2.2). (3) Base MoE
architectures: Our MoE uses a denser activation ratio (1/32 vs. their sparser 1/64). Their inherently
more efficient baseline may inflate their reported gains. In summary, our differing conclusions arise
from exploring a finer granularity spectrum under fairer, optimized training conditions.

Comparison with Abnar et al. (2025). While our findings align with Abnar et al. (2025) on the
principle that larger, sparser models perform better under a fixed compute budget, our work extends
theirs in two crucial ways. First, methodologically, we optimize training hyperparameters and sys-
tematically analyze architectural factors like expert granularity, uncovering its log-polynomial effect
on performance. Second, and more importantly, our primary contribution is the derivation of a novel
scaling law for the efficiency leverage of MoE models over their dense counterparts, rather than for
loss. This law’s key advantage is its independence from specific datasets. It directly quantifies
the relationship between MoE architecture and relative efficiency, yielding more generalizable and
actionable principles for model design.
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Comparison with Ludziejewski et al. (2025). Our work and Ludziejewski et al. (2025) are com-
plementary, as we investigate different aspects of MoE scaling laws. We focus on optimizing ar-
chitectural parameters (i.e., granularity, activation ratio) within a fixed compute budget and model
scale. They, in contrast, determine the optimal allocation between model size and data volume under
both compute and memory constraints. While we also explored model-data allocation, our analysis
was intentionally limited. Its purpose was not to derive a comprehensive allocation strategy, but
rather to establish that MoE and dense models have fundamentally different resource needs. This
foundational insight was critical, justifying our approach of providing ample, near-optimal training
budgets to ensure a fair and reliable comparison across all models in our main experiments.

Reconciling Findings on Shared Expert Effectiveness with OLMoE(Muennighoff et al., 2024).
Contrary to the findings of Muennighoff et al. (2024) with OLMoE, our scaling law analysis sug-
gests a shared expert is generally beneficial. We attribute this discrepancy primarily to our broader
scope of analysis and distinct model architecture. While the OLMoE conclusion stems from a single
data point, ours is derived from a trend across numerous models and scales. This broader perspec-
tive reveals that although specific configurations in our study perform best without a shared expert
(e.g., M=2e9, Figure 3c)—aligning with OLMoE’s observation—the dominant trend favors its use.
Furthermore, our 256-expert architecture features significantly higher sparsity and finer granularity
than OLMoE’s, a key structural difference that, along with varying training parameters, can alter
its impact. Therefore, we conclude that while its benefit is context-dependent, a shared expert is a
robust choice from a general scaling perspective.

D EXPERIMENTAL SETUP

Architecture and Tokenizer We adopt a Grouped Query Attention (GQA) (Ainslie et al., 2023)
architecture based on the standard decoder-only Transformer, consisting of an embedding layer,
multiple alternating layers of attention mechanisms and feed-forward networks, and a final de-
embedding layer. Additionally, we use the BPE (Byte-Pair Encoding) algorithm (Sennrich et al.,
2015) and RoPE (Rotary Positional Embedding) (Su et al., 2024) to handle positional information.
The vocabulary size is 126,464, and the sequence length is 4,096.

Expert Routing Strategy In our MoE layers, a routing network assigns each token’s hidden state
ht to the top-Na experts. This is achieved by generating gating scores gt = Softmax(Wg · ht),
where Wg is a learnable matrix. The final output is a weighted sum of the selected experts’ outputs:
ot =

∑
i∈TopK(gt)

gt,i · Ei(ht), where Ei is the i-th expert in total N experts. To ensure balanced
expert utilization and stable training, we incorporate two standard auxiliary losses: a load balancing
loss (Lepikhin et al., 2020) (coefficient of 0.01) to encourage uniform token distribution, and a router
z-loss (Zoph et al., 2022) (coefficient of 0.001) to regularize the magnitude of the gating logits.

Optimizer and Scheduler The parameters of experimental models are initialized from a distribu-
tion with a standard deviation of 0.006 and optimized using the AdamW optimizer (Loshchilov &
Hutter, 2017). The optimizer’s hyperparameters are set to β1 = 0.9 and β2 = 0.95, with 0.1 weight
decay applied. The learning rate schedule employs a WSD (warmup-stable-decay) strategy (Hu
et al., 2024): the first 1% of training steps use linear warm-up, followed by exponential decay that
reduces the learning rate to 10% of its peak value.

Pre-training Data The training data is sourced from a large-scale multilingual corpus, primarily
covering English and Chinese, while also including various other languages. This corpus encom-
passes web text, mathematical materials, programming scripts, published literature, and diverse
textual content. To validate model performance, we extracted a 2T-token subset from this corpus for
training. In Table 4, we present the composition of the training datasets for all experiments. Unless
otherwise specified, this configuration is used throughout.
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Table 4: Pre-training data composition.

Type Web Books Wiki Academic Code News Social Domain SFT Math Exam

Ratio 46.0% 5.0% 4.0% 6.0% 25.0% 0.1% 1.9% 1.0% 4.0% 6.0% 1.0%

Other Training Configurations Our implementation is built on Megatron-LM and employs a
hybrid parallel strategy combining Expert Parallelism (EP), Tensor Parallelism (TP), and Pipeline
Parallelism (PP). We utilized bfloat16 precision for all forward and backward passes to maximize
throughput, while maintaining float32 for the master weights and optimizer states to ensure numer-
ical stability. The representative parallelism configurations in our experiments are as follows.

E DETAILED PRELIMINARY EXPERIMENTS

E.1 SCALING LAWS FOR MOE OPTIMAL HYPER-PARAMETERS

The performance of a MoE model is sensitive to its hyperparameters. To ensure that our subsequent
architectural comparisons are reliable, it is crucial to evaluate each configuration under its optimal
hyperparameter settings. Therefore, we first conduct a preliminary study to establish the scaling
laws for optimal MoE hyperparameters. Previous research (Bi et al., 2024) has established that the
optimal hyperparameters are primarily a function of the total computational budget. Accordingly,
we performed a hyperparameter search across a compute range of 3e17 to 3e20 FLOPs, using a
Warmup-Stable-Decay (WSD) learning rate schedule (Hu et al., 2024). We trained multiple models,
varying both learning rate and batch size, which were sampled from a log-base-2 grid. Specifically,
the exponents for the learning rate ranged from -11 to -9.0, and for the batch size, from 18 to 21.
To make this analysis tractable, we initially fixed the MoE configuration to one with 64 experts,
of which 4 are activated per token, plus an additional shared expert (resulting in an activation ratio
A = 7.8% and a granularity G = 2). Detailed settings of the experimental models are available
in the Appendix D. We then verified that the conclusions from this configuration generalize across
different activation ratios.

Figure 7 illustrates the fitting process. To ensure robustness, we identify “near-optimal” configu-
rations as those achieving a loss within 0.25% of the minimum for a given compute budget. After
removing outliers, we fitted the optimal batch size, Bopt, and learning rate, ηopt, against the compute
budget C. The resulting scaling laws reveal clear trends: Bopt increases and ηopt decreases with
larger C. The final formulas obtained from the fitting process are as follows:

ηopt = 1.1576 · C−0.1529

Bopt = 0.0694 · C0.3644
(5)

A key finding emerges when comparing these laws to those of dense models. As shown in Figure 7,
MoE models favor a significantly larger batch size and a slightly lower learning rate at large compute
scales. This phenomenon is attributable to MoE’s sparsity: during backpropagation, each expert’s
parameters are updated using only a subset of the tokens in a batch, whereas dense parameters
receive gradients from the entire batch (Sun et al., 2024).

To validate the generalizability of these laws, we conduct experiments on MoE models with varying
activation ratios. We used the derived laws to predict optimal hyperparameters at a compute budget
of 3e20 FLOPs, after fitting them on data up to 1e20 FLOPs. As shown in Figure 8, the predicted
optimal regions effectively capture the best-performing hyperparameters for activation ratios from
4.7% to 10.9%, demonstrating that the laws can be applied to MoE models within this range of
activation rates. This confirms that our hyperparameter scaling laws provide a reliable foundation
for exploring diverse MoE architectures under fair and near-optimal training conditions.

E.2 SCALING LAWS FOR MOE OPTIMAL MODEL-DATA ALLOCATION

To determine optimal allocation between model size and data size, we analyze loss trajectories across
FLOPs budgets from hyperparameter scaling experiments. By identifying the (M,D) combination
that yields the minimum loss for a fixed FLOP budget, we derive optimal allocation strategies for
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(a) Learning rate scaling curve (b) Batch size scaling curve

Figure 7: Scaling laws for optimal hyperparameters. Blue and red lines represent the fitted laws
for MoE and dense models, respectively, derived on the same training dataset. Gray circles are the
experimental data points used for fitting.

(a) A = 10.9% (b) A = 7.8% (c) A = 4.7%

Figure 8: Validation of MoE hyperparameters scaling laws across different activation ratios (A).
“Near-optimal” refers to hyperparameters achieving a loss within 0.25% of the optimal ones.
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specific MoE configurations activating 4 of 64 experts and an additional shared expert (A = 7.8%,
G = 2). Crucially, MoE capacity exhibits strong dependence on activation ratio. Thus, this analysis
aims to deepen our understanding of MoE architectures and to provide general guidance for model
selection in subsequent experiments. The problem can be formally defined as:

(M opt, Dopt) = arg min
M,D
L(M,D;C,A,G, S) s.t. C = M ·D (6)

The resulting scaling laws for the optimal model size (M opt) and data size (Dopt) are presented in
Figure 9 and summarized in Table 5. For comparison, we derive the same laws for dense models.
Our analysis yields two key insights:

1. The optimal allocation coefficients for different architectures are similar and close to 0.5.
This aligns with findings from previous studies (Bi et al., 2024; Hoffmann et al., 2022),
indicating that for compute-optimal training, the budget should be split roughly equally
between increasing model size and data volume.

2. Crucially, at any given compute budget, the optimal MoE model is computationally smaller
(lower M opt) but trained on more data (larger Dopt) than its optimal dense counterpart.
This suggests that MoEs possess greater capacity, enabling them to support larger train-
ing datasets with smaller model sizes. In real-world scenarios where data is abundant but
computational resources are limited, this is significant for improving efficiency.

While practical training strategies may deviate from this compute-optimal allocation, these scaling
laws provide a crucial reference. They offer a principled basis for determining the necessary amount
of training data for a given model to approach convergence, designing informative ablation studies,
and ultimately, developing more efficient MoE architectures.

Table 5: Scaling law parameters for compute-optimal allocation of model scale (M opt) and data size
(Dopt) for MoE and dense models on identical datasets.

Optimal Model Scale (M opt) Optimal Data Size (Dopt)

Dense M opt = 0.0655 · C0.5422 Dopt = 15.2582 · C0.4578

MoE M opt = 0.1915 · C0.5095 Dopt = 5.2232 · C0.4905

(a) Optimal Model Scale (M opt) Scaling (b) Optimal Data Size (Dopt) Scaling

Figure 9: Scaling laws for optimal model scale (M opt) and data size (Dopt) on identical datasets. For
a given budget, MoE models (blue) optimally allocate more resources to data and fewer to model
size compared to dense models (red).

F DETAILED EXPERIMENTAL ANALYSIS OF MOE ARCHITECTURE

F.1 OPTIMAL EXPERT ACTIVATION RATIO

We begin by investigating the activation ratio (A), a critical factor governing MoE efficiency. Our
experimental design isolates the effect of A by holding the computational cost per token (M ) con-
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stant. This is achieved by fixing the number of activated experts and their granularity, while varying
the total number of experts in the pool from 2 to 256. This setup allows us to explore a wide range
of activation ratios (from 0.8% to 100%, where 100% represents a dense model) without altering the
forward pass FLOPs. The optimization problem for a given compute budget C is thus:

Aopt = argmin
A
L(A;C,M,G, S) (7)

The IsoFLOPs curves, presented in Figure 10a, reveal a clear and consistent trend. Across all tested
FLOPs budgets (from 1e18 to 3e20), loss monotonically decreases with activation ratio, following
a power-law pattern. For all configurations, the lowest tested ratio of 0.8% consistently yields the
minimum loss. This finding suggests a core principle: for a fixed computational cost, greater model
sparsity (i.e., lower activation ratio) leads to higher parameter efficiency.

To quantify this efficiency improvement, we fit a series of loss scaling curves at different activation
ratios. Based on these curves, we compute the efficiency leverage for different activation ratios and
FLOPs budgets, as illustrated in Figure 10b. The results reveal two key trends. First, for a fixed
FLOPs budget, the EL consistently increases as the activation ratio decreases, indicating that sparse
activation can always enhance computational efficiency. Second, for a fixed activation ratio, the EL
grows with the computational budget, demonstrating that the MoE advantage is amplified at larger
scales. These findings confirm that reducing the activation ratio yields substantial efficiency gains,
and these benefits are magnified in large-scale, high-computation regimes.

(a) IsoFLOPs curves for varying A (b) Loss and EL scaling curve over varying A.

Figure 10: Impact of the Activation Ratio A on Loss and Efficiency. (a) At any fixed compute
budget (each colored line), lower activation ratios yield lower loss. The orange stars mark the
optimal loss point. (b) Loss and EL scaling curves illustrate that EL increases with both higher
compute budgets and lower activation ratios, showing that MoE advantages are magnified at scale.

Key Takeaway 1

• Monotonic Relationship Between Efficiency and Activation Ratio. For a fixed
computational cost, model performance consistently improves as the activation ratio
decreases. This indicates a direct, monotonic relationship between sparsity and effi-
ciency.

• Efficiency Gains Amplify with Scale. The efficiency advantage of MoE models
(their EL) grows with the total training budget. This highlights their suitability for
large-scale training, where their benefits become even more significant.

F.2 OPTIMAL GRANULARITY OF EXPERTS

The granularity of experts is a critical factor in the efficiency of MoE. While prior works (Ludziejew-
ski et al., 2024; Deepseek-AI et al., 2024) suggests that finer-grained experts improve performance,
the optimal balance remains an open question. To investigate the influence of expert granularity on
MoE efficiency, for a fixed model size M and activation ratio A, we vary the expert granularity from
2 to 16 by increasing the total number of experts from 64 to 512 while proportionally decreasing the
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size of each expert to keep computational cost (FLOPs) per token constant. This creates a spectrum
of models from coarse-grained (fewer, larger experts) to fine-grained (more, smaller experts). By
training these models and comparing their final training losses, we can identify the granularity that
yields the best performance for a given FLOPs budget. This problem is formalized as:

Gopt = argmin
G
L(G;C,M,A, S) (8)

where Gopt is the optimal granularity that minimizes the training loss L under a fixed FLOPs budget
C, model size M , activation ratio A, and shared expert ratio S. As shown in Figure 11a, our
experiments across a range of FLOPs budgets (1018 to 1020) reveal a distinct trend. For any given
budget, as we increase expert granularity, the training loss first decreases and then, after reaching a
minimum, begins to increase. This demonstrates the existence of an optimal expert granularity that
maximizes computational efficiency of MoE. To further analyze this relationship, we fit loss scaling
curves for different granularities (Figure 11b), quantifying their impact on EL.

Our study yields two primary insights: First, for a fixed FLOPSs budget, the training loss follows
a U-shaped (polynomial) relationship with respect to expert granularity, which confirms an optimal
point for maximizing model performance per FLOP. This finding contrasts with the conclusions of
Ludziejewski et al. (2024), and we detail the reasons for this discrepancy in Section C. Second,
across different FLOPSs budget, the optimal granularity remains within a stable range (around 12 in
our experiments), offering a reliable heuristic for model design. Furthermore, we find that routing
balance significantly impacts the choice of optimal granularity. Poor routing balance shifts the opti-
mal point towards coarser granularities and degrades overall model performance (see Appendix F.4
for details). This suggests that improving routing mechanisms could unlock the potential of even
more fine-grained MoEs, marking a promising direction for future work.

(a) IsoFLOPs curves over varying G. (b) Loss and efficiency leverage scaling curve over varying G.

Figure 11: Impact of the Experts Granularity G on Loss and Efficiency. (a) IsoFLOPs curves
reveal a U-shaped (polynomial) relationship between expert granularity and training loss. Orange
stars mark the optimal granularity for each FLOPs budget. (b) Loss and EL scaling curves show that
MoE efficiency improves as FLOPs increase and expert granularity approaches the optimal range.

Key Takeaway 2

• Existence of Optimal Expert Granularity. For a fixed FLOPs budget and model
scale, training loss exhibits a U-shaped (polynomial) relationship with expert granu-
larity, indicating an optimum that maximizes efficiency.

• Stable Range of Optimal Expert Granularity. The optimal granularity (e.g., around
12 in our experiments) is stable across a wide range of FLOPs budgets. However, poor
routing balance shifts this optimum toward coarser granularity.

The Impact of Routing Balance on the Optimal Expert Granularity. To investigate how rout-
ing quality influences the optimal expert granularity, we induce a state of routing imbalance. This is
achieved by setting the coefficient of load balancing loss to 0.001, a setup known to cause load im-
balance. In this setting, we train MoE models with a varying expert granularity while maintaining a
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constant total parameter count. As shown in Figure 12, our results reveal that a coarser expert gran-
ularity becomes optimal under such imbalanced routing. Specifically, the IsoFLOPs curves (Fig-
ure 12a) demonstrate that models with coarser granularity (G = 6, 8) achieve lower loss for a given
computational budget. This trend is consistently observed in the loss scaling curves (Figure 12b).
This phenomenon indicates that when the routing mechanism becomes a performance bottleneck,
a fine-grained architecture with numerous specialized experts is counterproductive. The weakened
router cannot distribute tokens effectively, nullifying the benefits of specialization. Consequently,
the model benefits more from a coarser-grained design with fewer, more generalized experts, as this
simplifies the routing task and mitigates the detrimental effects of the load imbalance.

(a) IsoFLOPs curves over different granu-
larity. (b) Loss scaling curves under over different granularity.

Figure 12: Impact of Expert Granularity on Loss Under Weakened Routing Balance.

Summary of Expert Granularity Analysis. Our analysis of expert granularity reveals a trade-off
between specialization and load balancing. On one hand, prior work has shown that finer-grained
partitioning enhances expert specialization (Deepseek-AI et al., 2024). On the other hand, our ex-
periments demonstrate that increasing granularity leads to a greater load imbalance. We quantify
this imbalance using the coefficient of variation (CV) of the expert loads, where a higher value in-
dicates a greater imbalance. As detailed in Table 15, increasing the number of experts (E) directly
correlates with a higher CV. These results were obtained while holding the balancing loss coefficient
constant, in order to isolate the effect of granularity. This controlled setting highlights the inherent
challenge of routing tokens to a larger set of smaller experts, thereby distinguishing the benefits of
specialization from the practical difficulties of utilization.

F.3 OPTIMAL SHARED EXPERT RATIO

Shared experts are always active to capture common knowledge (Deepseek-AI et al., 2024). To
determine the optimal proportion of shared experts, we designed a series of experiment to isolate
the impact of the shared expert ratio S. We fix the total model size M , the activation ratio A, and
the total number of active experts (Es + Ea). We then systematically vary S by substituting routed
experts (Ea) with shared experts (Es), exploring configurations from fully specialized (S = 0%) to
highly shared (S = 83.3%). This allows us to identify the optimal ratio that minimizes training loss
for a given computational budget. The problem is formalized as:

Sopt = argmin
S
L(S;C,M,A,G) (9)

where Sopt is the optimal shared expert that minimizes the training loss L under a fixed FLOPs
budget C, model size M , activation ratio A, and granularity G. Our experiments, as depicted in
Figure 13a, reveal a U-shaped relationship between the shared expert ratio and training loss. The
minimum loss is generally achieved at a relatively low shared expert ratio, while having no shared
experts (S = 0%) usually results in suboptimal performance. Furthermore, we observe a subtle
trend where the optimal sharing ratio appears to scale with the compute budget. This is supported
by our empirical scaling law (EL) analysis in Figure 13b, which shows that lower FLOPs budgets
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(≤ 1020) benefit from a slightly higher sharing ratio (S = 16.7%), whereas larger budgets (> 1020)
achieve greater efficiency with a lower ratio (S = 8.3%).

Since large-scale pre-training runs typically exceed 1020 FLOPs, this suggests a practical heuristic:
the optimal design choice is to use the lowest possible non-zero sharing ratio. Assuming the dimen-
sions of shared and regular experts are equal, this can be heuristically implemented by setting the
number of shared experts to one.

(a) IsoFLOPs curves over varying G. (b) Loss and efficiency leverage scaling curve over varying G.

Figure 13: Impact of the Shared Ratio S on Loss and Efficiency. (a) Loss curves demonstrate
that a low, non-zero sharing ratio minimizes training loss, outperforming both no shared experts
(S = 0%) and highly shared configurations.. (b) EL analysis reveal that the optimal sharing ratio
is higher (S = 16.7%) for smaller FLOPs (< 1020) and decreases to S = 8.3% for larger FLOPs
(> 1020).

Key Takeaway 3

• Optimal Sharing Ratio Exhibits a Subtle Scaling Trend. We identify a subtle scal-
ing trend between the optimal shared expert ratio and the compute budget: the ideal
ratio decreases as the compute budget increases.

• “One Shared Expert” Rule for Large-Scale Training. For large-scale pre-training
with uniformly sized experts, the optimal design heuristic is to employ a single shared
expert. This configuration establishes the minimal non-zero sharing ratio.

F.4 OTHER CONFIGURATIONS OF MOE ARCHITECTURE

Arrangement of MoE and Dense Layers To ensure balanced routing in the early layers, main-
stream MoE models typically replace all FFNs except for the first few layers with MoE layers. We
investigate the impact of this design decision on the efficiency of MoE models. To ensure a mean-
ingful exploration space, we extend all models in our experiments to 60 layers and set the first 1, 2,
or 3 layers as dense layers sequentially. The dimension of these dense layers is set to match the total
dimension of the activated experts in the corresponding MoE layers, ensuring the overall computa-
tional cost (FLOPs/token) remains constant. This design allows us to isolate and study the effect of
the proportion of dense layers on MoE efficiency. The experimental results, presented in Figure 14a
and 14b, reveal the following key findings: 1) From a model performance perspective, replacing
the first few layers with dense layers has a minor impact. Using a dense proportion of zero as the
baseline, we estimated the efficiency leverage for each configuration. Within a FLOPs budget of up
to 1×1024 FLOPs, the efficiency leverage remains close to 1. This indicates that configuring the ini-
tial layers as dense offers negligible efficiency improvement. However, this adjustment effectively
reduces the total number of parameters in the model and mitigates routing imbalances in the early
layers. Thus, despite its limited efficiency gains, this remains a valuable design optimization. 2) Fur-
ther investigation into the optimal proportion of dense layers under varying computational budgets
reveals a trend: as FLOPs budgets increase, the optimal dense proportion also grows. For example,
in our experiments, when the compute budget is 1 × 1018 FLOPs, the optimal dense proportion is
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zero. As the compute budget increases to 3× 1020 FLOPs, the optimal dense layer proportion shifts
to approximately 2/60 or 3/60.

(a) (b)

(c) (d)

Figure 14: Impact of Dense Layers Proportion and Compute Budget Allocation between Attention
and FFN. (a,b) Replacing the first few layers with dense layers shows minor impact on model per-
formance. As computational budgets increase, the optimal proportion of dense layers also gradually
rises. (c,d) Modifying the attention FLOPs ratio within a broad range (20%-50%) has a negligible
influence on model performance, demonstrating the robustness of this configuration.

Compute Resource Allocation between Attention and FFN As two core components of the
Transformer model, the attention mechanism (Attention) and FFN account for the majority of the
model’s computational load. To this end, we explore the impact of computational allocation between
the attention mechanism and the FFN on the efficiency of the MoE model. Specifically, we construct
a series of models with fixed model scale M but varying compute budgets by increasing the hidden
layer size of the attention module while reducing the hidden layer size of each expert in the MoE.
We then observe the performance changes of these models under different computational allocations
and evaluate their scaling trends. The experimental results are illustrated in Figure 14c and 14d,
revealing the following key findings: 1) When the attention FLOPs ratio is between 30% and 40%,
it represents a relatively stable and reliable configuration. Models tend to achieve optimal or near-
optimal performance within this range. This configuration is consistent with the default settings
of mainstream open-source MoE models. 2) Adjusting the attention FLOPs ratio within a broader
range (20%-50%) has minor impact on model performance. As shown in Figure 14d, the loss scaling
curves and efficiency leverage of these models are nearly identical. Since the attention mechanism
generally has a higher computational density (i.e., FLOPs-per-parameter) compared to the FFN,
increasing the attention FLOPs ratio while keeping the overall model size constant reduces the total
number of model parameters, resulting in higher knowledge density. However, this also implies
potentially higher downstream inference costs.
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Key Takeaway 4

• Introducing Dense Layers is a Valuable Design Optimization. Incorporating dense
layers in the early stages of MoE has minor impact on efficiency but helps mitigate
routing imbalances and reduces overall parameters. The optimal proportion of dense
layers increases with higher FLOPs budgets, though it offers limited efficiency gains.

• Robustness of Compute Budget Allocation between Attention and FFN Allocat-
ing 30%-40% of FLOPs to the attention mechanism achieves optimal or near-optimal
performance, with minor impact outside this range. Increasing attention FLOPs pro-
portion enhances knowledge density but reduces downstream inference efficiency.

G VALUES OF THE FITTED COEFFICIENTS.

To validate the proposed scaling law for EL, we fit Eq. 4 using Huber loss and the BFGS optimization
algorithm (Hoffmann et al., 2022). We use data points with an EL factor below 6 for training, while
those are reserved as a validation set. The values are presented in Appendix 6.

Table 6: Values of the Fitted Coefficients.

a d γ β Astart Amax

1.23 -7.61e-2 1.67e-2 -1.17e-1 1.63e-2 5.28e+16

H DETAILED RESULTS OF MOE-MINI EVALUATION

Evaluation Benchmarks To evaluate performance, we consider a diverse suite of downstream
tasks designed to provide a holistic assessment of model capabilities. These tasks are grouped into
several categories, such as: (a) General Knowledge/Reasoning (e.g., ARC (Bhakthavatsalam et al.,
2021), AGIEval (Zhong et al., 2024), OpenBookQA (Mihaylov et al., 2018), BBH (Suzgun et al.,
2023), ProntoQA (Saparov & He, 2023), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019),
Multi-LogiEval (Patel et al., 2024)) (b) Language Understanding (e.g., RACE (Lai et al., 2017))
(c) Professional Knowledge (e.g., MMLU (Hendrycks et al., 2021a), CMMLU (Li et al., 2024),
MMLU-Pro (Wang et al., 2024b), GPQA (Rein et al., 2023), C-Eval (Huang et al., 2023), Common-
senseQA (Talmor et al., 2018)) (d) Math (e.g., GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021b), GAOKAO (Zhang et al., 2023), Gaokao2023-Math-En, MGSM (Shi et al., 2023),
CMATH (Wei et al., 2023), MathBench (Liu et al., 2024), Minerva-Math (Lewkowycz et al.,
2022), CN-Middle School 24) (e) Code (e.g., Humaneval (Chen et al., 2021), HumanEval-cn (Peng
et al., 2024), HumanEval-plus (Liu et al., 2023), HumanEval-FIM (Bavarian et al., 2022), Live-
CodeBench (Jain et al., 2025), MBPP (Tao et al., 2024), MBPP-Plus (Liu et al., 2023), CruxEval (Gu
et al., 2024)).

Evaluation Results The comparative evaluation in Table 7 reveals that MoE-mini achieves an
average score of 45.5, surpassing Dense-6.1B’s 44.0. This result compellingly demonstrates that
MoE-mini accomplishes a ”small yet powerful” feat with significantly lower inference costs, its
activated parameters amount to only about 13% of its competitor’s, striking an exceptional balance
between performance and efficiency.

Upon closer examination of performance across specific dimensions, MoE-mini’s advantages are
both comprehensive and focused. In general knowledge and reasoning tasks, it exhibits notable
advantages in open-ended question answering tasks such as OpenBookQA and complex logical
reasoning benchmarks like Multi-LogiEval. This trend continues in specialized knowledge domains,
where MoE-mini delivers better results on comprehensive academic benchmarks like MMLU and
MMLU-Pro. Its superiority is particularly evident in language understanding tasks, as it consistently
outperforms its competitor in the RACE series of reading comprehension tests, showcasing stronger
contextual understanding capabilities. In tasks requiring high coding proficiency, MoE-mini stands
out significantly, especially in the HumanEval-Plus benchmark, which measures code robustness,

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 7: Detailed performance comparison of MoE-mini (17B-A0.8B) and Dense-6.1B.

Metric Dense-6.1B MoE-mini (A0.8B)

General Knowledge
/Reasoning

ARC-challenge 59.7 57.0
ARC-easy 78.0 78.7
AGIEval 33.4 34.9
OpenBookQA 68.6 75.2
BBH 48.0 35.7
ProntoQA 16.5 19.5
Multi-LogiEval 55.6 61.3
HellaSwag 65.6 66.6
PIQA 76.6 77.2

Average 55.8 56.2

Professional
Knowledge

MMLU 51.1 53.1
MMLU-Pro 21.7 24.0
CMMLU 50.7 51.9
C-Eval 52.5 51.1
CommonsenseQA 63.6 60.6
GPQA 24.8 27.3

Average 44.0 44.7

Language
Understanding

RACE-middle 73.4 75.6
RACE-high 65.0 67.6

Average 69.2 71.6

Code

HumanEval 31.7 35.4
HumanEval-cn 34.2 32.3
HumanEval-Plus 35.4 51.8
HumanEval-FIM 62.8 61.3
MBPP 41.0 44.6
MBPP-Plus 50.0 51.6
LiveCodeBench 7.5 7.4
CruxEval 32.9 34.1

Average 36.9 39.8

Math

GSM8K 59.2 58.0
MATH 23.7 29.8
CMATH 60.5 62.9
MGSM-zh 35.6 36.8
CN-Middle School 24 41.6 42.6
Minerva-Math 3.3 2.9
MathBench 27.5 28.6
Gaokao2023-Math-En 33.1 33.5
GAOKAO-Math24 12.1 17.6

Average 32.9 34.7

Overall Average 44.0 45.5

achieving an impressive lead of over 16 points. Similarly, in mathematical reasoning, while slightly
lagging in basic arithmetic tasks like GSM8K, it excels in challenging benchmarks such as MATH
and GAOKAO-Math24, demonstrating strong potential in solving complex problems. Collectively,
MoE-mini achieves a 1.5-point overall advantage, validating its parameter-efficient MoE design. It
not only drastically reduces inference costs through sparse activation but, more critically, its ”expert
networks” seem to enable higher performance ceilings in key areas such as language understanding,
code generation, and advanced reasoning.

Pre-training Evaluation of MoE-mini We present a detailed evaluation of MoE-mini’s training
process. Figure 15 provides a comprehensive comparison across datasets and categories, as outlined
in the main experiments in Section 5.2. The results show that MoE-mini achieves comparable
performance to Dense-6.1B on the majority of datasets.
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Figure 15: Overall and category-wise performance comparison between MoE-mini (17B-A0.8B)
and Dense-6.1B.
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I ESTIMATING FLOPS

To analyze the efficiency of our models, we quantify the computational cost in terms of total training
Floating Point Operations (FLOPs). Following standard practice (Kaplan et al., 2020), we estimate
the total training FLOPs as approximately three times the cost of a single forward pass (Ctrain ≈
3 ·Cfwd). The forward pass FLOPs are the sum of computations from the attention and feed-forward
network (FFN) layers, plus a final logit projection.

For a model with hidden size dmodel, batch size B, and sequence length s, the cost of the attention
block per layer, Cattn, which includes Grouped-Query Attention (GQA) (Ainslie et al., 2023) and all
projections, is approximately:

Cattn ≈ 2Bsd2model

(
1 +

2

nh/nkv

)
+ 4Bs2dmodel (10)

where nh and nkv are the number of attention and key-value heads, respectively. The FFN cost
varies by layer type. A dense layer with intermediate size dffn requires Cdense ffn = 6Bsdmodeldffn
FLOPs. A MoE layer activating Ea experts, each with size dexpert, requires:

Cmoe ffn ≈ 6Bsdmodel(Ea · dexpert) (11)

If a shared expert of size dshared is used, its cost, 4Bsdmodeldshared, is added. For a model with L
layers (of which the first Ldense are dense) and a vocabulary of size V , the total forward FLOPs are:

Cfwd =

L∑
i=1

(Cattn + Cffn,i) + 2BsdmodelV (12)

where Cffn,i is the FFN cost for the i-th layer, which can be either Cdense ffn or Cmoe ffn.

J LIST OF EXPERIMENTAL MODELS

The detailed configurations for all experiments conducted in this study are presented in Tables 8
(activation ratio), Tables 9 (expert granularity), Tables 10 (shared experts), Tables 11 (layer arrange-
ment), and Tables 12 (compute allocation between attention and FFNs).

K METHODOLOGY FOR CALCULATING EFFECTIVE LEVERAGE (EL)

Our methodology for obtaining EL datapoints does not involve training a unique dense model to
match the loss of each individual MoE run. Instead, we employ a more systematic and scalable
approach based on modeling the loss-compute scaling behavior for each model family. For a specific
MoE architecture (e.g., for a fixed activation ratio and granularity), as show in Algorithm 1, the
process of obtaining data points for EL is as follows:

1. Collecting (compute budget, optimal loss) Data: We first train a suite of MoE models (see
Tables 8 to 12) and a corresponding suite of dense counterparts. For a given MoE configuration,
its dense counterpart is defined as a standard Transformer architecture, equivalent to an MoE model
with a 100% activation rate. As shown in Table 8, the model architecture with an activation
rate of 1.0 serves as the dense counterpart for all other MoE configurations in our study. All
models are trained on the same dataset with the same recipe, for up to 3×1020 FLOPs. This process
generates a set of (compute, optimal loss) data points {(C, ℓ)} for both the specific MoE architecture
XMoE and dense architecture XDense. This is illustrated in Figure 10a, Figure 11a, and Figure 13a.

2. Fitting Loss Scaling Curves: We then fit separate loss scaling functions, LXMoE
(·) and

LXDense
(·), to the collected data for the specific MoE and dense architecture, respectively. We use a

standard power-law form, LX (C) = αXCβX + bX , consistent with prior work (Kaplan et al., 2020;
Henighan et al., 2020; Achiam et al., 2023). This process yields smooth loss scaling functions that
can predict the architecture’s optimal loss at any given compute budget C. These fitted curves are
shown in the left panels of Figure 10b, Figure 11b, and Figure 13b.
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3. Computing EL via Interpolated Loss Matching For an MoE model at a compute budget
CMoE, we first use its fitted curve to calculate the predicted loss: L⋆ = LXMoE

(CMoE). Next, we use
the dense model’s loss curve, LXDense

(C), to find the compute required to achieve the same loss by
solving CDense = L−1

XDense
(L⋆). Finally, we compute the EL as defined: EL = Cdense/CMoE. These

EL values are shown in the right panels of Figure 10b, Figure 11b, and Figure 13b. This methodol-
ogy based loss scaling curves on allows us to systematically evaluate EL across a continuous range
of compute budgets.

Algorithm 1 Calculating Efficiency Leverage (EL)

Require: Pdense, PMoE: Sets of (compute, loss) data points from dense and MoE training runs.
Require: CMoE: The target MoE compute budget for which to calculate EL.
Ensure: EL: The calculated Efficiency Leverage value.

1: ▷ Part 1: Fit Loss Scaling Functions from Data
2: for each model family X ∈ {Dense,MoE} do
3: Fit a continuous loss scaling function LX (C) to the corresponding data points PX .

▷ Typically uses a parametric model like a power law, e.g., L(C) = aC−b + c.
4: end for
5: ▷ Part 2: Calculate EL via Loss Matching
6: L⋆ ← LXMoE(CMoE) ▷ Calculate the target loss achieved by the MoE model.
7: if L⋆ is not attainable by the dense model (e.g., below its loss floor) then
8: return undefined
9: end if

10: Solve for CXDense such that LDense(CDense) = L⋆.
▷ This is done by inverting the parametric function or using a numerical root-finder.

11: EL← CDense
CMoE

▷ The final EL is the ratio of compute budgets.
12: return EL

L COMPUTATIONAL RESOURCES

Our study utilized a total of approximately 680,000 equivalent H800 GPU-hours. The allocation
of this computational budget is detailed below:

• A total of 360,000 hours were used for preliminary experiments. This phase involved
extensive hyperparameter tuning and explorations into optimal model and data allocation.

• The main architectural scaling experiments, which form the core contribution of this work,
required 200,000 hours.

• Final validation runs, including the complete training of our 16-billion parameter MoE and
dense models on 1T tokens, consumed the remaining 120,000 hours.

This substantial investment underpins the reliability and scale of our empirical findings.

M IMPACT OF THE NUMBER OF ATTENTION HEADS

To investigate the impact of the number of attention heads (nhead), we conducted a series of supple-
mentary experiments. For each model size, we systematically varied nhead while keeping all other
hyperparameters constant, as detailed in Table 14. The results, visualized in Figure 16, reveal that
model performance is not sensitive to a single specific number of heads. Instead, we identified a
range of ”near-optimal” values, defined as configurations achieving a final validation loss within
0.5% of the minimum observed loss for that model size. Based on this observation, and in line with
common practice in scaling law studies (Hoffmann et al., 2022; Ludziejewski et al., 2024), we scale
nhead proportionally with the model dimension (dmodel) in our main experiments (see Tables 8 to 12).
This approach ensures a robust and fair comparison across different model scales.
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Figure 16: Impact of the Number of Attention Heads. Red stars denote “near-optimal” configura-
tions, defined as those achieving a final loss within 0.5% of the minimum for each model size.

N GOODNESS-OF-FIT ANALYSIS FOR SCALING LAWS

Our methodology is empirical, aligning with established practices in scaling law research (Clark
et al., 2022; Hoffmann et al., 2022; Ludziejewski et al., 2024; Abnar et al., 2025; Besiroglu et al.,
2024). For each component of the scaling law, we first identified the underlying trend through
data visualization. We then selected a functional form that best captures this trend and rigorously
validated our choice by comparing its goodness-of-fit (e.g., R2), against simpler alternatives.

N.1 SATURATING TRANSFORM FOR ACTIVATION RATIO (A)

We empirically observed a trend of diminishing returns when decreasing the activation ratio (A);
that is, the performance gains from a smaller ratio lessen as A approaches zero. A saturating trans-
formation, which has been successfully employed to model similar phenomena (Clark et al., 2022),
is well-suited to capture this effect. To validate this choice, we compared the fit of our proposed form
(Eq. 1) against a standard power-law model. As shown in Table 16, the saturating transformation
achieves a significantly higher R-squared value, confirming its superior fit to the data.

N.2 LOG-POLYNOMIAL FUNCTION FOR EXPERT GRANULARITY (G)

Our analysis revealed a U-shaped relationship between expert granularity (G) and model perfor-
mance, where the EL first increases and then decreases as G grows. A quadratic polynomial function
is a standard and parsimonious choice for modeling such non-monotonic trends and is widely used in
prior work (Ludziejewski et al., 2024; Abnar et al., 2025). We confirmed its suitability by comparing
its fit against a standard power-law and a saturating transform. The results in Table 17 demonstrate
that the log-polynomial form provides the most accurate fit to our empirical observations.

N.3 POWER LAW FOR COMPUTE BUDGET (C)

The selection of a power law for the compute budget (C) was directly motivated by our empirical
data. As visualized in Figure 4c, the log-log plot of Effective Loss versus training FLOPs exhibits a
distinct linear relationship. This linearity is the hallmark of a power-law dependency, making it the
natural and most appropriate functional form for this component of our model.

N.4 JOINT SCALING LAW FOR EFFICIENCY LEVERAGE

Finally, the joint scaling law (Eq. 4) is an empirical composite model designed to synthesize our
individual findings. Its structure is not arbitrary but reflects the observed interactions: The term for
Activation Ratio (A) serves as the primary driver of efficiency. This is then modulated by the inde-
pendent, non-linear adjustment from Granularity (G). Finally, the entire efficiency gain is amplified
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by the Compute Budget (C) through the overarching power-law pattern. This composite structure
provides the most comprehensive explanation of the joint effects. Its high accuracy is empirically
validated in Figure 5, achieving an R-squared of 0.9858. The model demonstrates strong predic-
tive power with a low RMSE on both the training set (0.2169 over 200 points) and the validation
set (0.5275 over 24 points). We further analyzed the residuals of the fitted scaling law, as shown
in Figure 17. The residuals are approximately normally distributed and centered at zero (mean =
-0.0273, std. dev. = 0.2803), which confirms the high quality of the fit.

Figure 17: Plot of residuals of our estimated joint scaling law.

Table 8: Experimental configurations for the expert activation ratio analysis. Within each group, the
number of activated experts (Ea = 2) is fixed, while the total number of experts (E) is varied to
study the effect of the activation ratio.

nlayers dmodel dexpert nheads nkv head E Es η B Max training FLOPs

8 384 320 8 2 [2,4,8,16,32,64,128,256] 1 1.52e-3 98 2e18
8 512 512 8 2 [2,4,8,16,32,64,128,256] 1 1.31e-3 147 6e18
10 640 640 10 2 [2,4,8,16,32,64,128,256] 1 1.11e-3 228 2e19
14 768 768 12 4 [2,4,8,16,32,64,128,256] 1 9.5e-4 342 6e19
16 1024 1024 16 4 [2,4,8,16,32,64,128,256] 1 8.1e-4 531 2e20
22 1280 1280 20 4 [2,4,8,16,32,64,128,256] 1 7.0e-4 795 6e20
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Table 9: Experimental configurations for the expert granularity analysis. Within each group, the
base model architecture is fixed while the MoE configuration (total experts E, activated experts Ea,
shared experts Es, and expert dimension dexpert) is varied to study the effect of granularity.

nlayers dmodel nheads E Ea Es dexpert B η Max training FLOPs

8 384 8

64 2 1 384

98 1.52e-3 2e18

128 4 2 192
192 6 3 128
256 8 4 96
384 12 6 64
512 16 8 48

8 512 8

64 2 1 512

147 1.31e-3 6e18

128 4 2 256
192 6 3 170
256 8 4 128
384 12 6 85
512 16 8 64

10 640 10

64 2 1 640

228 1.11e-3 2e19

128 4 2 320
192 6 3 213
256 8 4 160
384 12 6 106
512 16 8 80

14 768 12

64 2 1 768

342 9.5e-4 6e19

128 4 2 384
192 6 3 256
256 8 4 192
384 12 6 128
512 16 8 96

16 1024 16

64 2 1 1024

531 8.1e-4 2e20

128 4 2 512
192 6 3 341
256 8 4 256
384 12 6 170
512 16 8 128

22 1280 20

64 2 1 1280

795 7.0e-4 6e20

128 4 2 640
192 6 3 426
256 8 4 320
384 12 6 213
512 16 8 160
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Table 10: Experimental configurations for the shared expert ratio analysis. Within each group, we fix
the total number of experts (E = 256) and the total number of activated pathways (Ea +Es = 12),
while varying the ratio between specialized experts (Ea) and shared experts (Es) to study its impact
on performance.

nlayers dmodel nheads E Ea Es dexpert B η Max training FLOPs

8 384 8

256 2 10 96

98 1.52e-3 2e18

256 4 8 96
256 6 6 96
256 8 4 96
256 11 1 96
256 12 0 96

8 512 8

256 2 10 128

147 1.31e-3 6e18

256 4 8 128
256 6 6 128
256 8 4 128
256 11 1 128
256 12 0 128

10 640 10

256 2 10 160

228 1.11e-3 2e19

256 4 8 160
256 6 6 160
256 8 4 160
256 11 1 160
256 12 0 160

14 768 12

256 2 10 192

342 9.5e-4 6e19

256 4 8 192
256 6 6 192
256 8 4 192
256 11 2 192
256 12 0 192

16 1024 16

256 2 10 256

531 8.1e-4 2e20

256 4 8 256
256 6 6 256
256 8 4 256
256 11 1 256
256 12 0 256

22 1280 20

256 2 10 320

795 7.0e-4 6e20

256 4 8 320
256 6 6 320
256 8 4 320
256 11 1 320
256 12 0 320
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Table 11: Experimental configurations for the arrangement of MoE and dense layers analysis.
Within each group, the total number of layers is fixed at 60, while the mix of dense layers
(ndense layers) and MoE layers (nmoe layers) is varied to study the impact of their ratio and placement
on performance.

nlayers ndense layers nmoe layers dmodel dffn nheads E Ea Es dexpert B η Max training FLOPs

60

0 60

384 1280 8 64 2 1 384 98 1.52e-3 2e181 59
2 58
3 57

60

0 60

512 2048 8 64 2 1 512 147 1.31e-3 6e181 59
2 58
3 57

60

0 60

640 2560 10 64 2 1 640 228 1.11e-3 2e191 59
2 58
3 57

60

0 60

768 3072 12 64 2 1 768 342 9.5e-4 6e191 59
2 58
3 57

60

0 60

1024 4096 16 64 2 1 1024 531 8.1e-4 2e201 59
2 58
3 57

60

0 60

1280 5120 20 64 2 1 1280 795 7.0e-4 6e201 59
2 58
3 57
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Table 12: Experimental configurations for analyzing the compute allocation between attention and
FFNs. Within each group, the core MoE structure is held constant, while we systematically vary the
model’s hidden dimension (dmodel) and the expert dimension (dexpert) to explore the optimal trade-off
in compute allocation between the attention mechanism and the FFN experts.

layers dmodel dexpert nheads nkv head E Es Ea η B Max training FLOPs

8 352 450 8 2 64 1 2 1.52e-3 96 2e18
8 368 380 8 2 64 1 2 1.52e-3 96 2e18
8 384 320 8 2 64 1 2 1.52e-3 96 2e18
8 400 260 8 2 64 1 2 1.52e-3 96 2e18
8 416 208 8 2 64 1 2 1.52e-3 96 2e18
8 480 626 8 2 64 1 2 1.31e-3 160 6e18
8 512 512 8 2 64 1 2 1.31e-3 160 6e18
8 544 410 8 2 64 1 2 1.31e-3 160 6e18
8 560 364 8 2 64 1 2 1.31e-3 160 6e18
8 576 320 8 2 64 1 2 1.31e-3 160 6e18

10 600 766 10 2 64 1 2 1.11e-3 224 2e19
10 640 640 10 2 64 1 2 1.11e-3 224 2e19
10 680 528 10 2 64 1 2 1.11e-3 224 2e19
10 700 476 10 2 64 1 2 1.11e-3 224 2e19
10 740 380 10 2 64 1 2 1.11e-3 224 2e19
14 696 988 12 4 64 1 2 9.5e-3 320 6e19
14 768 768 12 4 64 1 2 9.5e-3 320 6e19
14 816 642 12 4 64 1 2 9.5e-3 320 6e19
14 840 584 12 4 64 1 2 9.5e-3 320 6e19
14 888 474 12 4 64 1 2 9.5e-3 320 6e19
16 896 1378 16 4 64 1 2 8.1e-3 512 2e20
16 1024 1024 16 4 64 1 2 8.1e-3 512 2e20
16 1088 876 16 4 64 1 2 8.1e-3 512 2e20
16 1152 742 16 4 64 1 2 8.1e-3 512 2e20
16 1184 680 16 4 64 1 2 8.1e-3 512 2e20
22 1120 1686 20 4 64 1 2 7.0e-3 768 6e20
22 1280 1280 20 4 64 1 2 7.0e-3 768 6e20
22 1360 1110 20 4 64 1 2 7.0e-3 768 6e20
22 1440 956 20 4 64 1 2 7.0e-3 768 6e20
22 1520 816 20 4 64 1 2 7.0e-3 768 6e20

Table 13: Representative parallelism configurations in our experiments.

Model nlayers dmodel dffn dexpert E Ea EP TP PP

Experimental Model Example 1 8 384 - 96 256 8 8 1 1
Experimental Model Example 2 8 512 - 128 256 8 8 1 1
Experimental Model Example 3 10 640 - 160 256 8 8 1 1
Experimental Model Example 4 14 768 - 192 256 8 8 1 1
Experimental Model Example 5 16 1024 - 256 256 8 8 1 1
Experimental Model Example 6 22 1280 - 320 256 8 8 1 2

Dense-6.1B 28 4096 14336 - - - - 2 1
MoE-mini 20 2048 5120 384 384 12 8 2 1

Table 14: Experimental configurations for analyzing the impact of the number of attention heads
(nhead). Within each experimental group, only nhead is varied while other parameters remain fixed.

nlayers dmodel dexpert nheads nkv head E Ea Es η B Max training FLOPs

8 384 320 [2,4,6,8,12] 2 64 2 1 1.52e-3 98 2e18
8 512 512 [2,4,8,12,16] 2 64 2 1 1.31e-3 147 6e18
10 640 640 [2,4,8,10,16,20] 2 64 2 1 1.11e-3 228 2e19
14 768 768 [6,8,12,16,24] 4 64 2 1 9.5e-4 342 6e19
16 1024 1024 [4,8,16,24.32] 4 64 2 1 8.1e-4 531 2e20

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 15: Impact of granularity on load balancing. Finer granularity (more experts) increases the
coefficient of variation (CV), indicating greater load imbalance.

nlayers dmodel nheads E Ea Es dexpert B η Training FLOPs CV

14 768 12 192 6 3 384 342 9.5e-4 6e19 0.033
14 768 12 256 8 4 192 342 9.5e-4 6e19 0.052
14 768 12 384 12 6 128 342 9.5e-4 6e19 0.061
14 768 12 512 16 8 96 342 9.5e-4 6e19 0.093

Table 16: Goodness-of-fit comparison for the functional form relating EL and Activation Ratio (A).
The saturating transformation provides a better fit.

Functional Form R2

Power-law with saturating transformation (ours, Eq. 1) 0.9915
Standard power-law (i.e., logEL(A) ∝ logA) 0.9772

Table 17: Goodness-of-fit comparison for the functional form relating Effective Loss (EL) and Ex-
pert Granularity (G). The log-polynomial function best captures the U-shaped trend.

Functional Form R-squared
Log-polynomial (ours, Eq. 2) 0.9575
Standard power-law (i.e., logEL(G) ∝ logG) 0.8276
Power-law with saturating transformation 0.9432
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