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UC Davis

smitrovic@ucdavis.edu

Yuriy Nevmyvaka
Morgan Stanley

yuriy.nevmyvaka@morganstanley.com

Sandeep Silwal
UW-Madison

silwal@cs.wisc.edu

Yinzhan Xu
UC San Diego

xyzhan@ucsd.edu

Abstract

Given an undirected, weighted n-vertex graph G = (V,E,w), a Gomory-Hu tree T
is a weighted tree on V that preserves the Min-s-t-Cut between any pair of vertices
s, t ∈ V . Finding cuts in graphs is a key primitive in problems such as bipartite
matching, spectral and correlation clustering, and community detection. We design
a differentially private (DP) algorithm that computes an approximate Gomory-Hu
tree. Our algorithm is ε-DP, runs in polynomial time, and can be used to compute
s-t cuts that are Õ(n/ε)-additive approximations of the Min-s-t-Cuts in G for all
distinct s, t ∈ V with high probability. Our error bound is essentially optimal,
since [29] showed that privately outputting a single Min-s-t-Cut requires Ω(n)
additive error even with (ε, δ)-DP and allowing for multiplicative error. Prior to our
work, the best additive error bounds for approximate all-pairs Min-s-t-Cuts were
O(n3/2/ε) for ε-DP [47] and Õ(

√
mn/ε) for (ε, δ)-DP [66], both achieved by DP

algorithms that preserve all cuts in the graph. To achieve our result, we develop
an ε-DP algorithm for the Minimum Isolating Cuts problem with near-linear error,
and introduce a novel privacy composition technique combining elements of both
parallel and basic composition to handle ‘bounded overlap’ computational branches
in recursive algorithms, which maybe of independent interest.

1 Introduction

Over the last two decades, there has been a significant attention to privatizing graph algorithms (see
[70, 51, 57, 47, 10, 58, 37, 17, 78, 31, 39, 22, 32, 29, 66, 53] and references within). Graph algorithms
are often applied to large data sets, such as social networks, containing sensitive information. It
is well understood by now that even minor negligence in handling user data can severely impact
privacy; see [8, 74, 59, 82, 26] for a few examples. Differential privacy (DP), introduced by Dwork,
McSherry, Nissim, and Smith in their seminal work [36], is a widely adopted standard for formalizing
the privacy guarantees of algorithms. Informally, an algorithm is differentially private if the outputs
for two given neighboring inputs are statistically indistinguishable.

A major part of the literature on private graph algorithms has been approximating cuts which is
the setting of our paper. Given an undirected, weighted graph G = (V,E,w) with positive edge
weights, a cut is a bipartition of vertices (U, V \ U), and the value of the cut is the sum of the
weights of edges crossing the bipartition. Given a pair of distinct vertices s, t ∈ V , the Min-s-t-Cut is
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a minimum-valued cut (U, V \ U) where s ∈ U and t ∈ V \ U . Min-s-t-Cut is dual to the
Max-s-t-Flow problem, and the celebrated max-flow min-cut theorem states that the value of the
Min-s-t-Cut equals the value of the Max-s-t-Flow [41, 38]. Finding a Min-s-t-Cut (or equivalently
Max-s-t-Flow) is a fundamental problem in algorithmic graph theory, which has been studied for
over seven decades (earliest references include [30, 50, 41, 38]), and has inspired ample algorithmic
research and applications, including edge connectivity [71], bipartite matching (see, e.g., [25]),
minimum Steiner cut [62], vertex-connectivity oracles [77], among others (see the survey [23]).

Over the recent years, nearly tight algorithms have been developed on outputting private Min-s-t-Cut
[29], private global Min Cut [46], and private All Cuts problems [47, 9, 37, 66, 67].1. However, no
work has been done on private All-Pairs Min Cut (APMC) which is our focus. Given an input graph,
the goal of APMC is to output a Min-s-t-Cut for all the pairs of vertices s and t in V . We fill this
gap, and obtain a private algorithm on APMC with the same error guarantee as private Min-s-t-Cut.

The definition of neighboring inputs depends on the specific application and yields semantically
different privacy guarantees. We now specify the standard privacy model for graph cut problems
which is used in ours and the aforementioned works. The graph’s vertex set is publicly available, and
two neighboring graphs differ in only one edge. If the graphs are weighted, two neighboring graphs
are those whose total weights differ by at most one and in a single edge. Semantically, this protects
privacy if the inclusion of any individual affects the weight of an edge by a bounded quantity.2
Given neighboring inputs G and G′, and a subset of outputs O, an (ε, δ)-DP algorithm A satisfies
P(A(G) ∈ O) ≤ eε P(A(G′) ∈ O) + δ. When δ = 0, the algorithm satisfies pure DP, and otherwise
approximate DP.3 There is always a trade-off between privacy and accuracy: algorithms for nontrivial
problems satisfying DP must have errors.

Since the above privacy model is standard for analyzing cut problems under DP, it is natural to also
adopt it for the APMC problem. To further motivate the study of APMC under this particular privacy
model from a more practical perspective, note that the graph could correspond to a road network
and the weight of an edge could correspond to the number of people who travel along the road
corresponding to that edge. The above model then ensures that whether any particular individual
uses any particular road cannot be deduced based on the output of a DP-algorithm run on the graph.
Moreover, minimum cuts are a natural measure of bottlenecks in transportation networks, and it may
therefore be of interest to compute them on such traffic graphs in a differentially private fashion.

We now discuss the relevant private algorithms for cut problems. Dalirrooyfard, Mitrović, and
Nevmyvaka [29] recently gave the optimal ε-DP algorithm for the Min-s-t-Cut problem with additive
error O(n/ε). They show an essentially matching Ω(n) lower bound, even for algorithms which
satisfy only approximate DP and allow both multiplicative and additive error.

For the problem of global Min Cut, where one seeks the cut minimizing Min-s-t-Cut over all pairs
of node s, t, Gupta et al. [46] gave an ε-DP algorithm with additive error O( logn

ε ). Their algorithm
runs in exponential time, but they also give a version running in polynomial time but only satisfying
approximate DP.4 The authors also show that there does not exist an ε-DP algorithm for global Min
Cut incurring less than Ω(log n) additive error.

The private All Cuts problem, where one seeks to output a synthetic, private graph which preserves
the value of all the cuts, has been extensively studied. Given a graph G, the goal is to output a
synthetic graph H on the same vertices such that each cut-value in H is the same as the corresponding
cut-value in G, up to some additive error. Gupta, Roth, and Ullman [47] and, independently, Blocki,
Blum, Datta, and Sheffet [9] gave algorithms for this problem with additive error of O

(
n1.5/ε

)
while

satisfying pure and approximate DP, respectively. Eliáš, Kapralov, Kulkarni, and Lee [37] improved

1Note that the focus of all of these works and our paper is on outputting the actual cut structure not the value
of the cut.

2We note that there are several other notions of neighboring datasets for other graph problems implying
different privacy semantics (including allowing a vertex and all of its edges to change or fixing the unweighted
topology of the graph and only allowing edge weights to change). The notion which we use on is the standard
for cut problems (used in [46, 9, 37, 84, 29, 66]) as it is the strongest form of privacy that allows for any
approximation of cuts or cut values. Moreover, this notion carries over to weight-DP, where in the two
neighboring graphs all edges can change in total ℓ1 distance 1. We include a detailed discussion of various forms
of differential privacy on graphs in Appendix A.5.

3The parameter δ corresponds to the small probability that an individual’s data is leaked.
4In this case the additive error has a dependency on δ, we do not mention this dependency for simplicity.
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Problem Additive Error DP Output Runtime

Global Min Cut [46] Θ(log(n)/ε) Pure Cut Exponential

Global Min Cut [46] Θ(log(n)/ε) Approx Cut Polynomial

Min-s-t-Cut [29] O(n/ε) and Ω(n) Pure Cut Polynomial

All Cuts [47] O(n3/2/ε) Pure Synthetic Graph Polynomial

All Cuts [37, 66] Õ(
√
mn/ε) and Ω(

√
mn/ε) Approx Synthetic Graph Polynomial

APMC Values (Trivial) O(n/ε) Approx Values Only Polynomial

APMC (Our Work) Õ(n/ε) Pure GH-Tree Polynomial

Table 1: State-of-the-art bounds for private cut problems. Dependencies on the approx. DP parameter
δ are hidden. The APMC result with approx. DP follows from advanced composition by adding
Lap(O(n/ε)) random noise to all

(
n
2

)
true values. For APMC, the lower bound of Ω(n) error [29]

also applies as APMC generalizes Min-s-t-Cut.

on these results for sparse, unweighted (or small weight) graphs, achieving error Õ
(√

mn
ε

)
5 with

approximate DP. The authors show that this error is essentially tight for algorithms with purely
additive error (and no multiplicative approximation). In a follow-up work, Liu, Upadhyay, and Zou
[66] extended these results to weighted graphs and gave an algorithm for releasing a synthetic graph
for the All Cuts problem with Õ

(√
mn
ε

)
error. Recently, Liu et al. [67] gave an algorithm for the

same problem with worse error Õ
(
m
ε

)
but which runs in near-linear time.

One important cut problem absent in the study of private graph algorithms is All-Pairs Min Cut
(APMC), which has been extensively studied in the graph algorithms community for over six decades.
In a seminal paper, Gomory and Hu [44] showed that there is a tree representation for this problem,
called a GH-tree or cut tree, which takes only n − 1 Min-s-t-Cut (Max Flow) calls to compute.
Consequently, there are only n− 1 different minimum cut values in an arbitrary graph with positive
edge weights. There has been a long line of research in designing faster GH-tree algorithms (e.g.
[49, 15, 2, 88, 63, 3, 5, 6], also see the survey [75]), culminating in an almost linear time algorithm
for computing the GH-tree [6].

Beyond its importance in graph algorithms, the all-pairs aspect of APMC is especially important in
the context of DP. Answering multiple queries degrades privacy, so a key feature of differential privacy
is the ability to control this degradation through composition theorems (see, for instance, [34, 83]).
Applying advanced composition of private mechanisms to the O(n/ε) error result of [29] for a
single Min-s-t-Cut implies that APMC can be solved with O(n2/ε) additive error while satisfying
approximate DP. Given the structure of the APMC problem as characterized by the existence of
GH-trees, it is natural to ask if one can improve upon black-box composition results.6

Existing works provide a preliminary answer. Since the algorithm by [66] approximately preserves
all cuts, it can also be used to solve APMC with approximate DP and additive error of Õ (

√
mn/ε).

Additionally, the Ω(n) lower bound for Min-s-t-Cut of [29] also applies to APMC, as it is a harder
problem. So, in contrast to computing global Min Cut [46], Min-s-t-Cut [29], and All Cuts [37, 66],
where the privacy/error tradeoff is tightly characterized up to poly(log n, 1/ε) factors, there remains
a gap of ≈

√
m/n between the best known lower and upper bound for DP APMC, which can be as

large as Ω(
√
n) in dense graphs. This motivates the following question, which is our focus:

Question 1. Can we obtain tight bounds on the additive error for APMC with DP?
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1.1 Our Results

Our main contribution is an ε-DP algorithm for APMC with Õ(n/ε) additive error. Our algorithm
privately outputs all the Min-s-t-Cuts while incurring the same error, up to polylog(n) factors,
required to output a Min-s-t-Cut for a single pair of vertices s and t. To achieve this result, we
introduce an algorithm that solves the more general problem of privately generating an approximate
Gomory-Hu tree (GH-tree). Gomory and Hu [44] showed that for any undirected graph G, there exists
a tree T defined on the vertices of graph G such that for all pairs of vertices s, t, the Min-s-t-Cut in
T is also a Min-s-t-Cut in G. We develop a private algorithm for constructing such a tree.
Theorem 1.1. Given a weighted graph G = (V,E,w) with positive edge weights and a privacy
parameter ε > 0, there exists an ε-DP algorithm that outputs an approximate GH-tree T with
additive error Õ(n/ε): for any s ̸= t ∈ V , the Min-s-t-Cut on T and the Min-s-t-Cut on G differ in
Õ(n/ε) in cut value with respect to edge weights in G. The algorithm runs in time Õ(n2), and the
additive error guarantee holds with high probability.

Theorem 1.1 essentially outputs a synthetic graph in a DP manner that approximates each Min-s-t-Cut
with an additive error of Õ(n/ε). Since the GH-tree output by Theorem 1.1 is private, any post-
processing on this tree is also private. This yields the following corollary.
Corollary 1.1. Given a weighted graph G with positive edge weights and a privacy parameter ε > 0,
there exists an ε-DP algorithm that outputs, for all the pairs of vertices s and t, a cut whose value is
within Õ(n/ε) from the value of the Min-s-t-Cut with high probability.

Another corollary of Theorem 1.1 is a polynomial-time, pure DP algorithm for global Min-Cut.
Corollary 1.2. Given a weighted graph G with positive edge weights and a privacy parameter ε > 0,
there exists an ε-DP algorithm that outputs an approximate global Min-Cut of G in Õ(n2) time and
has additive error Õ(n/ε) with high probability.

Prior work obtained an exponential-time pure DP algorithm and a polynomial-time approximate DP
for global Min-Cut with error O(log n/ε) [46]. It is an open question whether there exists an efficient
algorithm which satisfies pure DP and outputs an approximage global Min-Cut with polylog(n)/ε
additive error.

Lastly, we note another application of Theorem 1.1 is a pure-DP algorithm for min k-cut7 problem
with multiplicative error 2, additive error Õ(nk/ε). No prior poly time pure DP algorithm can
compute min k-cut on weighted graphs with near-linear in n error. See Corollary F.1) for details.

Tightness of Our Main Result Corollary 1.1 is tight up to polylog(n) and 1
ε factors since any DP

algorithm outputting the Min-s-t-Cut for a single fixed pair of vertices s and t requires Ω(n) additive
error [29]. Thus, our result shows that we can compute all min-cuts privately with the same error
required for a single cut up to log factors. We also note that the Ω(n) lower bound for a single cut of
[29] is on sparse graphs and applies to both pure and approx DP. Hence, there can be no polynomial
improvement on our result even if the input is sparse or if we relax to approx DP.

Paper Organization In the rest of the main body, we give a detailed overview of the challenges in
privately creating a GH-tree as well as a technical overview of our approach. Due to space constraints,
all pseudocode and proofs are given in the appendix. Two technical ingredients which may be
generally applicable are (1) an ε-DP, Õ(n/ε) additive error algorithm for Minimum Isolating Cuts
[62, 3], a recently introduced problem which has found success as a subroutine in fast algorithms
for cut problems, and (2) a general theorem for privacy composition on recursive algorithms where
sensitive data is not partitioned into disjoint sets on each recursive call (in this setting, composition is
straightforward), but rather the recursive subsets have “bounded-overlap.”

Open Problems. We highlight three interesting open problems related to our work in Appendix G.
5In this work, the notation Õ(x) stands for O(x · polylog x).
6A recent line of work on approximating all-pairs shortest path distances with differential privacy has the

same goal of using graph structure to limit the error necessary to answer many queries [81, 39, 22, 13].
7The goal is to partition the vertex set into k pieces and the cost of a partitioning is the total weight of all

edges between different pieces in the partition. We wish to find the smallest cost solution.
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2 Technical Overview

A greatly simplified view of a typical approach to designing a DP algorithm begins with a non-DP
algorithm, which is modified to ensure privacy. The primary challenge lies in finding an appropriate
method to privatizing the algorithm, if such a method even exists, and rigorously proving that satisfies
DP. For instance, Gupta et al. [46] employ Karger’s algorithm [56] to produce a set of cuts and then
use the Exponential Mechanism [70] to choose one of those cut. This simple but clever approach
results in an (ε, δ)-DP algorithm for global Min Cut, for δ = 1

poly(n) , with O( logn
ε ) additive error.

Dalirrooyfard et al. [29] show that the following simple algorithm yields ε-DP Min-s-t-Cut with
O(n/ε) additive error: for each vertex v, add an edge from v to s and from v to t with their weights
chosen from the exponential distribution with parameter 1/ε; return the Min-s-t-Cut on the modified
graph. In the remainder of this section, we first explain why directly privatizing certain existing
non-private algorithms fails to achieve the desired additive error. After, we describe our approach.

2.1 Obstacles in Privatizing the Algorithm of Gomory and Hu

The All-Pairs Min-Cut (APMC) problem produces cuts for
(
n
2

)
pairs of vertices; it is known that

these cuts have only O(n) distinct values. This property was leveraged in the pioneering work by
Gomory and Hu [44], who introduced the Gomory-Hu tree (GH-tree), a structure that succinctly
represents all the Min-s-t-Cuts in a graph.

The original GH-tree algorithm uses a recursive construction, solving the Min-s-t-Cut problem at
each recursion step: In each step of the recursive call, the input will be a graph H and a special set of
terminal vertices R ⊆ V . (1) The root of the recursion starts with H = G and R = V . (2) At each
recursive step, select two arbitrary vertices s and t within R (if |R| = 1, then the problem becomes
trivial and the recursion stops). (3) Compute the Min-s-t-Cut in the graph, and say the Min-s-t-Cut
is (U, V \ U) where s ∈ U, t ̸∈ U . (4) Create two graphs, Hs and Ht, where Hs is the graph with
V \ U contracted, and Ht is the graph with U contracted. Then recursively solve the problem on Hs

with terminal set R ∩ U , and on Ht with terminal set R ∩ (V \ U). (5) Finally, we combine the two
trees created by the two recursive calls, argue the correctness utilizing the submodularity of cuts. The
GH-tree efficiently represents all pairwise Min-s-t-Cuts in the graph by iterating through these steps
until there is no supernode of size larger than 1.

To privatize this algorithm, the Min-s-t-Cut procedures can be replaced with the private Min-s-t-Cut
algorithm introduced in [29]. However, several challenges arise in ensuring low error with this
approach. First, the algorithm of [29] modifies the graph. It is unclear whether these modifications
should persist in each Min-s-t-Cut call or if the graph should revert to its original form. Second,
the recursion depth may reach O(n). Even ignoring the propagation of error across recursive
calls, dependent invocations of the DP Min-s-t-Cut must use very small values of ε due to privacy
composition. Under basic composition [35], each call to the algorithm of [29] must use ε′ = O(ε/n)
to guarantee ε-DP for the final algorithm. Even using advanced composition [34] would require
ε′ = O(ε/

√
n log(1/δ)) to achieve (ε, δ)-DP. The resulting error would still be higher than that

achieved in the prior work preserving all cuts. Finally, we may hope that a single edge impacts only
a small number of min-cuts, a property that could be leveraged in constructing a private GH-tree.
However, as we depict in Figure 3, the ℓ1-sensitivity of changing a single edge is Ω(n), even when
outputting only the values of the Min-s-t-Cuts.

2.2 Towards Privatizing a Low-Depth Algorithm

The preceding discussion indicates that low recursive depth is a crucial property of a private algorithm
for producing a GH-tree. While the canonical algorithm of [44] has a linear recursive depth, recent
breakthroughs in fast GH-tree algorithms offer the additional advantage of polylogarithmic depth,
e.g., [3, 61, 4, 64, 6]. At a high-level, our result derives from privatizing the algorithm described in
[61, Section 4.5] (this same algorithm also appears in [4]). To replace components of this algorithm
with differentially private counterparts necessitates adding noise, which introduces additive errors
throughout the recursive algorithm. Tracking the propagation of this error throughout the algorithm
requires careful accounting. Moreover, the specific steps of the non-private algorithm presents
several fundamental challenges in creating a private version. The remainder of this subsection briefly
summarizes the structure of this algorithm.
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Figure 1: Recursive structure of our low-depth GH-tree. (a) The decomposition into (Sv)v∈R

and Slarge = V \
⋃

v∈R Sv defines the recursive subinstances. For each v ∈ R, Sv constitutes a
Min-s-v-Cut. None of the Sv or Slarge are too large, which leads to a polylogarithmic upper-bound
on the recursion depth of the algorithm. (b) A subinstance obtained by contracting V \Sv1 to a single
vertex xv1 . (c) A subinstance obtained by contracting Sv to a single vertex yv for each v ∈ B.

Minimum Isolating Cuts. For a set U of vertices in G, let w(U) be the sum of the weights of the
edges in G with exactly one endpoint in U . The first building block is a subroutine called Minimum
Isolating Cuts, introduced in [62, 3].
Definition 2.1 (Min Isolating Cuts [62, 3]). Given a set of terminals R ⊆ V , the Min Isolating Cuts
problem asks to output a collection of sets {Sv ⊆ V : v ∈ R} such that for each vertex v ∈ R,
the set Sv satisfies Sv ∩ R = {v}, and it has the minimum value of w(S′

v) over all sets S′
v that

S′
v ∩R = {v}. In other words, each Sv is the minimum cut separating v from R \ {v}.

The Isolating Cuts Lemma [62, 3] shows how to solve Min Isolating Cuts in O(log n) calls to
Min-s-t-Cut. At a high level, the Isolating Cuts Lemma is used to simultaneously find disjoint
Min-s-t-Cuts for several s, t pairs. More precisely, a single recursive step of the GH-tree algorithm
of [61] uses Min Isolating Cuts to find a collection of disjoint subsets of vertices {Sv ⊂ V }v∈R for
some set of terminals R ⊂ V and a source vertex s /∈ R which satisfy three properties:

(a) The subsets correspond to Min-s-v-Cuts: each subset Sv is the v-side of a Min-s-v-Cut.
(b) The subsets are not too large: |Sv| ≤ (1− Ω(1))n.
(c) The union of the subsets is not too small:

∑
|Sv| ≥ n/ polylog(n).

The algorithm is recursively applied to each of the subsets Sv (with vertices outside of Sv contracted)
as well as the remainder of the vertices Slarge = V \

⋃
Sv (with each Sv contracted). In concert,

conditions (b) and (c) guarantee that the recursive depth will be polylogarithmic. Condition (a) allows
us to stitch the outcome of these recursive calls together into a GH-tree that preserves Min-s-t-Cuts.
See Figure 1 for a visualization of this process. It remains to describe how to generate the source s,
terminals R, and subsets {Sv}v∈R to complete the high level description of the algorithm of [61].
We call a subset Sv having properties (a) and (b) a good subset.

Choosing s. The vertex s is chosen uniformly due to the following: Let D∗ be the set of all vertices
v ∈ V \ {s} for which there exists a Min-s-v-Cut with the v-side having cardinality at most n/2, i.e.,
the v side of the cut satisfies condition (b). A lemma from [2] shows that, as long as s is chosen
uniformly at random from V , we have E [|D∗|] = Ω(n): a constant fraction of vertices have small
cardinality Min-s-v-Cuts. This is important since the algorithm chooses R from D∗, i.e., all the
subsets Sv chosen by the algorithm have cardinality at most n/2 and hence they satisfy property (b).

Finding good subsets {Sv} which cover D∗. After choosing s, the algorithm selects geometrically
decreasing sets of potential terminals R0, . . . , R⌊lgn⌋ where each vertex other than s is selected
into Ri uniformly at random with probability 2−i. For each set of terminals Ri, the algorithm runs
Min Isolating Cuts on Ri∪{s} and keeps the “good” subsets {Sv}v∈Ri output by Min Isolating Cuts.
Recall that a good subset Sv has properties (a) and (b). To test property (a), we verify which subsets

6



Sv correspond to Min-s-v-Cuts by computing the single source Min-s-v-Cut values from s to all
v ∈ V \ {s} and comparing that to the value of the cuts Sv . To satisfy property (b), we only keep Sv

if |Sv| ≤ n/2.

The first observation is that for any particular Min-s-v-Cut with v-side S∗
v , there is some sampling

level i∗ where there is a reasonable probability that the only terminal sampled in S∗
v is v, i.e.

Ri∗ ∩ S∗
v = {v}. If this event occurs, then Min Isolating Cuts with terminals Ri∗ ∪ {s} will

return S∗
v as one of its outputs–the minimum cut separating v from the other terminals is the

Min-s-v-Cut. The second observation is that there is some sampling level i ≤ ⌊lg n⌋ where, when
run on the corresponding terminals Ri ∪ {s}, the expected size of the union of good subsets is
Ω
(

|D∗|
log2 n

)
= Ω

(
n

log2 n

)
, i.e., satisfying (c). Thus, selecting the sampling level whose good subsets

have maximum total cardinality produces a collection {Sv} satisfying conditions (a), (b), (c).8

2.3 Three Core Challenges

As the Min Isolating Cuts are a major building block of the algorithm of [61], our first challenge is
finding a privatized version of it.

Challenge 1. Construct a differentially private, approximate Min Isolating Cuts algorithm.

Next, in one recursive step, the non-private algorithm compares the Min Isolating Cuts to single
source Min-s-v-Cut values. Making these procedures private will introduce additive errors, and
this makes it difficult to satisfy conditions (b) and (c). Recall that in [61], at some sampling level
Min Isolating Cuts will correspond to Min-s-v-Cuts which are neither too large for condition (b)
nor too small for condition (c). This convenient property is deduced from the cardinality of the
true Min-s-v-Cut and the fact that calls to Min Isolating Cuts will find exactly those Min-s-v-Cuts.
Without adjustment, plugging in additive approximate subroutines will fail to produce recursive
sub-instances of a reasonable size, undermining the goal of low recursive depth.

Challenge 2. Design a recursive step that employs additive approximations for Min-s-v-Cut
values and Min Isolating Cuts while ensuring that (1) no sub-instance is too large and (2) the
union of sub-instances is sufficiently large.

Even assuming that the above two challenges are resolved, it remains unclear how to account for
the privacy loss of the final low-depth recursive algorithm. The difficulty lies in the fact that,
despite the polylogarithmic recursion depth, a single edge of the original graph may appear in
multiple sub-instances across a single recursive level. A given instance with terminal set R will
have |R|+ 1 recursive sub-instances: |R| of them are obtained by contracting each of the vertex sets
(V \ Sv)v∈R into a single vertex xv , and one is obtained by contracting each Sv , v ∈ R into a single
vertex yv (see Figure 1 (b)). If an edge has both of its incident vertices lying in a single Sv or in
Slarge := V \

⋃
v∈R Sv , then that edge will only appear in the corresponding sub-instance. However,

an edge with, say, one endpoint in Su and the other in Sv for different u and v will appear in three
recursive sub-instances: those obtained by contracting V \Su, V \Sv , and V \Slarge. Moreover, this
edge could appear in up to O(n) sub-instances. So, if we naïvely apply basic composition, we need
the computation on each sub-instance to be (ε/n)-DP. This would lead to a final Õ(n2/ε) additive
error guarantee, which is again worse than previous work on preserving all cuts.

Challenge 3. Modify the algorithm so that the privacy loss of a given edge can be accounted
for by the recursion depth.

In the following sections, we give a technical overview on how we overcome these challenges.

2.4 Addressing Challenge 1: Privatizing Min Isolating Cuts (Appendix B)

[62] and [3] independently introduce the Isolating Cuts Lemma, showing how to solve the
Min Isolating Cuts problem using O(log |R|) many Min-s-t-Cut calls. [62] use it to find the global
Min Cut in polylogarithmically many invocations of Max Flow and [3] use it to compute GH-tree in

8Note that the final set of terminals R is inferred from the selection of {Sv}, corresponding to the good
subsets at a certain sampling level.
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unweighted graphs. Subsequent algorithms for GH-tree also use the Isolating Cuts Lemma, including
the almost linear time algorithm for weighted graphs [6]. The Isolating Cuts Lemma has been
extended to obtain new algorithms for finding the non-trivial minimizer of a symmetric submodular
function and solving the hypergraph minimum cut problem [72, 21]. We develop the first differentially
private algorithm for finding Min Isolating Cuts.

Theorem 2.1. There is an ε-DP algorithm that given a graph G and a set of terminals R, outputs
sets {Sv : v ∈ R}, such that for each vertex v ∈ R, the set Sv satisfies Sv ∩ R = {v}, and
w(Sv) ≤ w(S∗

v ) + Õ(nε ) with high prob., where {S∗
v : v ∈ R} are the Min Isolating Cuts for R.

Tackling this first challenge—obtaining a DP algorithm for constructing Min Isolating Cuts—turns
out to be not too difficult. We repeatedly invoke the private Min-s-t-Cut algorithm of [29] O(log n)
times. To establish the error bound, we carefully apply the cut submodularity property (Lemma A.1)
to account for the approximate errors. Since we are separating a potentially large set of terminals
rather than a single pair, we must ensure the total error, summed across all terminals, remains bounded
by Õ

(
n
ε

)
(see Lemma B.1 for this stronger result).

2.5 Addressing Challenge 2: Privatizing the Recursive Step (Appendix B and Appendix C)

The second challenge involves controlling the size of the sets produced by our DP Min Isolating Cuts
algorithm. To address this, we use the following idea to bias the algorithm toward selecting smaller
cardinality sets to satisfy that property (b). Consider a graph G with terminals s and t. We aim to find
an approximate Min-s-t-Cut where the s-side of the cut contains a small number of vertices, without
significantly sacrificing accuracy. To achieve this, we can add edges from t to every vertex with a
certain weight, penalizing the placement of vertices on the s-side of the cut. Applying this idea to our
DP Min Isolating Cuts algorithm, we enforce that if a true minimum isolating cut of size at most n/2
exists, we will output an isolating cut of size at most 0.9n while increasing the additive error of the
algorithm by only a constant factor.

The above only takes care of property (b). A subtlety in the argument of [61] in making sure property
(c) is satisfied over all good subsets is the following: Randomly sampling terminals Ri will, with
reasonable probability, mean that for some vertices v, its Min Isolating Cut Sv will be the same as
its Min-s-v-Cut S∗

v . In particular, this will be true if v ∈ Ri is the only vertex sampled on its side
of the Min-s-v-Cut. In this case, Sv is a good subset and is kept by the algorithm. Later, using that
Sv = S∗

v , they argue that the union of good subsets is not too small.

Unfortunately, even though the Min Isolating Cuts output by our DP algorithm have small additive
error, they can have significantly fewer nodes than the optimal cut S∗

v . Essentially, although the true
Min-s-v-Cut may be large, there is no lower bound on the node size of approximate Min-s-v-Cuts.
This poses a challenge in showing that the union of the good sets Sv retained by the algorithm is not too
small (property (c)). To address this, we compare Sv not to S∗

v , but instead to the smallest cardinality
“approximate” Min-s-v-Cut S̃v . The argument that, for some sampling level, there will be a reasonable
probability that Min Isolating Cuts will return an Sv which is an approximate Min-s-v-Cut and has
cardinality lower bounded by |S̃v| then goes through. For the complete argument, we adjust our
notion of “approximation" based on the size of S̃v, allowing for weaker approximations for smaller
cardinality sets. This only degrades our approximation with respect to property (a) by log factors.

2.6 Addressing Challenge 3: Bounding Privacy along the Recursion Tree (Appendix D)

The third challenge involves controlling the privacy budget. We need to ensure that, for any two
neighboring graphs, the output distributions across polylog(n) recursive layers differ by, at most
a eε factor. To achieve this guarantee, we allocate the privacy budget across polylog(n) recursive
sub-instances. Recall that a recursion depth of polylog(n) does not imply that the privacy budget
can be evenly allocated across polylog(n) instances. To recall the 3rd challenge, consider two
neighboring instances, G and G′, that differ on edge xy. Suppose that in the first step of the algorithm,
the good sets {Sv} and Slarge are the same in both graphs G and G′. Suppose that x ∈ Sv and y ∈ Su.
In this case, the edge xy affects multiple recursive instances: specifically, in Gv, Gu, and Glarge
(similarly G′

v , G′
u, and G′

large). Thus computations across multiple branches of the recursion depend
on the same edge, meaning the privacy guarantee depends on more than just the recursion depth.
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Mrecurse(X
u, Y u)

Sensitive data: Xu = (X1, X2, X3, X4, X5)

Sanitized data: Y u

Number of children d of u, e.g., d = 3

Sensitive and sanitized indices Iv and
Jv for each child v, e.g.,

• Iv1 = {1, 3} and Jv1 = {2, 4}

• Iv2 = {2, 5} and Jv2 = {4}

• Iv3 = {4} and Jv3 = {2, 5, 3}
Auxiliary output au

Input to node u:

Input to child v1: Input to child v2: Input to child v3:

Xv1 = (X1, X3)

(f(Y u),Msanitize(X2, X4))

Xv2 = (X2, X5) Xv3 = (X4)

(f(Y u),Msanitize(X4)) (f(Y u),Msanitize(X2, X3, X5))

Figure 2: Bounded-overlap branching composition. Node u receives as input a set of sensitive data
Xu and a set of sanitized data Y u. Via a DP mechanismMrecurse, it then computes the number of
children of u, and for each child v, a set of sensitive indices Iv and a set of sanitized indices Jv.
Importantly, the sets Iv are disjoint, and an index j can appear in at most ℓ different sets Jv (in the
figure ℓ = 2). Node u may further return some other DP output au. Each child v now receives as
input the data (Xi)i∈Iv and the concatenation (f(Y ),Msanitize(Xj)j∈Jv ) whereMsanitize is a DP
mechanism and f is some arbitrary function. Intuitively, if an element Xi of the dataset is sanitized
in a child v, then post-processing ensures that the entire computation in the subtree rooted at v is DP
with respect to user i. Since user i’s data Xi can only appear unsanitized in a single child, and is
sanitized in at most ℓ children, we can apply basic composition over h computations ofMrecurse and
ℓ · h computations ofMsanitize, where h is the depth of the tree.

To address this issue, we introduce an additional step before recursing on certain new instances. For
the instances where all vertices in V \ Sv are contracted to a single vertex, we first add an edge from
the contracted vertex to every vertex in Sv with weights drawn from Lap(polylog(n)/ε). Then we
recurse on this altered graph. The intuition is that in neighboring instances, if x ∈ Sv and y /∈ Sv,
these noisy edges cancel the effect of xy, preventing its influence from propagating further along
this branch of the recursion. As a result, xy impacts only Glarge. Fortunately, the added noise only
contributes Õ(n/ε) to the final additive error, as noise is added to only O(n) edges.

Bounded-Overlap Branching Composition. The approach outlined above is an example of a
more general privacy composition technique, which we develop and formalize (Appendix D.2). Here,
we provide a high-level overview of the technique and refer to Figure 2 for an illustration. Consider
an algorithmMbranch that takes a sensitive dataset X as input, performs DP computation on X , and
recurses on some subsets of X . Now, consider the computation tree corresponding to the recursive
branching ofMbranch. If the subsets assigned to a node’s children are chosen privately and the subsets
are disjoint, privacy composition is straightforward, as outlined below.

Let h upper-bound the depth of the tree. If, at a single node, the release of the computation on X as
well as the indices to the subsets of its children is (ε, δ)-DP, then the entire mechanismMbranch(X)
is (hε, δh)-DP. To see this, consider any pair of neighboring datasets X,X ′ which differ only on the
coordinate i∗. As the subsets of indices assigned by each node to its children are disjoint, there is a
unique path from the root of the tree along which nodes do computation on Xi∗ . All other nodes in
the tree do not depend on the value of Xi∗ after conditioning on the release of the index sets of all
children of nodes along the path. Composition along this path gives the result. This can be thought of
as a novel combination of parallel9 and basic composition, and post-processing.

The challenge in our setting is that each node in the recursion tree does not partition its data among
its children (the same edge weight can appear in multiple subinstances). A single data point may
be sent to multiple children, so the number of nodes in the tree whose input includes Xi∗ may be
exponential in the depth h. We define a restricted class of recursive mechanisms, which take in both a
sensitive dataset X and a sanitized dataset Y . The overall recursive mechanismMbranch is formed
using two private subroutinesMrecurse andMsanitize. At each recursive step,Mrecurse(X,Y ) is used
to generate some partial output, the number of recursive children, and a set of sensitive and sanitized
index sets I = (i1, . . . , in) and J = (j1, . . . , jm) for each recursive child. A child receives as input
(1) a sensitive dataset Xi1 , . . . , Xin which is a subset of its parent’s sensitive dataset X , and (2) a
sanitized input, which is the concatenation of any function of its parent’s sanitized dataset Y and the
output of the private computationMsanitize(Xj1 , . . . , Xjm).

9We use parallel composition to refer to the fact that the union of outputs of an (ε, δ)-DP mechanism applied
separately to disjoint subsets of a sensitive dataset is itself (ε, δ)-DP.
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The key property of the mechanisms we define is bounded-overlap, parameterized by some constant
ℓ. For any index i into the sensitive dataset X of the parent: (1): There is at most one child whose
sensitive index set contains i. (2): There are at most ℓ children whose sanitized index sets contain i.
Theorem 2.2 (Informal Version of Theorem D.2). LetMbranch be a recursive mechanism as described
above with bounded-overlap and maximum depth h with subroutinesMrecurse andMsanitize which
are (ε1, δ1)-DP and (ε2, δ2)-DP, respectively. Then, releasing the union of outputs ofMrecurse and
Msanitize over the entire recursion tree is (hε1 + (h− 1)ℓε2, hδ1 + (h− 1)ℓδ2)-DP.

Note that this generalizes the above example, where all children get disjoint subsets of the parent’s
data by setting ℓ = 0. Indeed, the high-level idea of the proof of this theorem follows the same
argument, with more care taken to argue that, by sanitizing the overlapping data sent to a node’s
children, we can bound privacy along a single path from the root of the tree for any particular index i∗.
We ultimately prove the privacy of our GH-tree algorithm by the application of this general theorem.
As described earlier in this subsection, the sanitization procedure is to add Laplace noise from the
contracted node to all other nodes in Sv subinstances. Then, each edge is only part of the private input
to a single recursive child. A key observation is that the recursive GH-tree algorithm has bounded
overlap with ℓ = 2 as any given edge can only belong to two such Sv instances.
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A Preliminaries

A.1 Notation

We use G = (V,E,w) to denote a weighted, undirected graph with vertex set V , edge set E and
edge weights w. For a subset of vertices S ⊆ V , we use ∂GS, or simply ∂S when G is clear from
context, to denote the set of edges between S and V \ S. For a set of edges Q ⊆ E, we use w(Q) to
denote the sum of the weights of the edges in Q. For a set of vertices S ⊆ V , we use w(S) to denote
w(∂S), for simplicity.

For s, t ∈ V , we use λG(s, t) to denote the Min-s-t-Cut value in a specified graph G. When clear
from context, the subscript G might be omitted. Throughout our computation, we assume that all
Min-s-t-Cuts or Min Isolating Cuts are unique. This is without loss of generality by adding small
noise to the edges and applying the isolation lemma [73] (see also [16, 2]). 10 For n > 0, lg(n) is
logarithm base-2 and ln(n) is logarithm base-e. Unless specified, high probability refers to failure
probability of at most 1/nO(1) where we can pick the O(1) factor to be an arbitrarily large constant
of our choice.

Notation Meaning Reference

ε privacy parameter Definition A.4

∂GS, S ⊆ V set of edges between S and V \ S in G Appendix A.1

wG(Q), Q ⊆ E sum of weights of edges in Q in G Appendix A.1

wG(S), S ⊆ V sum of weights of edges in ∂S in G Appendix A.1

λG(s, t) min s-t cut value in G Appendix A.1

Su isolating cut for a vertex u Definition 2.1

ŵG(·), Ŝu privatized versions of wG(·) and Su Algorithm 2
Table 2: A summary of our notation throughout the paper. When clear from the context, we drop the
subscript of the graph G = (V,E,w).

A.2 Graph Cuts

In our algorithms, we use the notion of vertex contractions, which we formally define next.

Definition A.1 (Vertex contractions). Let X ⊆ V be a subset of vertices of the graph G = (V,E,w).
Contracting the set X into a vertex is done as follows: we add a vertex x to the graph and remove all
the vertices in X from the graph. Then for every vertex v ∈ V \X , we add an edge from x to v with
weight

∑
x′∈X w(x′v). Note that if none of the vertices in X has an edge to v, then there is no edge

from x to v.

We use the submodularity property of cuts in many of our proofs.

Lemma A.1 (Submodularity of Cuts [27]). For any graph G = (V,E,w), and any two subsets
S, T ⊆ V , it holds

w(S) + w(T ) ≥ w(S ∪ T ) + w(S ∩ T ).

Recall the definition of Min Isolating Cuts problem (see Definition 2.1). We use the following simple
fact.

Fact A.1 ([62]). Given a set of terminals R ⊆ V , there always exists a set of minimum isolating cuts
{Sv : v ∈ R} such that the cuts are disjoint.

Definition A.2 (Gomory-Hu Steiner tree [61]). Given a graph G = (V,E,w) and a set of terminals
U ⊆ V , the Gomory-Hu Steiner tree is a weighted tree T on the vertices U , together with a function

10The isolation lemma involves adding noise to existing edge weights. This noise can be bounded in magnitude
to be at most 1/poly(n), so scaling the weights down by a (1+1/poly(n)) factor yields the normal neighboring
definition for DP.
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f : V → U , such that: For all s, t ∈ U , consider the minimum-weight edge uv on the unique s-t
path in T . Let U0 be the vertices of the connected component of T − uv containing s. Then, the set
f−1(U0) ⊆ V is the Min-s-t-Cut, and its value is wT (uv).

Note that for U = V and f(v) = v the Gomory-Hu Steiner tree equals the Gomory-Hu tree.

A.3 Concentration Inequalities

Theorem A.1 (Sums of Exponential Random Variables ([54, Theorem 5.1])). Let X1, . . . , XN be
independent random variables with Xi ∼ Exp(ai). Let µ =

∑N
i=1

1
ai

be the expectation of the sum
of the Xi’s and let a∗ = mini ai. Then, for any t ≥ 1,

P

[
N∑
i=1

Xi ≥ tµ

]
≤ 1

t
exp[−a∗ · µ(t− 1− ln t)]

Corollary A.1. Let X1, . . . , XN be independent random variables with Xi ∼ Exp(a) for some real
number a > 0. Let µ = N/a be the expectation of the sum of the Xi’s. Then, for any T ≥ 2µ,

P

[
N∑
i=1

Xi ≥ T

]
≤ exp(−aT/10).

Proof. Apply Theorem A.1 with a∗ = a and t = T/µ, we obtain

P

[
N∑
i=1

Xi ≥ T

]
≤ 1

t
exp[−a · µ(t− 1− ln t)]

= exp[−N(t− 1− ln t+ (ln t)/N)]

≤ exp(−Nt/10) (as t ≥ 2)
= exp(−aT/10).

□

A.4 Differential Privacy

In this paper, we focus on a weighted version of edge differential privacy. At the end of this section,
we discuss why this choice of neighboring graphs is made as well as some connections between
notions of neighboring graphs.

Definition A.3 (Edge-Neighboring Graphs). Graphs G = (V,E,w) and G′ = (V,E′, w′) are called
edge-neighboring if there is uv ∈ V 2 such that |wG(uv) − wG′(uv)| ≤ 1 and for all u′v′ ̸= uv,
u′v′ ∈ V 2, we have wG(u

′v′) = wG′(u′v′). Note that w(u′′v′′) = 0 for all non-edges u′′v′′.

Definition A.4 (Differential Privacy [36]). A (randomized) algorithm A is (ε, δ)-private (or (ε, δ)-
DP) if for any neighboring graphs G and G′ and any set of outcomes O ⊂ Range(A) it holds

P [A(G) ∈ O] ≤ eε P [A(G′) ∈ O] + δ.

When δ = 0, algorithm A is pure differentially private, or ε-DP.

We now state some standard properties of differential privacy which we will utilize in our algorithm
design and analysis.

Theorem A.2 (Basic composition [36, 33]). Let ε1, . . . , εt > 0 and δ1, . . . , δt ≥ 0. If we run t
(possibly adaptive) algorithms where the i-th algorithm is (εi, δi)-DP, then the entire algorithm is
(ε1 + . . .+ εt, δ1 + . . .+ δt)-DP.

Theorem A.3 (Laplace mechanism [34]). Consider any function f which maps graphs G to Rd with
the property that for any two neighboring graphs G,G′, ∥f(G)− f(G′)∥1 ≤ ∆. Then, releasing

f(G) + (X1, . . . , Xd)

where each Xi is i.i.d. with Xi ∼ Lap(∆/ε) satisfies ε-DP.
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Figure 3: This example describes two weighted graphs, G and G′, that differ by a single edge {u, v}:
G is a path, while G′ is a cycle. The numbers next to the edges are their weights. Note that both
graphs have n−1 distinct min-cut values. However, the min-cut values in G are {2, 4, . . . , 2(n−1)},
while the min-cut values in G′ are {3, 5, . . . , 2(n− 1) + 1}. Thus, the min-cut value sets of these
two neighboring graphs differ in n− 1 entries.

Note that any w(S) for S ⊂ V has sensitivity ∆ ≤ 1 as changing one edge weight by one can change
the sum of a subset of edge weights by at most one. We now state a result on privately releasing an
approximate Min-s-t-Cut for a single pair of vertices s, t.

Theorem A.4 (Private Min-s-t-Cut [29]). Fix any ε > 0. There is an (ε, 0)-DP algorithm
PrivateMin-s-t-Cut(G = (V,E,w), s, t, ε) for s ̸= t ∈ V that reports an s-t cut for n-vertex
weighted graphs that is within O(nε ) additive error from the Min-s-t-Cut with high probability.

By standard techniques, we can also use Theorem A.4 to design an (ε, 0)-DP algorithm for computing
an approximate Min-S-T -Cut for two disjoint subsets S, T ⊆ V that is within O(nε ) additive error
from the actual Min-S-T -Cut (e.g., by contracting all vertices in S and all vertices in T to two
supernodes). Furthermore, our final algorithm is recursive with many calls to Private Min-S-T -Cut
for graphs with few vertices, and it is not enough to succeed with high probability with respect to
n. The error analysis of [29] shows that the error is bounded by the sum O(n) random variables
distributed as Exp(ε). Using Corollary A.1 yields the following corollary:

Corollary A.2 (Private Min-S-T -Cut). Fix any ε > 0, there exists an (ε, 0)-DP algorithm
PrivateMin-S-T-Cut(G = (V,E,w), S, T, ε, β) for disjoint S, T ⊆ V that reports a set C ⊆ V

where S ⊆ C and C ∩ T = ∅, and w(∂C) is within O
(

n+log(1/β)
ε

)
additive error from the true

min-S-T -cut with probability at least 1− β.

A.5 On various notions of neighboring graphs

For graph data, there are several choices of neighboring datasets with very different semantics for the
privacy they correspond to.

At one extreme are vertex-neighboring graphs, where neighboring graphs differ arbitrarily in the
edges incident on a single vertex, e.g., [14]. Semantically, each vertex corresponds to a person,
and vertex differential privacy protects the data of that individual person. While this offers broad
protection, this notion of privacy is simply too restrictive for cut problems. It has been found to be
useful in simpler problems, such as estimating the edge density of random graphs. However, the
value of any cut can change arbitrarily between neighboring graphs, so no approximation of any cut
value is possible while maintaining privacy.

We consider edge-neighboring graphs, which is the standard for cut problems in the literature, see,
e.g., [46, 47, 37, 66, 29]. It is the strongest form of privacy for which we can get a meaningful
approximation to cut problems. For unweighted graphs, neighboring graphs are those in which a
single edge has been added/removed. For weighted graphs, two related notions are considered: where
a single edge can change in weight by 1 and where all edges can change in total ℓ1 distance 111.
Semantically, these notions of privacy are meaningful if individuals impact the existence of edges and
the size of edge weights. We use the former definition but note that, as is often the case, our result
applies in both settings. We outline the reduction below.

11Note that both of these capture the unweighted case as zero weight edges are equivalent to edges not
belonging to the graph in the context of cut problems.
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Let A be an algorithm satisfying the former notion of edge differential privacy (changing a single
edge by weight 1) with an approximation error that depends linearly on 1/ε and is scale-invariant in
that it does not explicitly depend on the scale of the edge weights in the graph. Say two graphs have
edge weight vectors wG, wG′ ∈ R(

n
2) with ∥wG − wG′∥1 ≤ 1. Let ∆ = wG − wG′ , and let C be

some constant such that C∆ is integer-valued – we assume that such a constant exists either due to
finite precision of the weights or by rounding the weights to finite precision with arbitrarily small
loss. Note that ∥C∆∥1 ≤ C. By group privacy, running A on a graph with edge weights CwG will
preserve a Cε-DP guarantee with respect to all graphs which are formed by starting with CwG and
iteratively changing C edge weights by 1. In particular, this holds for CwG′ . Rescaling the solution
by 1/C yields a reduction of error by a factor of 1/C at the cost of increasing the privacy parameter
by a factor of C. As the error of A scales linearly in 1/ε, rescaling the privacy parameter by a factor
of C yields an equivalent error/privacy tradeoff for the ℓ1 notion of neighboring graphs.

We note that a yet more restrictive notion of privacy is used for privacy in the context of shortest
path problems, e.g., [81, 22]. In the context of shortest paths, a zero-weight edge is not the same as a
non-edge: a non-edge is equivalent to an edge of infinite weight. Therefore, standard notions of edge
differential privacy do not allow for any approximation to path lengths. The notion considered in
these shortest path problems is edge weight differential privacy, where the unweighted topology of the
graph is fixed and made public while the weights on each edge are private. Specifically, neighboring
graphs have the same edge set E but differ in weights on those edges in ℓ1 distance at most 1. This is
in contrast to the former notion of edge differential privacy, where two graphs are neighboring if one
contains an edge of weight 1 and the other has a non-edge in that location.

B Private Min Isolating Cuts

In this section we prove Theorem 2.1. In fact, we prove a stronger version given by Lemma B.1. The
steps in the algorithm that differ meaningfully from the non-private version are in color. We refer to
Appendix A.1 and Table 2 for the definitions of our notation.

Algorithm 1: PrivateMinIsolatingCuts(G = (V,E,w), R, U, ε, β)

1 Initialize Wr ← V for every r ∈ R
2 Identify R with {0, . . . , |R| − 1}
3 for i from 0 to ⌊lg(|R| − 1)⌋ do
4 Ai ← {r ∈ R : r mod 2i+1 < 2i}
5 Ci ←PrivateMin-S-T-Cut(G,Ai, R \Ai, ε/(lg |R|+ 3), β/(lg |R|+ 3))
6 Wr ←Wr ∩ Ci for every r ∈ Ai

7 Wr ←Wr ∩ (V \ Ci) for every r ∈ R \Ai

8 end
9 for r ∈ R do

10 Let Hr be G with all vertices in V \Wr contracted, and let tr be the contracted vertex

11 In Hr, add weight BH · (n+lg(1/β)) lg2(|R|)}
ε|U | between every vertex in Wr ∩ U and tr for some

sufficiently large constant BH
12 end
13 H ←

⋃
r∈R Hr

14 C ←PrivateMin-S-T-Cut(H, R, {tr}r∈R, ε/(lg |R|+ 3), β/(lg |R|+ 3))
15 return {C ∩Wr}r∈R

Lemma B.1. On a graph G with n vertices, a set of terminals R ⊆ V , another set of vertices U ⊆ V ,
and a privacy parameter ε, there is an (ε, 0)-DP algorithm PrivateMinIsolatingCuts(G,R,U, ε, β)
that returns a set of Isolating Cuts over terminals R. The total cut values of the Isolating Cuts
is within additive error O((n + lg(1/β)) lg2(|R|)/ε) from the Min Isolating Cuts with probability
1− β.

Furthermore, suppose the Min Isolating Cut for any terminal r ∈ R contains at most 0.5|U | vertices
from U . In that case, the Isolating Cut for r returned by the algorithm will, with probability 1− β,
contain at most 0.9|U | vertices from U .
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Proof. The algorithm is presented in Algorithm 1. On a high level, the algorithm follows the non-
private Min Isolating Cuts algorithm by [62, 3], but replacing all calls to Min-S-T -Cut with private
Min-S-T -Cut from Corollary A.2. One added step is Line 10, which is used to provide the guarantee
that if the Min Isolating Cut for a terminal r ∈ R contains a small number of vertices in U , then the
isolating cut for terminal r returned by the algorithm also does.

Next, we explain the algorithm in more detail. For every r ∈ R, we maintain a set Wr that should
contain the r-side of a cut seperating r from R \ {r} obtained in the algorithm. In each of the
⌊lg(|R| − 1)⌋+ 1 iterations, we find a subset Ai ⊆ R, and find a cut that separates Ai from R \Ai.
Let Ci be the side of the cut containing Ai. Then for every r ∈ Ai, we update Wr with Wr ∩ Ci; for
every r ∈ R\Ai, we update Wr with Wr∩(V \Ci). The choice of Ai is so that every pair r1, r2 ∈ R
are on different sides of the Min-S-T -Cut in at least one iteration; as a result, Wr ∩ R = {r} for
every r ∈ R after all iterations.

Next, for every r ∈ R, the algorithm aims to compute a cut separating r from R \ {r}, where the
side containing r is inside Wr. This can be done by contracting all vertices outside of Wr to a vertex
tr and computing private Min-r-tr-Cut. To incentivize cuts that contain fewer vertices in U on the
side containing r, the algorithm adds an edge with positive weight from every vertex in Wr ∩U to tr.
Finally, these private Min-r-tr-Cut instances can be solved at once by combining them into a single
graphH.

Privacy analysis. Considering the first for loop in the algorithm, The only parts that depend on
the edges or edge weights are the calls to PrivateMin-S-T-Cut. Each call to PrivateMin-S-T-Cut is
(ε/(lg |R|+ 3), 0)-DP, and the number of calls is ⌊lg(|R| − 1)⌋+ 1, so this part of the algorithm is
log |R|+1
log |R|+3ε-DP via basic composition (Theorem A.2).

Next, note that the sets Wr are private since they are obtained from postprocessing the lg |R| privately
computed min cuts Ci. Furthermore, the sets Wr form a partition of V . This implies that an edge
in the initial graph contributes its weight to at most two edges in H. Namely, an edge internal to
some Wr appears only in Hr and an edge between some Wr and Wr′ is only contracted into an edge
in Hr and an edge in Hr′ . Thus, the sensitivity of H is 2, so running PrivateMin-S-T-Cut on H is
2ε/(log |R|+ 3-DP. Hence, the overall algorithm is ε-DP.

Error analysis. First, we analyze the error introduced by the for loop starting at Line 3. Let
{Sr}r∈R be the (non-private) Min Isolating Cuts for terminals in R, which are only used for analysis
purposes. Recall by Fact A.1, we can assume {Sr}r∈R are disjoint. Take an iteration i of the for
loop and let {Wr}r∈R be the values of Wr’s before the start of the iteration, and let {W ′

r}r∈R denote
the value of Wr’s at the end of the iteration.

Recall that with probability 1−β/(lg(|R|)+3), the PrivateMin-S-T-Cut algorithm Corollary A.2 has
additive error O((n+ lg((lg(|R|) + 3)/β))(lg(|R|) + 3)/ε) = O((n+ lg(1/β)) lg(|R|)/ε). Hence,
in the following analysis, we assume all calls of the PrivateMin-S-T-Cut algorithm have additive
error O((n+ lg(1/β)) lg(|R|)/ε) (which holds with probability 1− β by union bound).

We show the following claim:

Claim 1. It holds that∑
r∈R

w (W ′
r ∩ Sr) ≤

∑
r∈R

w (Wr ∩ Sr) +O((n+ lg(1/β)) lg(|R|)/ε).

Proof. We first show
∑

r∈Ai
w (W ′

r ∩ Sr) ≤
∑

r∈Ai
w (Wr ∩ Sr) + O(n lg(|R|)/ε). Let SAi :=⋃

r∈Ai
(Wr ∩ Sr). By Lemma A.1,

w(SAi
) + w(Ci) ≥ w(SAi

∪ Ci) + w(SAi
∩ Ci). (1)

Recall that with probability 1−β/(lg(|R|)+3), Ci is within O((n+lg((lg(|R|)+3)/β))(lg(|R|)+
3)/ε) = O((n+lg(1/β)) lg(|R|)/ε) of the minimum cut separating Ai and R \Ai, by the guarantee
of Corollary A.2, and note that SAi

∪ Ci is also a cut separating Ai and R \Ai. Therefore,

w(Ci) ≤ w(SAi
∪ Ci) +O((n+ lg(1/β)) lg(|R|)/ε). (2)

Combining Equations (1) and (2), we get that

w(SAi
∩ Ci) ≤ w(SAi

) +O((n+ lg(1/β)) lg(|R|)/ε). (3)
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Therefore,∑
r∈Ai

w (W ′
r ∩ Sr) =

∑
r∈Ai

w (Wr ∩ Sr ∩ Ci)

= w

( ⋃
r∈Ai

(Wr ∩ Sr ∩ Ci)

)
+

∑
r1 ̸=r2∈Ai

w (E ∩ ((Wr1 ∩ Sr1 ∩ Ci)× (Wr2 ∩ Sr2 ∩ Ci)))

≤ w(SAi
∩ Ci) +

∑
r1 ̸=r2∈Ai

w (E ∩ ((Wr1 ∩ Sr1)× (Wr2 ∩ Sr2)))

≤ w(SAi
) +O((n+ lg(1/β)) lg(|R|)/ε) +

∑
r1 ̸=r2∈Ai

w (E ∩ ((Wr1 ∩ Sr1)× (Wr2 ∩ Sr2)))

(by Equation (3))

=
∑
r∈Ai

w (Wr ∩ Sr) +O((n+ lg(1/β)) lg(|R|)/ε).

By an analogous argument, we can show
∑

r∈R\Ai
w (W ′

r ∩ Sr) ≤
∑

r∈R\Ai
w (Wr ∩ Sr) +

O(n lg(|R|)/ε). Summing up the two inequalities gives the desired claim. □

By applying Claim 1 repeatedly, we can easily show the following claim:

Claim 2. At the end of the for loop starting at Line 3,
∑

r∈R w(Wr ∩Sr) ≤
∑

r∈R w(Sr)+O((n+

lg(1/β)) lg2(|R|)/ε).

Proof. Before the for loop starting at Line 3, we have Wr = V for every r ∈ R, so∑
r∈R w(Wr ∩ Sr) =

∑
r∈R w(Sr). Claim 1 shows that after each iteration of the for loop,

the quantity
∑

r∈R w(Wr ∩ Sr) does not increase by more than O((n + lg(1/β)) lg(|R|)/ε). As
there are O(lg(|R|)) iterations, we get that at the end of the for loop,∑

r∈R

w(Wr ∩ Sr) ≤
∑
r∈R

w(Sr) +O((n+ lg(1/β)) lg2(|R|)/ε).

□

The following claim is a simple observation:

Claim 3. At the end of the for loop starting at Line 3, r ∈Wr for every r ∈ R and distinct Wr’s are
disjoint.

Next, we show that the Min-r-tr-Cut values in Hr are close to the Min Isolating Cut values:

Claim 4.
∑

r∈R λHr
(r, tr) ≤

∑
r∈R wG(Sr) +O((n+ lg(1/β)) lg2(|R|)/ε).

Proof. We have that∑
r∈R

λHr
(r, tr) ≤

∑
r∈R

wHr
(Wr ∩ Sr)

=
∑
r∈R

(
wG(Wr ∩ Sr) + |Wr ∩ Sr ∩ U | ·O((n+ lg(1/β)) lg2(|R|)/(ε|U |))

)
≤

(∑
r∈R

wG(Wr ∩ Sr)

)
+O((n+ lg(1/β)) lg2(|R|)/ε)

(as {Sr}r∈R are disjoint)

≤

(∑
r∈R

wG(Sr)

)
+O((n+ lg(1/β)) lg2(|R|)/ε). (by Claim 2)

□
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Because of Claim 4, and the guarantee of Corollary A.2, the final cuts C ∩ Wr returned by the
algorithm will have the property that∑

r∈R

wHr
(C ∩Wr) ≤

∑
r∈R

λHr
(r, tr) +O((n+ lg(1/β)) lg(|R|)/ε)

≤
∑
r∈R

wG(Sr) +O((n+ lg(1/β)) lg2(|R|)/ε).

Furthermore, wG(C ∩Wr) ≤ wHr
(C ∩Wr) as we only add positive weights to Hr compared to G,

we further get ∑
r∈R

wG(C ∩Wr) ≤
∑
r∈R

wG(Sr) +O((n+ lg(1/β)) lg2(|R|)/ε),

which is the desired error bound.

Additional guarantee. Finally, we need to show that if |Sr ∩ U | ≤ 0.5U for some r ∈ R, then
with probability 1 − β, the returned isolating cut by the algorithm C ∩Wr has |C ∩Wr ∩ U | ≤
0.9U . Again, we can assume all calls of the PrivateMin-S-T-Cut algorithm have additive error
O((n+ lg(1/β)) lg(|R|)/ε). As C is a cut returned by the PrivateMin-S-T-Cut algorithm separating
R and {tr}r∈R and (C \Wr) ∪ (Sr ∩Wr) is also a cut separating R and {tr}r∈R, we have

wH(C) ≤ wH((C \Wr) ∪ (Sr ∩Wr)) +O((n+ lg(1/β))(lg(|R|))/ε).

By removing cut values contributed by Hr′ for r′ ̸= r from both sides, we get that

wHr
(C ∩Wr) ≤ wHr

(Sr ∩Wr) +O((n+ lg(1/β))(lg(|R|))/ε).

Rewriting the cut values in terms of the edge weights of G instead of Hr (recall the weights of G and
Hr are related as shown in Line 11), the above becomes

w(C ∩Wr) + (BH · (n+ lg(1/β)) lg2(|R|)/(ε|U |))|C ∩Wr ∩ U |
≤ w(Sr ∩Wr) + (BH · (n+ lg(1/β)) lg2(|R|)/(ε|U |))|Sr ∩Wr ∩ U |+O((n+ lg(1/β))(lg(|R|))/ε)
≤ w(Sr) + (BH · (n+ lg(1/β)) lg2(|R|)/(ε|U |))|Sr ∩Wr ∩ U |+O((n+ lg(1/β))(lg2(|R|))/ε).

(By Claim 2)

Because w(C ∩Wr) ≥ w(Sr) by definition of Sr, the above implies

|C ∩Wr ∩ U | ≤ O((n+ lg(1/β))(lg2(|R|))/ε)
BH · (n+ lg(1/β)) lg2(|R|)/(ε|U |)

+ |Sr ∩Wr ∩ U |

≤ 0.4|U |+ |Sr ∩Wr ∩ U | (By setting BH large enough)
≤ 0.4|U |+ |Sr ∩ U |
≤ 0.9|U |,

as desired. □

C Core Recursive Step

We now describe a key subroutine, outlined as Algorithm 2, used to compute a DP Gomory-Hu tree.
The high-level goal is to use Min Isolating Cuts to find minimum cuts that cover a large fraction of
vertices in the graph. The overall structure of this algorithm follows that of the prior work [61] with
several key changes to handle additive approximations and privacy. The inputs to Algorithm 2 are the
weighted graph, a source vertex s, a set of active vertices U ⊆ V , a privacy parameter ε, and a failure
probability β. The steps that differ meaningfully from the non-private version developed in [61] are
in color. To obtain a DP version of this method, Algorithm 2 invokes the DP Min-s-t-Cut and the DP
Min Isolating Cuts algorithm; the latter primitive is developed in this work in Appendix B. In the
original non-private algorithm, isolating cuts Si

v are included in Di if the set Si
v corresponds to the v

side of the Min-s-v-Cut, i.e., w(Si
v) = λ(s, v). The analysis in prior work relies on this equality, i.e.,

on w(Si
v) and λ(s, v) being the same, in a crucial way. Informally speaking, it enables the selection

of many Min Isolating Cuts of the right size. In our case, since the cuts and their values are released

23



Algorithm 2: PrivateGHTreeStep(G = (V,E,w), s, U, ε, β)

1 Γiso ← O
(

(n+lg(1/β)) lg2(|U |)
ε

)
and Γvalues ← O

(
|U | lg(|U |/β)

ε

)
2 λ̂(s, v)← λ(s, v) + Lap

(
4(|U |−1)

ε

)
for all v ∈ U \ {s}

3 Initialize R0 ← U
4 for i from 0 to ⌊lg |U |⌋ do
5 Call PrivateMinIsolatingCuts

(
G,Ri, U, ε

2(⌊lg |U |⌋+1) ,
β

⌊lg |U |⌋+1

)
(Algorithm 1) obtaining

disjoint sets Ŝi
v ; /* v ranges over vertices in Ri */

6 ŵ(Ŝi
v)← w(Ŝi

v) + Lap
(

8(⌊lg |U |⌋+1)
ε

)
for each v ∈ Ri \ {s}

7 Let Di ⊆ U be the union of Ŝi
v ∩ U over all v ∈ Ri \ {s} satisfying

ŵ(Ŝi
v) ≤ λ̂(s, v) + (2(⌊lg |U |⌋ − i) + 1)Γiso + Γvalues and |Ŝi

v ∩ U | ≤ (9/10)|U |
8 Ri+1 ← sample of U where each vertex in U \ {s} is sampled independently with

probability 2−i+1, and s is sampled with probability 1
9 end

10 return D (the largest set Di), R (the set of terminals v ∈ Ri \ {s} satisfying the conditions on
Line 7), and sets Ŝi

v for v ∈ R.

privately by random perturbations, it is unclear how to test that condition with equality. On the other
hand, we still would like to ensure that many isolating cuts have “the right” size. Among our key
technical contributions is relaxing that condition by using a condition which changes from iteration
to iteration of the for-loop. The actual condition we use is

ŵ(Ŝi
v) ≤ λ̂(s, v) + (2(⌊lg |U |⌋ − i) + 1)Γiso + Γvalues (4)

on Line 7 of Algorithm 2 where Γiso and Γvalues are upper bounds on the additive errors of the
approximate Min Isolating Cuts and the approximate Min-s-v-Cut values, respectively.

When using Equation (4), we also have to ensure that significant progress can still be made, i.e., to
ensure that both (a) we will find a large set Di which is the union of approximate Min Isolating Cuts
Ŝi
v satisfying the condition above and (b) none of the individual Ŝ which we return are too large

as we will recurse within each of these sets. A new analysis uses this changing inequality to show
that the former is true. For the latter, we utilize the special property of our PrivateMinIsolatingCuts
in Appendix B that forces an approximate isolating cut to contain at most 0.9|U | terminals if there
exists an exact isolating cut of size at most |U |/2. We now turn to the analysis.

C.1 Correctness

As in prior work [61, 4], let D∗ ⊆ U \ {s} be the set of vertices v such that if S∗
v is the v side of the

Min-s-v-Cut, |S∗
v ∩ U | ≤ |U |/2.

Lemma C.1. PrivateGHTreeStep(G,U, s, ε, β) (Algorithm 2) has the following properties:

• Let Γiso = C1(n+ lg(1/β)) lg2(|U |)/ε and Γvalues = C2|U | lg(|U |/β)/ε for large enough
constants C1, C2. Let {Si

v}v∈Ri be the optimal Min Isolating Cuts for terminals Ri (by
Fact A.1, these are disjoint without loss of generality). Let R∗ be the set of vertices
v for which Algorithm 2 returns Ŝi

v. Then with probability at least 1 − O(β), the sets
{Ŝi

v : v ∈ R∗} returned by Algorithm 2 are approximate Min Isolating Cuts and approximate
Min-v-s-Cuts: ∑

v∈R∗

w(Ŝi
v)− w(Si

v) ≤ Γiso,

and, for all v ∈ R∗,

w(Ŝi
v)− λ(s, v) ≤ 2(⌊lg |U |⌋+ 1)Γiso + 2Γvalues.

• D returned by the algorithm satisfies

E[|D|] = Ω

(
|D∗|
lg |U |

)
.
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To prove this, we will need the following helpful definition and lemma. Let Xi
v be a random variable

for the number of vertices in U added to Di by a set Ŝi
v:

Xi
v =


|Ŝi

v ∩ U | if v ∈ Ri and |Ŝi
v ∩ U | ≤ (9/10)|U | and

ŵ(Ŝi
v) ≤ λ̂(s, v) + (2(⌊lg |U |⌋ − i) + 1)Γiso + Γvalues

0 o.w.
. (5)

Lemma C.2. Consider a vertex v ∈ D∗. Let Si
v be the v part of the optimal solution to Min Isolating

Cuts at stage i. Assume that |λ(s, v)− λ̂(s, v)| ≤ Γvalues and |w(Ŝi
v)− ŵ(Ŝi

v)|+ |w(Si
v)−w(Ŝi

v)| ≤
Γiso for all i ∈ {0, . . . ⌊lg |U |⌋}. Additionally, if |Si

v ∩ U | ≤ |U |/2, assume Ŝi
v ≤ (9/10)|U |. Then,

there exists an i′ ∈ {0, . . . ⌊lg |U |⌋} such that

E
[
Xi′

v

]
= Ω(1).

Proof. Consider a specific sampling level i ∈ {0, . . . , ⌊lg |U |⌋}. We say that i is “active” if there
exists a set S̃i

v ⊂ U containing v and not s such that |S̃i
v ∩ U | ∈ [2i, 2i+1) and

w(S̃i
v) ≤ λ̂(s, v) + 2(⌊lg(|U |)⌋ − i)Γiso + Γvalues. (6)

Note that this is a deterministic property regarding the existence of such a set S̃i
v independent of the

randomness used to sample terminals or find private Min Isolating Cuts.

Let i′ be the smallest active i. Recall S∗
v is the v side of the true Min-s-v-Cut. Let i∗ = ⌊lg |S∗

v ∩U |⌋.
As w(S∗

v ) = λ(s, v) ≤ λ̂(s, v) + Γvalues, i∗ must be active, so i′ is well-defined and i′ ≤ i∗. As i′ is
active, there exists a set S̃i′

v with |S̃i′

v ∩U | ∈ [2i
′
, 2i

′+1) and with cost within 2(⌊lg(|U |)⌋ − i′)Γiso +

Γvalues of λ̂(s, v). On the other hand, as i′ is the smallest active level, there is no set containing v

but not s, whose intersection with U is less than 2i
′
, and whose cost is within 2(⌊lg(|U |)⌋ − (i′ −

1))Γiso + Γvalues of λ̂(s, v).

Consider the event that in Ri′ , we sample v but no other vertices in S̃i′

v as terminals, i.e., Ri′ ∩ S̃i′

v =

{v}. Then, S̃i′

v is a cut separating v and Ri′ \ {v}. By the assumed guarantee of in the lemma
statement, the actual cut we output has approximated cost:

ŵ(Ŝi′

v ) ≤ w(Si′

v ) + |w(Si′

v )− ŵ(Ŝi′

v )|

≤ w(S̃i′

v ) + |w(Si′

v )− ŵ(Ŝi′

v )|

≤ w(S̃i′

v ) + |w(Si′

v )− w(Ŝi′

v )|+ |w(Ŝi′

v )− ŵ(Ŝi′

v )|

≤ w(S̃i′

v ) + Γiso

≤ λ̂(s, v) + (2(⌊lg(|U |)⌋ − i′) + 1)Γiso + Γvalues.

For sake of contradiction, assume that |Ŝi′

v ∩ U | < 2i
′
. Using the fact that all solutions of this size

have large cost, we can conclude that

ŵ(Ŝi′

v ) ≥ w(Ŝi′

v )− Γiso

> λ̂(s, v) + 2(⌊lg(|U |)⌋ − (i′ − 1))Γiso + Γvalues − Γiso

> λ̂(s, v) + (2(⌊lg(|U |)⌋ − i′)) + 1)Γiso + Γvalues.

This contradicts the previous inequality that shows that ŵ(Ŝi′

v ) is upper bounded by this quantity, so
|Ŝi′

v ∩ U | ≥ 2i
′

as long as the sampling event occurs.

Next, we show that |Ŝi′

v ∩ U | ≤ (9/10)|U |. As v ∈ D∗, the true minimum cut S∗
v has the property

|S∗
v ∩ U | ≤ |U |/2. Furthermore, by the isolating cuts lemma of [62], there is one minimum isolating

cut solution for any set of terminals including v and s will have that the v part Sv is a subset of
S∗
v (this is the basis for the isolating cuts algorithm). So, if v is sampled in Ri, there will exist an

optimal isolating cuts solution Si
v with |Si

v ∩U | ≤ |U |/2. By the assumption in the lemma statement,
|Ŝi′

v ∩ U | ≤ (9/10)|U |.
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Overall, we can bound the contribution of Ŝi′

v to Di′ as

E
[
Xi′

v

]
≥ |Si′

v ∩ U | · P
[
v is the only vertex sampled in S̃i′

v under sampling probability 2−i′
]

≥ 2i
′
(
2−i′

)(
1− 2−i′

)|S̃i′
v |−1

≥
(
1− 2−i′

)2i′+1−2

.

If i′ = 0, this evaluates to 1. Otherwise, if i′ ≥ 1,

E
[
Xi′

v

]
≥
(
1− 2−i′

)2i′+1

=

 1

1 + 2−i′

1−2−i′

2i
′+1

≥

(
1

e
2−i′

1−2−i′

)2i
′+1

= e
− 2

1−2−i′ ≥ e−4.

□

We are now ready to prove the main lemma of this section.

Proof of Lemma C.1. The first step of the proof will be to show that Γiso and Γvalues upper-bound
the error of the approximate isolating cuts and min cut values used in the algorithm with probability
1 − O(β). Applying the guarantee of Lemma B.1 and union bounding over all i, the following
guarantee of the quality of Ŝi

v holds with probability 1− β. If {Si
v} are optimal Min Isolating Cuts

for terminals Ri: ∑
v∈Ri

w(Ŝi
v)− w(Si

v) ≤ O

(
(n+ lg(1/β)) lg2(|Ri|)

ε

)
.

We remark that w(Ŝi
v) ≥ w(Si

v) due to the optimality of Si
v .

Now noting (from Line 6 of Algorithm 2) that ŵ(Ŝi
v) − w(Ŝi

v) is a Laplace random variable
Lap
(

8(⌊lg |U |⌋+1)
ε

)
and that the absolute value of it is distributed as Exp

(
ε

8(⌊lg |U |⌋+1)

)
[60].

Note that the expected value of
∑

v∈Ri |w(Ŝi
v)− ŵ(Ŝi

v)| is
8|Ri|(⌊lg |U |⌋+1)

ε = O(n log |U |
ε ). We then

apply Corollary A.1 with a = ε
8(⌊lg |U |⌋+1) and T = Θ( (n+log(1/β)) log |U |

ε ) so that

P

[∑
v∈Ri

|w(Ŝi
v)− ŵ(Ŝi

v)| ≥ T

]
≤ exp (−Ω(aT )) = exp (−Ω(n+ log(1/β))) ≤ 1− β,

when the constant factor hidden in the bound for T is sufficiently large.

Therefore, with probability 1−O(β), for all i ∈ {0, . . . , ⌊lg |U |⌋}, it holds∑
v∈Ri

|w(Si
v)− w(Ŝi

v)|+ |w(Ŝi
v)− ŵ(Ŝi

v)| ≤ Γiso.

This satisfies the approximate Min Isolating Cuts guarantee of the lemma.

Similarly, the additional guarantee in Lemma C.2 (if |Si
v ∩ U | ≤ |U |/2, assume Ŝi

v ≤ (9/10)|U |)
also holds with probability 1−O(β) by union bound.

For the approximate min cut values, by the tail of the Laplace distribution and a union bound, each
λ̂(s, v) satisfies

|λ(s, v)− λ̂(s, v)| ≤ Γvalues = O

(
|U | lg(|U |/β)

ε

)
with probability 1− β. We condition on these events moving forward.

Next, we show that sets Ŝi
v are only included in our output if they are close to the min cut value

λ(s, v). Specifically, for any set returned by our algorithm:

ŵ(Ŝi
v) ≤ λ̂(s, v) + (2(⌊lg |U |⌋ − i) + 1)Γiso + Γvalues.
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Applying the error guarantees for ŵ(Ŝi
v), Ŝ

i
v , and λ̂(s, v) derived above,

w(Ŝi
v) ≤ Γiso + ŵ(Ŝi

v)

≤ Γiso + λ̂(s, v) + (2(⌊lg |U |⌋ − i) + 1)Γiso + Γvalues

≤ Γiso + (λ(s, v) + Γvalues) + (2(⌊lg |U |⌋ − i) + 1)Γiso + Γvalues

≤ λ(s, v) + 2(⌊lg |U |⌋+ 1)Γiso + 2Γvalues.

This completes the first part of the proof concerning the error of the returned sets. In the remainder,
we focus on the cardinality of the output.

By definition of Xi
v , the size of Di is given by a sum over Xi

v:

|Di| =
∑

v∈U\{s}

Xi
v

By linearity of expectation and as D∗ ⊆ U \ {s},

E

⌊lg |U |⌋∑
i=0

|Di|

 ≥ ⌊lg |U |⌋∑
i=0

∑
v∈D∗

E
[
Xi

v

]
.

As we output the largest Di across all i, the output of our algorithm will have an expected size of at
least

1

⌊lg |U |⌋+ 1

⌊lg |U |⌋∑
i=0

∑
v∈D∗

E
[
Xi

v

]
.

Via Lemma C.2 (note that the error condition holds with probability 1−O(β) from the first part of
this proof), the expected output size will be at least

Ω

(
|D∗|
lg |U |

)
.

□

C.2 Privacy

We now analyze the privacy guarantee of our algorithm. A key technical observation behind our
analysis is that the (approximate) isolating cuts found by Algorithm 2 are disjoint subsets of vertices,
so any edge can only appear in at most 2 sets at any sampling level in the for loop starting at Line 4.
This is formalized in the lemma below.
Lemma C.3. PrivateGHTreeStep (Algorithm 2) is ε-DP.

Proof. The algorithm PrivateGHTreeStep interacts with the sensitive edges only through calculations
of approximate min cut values λ̂(s, v), approximate min isolating cut values ŵ(Ŝi

v), and calls to
PrivateMinIsolatingCuts (Algorithm 1). Otherwise, the computation only deals with the vertices of
the graph, which are public. The calculation of each of the |U | − 1 cut values is ε

4(|U |−1) -DP via the
Laplace mechanism (Theorem A.3) as a change in any edge weight by 1 can affect a cut value by at
most 1. By basic composition (Theorem A.2), the total privacy of these calls is

(|U | − 1)
ε

4(|U | − 1)
=

ε

4
.

Via the privacy of PrivateMinIsolatingCuts, each call to that subroutine is ε
2(⌊lg |U |⌋+1) -DP. By basic

composition, the total privacy of these calls is

(⌊lg |U |⌋+ 1)

(
ε

2(⌊lg |U |⌋+ 1)

)
=

ε

2
.

Consider the vector xi ∈ R|Ri|−1 where each entry in xi corresponds to w(Ŝi
v) for some v ∈ Ri\{s}.

At any sampling level i, the approximate isolating cuts Ŝi
v are disjoint. Therefore, a change in any
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edge weight by 1 can change at most two coordinates of xi each at most by 1 (namely, the coordinates
corresponding to the sets Ŝi

v which contain the endpoints of the edge). So, xi has ℓ1-sensitivity 2
relative to the edge weights of the graph. By the Laplace mechanism, release of all noised entries of
xi, given by ŵ(Ŝi

v), for any fixed i is ε
4(⌊lg |U |⌋+1) -DP. Summing over all sampling levels via basic

composition, these calls have privacy

(⌊lg |U |⌋+ 1)

(
ε

4(⌊lg |U |⌋+ 1)

)
=

ε

4
.

In total, this algorithm is ε-DP as ε
4 + ε

2 + ε
4 = ε. □

D Final Algorithm

Algorithm 3: PrivateGHTree(G = (V,E,w), ε)

1 (T, f)← PrivateGHSteinerTree(G,V, ε, 0, n)

2 Add Lap
(

2(n−1)
ε

)
noise to each edge in T

3 return T

Algorithm 4: PrivateGHSteinerTree(G = (V,E,w), U, ε, t, nmax)

1 tmax ← Θ(lg2 nmax)
2 if t ≥ tmax then
3 return abort ; /* the privacy budget is exhausted */
4 end
5 s← uniformly random vertex in U

6 Call PrivateGHTreeStep(G, s, U, ε
4tmax

, 1
n3
max

) to obtain D,R ⊆ U and disjoint sets Ŝv for

v ∈ R (recall D =
⋃

v∈R Ŝv ∩ U )
7 for each v ∈ R do
8 Let Gv be the graph with vertices V \ Ŝv contracted to a single vertex xv

9 Add edges with weight Lap
(
8tmax

ε

)
from xv to every other vertex in Gv , truncating resulting

edge weights to be at least 0
10 Uv ← Ŝv ∩ U
11 If |Uv| > 1, recursively set (Tv, fv)← PrivateGHSteinerTree(Gv, Uv, ε, t+ 1, nmax);

otherwise, Tv is a single node and fv is the identity map
12 end
13 Let Glarge be the graph G with (disjoint) vertex sets Ŝv contracted to single vertices yv for all

v ∈ R
14 Ularge ← U \D
15 If |Ularge| > 1, recursively set

(Tlarge, flarge)← PrivateGHSteinerTree(Glarge, Ularge, ε, t+ 1, nmax); otherwise, Tlarge is a
single node and flarge is the identity map

16 return Combine((Tlarge, flarge), {(Tv, fv) : v ∈ R}, {Ŝv : v ∈ R})

Algorithm 5: Combine((Tlarge, flarge), {(Tv, fv) : v ∈ R}, {Ŝv : v ∈ R)}
1 Construct T by starting with the disjoint union Tlarge ∪

⋃
v∈R Tv and for each v ∈ R, adding an

edge between fv(xv) ∈ Uv and flarge(yv) ∈ Ularge

2 Construct f : V → U = Ularge ∪
⋃

v∈R Uv by f(v′) = flarge(v
′) if v′ ∈ V \

⋃
v∈R Ŝv and

f(v′) = fv(v
′) if v′ ∈ Ŝv for some v ∈ R

In this section, we present the algorithm PrivateGHTree (Algorithm 3) for constructing an ε-DP
approximate Gomory-Hu tree and analyze its approximation error and privacy guarantees. The steps
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Slarge

yv3

yv1

yv2

Sv3

Sv1

Sv2

xv2
xv1

xv3

Sv1

Sv2

Sv3

Slarge

Figure 4: The Combine procedure of Algorithm 5. The computation on each recursive subinstance
provides a Gomory-Hu Steiner tree on that subinstance. To stitch these together to a Gomory-Hu
Steiner tree of the initial instance, we need to add edges between the solutions to the subinstances.
For a node v ∈ R, such that xv is assigned to fv(xv) in Sv and yv is assigned to flarge(yv) in Slarge

in the recursively obtained Gomory-Hu Steiner trees, we add an edge between fv(xv) and flarge(yv).

that differ meaningfully from the non-private version developed in [61] are in color. As in [61], we
construct the slightly more general structure of a Gomory-Hu Steiner tree as an intermediate step
in Algorithm 4.

Definition D.1. Let G = (V,E,w) be a weighted graph and U ⊆ V a set of terminals. A Γ-
approximate Gomory-Hu Steiner tree is a weighted spanning tree T on U with a function f : V → U
where f |U is the identity.

For all distinct s, t ∈ U , if (u, v) is the minimum weight edge on the unique path between s and t, in T ,
and if U ′ is the connected component of T \ {(u, v)} containing s, then f−1(U ′) is a Γ-approximate
Min-s-t-Cut with λG(s, t) ≤ wT (u, v) = wG(f

−1(U ′)) ≤ λG(s, t) + Γ.

To construct the final approximate Gomory-Hu tree, we make a call to PrivateGHSteinerTree (Algo-
rithm 4) with U = V , the entire vertex set. The algorithm PrivateGHSteinerTree is a private version
of the GHTree algorithm in [61]. It computes several (approximate) min cuts from a randomly
sampled vertex s ∈ U by making a call to PrivateGHTreeStep (Algorithm 2) to obtain D,R ⊆ U

and disjoint sets Ŝv (where D =
⋃

v∈R Ŝv ∩ U ). For each of these cuts Ŝv it constructs recur-
sive sub-instances (Gv, Uv) where Gv is obtained by contracting V \ Ŝv to a single vertex xv and
Uv ← Ŝv ∩ U . Moreover, it creates a sub-instance (Glarge, Ularge) by contracting each of Ŝv to a
single vertex yv for y ∈ R and setting Ularge = U ← D.

Notably, on Line 8, where the algorithm recurses on the graph Gv with V \ Ŝv contracted to a single
vertex xv, we add noisy edges from xv to all other vertices of the graph. This ensures the privacy
of any actual edge from xv in the entire recursive subtree of that instance without incurring too
much error. This will imply that for any edge and any instance during the recursion, there is at
most one sub-instance where the edge does not receive this privacy guarantee. If t is the depth of
the recursion tree, this allows us to apply basic composition over only O(t) computations of the
algorithm. Essentially, there is only one path down the recursion tree on which we need to track
privacy for any given edge in the original graph. We enforce t < tmax, and as we will show, the
algorithm successfully terminates with depth less than tmax with high probability.

To combine the solutions to the recursive sub-problems, we use the Combine algorithm (Algorithm 5)
from [61], which in turn is similar to the original Gomory-Hu tree combine step except that it
combines more than two recursive sub-instances. See Figure 4 for an illustration of the Combine step.

Finally, Algorithm 3 calls Algorithm 4 with privacy budget ε/2. To be able to output weights of the
tree edges, it simply adds Laplace noise Lap( 2(n−1)

ε ) to value of the corresponding cuts in G, hence
incurring error O(n lgn

ε ) with high probability. This also has privacy loss ε/2 by basic composition
over the n− 1 tree edges, so the full algorithm is ε-differentially private.
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D.1 Correctness

In this section, we analyze the approximation guarantee of our algorithm. The following main lemma
states that Algorithm 4 outputs an O(npolylog(n))-approximate Gomory-Hu Steiner tree.
Lemma D.1. Let tmax = C lg2 n for a sufficiently large constant C.
PrivateGHSteinerTree(G,V, ε, 0, n) outputs an O(n lg8 n

ε )-approximate Gomory-Hu Steiner
tree T of G with high probability.

We start by proving a lemma for analyzing a single recursive step of the algorithm. It is similar to
[61, Lemma 4.5.4] but its proof requires a more careful application of the submodularity lemma.
Lemma D.2. With high probability, for any distinct vertices p, q ∈ Ularge, we have that λG(p, q) ≤
λGlarge(p, q) ≤ λG(p, q) + O(n lg5 nmax

ε ). Also with high probability, for any v ∈ R and distinct

vertices p, q ∈ Uv , we have that λG(p, q) ≤ λGv
(p, q) ≤ λG(p, q) +O(n lg6 nmax

ε ).

Proof. Let us start by upper bounding how close the cuts Ŝv are to being Min-s-v-Cuts and how
close the approximate min cut values ŵ(Ŝv) are to the true sizes w(Ŝv). Algorithm 4 calls Algo-
rithm 2 with privacy parameter ε1 = ε

4tmax
= Θ

(
ε

lg2 nmax

)
and error parameter β = 1

n3
max

where
nmax is the number of vertices in the original graph. By Lemma C.1 with privacy ε1 and error
parameter β, it follows that (a) the sets {Ŝv} are approximate minimum isolating cuts with total
error O

(
(n+log(1/β)) lg2 n

ε1

)
= O

(
n lg5 nmax

ε

)
and (b) each set Ŝv is an approximate Min-s-v-Cut

with error O
(

n lg6 nmax

ε

)
. On any given call to Algorithm 2, these error bounds hold with probability

1− n−3
max. As each call to Algorithm 2 ultimately contributes an edge to the final Gomory-Hu tree

via Algorithm 5, there can be at most nmax − 1 calls throughout the entire recursion tree, resulting in
failure probability of n−2

max overall after a union bound.

The fact that λG(p, q) ≤ λGlarge(p, q) follows since Glarge is a contraction of G. To prove the second
inequality, let S be one side of the true Min-p-q-Cut in G. Let R1 = R ∩ S and R2 = R \ S. We
show that the cut S∗ = (S ∪

⋃
v∈R1

Ŝv) \ (
⋃

v∈R2
Ŝv) is an O(n lg6 nmax/ε)-approximate min cut.

Since S∗ is also a cut in Glarge, the desired bound on λGlarge(p, q) follows.

Let v1, . . . , v|R1| be the vertices of R1 in an arbitrary order. By |R1| applications of the submodularity
lemma (Lemma A.1),

w

S ∪
|R1|⋃
i=1

Ŝvi

 ≤ w(S) +

|R1|∑
i=1

w(Ŝvi)− w

S ∪
⋃
j<i

Ŝvj

 ∩ Ŝvi

 .

Note that S∪
⋃|R1|

i=1 Ŝvi is still a (p, q)-cut as p, q ∈ Ularge and the sets Ŝvi
are each disjoint from Ularge.

Moreover, for each i, S contains vi and so
(
S ∪

⋃
j<i Ŝvj

)
∩ Ŝvi isolates vi from all vertices in

V \ Ŝvi . Using the fact that {Ŝv} are approximate minimum isolating cuts, the sum in the RHS above
can be upper bounded by O(n lg5 nmax

ε ). Letting S′ = S∪
⋃

v∈R1
Ŝv , and S′′ = (V \S′)∪

⋃
v∈R2

Ŝv

a similar argument but applied to V \ S′, shows that

w(S′′) = w

(
(V \ S′) ∪

⋃
v∈R2

Ŝv

)
≤ w(V \ S′) +O

(
n lg5 nmax

ε

)
.

But S∗ = V \ S′′, so we get that

w(S∗) = w(S′′) ≤ w(S′) +O

(
n lg5 nmax

ε

)
≤ w(S) +O

(
n lg5 nmax

ε

)
,

as desired.

For the case of p, q ∈ Uv for some v, again the bound λG(p, q) ≤ λGu
(p, q) is clear. Thus, it suffices

to consider the upper bound on λGv
(p, q). Let S be the side of the Min-p-q-Cut in G which does not

contain v. Assume first that s /∈ S. By the submodularity lemma (Lemma A.1)

w(S ∩ Ŝv) ≤ w(S) + w(Ŝv)− w(S ∪ Ŝv).
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By the approximation guarantees of Algorithm 2, w(Ŝv) ≤ λG(s, v) + O(n lg6 nmax

ε ). Moreover,
note that S ∪ Ŝv is an (s, v)-cut of G, so w(S ∪ Ŝv) ≥ λG(s, v). Thus,

w(S ∩ Ŝv) ≤ w(S) +O

(
n lg6 nmax

ε

)
= λG(p, q) +O

(
n lg6 nmax

ε

)
.

Since S ∩ Ŝv is a (p, q)-cut of Gv, we must have that w(S ∩ Ŝv) ≥ λGv
(p, q), so in conclusion

λGv
(p, q) ≤ λG(p, q)+O(n lg6 nmax

ε ) ignoring the added noisy edges to Gv in Line 8 of Algorithm 4.

Adding the noisy edges can only increase the cost by O(n lg3 nmax

ε ) with high probability via Laplace
tail bounds (note that there can be at most nmax − 1 noisy edges added as each time a noisy edge is
added an edge is added to the final approximate Gomory Hu Steiner tree). This finishes the proof
in the case s /∈ S. A similar argument handles the case where s ∈ S but here we relate the value
w(V \ S) to w(V \ S) ∩ Ŝv). □

To bound the error of the algorithm, we need a further lemma bounding the depth of its recursion.
The argument is similar to that of [61].
Lemma D.3. If tmax = C lg2 n for a sufficiently large constant C, then, with high probability, no
recursive call to Algorithm 4 from PrivateGHTree(G, ε) aborts.

Proof. Each of the recursive instances (Gv, Uv) has |Uv| ≤ 9
10 |U | by the way D is picked in Line 7

of Algorithm 2. Moreover, by [2, Corollary III.7], if s is picked uniformly at random from U , then
E [D∗] = Ω(|U | − 1). By Lemma C.1, the expected size of D returned by a call to Algorithm 2 when
picking s at random from |U | is then at least Ω

(
|U |−1
lgn

)
. By Line 14 of Algorithm 4, it follows that,

E [|Ularge|] ≤ |U |(1 − Ω(1/ lg n)) when |U | > 1. Thus any instance at recursive depth t satisfies
E [|Ularge|] ≤ n(1− Ω(1/ lg n))t ≤ n exp(−Ω(t/ lg n)). If t = Ω(lg2 n), the expectation is smaller
than 1/poly(n), so by Markov’s inequality, any instance at recursive depth t satisfies |U | = 1 with
high probability. Now note that at every recursive depth, we can only have at most n instances,
since the sets U passed to the recursive calls of Algorithm 4 at depth t are disjoint. Thus, there are
polynomially many recursive instances up to recursive depth tmax, so we can union bound over all
sub-instances. In conclusion, all sub-instances have |U | = 1 within O(lg2 n) recursive depth with
high probability. □

We can now prove Lemma D.1. The argument is again similar to [61] except we have to incorporate
the approximation errors.

Proof of Lemma D.1. By Lemma D.3, the algorithm does not abort with high probability.

Throughout the proof, n denotes the number of vertices in the input graph. Let ∆ = O(n lg6 n
ε ) be

such that with high probability λGv
(p, q) ≤ λG(p, q)+∆ for p, q ∈ Uv and similarly λGlarge

(p, q) ≤
λG(p, q) + ∆ for p, q ∈ Ularge. The existence of ∆ is guaranteed by Lemma D.2. We prove by
induction on i = 0, . . . , tmax, that the output to the instances at level tmax − i of the recursion are
2i∆-approximate Gomory-Hu Steiner trees. This holds trivially for i = 0 as the instances on that
level have |U | = 1 and the tree is the trivial one-vertex tree approximating no cuts at all. Let i ≥ 1
and assume inductively that the result holds for smaller i. In particular, if (T, f) is the output of an
instance at recursion level i, then the trees (Tv, fv) and (Tlarge, flarge) are 2(i − 1)∆-approximate
Gomory-Hu Steiner trees of their respective Gv or Glarge graphs.

Consider any internal edge (a, b) ∈ Tlarge (without loss of generality, what follows also holds for
(a, b) ∈ Tv). Let U ′ and U ′

large be the connected component containing a after removing (a, b) from T

and Tlarge, respectively. By design of Algorithm 5, f−1
large(U

′
large) and f−1(U ′) are the same except each

contracted vertex yv ∈ f−1
large(U

′
large) appears as Ŝv ⊆ f−1(U ′). It follows that wGlarge(f

−1
large(U

′
large)) =

wG(f
−1(U ′)). By the inductive hypothesis, (Tlarge, flarge) is an approximate Gomory-Hu Steiner tree,

so wGlarge(f
−1
large(U

′
large)) = wTlarge(a, b). Therefore setting wT (a, b) = wTlarge(a, b) = wG(f

−1(U ′))
has the correct cost for T according to the definition of an approximate Gomory-Hu Steiner tree.

Furthermore, on the new edges (fv(xv), flarge(yv)), the weight w(Ŝv) is the correct weight for that
edge in T as Ŝv is the fv(xv) side of the connected component after removing that edge. Finally, by
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adding these new edges, the resulting tree is a spanning tree. So, the structure of the tree is correct,
and it remains to argue that the cuts induced by the tree (via minimum edges on shortest paths) are
approximate Min-s-t-Cuts.

Consider any p, q ∈ U . Let (a, b) be the minimum edge on the shortest path in T . Note that it is
always the case that wT (a, b) ≥ λ(a, b) as wT (a, b) corresponds to the value of a cut in G separating
a and b. We will proceed by cases.

If (a, b) ∈ Tlarge, then by induction, wT (a, b) = wTlarge(a, b) ≤ λGlarge(a, b) + (2i − 2)∆.
By Lemma D.2, it follows that wT (a, b) ≤ λG(a, b) + (2i − 1)∆. The exact same argument
applies if (a, b) ∈ Tv for some v ∈ R.

The case that remains is if (a, b) is a new edge with a = f−1
v (xv) ∈ Uv and b = f−1

large(yv) ∈ Ularge

for some v ∈ R. Then, wT (a, b) = wG(Ŝv). By Lemma C.1, Ŝv is an approximate Min-v-s-Cut and
wT (a, b) ≤ λG(v, s) + ∆. To connect this value to λG(a, b), note that by considering the choices of
where v and s lie on the Min-a-b-Cut, we can show

λG(a, b) ≥ min{λG(a, v), λG(v, s), λG(s, b)}. (7)

Let S′
a be the a side of the a-v cut induced by the approximate Gomory-Hu Steiner tree (Tv, fv).

As a = f−1
v (xv) and s ∈ xv, S′

a is also the s side of a v-s cut. Therefore, wG(S
′
a) ≥ λG(v, s). On

the other hand, by our inductive hypothesis and Lemma D.2, this is an approximate Min-a-v-Cut:
wG(S

′
a) ≤ λGv (a, v)+(2i−2)∆ ≤ λG(a, v)+(2i−1)∆. Hence, λG(v, s) ≤ λG(a, v)+(2i−1)∆.

The analogous argument holds to show λG(v, s) ≤ λG(s, b) + (2i− 1)∆. Therefore,

λG(v, s) ≤ min{λG(a, v), λG(s, b)}+ (2i− 1)∆,

which further implies λG(v, s) ≤ λG(a, b) + (2i− 1)∆ by combining with Equation (7). Therefore,

wT (a, b) ≤ λG(v, s) + ∆ ≤ λG(a, b) + 2i∆.

In all cases, wT (a, b) ≤ λG(a, b) + 2i∆. As the cut corresponding to the edge (a, b) is on the path
from p to q, it is also a (p, q)-cut, so λG(p, q) ≤ wT (a, b). Furthermore, it must the case that there
is an edge (a′, b′) along the path between p to q such that a′ and b′ are in different sides of the true
Min-p-q-Cut. Therefore, λG(p, q) ≥ λG(a

′, b′). As we chose (a, b) to be the minimum weight edge,

wT (a, b) ≤ wT (a
′, b′) ≤ λG(a

′, b′) + 2i∆ ≤ λG(p, q) + 2i∆.

This completes the induction. It follows that the call to PrivateGHSteinerTree(G,V, ε, 0) outputs a
2tmax∆-approximate Gomory-Hu Steiner tree T . Substituting in the values tmax = O(lg2 n) and
∆ = O(n lg6 n

ε ) gives the approximation guarantee. □

We now state our main result on the approximation guarantee of Algorithm 3.

Theorem D.1. Let T = (VT , ET , wT ) be the weighted tree output by PrivateGHTree(G =
(V,E,w), ε) on a weighted graph G. For each edge e ∈ ET , define Se to be the set of vertices of
one of the connected components of T \ {e}. Let u, v ∈ V be distinct vertices and let emin be an
edge on the unique u-v path in T such that wT (emin) is minimal. With high probability, Semin is an
O(n lg8 n

ε )-approximate Min-u-v-Cut and moreover, |λG(u, v)− wT (emin)| = O(n lg8 n
ε ).

Proof. Note that for each edge e, the final tree weight wT (e) is obtained by adding noise
Lap
(

2(n−1)
ε

)
to the cut value w(Se). Thus, |w(Se) − wT (e)| = O(n lgn

ε ) with high probabil-
ity for all e ∈ T . Now let e0 be an edge on the unique u-v path in T such that w(Se0) is minimal.
Then, by Lemma D.1, w(Se0) ≤ λG(u, v) +O(n lg8 n

ε ) with high probability. As emin was chosen
as an edge on the u-v path in T of minimal weight, wT (emin) ≤ wT (e0), and so

w(Semin
) ≤ wT (emin) +O

(
n lg n

ε

)
≤ wT (e0) +O

(
n lg n

ε

)
≤ w(Se0) +O

(
n lg n

ε

)
≤ λG(u, v) +O

(
n lg8 n

ε

)
.
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On the the other hand, Semin defines a (u, v)-cut, so λG(u, v) ≤ w(Semin). This proves the first
statement. Moreover, the string of inequalities above combined with λG(u, v) ≤ w(Semin) in
particular entails that

λG(u, v) ≤ wT (emin) +O

(
n lg n

ε

)
≤ λG(u, v) +O

(
n lg8 n

ε

)
,

from which the final statement follows. □

D.2 Privacy via Bounded-Overlap Branching Composition

Consider a family of computation trees parameterized by two differentially private mechanisms,
denotedMrecurse andMsanitize. ThroughMrecurse, each node in the tree privately produces both (1)
the output of its computation and (2) the topology and description of its children’s input. Each child’s
input consists of a combination of “sensitive” data, transmitted in plaintext, and “sanitized” data,
provided as the output of the private mechanismMsanitize. Let σ(u) denote the set of children of a
node u in a tree.

Specifically, upon receiving a sensitive dataset Xu = Xu
1 , . . . , X

u
s and a sanitized dataset Y u =

Y u
1 , . . . , Y u

t from its parent, a node u computes the following objects viaMrecurse(X
u, Y u) (we only

require thatMrecurse is DP with respect to its first input):

• A number of children du

• For each child v ∈ σ(u), a set of “sensitive” indices Iv = {iv1, . . . , ivn}
• For each child v ∈ σ(u), a set of “sanitized” indices Jv = {jv1 , . . . , jvm}
• An auxiliary output au

Let v be one of the du children of u. The input for v consists of a sensitive dataset Xv = Xu
iv1
, . . . Xu

ivn
and a sanitized dataset, formed by concatenating any function of Y u withMsanitize(X

u
jv1
, . . . , Xu

jvm
).

This setup is illustrated in Figure 2.

Additionally, we consider a privacy model where the indices of the data are public, and two neighbor-
ing data sets differ in at most one index. The theorem below holds regardless of how we define the
neighborhood relation on a single index. For example, we could say that X and X ′ are neighboring if
there exists at most one index i such that Xi ̸= X ′

i . However, for our main result on DP Gomory-Hu
trees, X = (Xe)e∈E = (w(e))e∈E are the weights of edges of the input graph, and two data sets
X,X ′ are neighboring if there exists an e ∈ E such that for all e′ ∈ E \ {e}, Xe′ = X ′

e′ and
moreover, |Xe −X ′

e| ≤ 1.
Theorem D.2 (Bounded-Overlap Branching Composition). LetMrecurse andMsanitize be mechanisms
as described, satisfying (ε1, δ1)-DP and (ε2, δ2)-DP, respectively. Let the subsets of indices {Iv}
and {Jv} produced byMrecurse satisfy the following conditions deterministically for all inputs:

• The index sets {Iv} are disjoint.

• For all indices j, |{v : j ∈ Jv}| ≤ ℓ for a fixed constant ℓ.

Consider the following mechanism Mbranch that, as input, receives a sensitive dataset X and a
maximum depth parameter h. Mbranch creates a tree T = (V,E) recursively usingMrecurse and
Msanitize with X as the sensitive input to the root node; the root node does not receive any sanitized
input. If the depth of T is greater than or equal to h, the mechanism outputs ⊥. Otherwise, the
mechanism releases T along with all outputs {(Y u, du, {Iv}v∈σ(u), {Jv}v∈σ(u), a

u) : u ∈ V }. This
mechanism is (hε1 + (h− 1)ℓε2, hδ1 + (h− 1)ℓδ2)-DP.

Proof. Let N = |X|. For any t ∈ N, letMt
branch be the mechanism which, given a sensitive dataset

X , creates a tree by recursively usingMrecurse andMsanitize with X as the input to the root node,
stopping after recursion depth t; we adopt the convention that a tree with a single node has depth 0.
The output ofMt

branch is the tree T t = (V t, Et) with maximum depth t, and the sanitized inputs and
node outputs {(Y u, du, {Iv}v∈σ(u), {Jv}v∈σ(u), a

u) : u ∈ V t}.

Let ε(t), δ(t) be the privacy parameters for Mt
branch. The mechanism described in the theorem

statement is (ε(h−1), δ(h−1))-DP as checking whether the tree (with unbounded recursive depth) has
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depth at most h can be verified by running the recursion for up to h steps and checking whether du = 0
for every node u at depth h. Outputting either⊥ or (T, {(Y u, du, {Iv}v∈σ(u), {Jv}v∈σ(u), a

u) : u ∈
V t}) is a post-processing of the output ofMh−1

branch and therefore cannot increase the privacy loss.

We prove by induction over t that the following conditions hold:

(a) ε(t) ≤ (t+ 1)ε1 + tℓε2

(b) δ(t) ≤ (t+ 1)δ1 + tℓδ2

(c) Let St ⊆ V be the subset of vertices in the tree produced byMt
branch(X) at depth t. For any

i ∈ [N ], there is at most one vertex u ∈ St for which Xi ∈ Xu.

The theorem statement immediately follows from conditions (a) and (b) by plugging in t = h− 1.

For the base case, consider t = 0.Mt
branch(X) releases a tree T 0 = (V 0, E0) as well as

{(Y u, du, {Iv}v∈σ(u), {Jv}v∈σ(u), a
u) : u ∈ V 0}. The tree T 0 simply contains a single node

independently of X . Let u be the single node in V 0. The root node receives no sanitized dataset, so
Y u = ∅ independently of X . The output (du, {Iv}v∈σ(u), {Jv}v∈σ(u), a

u) is produced byMrecurse

which is (ε1, δ1)-DP. Therefore, the entire mechanismM1
branch is (ε1, δ1)-DP. Furthermore, condition

(c) of the inductive hypothesis is trivially satisfied as there is a unique vertex.

Consider any t > 0. By the inductive hypothesis, releasing the tree T t−1 = (V t−1, Et−1) along
with {(Y u, du, {Iv}v∈σ(u), {Jv}v∈σ(u), a

u) : u ∈ V t−1} is (tε1 + (t − 1)ℓε2, tδ1 + (t − 1)ℓδ2)-
DP. We will assume that these objects have been released and analyze the privacy of releasing
the additional objects output by Mt

branch(X). Note that the topology of the tree T t = (V t, Et)
can already be calculated as post-processing from these objects as the structure of the t-th level
of the tree is contained in the degrees of the leaves of T t−1. Let St = V t \ V t−1. The addi-
tional objects output byMt

branch(X) that cannot be obtained via post-processing ofMt−1
branch(X) are

{(Y v, dv, {Iw}w∈σ(v), {Jw}w∈σ(v), a
v) : v ∈ St}.

We will continue by bounding the privacy of releasing these outputs for any node at depth t with
respect to the sensitive inputs to the node and its parent. Consider any v ∈ St and let p(v) ∈ St−1 be
the parent of v in T t. The only part of Y v which cannot be obtained by post-processing Y p(v) is the
output ofMsanitize(X

p(v)
jv1

, . . . , X
p(v)
jvm

). So releasing Y v is (ε2, δ2)-DP with respect to the subset of

its parent’s sensitive input (Xp(v)
jv1

, . . . , X
p(v)
jvm

) and (0, 0)-DP with respect to X \ (Xp(v)
jv1

, . . . , X
p(v)
jvm

).
Given the release of Y v as well as Iv and Jv, releasing (dv, {Iw}w∈σ(v), {Jw}w∈σ(v), a

v), the
output ofMrecurse(X

v = (X
p(v)
iv1

, . . . , X
p(v)
ivn

), Y v), is (ε1, δ1)-DP with respect to Xv and (0, 0)-DP
with respect to X \Xv .

Consider any particular index i∗ ∈ [N ] corresponding to the sole index on which two neighboring
datasets X and X ′ differ. By the inductive hypothesis, there is at most one node u∗ ∈ St−1 such that
Xi∗ ∈ Xu. Consider any node v ∈ St which is not a child of u∗, p(v) ̸= u∗. Note that Xi∗ /∈ Xp(v)

implies that Xi∗ /∈ Xv as Xv ⊆ Xp(v). By the argument in the paragraph above, conditioning on
the release ofMt−1

branch(X), the release of (Y v, dv, {Iw}w∈σ(v), {Jw}w∈σ(v), a
v) does not depend on

Xi∗ and does not affect privacy.

Consider nodes v ∈ σ(u∗), the children of u∗. If i∗ /∈ Iv and i∗ /∈ Jv, as above, conditioning on
the release ofMt−1

branch(X), the release of (Y v, dv, {Iw}w∈σ(v), {Jw}w∈σ(v), a
v) does not depend on

Xi∗ and does not affect privacy. If i∗ ∈ Jv , the release of (Y v, dv, {Iw}w∈σ(v), {Jw}w∈σ(v), a
v) is

(ε2, δ2)-DP. If i∗ ∈ Iv , the release of (Y v, dv, {Iw}w∈σ(v), {Jw}w∈σ(v), a
v) is (ε1, δ1)-DP.

By the condition onMrecurse in the theorem statement, there is at most one child v ∈ σ(u∗) such that
i∗ ∈ Iv and at most ℓ v ∈ σ(u∗) such that i∗ ∈ Jv . This implies that there is at most one node v ∈ St

where i∗ ∈ Iv, satisfying condition (c) of the inductive hypothesis. As this holds for any choice of
i∗, conditioned on the release ofMt−1

branch(X), releasing {(Y v, dv, {Iw}w∈σ(v), {Jw}w∈σ(v), a
v) :

v ∈ St} is (ε1 + ℓε2, δ1 + ℓδ2)-DP. By basic composition, summing over the privacy parameters
of releasing Mt−1

branch, ε(t) ≤ (ε1 + ℓε2) + (tε1 + (t− 1)ℓε2) = (t + 1)ε1 + tℓε2 and, likewise,
δ(t) ≤ (t+1)δ1 + tℓδ2, satisfying conditions (a) and (b) of the inductive hypothesis. This completes
the proof. □
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We will use bounded-overlap branching composition to prove the privacy of our GH-tree algorithm.

Theorem D.3. PrivateGHTree(G, ε), i.e., Algorithm 3, is ε-DP.

Proof. We will first argue that releasing the unweighted tree returned by the call to
PrivateGHSteinerTree(G,V, ε, 0, n) is (ε/2)-DP. To invoke Theorem D.2, we will describe the
mechanismsMrecurse andMsanitize for which the correspondingMbranch mechanism simulates the
computation done in this call to PrivateGHSteinerTree.

Mrecurse has a sensitive and sanitized input. Its sanitized input is a list of vertices and edges, edge
weights for a subset of its edges, as well as U, ε, t, nmax. Its sensitive input is a set of edge weights
for the rest of its edges. Let G be the weighted graph which is formed by combining the two inputs.
Mrecurse contracts some vertices (if it is itself a Glarge subinstance), picks a uniformly random vertex

s, calculates tmax, and runs PrivateGHTreeStep
(
G, s, U, ε

4tmax
, 1
n3
max

)
to obtain D,R ⊆ U , and

{Ŝv}v∈R. The output ofMrecurse is the following:

• Recursive degree |R|+ 1.

• For each v ∈ R, a recursive child is created which gets sensitive indices corresponding
to all edges between pairs of vertices in Ŝv. In addition, this child gets sanitized indices
corresponding to all edges between Ŝv and V \ Ŝv .

• An additional recursive child (corresponding to the Glarge subinstance) is created which gets
sensitive indices corresponding to all edges whose endpoints do not both belong to the same
set Ŝv . This child has no sanitized indices.

• Auxiliary output R, {Ŝv}v∈R.

By the privacy of PrivateGHTreeStep in Lemma C.3,Mrecurse is
(

ε
4tmax

)
-DP.

Msanitize takes as input a set of edge weights for edges between a set Ŝv and its complement V \ Ŝv . It
contracts V \ Ŝv to a vertex xv and outputs the resulting (summed) edge weight from edges between
Ŝv and xv plus Lap( 8tmax

ε ) noise. By the privacy of the Laplace mechanism Theorem A.3 and as the

contraction/sum operation has sensitivity 1,Msanitize is
(

ε
8tmax

)
-DP.

The unweighted tree output by PrivateGHSteinerTree(G,V, ε/2, 0, n) can be calculated via post-
processing of the recursive mechanismMbranch parameterized byMrecurse andMsanitize with maxi-
mum depth h = tmax. While in Algorithm 4, we invoke the Combine step to construct the GH-tree,
this can easily be simulated given the auxiliary outputs {Ŝv}v∈R at each recursive node as these sets
determine the GH-tree topology.

The final step to bound the overall privacy of outputting the unweighted tree is to ensure thatMrecurse
satisfies the bounded-overlap condition. Consider the edge weights which are the sensitive input to
a call toMrecurse. Note that these edge weights are partitioned across the recursive children: either
the weight corresponds to an edge with both endpoints in a single Ŝv, in which case it is sent to the
corresponding Gv subinstance, otherwise, it is sent to the special Glarge subinstance. Furthermore,
any edge weight only belongs to the sanitized indices of at most two recursive children. Each Gv

subinstance receives all edge weights for edges between Ŝv and V \ Ŝv as sanitized indices. Any
particular edge has two endpoints and so can only belong to two such sets.

Plugging in ℓ = 2 to Theorem D.2, we get the following bound on the privacy of releasing the
unweighted approximate GH-tree:

hε1 + (h− 1)ℓε2 = tmax

(
ε

4tmax

)
+ 2(tmax − 1)

(
ε

8tmax

)
<

ε

2
.

In the final algorithm PrivateGHTree(G, ε), the tree weights are set to be the corresponding cut
value in G plus Lap

(
2(n−1)

ε

)
noise. Note that the choice of which cut values to calculate is a
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post-processing of the privatized output of the unweighted tree. As any specific cut value can change
by at most 1 in neighboring graphs, outputting a single tree edge weight is

(
ε

2(n−1)

)
-DP. Basic

composition over all n− 1 tree edges means that releasing the edge weights given the tree topology
is (ε/2)-DP. In total, releasing the weighted tree is ε-DP, as required. □

D.3 Runtime

While runtime is not our main focus, as a final note, our algorithm can be implemented to run in
near-quadratic time in the number of vertices of the graph. The runtime is inherited directly from prior
work of [4], which utilizes the same recursive algorithm introduced in [61]. The overall structure
of their main algorithm and subroutines remains in our work with changes of the form (a) altering
runtime-independent conditions in if statements or (b) adding noise to cut values or edges in the
graph. While left unspecified here, computation of single source Min-s-v-Cuts in Algorithm 2 should
be done via the runtime-optimized algorithm of prior work [85] to achieve the best bound. Then,
via Theorem 1.3 of [4], Algorithm 3 runs in time Õ(n2) (note that if instead of [85], we use the
almost-linear time algorithm for single source Min-s-v-Cuts [23], the running time would be n2+o(1)

for dense graphs).

E Additional Related Work

Multiway cut is another cut problem that has been studied in the privacy setting. Given k terminals,
the multiway cut problem seeks a partitioning of the graph’s nodes into k parts such that (1) each part
contains exactly one terminal, and (2) the sum of the weights of edges between parts, known as the
cut value, is minimized [28]. The multiway cut problem is NP-hard for k ≥ 3 [28], implying that all
non-private polynomial-time algorithms have approximation factors greater than 1. Dalirrooyfard,
Mitrović, and Nevmyvaka [29] present an ε-DP algorithm for the multiway cut problem with a
multiplicative approximation factor of 2 and an additive error of O(n log k/ε). Chandra et al. [18]
provide an ε-DP algorithm achieving an additive error of Õ(nk/ε) and a multiplicative approximation
ratio that matches the best-known non-private algorithm. They show that an additive error of
Ω(n log k/ε) is necessary for any ε-private algorithm for multiway cut. An open question is whether
there exists an algorithm with an additive error of O(n log k/ε) and a multiplicative approximation
ratio that matches the best-known non-private algorithm.

Computing cuts on (suitably defined) graphs is also a key primitive in a wide-range of applications
beyond the aforementioned graph algorithms. For example in many clustering problems, cuts are
explicitly computed, as in spectral [20, 76] or correlation clustering [69, 65], or the objective involves
identifying a small cut implicity, such as in community detection in the stochastic block model and
beyond [40, 24, 43, 42]. Cuts are also at the heart of many learning-theory tasks on graph data, such
as learning graph partitions [68, 79], (semi)-supervised learning using cuts [12, 7, 87, 86, 52], active
learning [11, 45], and transductive learning [55, 48], to name a few examples. We refer to the papers
and references therein for details.

F Minimum k-cut

Lastly, we note an application to the minimum k-cut problem. Here, the goal is to partition the vertex
set into k pieces and the cost of a partitioning is the total weight of all edges between different pieces
in the partition. We wish to find the smallest cost solution. It is known that simply removing the
smallest k − 1 edges of an exact GH tree gives us a solution to the minimum k-cut problem with a
multiplicative approximation of 2 [80]. Since we compute an approximate GH tree with additive
error Õ(n/ε), we can obtain a solution to minimum k-cut with multiplicative error 2 and additive
error Õ(nk/ε). Our corollary is the following.
Corollary F.1. Given a weighted graph G with positive edge weights and a privacy parameter ε > 0,
there exists an ε-DP algorithm that outputs a solution to the minimum k-cut problem on G in Õ(n2)

time with multiplicative error 2 and additive error Õ(nk/ε) with high probability.

The only prior non-trivial DP algorithm for the minimum k-cut problem is given in [18]. Their pure
DP algorithm obtains the optimal additive error Θ(k log(n)/ε) but requires the input graph to be
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unweighted while also requiring exponential time. They also give a polynomial time algorithm which
also has multiplicative error 2 with additive error Õ(k1.5/ε) which holds for weighted graphs, but
only works in the approximate DP setting. Note that there are also trivial algorithms such as finding
the minimum k-cut from a solution to the All Cuts problem, e.g., those from Table 1, but this strategy
only gives additive error O(kn1.5/ε) for dense graphs.

Thus, to the best of our knowledge, no prior polynomial-time pure DP algorithm can compute the
minimum k-cut on weighted graphs with near-linear in n error. Determining the limits of efficient
and pure DP algorithms for the minimum k-cut problem is an interesting open question.

Proof of Corollary F.1. We follow the proof of [80] (via the lecture notes in [19]), replacing the
exact GH-tree with our approximate version. The algorithm is simple: we cut the edges corresponding
to the union of cuts given by the smallest k − 1 edges of our approximate GH-tree T of Theorem 1.1.
If this produces more than k pieces, arbitrarily add back cut edges until we reach a k-cut.

For the analysis, consider the optimal k-cut with partitions V1, . . . , Vk and let w(V1) ≤ . . . ≤ w(Vk)
denote the weight of the edges leaving each partition without loss of generality. Since every edge in
the optimum is adjacent to exactly two pieces of the partition, it follows that

∑
i w(Vi) is twice the

cost of the optimal k-cut. We will now demonstrate k − 1 different edges in T which have cost at
most

∑
i w(Vi), up to additive error O(k∆) = Õ(nk/ε), where ∆ = Õ(n/ε) is the additive error

from Theorem 1.1.

As in the proof in [80], contract the vertices in Vi in T for all i. This may create parallel edges, but the
resulting graph is connected since T was connected to begin with. Make this graph into a spanning
tree by removing parallel edges arbitrarily, root this graph at Vk, and orient all edges towards Vk.

Consider an arbitrary Vi where i ̸= k. The ‘supernode’ for Vi has a unique edge leaving it, which
corresponds to a cut between some vertex v ∈ Vi and some vertex w ̸∈ Vi. Since T is an approximate-
GH tree, the weight of this edge must be upper bounded by w(Vi) (which is also a valid cut separating
v and w), up to additive error ∆. The proof now follows by summing across Vi. □

G Discussion on Open Problems

An interesting open question is whether a better additive error can be achieved or a lower bound
established in the setting where we only care about values of cuts and not the cuts (vertex bipartitions)
themselves. To our knowledge, the best-known error bound for this All-Pairs Min-s-t-Cut Values
problem is O(n/ε) for approximate DP, obtained by a trivial algorithm that adds Lap(n/ε) noise
to each of the

(
n
2

)
true values; this method satisfies privacy through advanced composition and

the Laplace mechanism [34]. Note that this algorithm does not leverage the fact that there are, in
fact, at most n − 1 distinct cut values or any of the structure of the graph. Before our work, the
best algorithm for this problem in the pure DP setting solved the All Cuts problem, incurring an
O(n3/2/ε) error [47]. Our work yields an improvement to Õ(n/ε) error with pure DP. Both of these
solutions in the pure DP setting output the cuts and the values, so it seems probable that better error
can be achieved. No non-trivial lower bound is known for this problem. The Ω(n) lower bound
of [29] applies to releasing an approximate Min-s-t-Cut, whereas releasing a single Min-s-t-Cut
value can be achieved with an error of O(1/ε) using the Laplace mechanism. This question parallels
the All-Pairs Shortest-Paths Distances problem studied in [81, 39, 22, 13], where sublinear additive
error is achievable for releasing the values of all

(
n
2

)
shortest-paths. In contrast, the linear error

is required to release any shortest path itself. One might wonder about the sensitivity of a single
edge on Min-s-t-Cut values; specifically, whether two neighboring graphs differ in only a small
number of Min-s-t-Cut values. However, as illustrated in Figure 3, the Min-s-t-Cut value sets of two
neighboring graphs can differ by as many as n− 1 entries.

An additional open question is whether there exists a polynomial-time ε-DP algorithm for the global
Min Cut problem that achieves error below Õ(n/ε). As noted in Corollary 1.2, the polynomial time
algorithm from [46] is only approximate DP, though it can be made pure DP if allowed exponential
runtime. The same question applies to minimum k-cut (see Corollary F.1): what are the limits of
efficient, i.e., polynomial-time, algorithms that are also pure DP for this problem?
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Finally, in the problem of outputting synthetic graphs that preserve all cuts, the work of [37]
establishes a lower bound of Ω(

√
mn/ε) on the additive error. However, this result applies to

algorithms that do not permit any multiplicative approximation. In the same paper, the authors discuss
that an additive error of Õ(n) with a multiplicative error of 1 + η, for any constant η > 0, can be
achieved in exponential time using the existence of linear-size cut-sparsifiers and the Exponential
mechanism. Recently, Aamand et al. [1] gave a polynomial time algorithm for this problem with
roughly n1.25 additive error with constant multiplicative error. It remains an intriguing open question
whether a synthetic graph that preserves all cuts within an additive error of roughly n and a constant
multiplicative error can be generated in polynomial time.
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made in the paper.
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper has no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper has no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper presents work whose goal is to advance algorithmic and theoretical
tools in the field of Machine Learning. There are many potential societal consequences of
our work. The most direct consequence which we highlight in the paper is that we develop a
better algorithm for a fundamental graph problem with differential privacy. This may allow
more private/more accurate analysis of graph data.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use any existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: All the assets of the papers (the proofs) are given in the appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our paper is not related to LLMs in any meaningful way, and we did not use
LLMs in creating the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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