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ABSTRACT

Although Deep Neural Networks (DNNs) are incredibly effective in learning com-
plex abstractions, they are susceptible to unintentionally learning spurious artifacts
from the training data. To ensure model transparency, it is crucial to examine the re-
lationships between learned representations, as unintended concepts often manifest
themselves to be anomalous to the desired task. In this work, we introduce DORA
(Data-agnOstic Representation Analysis): the first data-agnostic framework for
the analysis of the representation space of DNNs. Our framework employs the
proposed Extreme-Activation (EA) distance measure between representations that
utilizes self-explaining capabilities within the network itself without accessing
any data. We quantitatively validate the metric’s correctness and alignment with
human-defined semantic distances. The coherence between the EA distance and
human judgment enables us to identify representations whose underlying concepts
would be considered unnatural by humans by identifying outliers in functional
distance. Finally, we demonstrate the practical usefulness of DORA by analyzing
and identifying artifact representations in popular Computer Vision models.

1 INTRODUCTION

Deep Neural Networks (DNNs) excel at complex tasks due to the rich and hierarchical representations
they learn from input data Bengio et al. (2013), but recent works reported their susceptibility to
learn harmful and undesired concepts like biases Guidotti et al. (2018); Jiang and Nachum (2020),
Clever Hans effects Lapuschkin et al. (2019), and backdoors Anders et al. (2022). This issue is
exacerbated by the semantic opacity of learned abstractions in modern DNNs, which are often trained
in a self-supervised manner from potentially limitless amounts of data, making their decision-making
strategies unpredictable.

To improve the understanding of the decision-making processes of complex machines and prevent
the network from making biased or harmful decisions, it is crucial to explain what representations
were learned by the model. One approach to gain insights into a model’s prediction strategies is
to analyze the relationships among its learned representations. In this work, we propose DORA*

— the first data-agnostic framework allowing an automatic inspection of the representation space
of Deep Neural Networks. DORA leverages the proposed Extreme-Activation method that exploits
the self-explanation capabilities of the networks and estimates distances between representations,
regardless of the availability of the specific data used for training. DORA facilitates the understanding
of the associations between neural representations and the visualization of the representation space

*PyTorch implementation of the proposed method could be found by the following link: https://
github.com/lapalap/dora .
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via representation atlases. By assuming that artificial representations, which deviate from the
desired decision-making policy, are semantically distant from the relevant representations learned
by the network, DORA allows the detection of potentially harmful representations that may lead
to unintended learning outcomes. Additionally, DORA can be further used to identify and remove
infected data points.

2 RELATED WORK

Deep Neural Networks are prone to learn spurious representations — patterns that are correlated with
a target class on the training data but not inherently relevant to the learning problem Izmailov et al.
(2022). Reliance on spurious features prevents the model from generalizing, which subsequently
leads to poor performance on sub-groups of the data where the spurious correlation is absent Geirhos
et al. (2020). In Computer Vision, such behavior could be characterized by the reliance of the model
on an image’s background Xiao et al. (2020), object textures Geirhos et al. (2018), or the presence of
semantic artifacts in the training data Wallis and Buvat (2022); Lapuschkin et al. (2019); Geirhos
et al. (2020); Anders et al. (2022). Artifacts can be added to the training data on purpose as Backdoor
attacks Gu et al. (2017); Tran et al. (2018), or emerge “naturally” in the training corpus, resulting in
Clever Hans effects Lapuschkin et al. (2019).

Figure 1: Failing to explain “Star Wars”
representation with n-AMS. Comparison of
the s-AMS (left) and n-AMS (right) collected
from the ImageNet Deng et al. (2009) dataset
for unit 744 in the last convolutional layer of
the CLIP ResNet50 model. Due to the inac-
cessibility of the training dataset and lack of
specific images due to copyright restrictions,
n-AMS struggle to illustrate the concept of
the “Star Wars” neuron. Illustrated signals
were obtained from OpenAI Microscope.

In order to address the concerns about the black-box
nature of the complex learning machines Baehrens
et al. (2010); Vidovic et al. (2015); Buhrmester et al.
(2019); Samek et al. (2021), the field of Explain-
able AI (XAI) has emerged. The popular approach
to explain the purpose of individual components in
Computer Vision models , referred to as Activation-
Maximization, is to analyze the signals, that maxi-
mally activate a particular neuron or any sub-function
within the network. These signals, which we will
refer to as Activation-Maximization Signals (AMS),
illustrate concepts that representations detect in the
input data. While natural signals (n-AMS), obtained
by selecting a “real” example from an existing data
corpus in a data-aware manner, represent a potent tool
for explicating the purpose of specific representations
Borowski et al. (2020), it is challenging to acquire
a subset of natural data that completely represents
the diversity of concepts that the model may learn,
given that contemporary machine learning models
are often trained on large or closed-source datasets
Radford et al. (2021). If the corpus used for n-AMS
selection does not include all the possible concepts,
results could be misleading. For example, as shown
in Figure 1, an analysis solely based on natural sig-
nals may lead to inaccurate conclusions about the
learned concept due to the absence of the true concept in the dataset. To overcome this limitation
and be independent of data, Activation-Maximization signals can be generated synthetically using
optimization procedures Erhan et al. (2009); Olah et al. (2017); Szegedy et al. (2013).

3 DORA: DATA-AGNOSTIC REPRESENTATION ANALYSIS

We introduce the DORA framework for analyzing representation spaces of DNNs. It uses the
proposed Extreme-Activation (EA) distance, a data-independent measure that estimates the similarity
between neural representations by analyzing their s-AMS similarities. This distance is then leveraged
to produce a visualization of the representation space, referred to as the representation atlas, which
gives an overview of the learned representations’ topological landscape. DORA can also detect
outlier representations that may contain representations with undesirable and anomalous concepts.
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In the following, we start with the definition of a neural representation as a sub-function of a given
network that depicts the computation graph, from the input of the model to the output of a specific
neuron.

Definition 1 (Neural representation) We define a neural representation f as a real-valued function
f : D → R, mapping from the data domain D to the real numbers R.

In DNNs, neural representations are combined into layers — collections of individual neural repre-
sentations that typically share the same computational architecture and learn abstractions of similar
complexity. In the scope of the following work, we mainly focused on the analysis of the relations
between representations within one selected layer from the network.

Definition 2 (Layer) We define a layer F = {f1, ..., fk} as a set comprising k individual neural
representations. Additionally, we define a function F that maps the image from the input domain to
the vector of activations of the individual representations within the layer:

F (x) = [f1(x), ..., fk(x)] : D −→ Rk.

.

3.1 EXTREME-ACTIVATION DISTANCE

For a specific neural representation f , a synthetic activation-maximization signal (s-AMS) s can be
generated to visualize the concepts that maximize the function activation.

Definition 3 (s-AMS) Let fi be a neural representation. We define a synthetic Activation-
Maximization signal si as a solution for the optimization problem

si = argmax
s

fi(s).

Generating s-AMS for a neural representation is a non-convex optimization problem Nguyen et al.
(2019) that typically employs gradient-based methods Erhan et al. (2009); Nguyen et al. (2015); Olah
et al. (2017). Starting from a random noise parametrization of input signals, the gradient-ascend
procedure searches for the optimal set of signal parameters that maximize the activation of a given
representation. Early methods employed standard pixel parametrization Erhan et al. (2009), while
modern approaches used Generative Adversarial Network (GAN) generators Nguyen et al. (2016)
or Compositional Pattern Producing Networks (CPPNs) Mordvintsev et al. (2018); Stanley (2007).
In this study, we used the Feature Visualization method Olah et al. (2017) for s-AMS generation,
which parametrizes input signals by frequencies and maps them to the pixel domain using Inverse
Fast Fourier Transformation (IFFT). This method is popular for its simplicity and independence from
external generative models, as well as for its ability to be human-interpretable Olah et al. (2020); Goh
et al. (2021); Cammarata et al. (2020).

Because different random initializations in the parameter space lead to the convergence of s-AMS
generation into different local solutions, the resulting signals can vary. This variability is similar
to that observed in n-AMS sampling. To address this, we generated n s-AMS signals for each
representation.

Given a layer F containing k neural representations defined on the domain D ⊂ Rd, where d is the
dimension of the input of the model, Extreme-Activation distance could be formulated as follows:

Definition 4 Let F be a layer with k neural representations and fi, fj ∈ F be individual representa-
tions. The Extreme-Activation (EA) distance between fi and fj is given by:

dEA(fi, fj) =
1√
2

√√√√1− cos

(
1

n

n∑
t=1

F (sti),
1

n

n∑
t=1

F (stj)

)
,

where
[
s1i , ..., s

n
i

]
and

[
s1j , ..., s

n
j

]
are collections of s-AMS for fi, fj , respectively, cos(A,B) is the

cosine similarity between vectors A and B, and n is the parameter of the method, controlling the
number of generated s-AMS per representation.
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The Extreme-Activation distance between two representations is determined by how similar their
s-AMS are. If two representations encode similar concepts, their s-AMS will likely be visually
similar. For instance, the s-AMS generated by representations for cat and tiger detectors are expected
to show a visual similarity due to inherent similarities between the classes. Conversely, the s-AMS
generated by representations for cat and car detectors will likely be visually dissimilar. To quantify
s-AMS similarity, our approach uses the network itself to generate embeddings and compares them
using cosine similarity. We avoid using external models to maintain approach transparency and
prevent introducing additional opaqueness. A cosine value close to 1 indicates common activation-
maximization concepts, while a cosine value close to 0.5 indicates independent concepts.

In the EA distance, the embeddings of s-AMS signals are obtained from all representations in the
layer F , implying that the distance between two representations fi, fq ∈ F depends on how all the
representations in F respond to their s-AMS. This approach, in which embeddings are collected
across the entire layer, is referred to as layer-wise (l-w). An alternative approach would be to collect
embeddings only from the representations for which the distance is being calculated, i.e. when
computing the distance between fi and fq , embeddings Ai, Aq ⊂ Rn×2 of s-AMS are collected only
from the two representations themselves, independent of the other representations in the layer. This
approach is referred to as pair-wise (p-w), and we compare both approaches in the evaluation section.
Unless otherwise specified, the default DORA method uses layer-wise EA distance computation.

3.2 REPRESENTATION ATLAS AND OUTLIER DETECTION

The calculation of EA distances between the k neural representations in layer F results in a distance
matrix D ∈ Rk×k. As shown in subsequent sections, this matrix effectively captures the semantic
distance between the concepts encoded in the representations. Inspired by Carter et al. (2019), to
visually examine the topological landscape of learned representations and identify clusters of seman-
tically similar representations, we pass a pre-computed distance matrix to the UMAP dimensionality
reduction algorithm McInnes et al. (2018) to output a two-dimensional map of the representation
space, referred to as the representation atlas. By utilizing the distance matrix between representations,
we can also identify outlier representations that deviate semantically from the majority. We further
demonstrate in our analysis that such representations often learn unnatural and unintended concepts.

4 EVALUATION

One of the essential considerations to address when comparing various distance metrics between
neural representations is its alignment with human judgment. If the underlying concepts of the
representations differ semantically from a human perspective, we would expect our functional
distance measure to reflect this difference. To quantitatively assess the alignment of various distance
metrics, we compare the computed distances generated by these metrics with human-defined distance
metrics between concepts in scenarios where the latter are available.

We calculated the EA distances in a pair-wise and layer-wise manner between the output logits of
image classification networks trained on two widely used computer vision datasets, ILSVRC2012
Deng et al. (2009) and CIFAR-100 Krizhevsky (2009). The baseline distances were obtained by
mapping the classification labels to entities in the WordNet taxonomy database Miller (1995). The
semantic baseline distances between entities were computed using two distance measures: the
Shortest-Path distance, which is the length of the shortest path connecting the two entities in the
taxonomy, and the Leacock-Chodorow distance, a version of the shortest-path distance that scales
with the taxonomy depth Leacock and Chodorow (1998). To evaluate the alignment, we used a Mantel
Test Mantel (1967), which is commonly used in ecology and evolutionary biology to measure the
correlation between two distance matrices. Detailed results and figures could be found in Appendix.

4.1 HYPERPARAMETER SELECTION

The EA metric’s quality depends on hyperparameter selection for the s-AMS generation method. We
studied the impact of two hyperparameters, n (number of s-AMS samples per representation) and m
(number of optimization epochs), on EA distances. We used a ResNet-18 model trained on ImageNet
and varied n from 1 to 100 and m from 1 to 500. Our comparison results in Figure 7 show the effect
of hyperparameters on the Mantel test statistic ρ for both layer-wise and pair-wise settings, using
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the shortest-path semantic baseline. We observe that m has a greater influence on coherence with
ground truth than n, achieving optimal alignment with m = 500, and that the layer-wise computation
outperforms pair-wise in terms of the correlation score to the semantic baseline.

Figure 2: The influence of hyperparameter selection on the correlation with semantic distance.
The Mantel test results for the comparison of pair-wise and layer-wise EA metrics with the shortest-
path semantic distance baseline are shown on the left, and the impact of the number of optimization
steps on s-AMS generation is depicted on the right for 3 ImageNet logit representations obtained
from ResNet18 He et al. (2016). The results (the higher the score, the better) indicate that the number
of epochs for s-AMS generation, controlled by the parameter m, has a greater impact than the number
of samples per representation n. The layer-wise EA also outperforms the pair-wise metric, implying
that incorporating a higher number of descriptors in the s-AMS embedding is beneficial.

4.2 ALIGNMENT WITH GROUND TRUTH

Figure 3: Similarity between EA distances and taxonomy baseline distances. The EA distances
(n = 50,m = 500) between 1000 logit representations from the output layer of ImageNet-trained
ResNet18, both in pair-wise and layer-wise fashion, are illustrated on the left, with semantic baseline
distances between labels obtained from the WordNet taxonomy illustrated on the right. We can
observe a connection between the baseline semantic distances and the distances obtained via the
Extreme-Activation metric in a data-agnostic manner by the visual similarity of distance matrices .

In this experiment, we assess the alignment of the EA distance with the semantic baseline, across
different datasets and architectures. We used eight different architectures for ImageNet and CIFAR100
and performed the Mantel test between obtained EA distance matrices between representations in
the output logit layers (computed with optimal hyperparameters, both pair-wise and layer-wise) and
semantic baseline. Results (shown in Table 1) illustrate statistical significance for all the experiments
and, again, better alignment of layer-wise EA distance (up to 0.56 correlation) compared to the
pair-wise. Figure 8 illustrates the similarity between data-agnostic EA procedure and semantic
baselines for the ImageNet pre-trained ResNet18 He et al. (2016) output logit layer.

5 EXPERIMENTS

As previously demonstrated, the DORA framework facilitates the visualization of a topological
map of representations in a designated layer and is able to identify outlier representations. We
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applied the DORA framework to investigate representations in the feature extractor layer of 3 popular
pre-trained models, namely ResNet-18 He et al. (2016), MobileNetV2 Sandler et al. (2018) and
DenseNet-121 Huang et al. (2017), that are frequently utilized for fine-tuning to specific tasks or as a
feature extractor, where the images are encoded by the networks for further computations Zhuang
et al. (2020); Weiss et al. (2016).

By utilizing Local Outlier Factor (LOF) Breunig et al. (2000) outlier detection method with the
contamination parameter p = 0.01 (corresponding to the top 1% of representations), we observed that
in all 3 networks, reported outliers appear to function as watermark detectors, capable of detecting
either Chinese or Latin text patterns. Since ImageNet does not have a category for watermarks, these
representations may be considered as Clever-Hans artifacts and can lead to undesired decision-making
Lapuschkin et al. (2019); Anders et al. (2022). To confirm the watermark-detecting abilities of these
representations, we generated two binary classification datasets that distinguish between watermarked
and non-watermarked images, and we evaluated sensitivity using AUC ROC. To ensure the detection
of characters and not specific words or phrases (unlike CLIP models Goh et al. (2021)), we used
probing datasets with randomly generated characters. Our results indicate that not only the reported
outliers but also neighboring representations in EA distance are impacted by artifactual behavior.

Figure 4: Cluster of Clever-Hans representations in the ResNet-18 feature extractor. From left
to right: representation atlas of the ResNet 18 average pooling layer with the highlighted cluster
of Clever-Hans representations (left), s-AMS of the representations in the cluster (middle), and
AUC ROC sensitivity scores for the detection of images with Chinese watermarks in the binary
classification problem(right), where colored curves correspond to the behavior of representations in
the cluster and gray curves for other representations. From the s-AMS of neuron 154, which is the
representation with the highest outlier score, we can observe symbolic patterns resembling Chinese
logograms learned by the neuron as well as by its closest neighbor neurons. We can observe that the
outlier neuron 154 exhibits the highest AUC value (green curve), followed by its nearest neighbors.

The results of the analysis of the ResNet-18 average pooling layer are shown in Figure 9, illustrating
the cluster of Clever-Hans representations found, along with their s-AMS and AUC ROC performance
on the binary classification problem. Furthermore, the high sensitivity of these representations in
terms of their ability to detect artifacts in the data suggests a possible application for using such
representations to identify artifacts in training data. Note that in general, the presence of such artifacts
could indeed pose serious risks and may lead to a degradation in classifier performance (see Anders
et al. (2022)).

A similar analysis of the DenseNet-121 feature extractor layer (channel representation was used for
the analysis by averaging the activation maps), yielded neurons 768 and 427, to be a Chinese and
Latin detector, respectively. Given the widespread use of pre-trained models in safety-critical areas,
it is essential that the artifacts embodied in a pre-trained model are made ineffective or unlearned
during the transfer learning task (see also Anders et al. (2022)). To this end, we examined the effect
of fine-tuning the pre-trained DenseNet-121 model on the CheXpert challenge Irvin et al. (2019),
which benchmarks classifiers on a multi-label chest radiograph dataset. Despite the modification of
all model parameters during fine-tuning, neuron 427, retained its original semantic concept and still
was reported as an outlier in the fine-tuned model. We studied neuron 427’s ability to detect Latin
text and found that it had an AUC value of 0.84 in the pre-trained model and 0.81 in the fine-tuned
model. The results indicate that the Clever-Hans effect persisted after fine-tuning, possibly due to
small Latin text characters in the dataset.
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6 DISCUSSION AND CONCLUSION

The proposed DORA framework is simple and data-independent, allowing the inspection of any
trained neural network without access to the training data. It employs the self-explanatory capabilities
of Computer Vision networks to estimate distances within the network itself. We found that represen-
tations that deviate from desired decision-making strategies typically manifest themselves as outliers
in the representation space, which we can identify by our proposed method DORA. This can be used
to analyze datasets for sensitivity to certain artifact concepts encoded in these outlier representations.
We also demonstrated that such outlier representations can persist after transfer learning, highlighting
the potential for pre-trained models in safety-critical areas to contain undesired behavior even after
fine-tuning on a new dataset.

While we have demonstrated the broad applicability of DORA, there are still some challenges that
need to be addressed. The main limitation is the assumption that malicious or CH-behaviour in
the representations is not systematic. In other words, DORA may not be able to detect infected
representations if this behavior is prevalent across a large number of representations, as it would no
longer be perceived as anomalous behavior. Another limitation is the potential semantic multimodality
of representations Goh et al. (2021), which DORA attempts to mitigate by computing several s-
AMS per representation. However, this may not be sufficient to uncover all of the concepts that a
representation is capable of detecting.

In summary, we showed the functionality and usefulness of DORA for finding artifactual aspects in
representation space for both controlled and real-world environments. Additionally, the representa-
tion atlas, computed by DORA was shown to be a powerful tool for understanding the topological
landscape of representations, allowing to visually illustrate the semantic similarities between rep-
resentations. Note, that although we have introduced DORA as an automatic tool, if necessary, the
final decision on the degree of harmfulness of any outlier representations needs to be subject to
human scrutiny. In this sense, DORA substantially facilitates human intervention and reduces it
to a minimum, however, for safety-critical applications human supervision will still be necessary.
In future work, we will apply the proposed solution broadly in the sciences, medicine, and other
technical domains, such as NLP, where discovering artifacts and biases in the representations is of
great value.
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D. Grinwald, K. Bykov, S. Nakajima, and M. M.-C. Höhne. Visualizing the diversity of representations
learned by bayesian neural networks. arXiv preprint arXiv:2201.10859, 2022.

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint arXiv:1708.06733, 2017.

R. Guidotti. Evaluating local explanation methods on ground truth. Artificial Intelligence, 291:
103428, 2021.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. A survey of methods
for explaining black box models. ACM computing surveys (CSUR), 51(5):1–42, 2018.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3(Mar):1157–1182, 2003.

D. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical Correlation Analysis: An overview
with application to learning methods. Neural computation, 16:2639–64, 01 2005. doi: 10.1162/
0899766042321814.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

A. Hedström, L. Weber, D. Bareeva, F. Motzkus, W. Samek, S. Lapuschkin, and M. M.-C. Höhne.
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A APPENDIX

A.1 RELATED WORKS

In order to address the concerns about the black-box nature of the complex learning machines
Baehrens et al. (2010); Vidovic et al. (2015); Buhrmester et al. (2019); Samek et al. (2021), the
field of Explainable AI (XAI) has emerged. While some recent research focuses on inducing the
self-explaining capabilities through changes in the architecture and the learning process Gautam et al.
(2022b); Chen et al. (2018); Gautam et al. (2021), the majority of XAI methods (typically referred
to as post-hoc explanation methods) are decoupled from the training procedure. A dichotomy of
post-hoc explanation methods could be performed based on the scope of their explanations, i.e., the
model behavior can be either explained on a local level, where the decision-making strategy of a
system is explained for one particular input sample, or on a global level, where the aim is to explain
the prediction strategy learned by the machine across the population and investigate the purpose of
its individual components in a universal fashion detached from single data points (similar to feature
selection Guyon and Elisseeff (2003)).

Local explanation methods, often produce attribution maps, interpreting the prediction by attributing
relevance scores to the features of the input signal, highlighting the influential characteristics that
affected the prediction the most. Various methods, such as Layer-wise Relevance Propagation
(LRP) Bach et al. (2015), GradCAM Selvaraju et al. (2019), Occlusion Zeiler and Fergus (2014),
MFI Vidovic et al. (2016), Integrated Gradient Sundararajan et al. (2017), have proven effective in
explaining DNNs Tjoa and Guan (2020) as well as Bayesian Neural Networks Bykov et al. (2021);
Brown and Talbert (2022). To further boost the quality of interpretations, several enhancing techniques
were introduced, such as SmoothGrad Smilkov et al. (2017); Omeiza et al. (2019), NoiseGrad and
FusionGrad Bykov et al. (2022). Considerable attention also has been paid to analyzing and evaluating
the quality of local explanation methods Hedström et al. (2022); Guidotti (2021). However, while the
local explanation paradigm is incredibly powerful in transferring the understanding of the decision-
making strategies for a particular data sample, it lacks the ability to provide an overall view of the
inner processes of representations in a network.

Global explanation methods aim to interpret the general behavior of learning machines by investi-
gating the role of particular components (e.g., neurons, channels, or output logits), which we refer
to as representations. Existing methods mainly aim to connect internal representations to human
understandable concepts, making the purpose and semantics of particular network sub-function
transparent to humans. Methods such as Network Dissection Bau et al. (2017) and Compositional
Explanations of Neurons Mu and Andreas (2020) aim to label representations with class labels from
a given dataset, based on the intersection between the class relevant information provided by a binary
mask information and the activation map of the representation, while the MILAN method generates
a text-description of the representation by searching for a text string that maximizes the mutual
information with the image regions in which the neuron is active Hernandez et al. (2021). Similar
approaches were used for the analysis of representations in Generative adversarial networks (GANs)
Bau et al. (2018).

A.1.1 SPURIOUS CORRELATIONS

Deep Neural Networks are prone to learn spurious representations — patterns that are correlated with
a target class on the training data but not inherently relevant to the learning problem Izmailov et al.
(2022). Reliance on spurious features prevents the model from generalizing, which subsequently
leads to poor performance on sub-groups of the data where the spurious correlation is absent Geirhos
et al. (2020). In Computer Vision, such behavior could be characterized by the reliance of the model
on an image’s background Xiao et al. (2020), object textures Geirhos et al. (2018), or the presence of
semantic artifacts in the training data Wallis and Buvat (2022); Lapuschkin et al. (2019); Geirhos
et al. (2020); Anders et al. (2022). Artifacts can be added to the training data on purpose as Backdoor
attacks Gu et al. (2017); Tran et al. (2018), or emerge “naturally” in the training corpus, resulting in
Clever Hans effects Lapuschkin et al. (2019).

Recently, XAI methods have demonstrated their potential in revealing the underlying mechanisms
of predictions made by models, particularly in the presence of artifacts such as Clever Hans or
Backdoor artifacts. Spectral Relevance analysis (SpRAy) aims to provide a global explanation of the
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Figure 5: Estimation of the (layer-wise) Extreme-Activation distance: 1. Generation of s-AMS
for a set of neurons (left), 2. Collection the embeddings of the generated s-AMS of Step 1 (middle),
3. Finding semantic outliers in the activation space (right).

model by analyzing local explanations across the dataset and clustering them for manual inspection
Lapuschkin et al. (2019). While successful in certain cases Schramowski et al. (2020), SpRAy
requires a substantial amount of human supervision and may not detect artifacts that do not exhibit
consistent shape and position in the original images. SpRAY-based Class Artifact Compensation
Anders et al. (2022) method significantly reduced the need for human supervision and demonstrated
its capability to effectively suppress the artifactual behavior of DNNs, significantly reducing a model’s
Clever Hans behavior.

A.1.2 COMPARISON OF REPRESENTATIONS

The study of representation similarity in DNN architectures is a topic of active research. Many
methods for comparing network representations have been applied to various architectures, including
Neural Networks of varying width and depth Nguyen et al. (2020), Bayesian Neural Networks
Grinwald et al. (2022), and Transformer Neural Networks Raghu et al. (2021). Some works Ramsay
et al. (1984); Laakso (2000); Kornblith et al. (2019); Nguyen et al. (2022) argue that similarity should
be based on the correlation of a distance measure applied to layer activations on training data. Other
works Raghu et al. (2017); Morcos et al. (2018) compute similarity values by applying variants of
Canonical Correlation Analysis (CCA) Hardoon et al. (2005); Bießmann et al. (2010) on activations
or by calculating mutual information Li et al. (2015). However, these methods lack the capability to
perform a comparison between individual neurons and their efficacy is contingent upon the presence
of training data.

A.2 EXTREME-ACTIVATION DISTANCE

Given a layer F containing k neural representations defined on the domain D ⊂ Rd, where d is
the dimension of the input of the model, computation of Extreme-Activation distance could be
summarized in three steps, as illustrated in Figure 5:

1. Generation of s-AMS
For each neural representation fi ∈ F ,∀i ∈ [1, ...k], a collection of n s-AMS is generated:

Si =
[
s1i , ..., s

n
i

]
,∀i ∈ [1, ...k],

where sji ⊂ Rd is the j-th s-AMS sample for representation fi. The parameter n controls
the number of generated signals, which are generated non-deterministically.

2. Collection of s-AMS embeddings
After s-AMS sets Si ⊂ Rn×d,∀i ∈ [1, ..., k] are collected for all representations in F ,
signals are successively inferenced by the model, and their corresponding activations across
representations in F are saved. For each set of s-AMS signals Si we obtain a collection of
vectors

Ai =
[
F (s1i ), ..., F (sni )

]
⊂ Rn×k,∀i ∈ [1, ...k],
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Figure 6: Illustration of the performance of DORA on a toy example. From left to right: EA
distance metric between the output logits of the network trained on the combined dataset, UMAP
visualization of the representational space, and s-AMS for Tiny ImageNet logits and for EMNIST
logits. Visual differences between s-AMS for ImageNet and EMNIST classes can be observed and
measured by the activations of the representations, resulting in a clear and visible cluster structure of
the distance matrix.

where F (sji ) correspond to the k-dimensional embedding of the j − th s-AMS sample
generated for representation fi.

3. Computing cosine similarity between average embeddings
Finally, for every representation fi ∈ F ,∀i ∈ [1, ...k], we average the embeddings, corre-
sponding to the generated signals

Âi =
1

n

n∑
j=1

F (sji ) ⊂ Rk,∀i ∈ [1, ..., k],

resulting in a single embedding vector for each representation in F . The EA distance
between two representations fi, fq ⊂ F is then defined as the square root of the cosine
distance between the k-dimensional vectors of the averaged embeddings:

dEA(fi, fq) =
1√
2

√
1− cos

(
Âi, Âq

)
,

where cos(A,B) is the cosine similarity between vectors A and B.

A.3 TOY EXAMPLE

To demonstrate the capabilities of our proposed framework, we conducted a simple toy experiment by
training a ResNet18 He et al. (2016) network on a combination of two conceptually different datasets.
The combined dataset comprised the Tiny Imagenet Le and Yang (2015), containing 200 ImageNet
classes, and the EMNIST dataset Cohen et al. (2017), an extension of the MNIST dataset.

• Tiny-ImageNet Le and Yang (2015) is a small version of the ImageNet dataset, consisting of
a subset of images from the ImageNet dataset Deng et al. (2009) and is often used as a more
computationally efficient alternative for testing and developing new image classification
algorithms. The Tiny-ImageNet dataset contains 200 classes, with 500 images in each class,
for a total of 100,000 images. The images are downscaled to 64 x 64 pixels in size and are
labeled with one of the 200 class labels.

• EMNIST Cohen et al. (2017) is a dataset of handwritten characters and digits that is widely
used in machine learning and computer vision research. The EMNIST dataset was developed
as an extension of the original MNIST Deng (2012) dataset, which only contained images
of digits, and has proven to be a valuable resource for researchers working in the fields of
pattern recognition and machine learning. For this particular application, we employed 47
different classes from the “balanced” split of the dataset, obtained from torchvision
library Marcel and Rodriguez (2010). For each of the classes, images were resized to 64 x
64 pixels with 3 color channels to share the same dimensions with TinyImageNet, and the
number of images per class was set to 200.
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The results obtained by DORA are shown in Figure 6. Due to the visual differences, incorporated
in s-AMS of different output representations, our proposed framework is able to clearly distinguish
between logits corresponding to classes from the two different datasets, which we can observe from
the visible block structure of the computed EA distance matrix and from the representation atlas.
DORA is based on the network’s ability to perceive self-generated s-AMS and we can observe a
clear difference between the patterns of s-AMS for Tiny ImageNet classes, containing high-level
natural concepts, and the more data-specific patterns for EMNIST classes, illustrating the network’s
perception of white-on-black handwritten digits and letters.

The ResNet18 model was utilized for training, initialized with ImageNet pre-trained weights, and
the output layers were modified to accommodate the altered input size and the number of classes.
The dataset, comprising 109400 images, was divided into training (103930 images), testing (2735
images), and validation (2735 images) sets. The network was trained for 50 epochs using the Adam
optimizer with a learning rate of 0.0001 and a batch size of 256, resulting in a model that achieved an
accuracy of 0.552 on the validation set.

A.4 EVALUATION

To demonstrate the correctness of the proposed distance metric, we conducted a quantitative compari-
son between the EA distance metric and the semantic baseline, in the scenario, where the baseline
for the distance between representations is available. For this purpose, we calculated the EA dis-
tances in both a pair-wise and layer-wise manner between the output logits of image classification
networks trained on two widely used computer vision datasets, ILSVRC2012 Deng et al. (2009)
and CIFAR-100 Krizhevsky (2009). Baseline distances were obtained by mapping the classification
labels to entities in the WordNet taxonomy database Miller (1995), a lexical database that organizes
English words into a taxonomy of synonym sets, or synsets. In this taxonomy, each synset represents
a group of words that are synonyms or have the same meaning. WordNet organizes these synsets
into a hierarchy, with more specific concepts being nested under more general ones. The baseline
semantic distances between entities from the WordNet database were computed using two distance
measures:

• Shortest-Path distance: the distance between two classes is determined by the length of
the shortest path that connects the two entities in the taxonomy.

dSP (ci, cj) = l(ci, cj), (1)

where l(ci, cj) is the length of the shortest path between classes ci, cj .
• Leacock-Chodorow distance: a version of the shortest-path distance with additional scaling

by the taxonomy depth Leacock and Chodorow (1998):

dLC(ci, cj) = log
l(ci, cj) + 1

2T
− log

1

2T
. (2)

While it has been reported that taxonomy-based approaches can be suboptimal to taxonomy-free
methods Binder et al. (2012), the visual similarity of concepts is strongly coherent with the semantic
similarity. In recent years, the relationship between visual and semantic similarities in Computer
Vision was studied and a significant linkage has been shown Brust and Denzler (2019). In Deselaers
and Ferrari (2011), the authors confirm the assumption that for the ImageNet dataset visual similarity
between categories grows with semantic similarity.

In order to test whether the proposed Extreme-Activation distance metric is able to preserve the
semantic distance between representations, we performed a comparison between distance matrices
by a Mantel Test Mantel (1967), which is often employed in ecology and evolutionary biology to
measure the correlation between two distance matrices. The test calculates the correlation coefficient
ρ, which indicates the strength of the relationship between the two matrices, and the p-value of the
test, which describes the statistical significance of the correlation.

A.5 HYPERPARAMETER SELECTION

The quality of distances obtained with the EA metric depends on the selection of hyperparameters.
In the following experiment, we sought to understand the influence of two hyperparameters: n,
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Figure 7: The influence of hyperparameter selection on the correlation with semantic distance.
The Mantel test results for the comparison of pair-wise and layer-wise EA metrics with the shortest-
path semantic distance baseline are shown on the left, and the impact of the number of optimization
steps on s-AMS generation is depicted on the right for 3 ImageNet logit representations obtained
from ResNet18 He et al. (2016). The results (the higher the score, the better) indicate that the number
of epochs for s-AMS generation, controlled by the parameter m, has a greater impact than the number
of samples per representation n. The layer-wise EA also outperforms the pair-wise metric, implying
that incorporating a higher number of descriptors in the s-AMS embedding is beneficial.

which controls the number of s-AMS samples generated per representation, and m, which controls
the number of optimization steps (epochs) for the Feature Visualization method. To conduct this
experiment, we utilized the standard ResNet-18 model He et al. (2016) trained on the ImageNet
dataset, which is available through the Torchvision library. The number of samples n ranged from
1 to 100, and the number of optimization epochs m ranged from 1 to 500. The results of our
comparison are shown in Figure 7 for both pair-wise and layer-wise settings, illustrating the effect of
hyperparameters on Mantel test statistic ρ using the shortest-path semantic baseline for comparison.
From these results, we can observe that the number of epochs m has a greater influence on the
correlation with ground truth than the number of samples n – the coherence with the ground truth
increases as the number of optimization steps increases, and optimal performance is already achieved
with only a few s-AMS samples per representation. Additionally, we observe that the layer-wise
DORA method, which uses all neurons as descriptors for s-AMS, outperforms the pair-wise method.
EA distances obtained from both layer-wise and pair-wise approaches are illustrated in Figure 8,
together with semantic distance matrices, obtained from the respective taxonomy Miller (1995).

Figure 8: Similarity between EA distances and taxonomy baseline distances. The EA distances
(n = 50,m = 500) between 1000 logit representations from the output layer of ImageNet-trained
ResNet18, both in pair-wise and layer-wise fashion, are illustrated on the left, with semantic baseline
distances between labels obtained from the WordNet taxonomy illustrated on the right. We can
observe a connection between the baseline semantic distances and the distances obtained via Extreme-
Activation metric in a data-agnostic manner by the visual similarity of distance matrices .

A.6 EVALUATION WITH GROUND TRUTH

In this experiment, we quantitatively assess the ability of our proposed method to conserve the
semantic distance between representations across different datasets and architectures. To this end,
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Table 1: Correlation between EA distance matrices and semantic distance baselines. Correlation
coefficients ρ (higher is better) obtained from the Mantel test between pair-wise (p-w) and layer-wise
(l-w) EA distances and shortest-path (dSP ) and Leacock-Chodorow (dLC) semantic distances. All
results show statistical significance with p < 0.001.

ImageNet CIFAR-100

dSP dLC dSP dLC

p-w l-w p-w l-w p-w l-w p-w l-w
ResNet 18 0.44 0.56 0.40 0.53 ResNet 9 0.26 0.26 0.27 0.22
AlexNet 0.48 0.51 0.46 0.52 ShuffleNet V2 0.34 0.35 0.29 0.30
ViT 0.50 0.53 0.49 0.55 MobileNet V2 0.30 0.28 0.25 0.25
BEiT 0.43 0.50 0.39 0.48 ResNet 18 0.25 0.28 0.21 0.24
Inception V3 0.24 0.27 0.20 0.23 ShuffleNet 0.34 0.36 0.30 0.33
DenseNet161 0.37 0.44 0.32 0.40 VGG 11 0.21 0.21 0.19 0.20
MobileNet V2 0.47 0.59 0.43 0.58 NasNet 0.28 0.29 0.25 0.26
ShuffleNet V2 0.21 0.14 0.17 0.10 SqueezeNet 0.34 0.34 0.28 0.28

we used eight different architectures for two datasets, ImageNet and CIFAR100. For ImageNet, we
employed ResNet18 He et al. (2016), AlexNet Krizhevsky et al. (2017), ViT Dosovitskiy et al. (2020),
BEiT Bao et al. (2021), Inception V3 Szegedy et al. (2016), DenseNet 161 Huang et al. (2017),
MobileNet V2 Sandler et al. (2018), ShuffleNet V2 Ma et al. (2018), while for CIFAR-100, we used
ResNet 18, ResNet 9, MobileNet V2, ShuffleNet V1, and V2, as well as NASNet Qin and Wang
(2019), SqueeeNet Iandola et al. (2016) and VGG 11 Simonyan and Zisserman (2014). The results
of the evaluation can be found in Table 1, where the Mantel correlation test statistic ρ is stated for
both the layer-wise (l-w) and pair-wise (p-w) versions between the computed EA distance and the
two semantic distance baselines. From the results, we can observe that the distance obtained by the
layer-wise EA metric is more favorable over the pair-wise one due to its stronger linear relationship
with both baseline metrics. Additionally, we observe that correlations are higher for ImageNet than
for CIFAR-100. This can be attributed to the complexity of the dataset, particularly to the size of the
image domain (224× 224 pixels in ImageNet versus 32× 32 in CIFAR-100). As a sanity check, an
additional experiment was carried out, where EA distances were computed over random noise signals
for all networks and both datasets. The results revealed that the test statistics were approximately
zero and statistical significance was not demonstrated at a significance level of α = 0.05 for all the
models.

A.7 EVALUATING ANOMALY-IDENTIFICATION CAPABILITIES

The ability of EA distances to maintain semantic distances allows the DORA framework to not
only detect and display clusters of semantically similar representations via representation atlases
but also identify anomalous representations that semantically differ from the majority. While these
representations may simply learn unique individual concepts, we demonstrate in further experiments
that they might also have learned undesired concepts from spurious correlations in the training data
that diverge from the typical (intended) decision-making strategy.

To assess the ability of DORA to detect anomalous representations, we conducted the experiment by
inserting random representations in the network layer and evaluating the ability of different Outlier
Detection (OD) methods to identify unnatural functions. We employed an ImageNet pre-trained
ResNet18 and introduced a set of additional 25 random representations to the average pooling layer
of the network, containing 512 learned representations, resulting in a total of 537 representations.
These 25 representations were not learned but were constructed as linear combinations of existing
representations from various layers within the network. The experiment was conducted in five
different scenarios, in which inserted representations were constructed as linear combinations of
representations from different layers of the network, namely the “maxpool” (layer preceding the
“layer1”), “layer1”, “layer2”, “layer3”, and “layer4”. The weights for the linear combinations were
randomly drawn from a standard normal distribution. For each scenario, we estimated the EA
distance both pair-wise (p-w) and layer-wise (l-w) and used the resulting distances in five different
Outlier Detection methods: the Angle-based Outlier Detector (ABOD) Kriegel et al. (2008), Feature
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Table 2: Performance of DORA in detecting random representations. Each cell represents the av-
erage AUC ROC of the Outlier Detection methods, for detecting randomly generated representations,
based on different layers of the ResNet18 network.

“maxpool” “layer1” “layer2” “layer3” “layer4”
p-w l-w p-w l-w p-w l-w p-w l-w p-w l-w

ABOD 0.79 0.98 0.74 0.93 0.77 0.80 0.81 0.62 1.00 0.58
FB 0.95 0.92 0.95 0.96 0.62 0.89 0.60 0.59 1.00 0.73
IF 0.76 0.83 0.70 0.63 0.58 0.59 0.63 0.57 1.00 0.73
LOF 0.66 0.72 0.68 0.69 0.84 0.63 0.98 0.78 1.00 0.63
OCSVM 0.62 0.84 0.65 0.79 0.78 0.77 0.88 0.78 0.61 0.70

Bagging (FB) Lazarevic and Kumar (2005), Isolation Forest (IF) Liu et al. (2008), Local Outlier
Factor (LOF) Breunig et al. (2000) and One-class SVM (OCSVM) Schölkopf et al. (2001). The
performance of the Outlier Detection (OD) methods was evaluated using the AUC ROC metric for
the classification between existing (learned) representations in the layer, and randomly generated
ones. To ensure stability, the OD results were repeated 10 times with different random states, and
the linear combinations for the added representations were computed five times for each scenario.
Classification performances for each OD method were averaged per scenario.

Table 2 presents the results of the described experiment, which demonstrate that all of the Outlier
Detection methods performed well in terms of detecting the randomly generated representations
across all scenarios. It is worth noting that the pair-wise EA distance (p-w) performed slightly better
for the detection of random representations. Additionally, the results indicate that different layers
of the network have an impact on the detection of random representations, as the Outlier Detection
methods performed better when detecting representations generated from higher-level concepts,
such as “layer2”, “layer3”, and “layer4”, likely due to the fact that the analysis is performed on the
average pooling layer, the last layer of the feature extractor of the network. The high detection rate of
randomly initialized representations illustrates the ability of DORA to maintain semantic similarity
between learned representations and find semantically anomalous representations.

A.8 EXPERIMENTS

As previously demonstrated, the DORA framework facilitates the visualization of a topological map
of representations in a designated layer and is able to identify outlier representations. In this section,
we aim to investigate the latent representations of widely-used computer vision architectures and
demonstrate that the outlier representations found by DORA in real-life scenarios may align with
undesirable Clever-Hans concepts and deviate from the intended decision-making approach.

A.8.1 IMAGENET PRE-TRAINED NETWORKS

Pre-trained networks on ImageNet have become an essential component in the field of computer
vision. Their capability to recognize a diverse set of objects and scenes makes them particularly
useful as a starting point for a wide range of computer vision tasks. They are frequently utilized for
fine-tuning to specific tasks or as a feature extractor, where the images are encoded by the networks
for further computations Zhuang et al. (2020); Weiss et al. (2016).

In the following we explore the feature extractor representations of three widely-used pre-trained
models: ResNet18 He et al. (2016), MobileNetV2 Sandler et al. (2018), and DenseNet121 Huang
et al. (2017). Using LOF outlier detection, we found latent layers with representations that appear to
be watermark detectors, e.g., detecting Chinese and Latin text patterns. While, in theory, character-
detectors might align with specific classes (e.g. ”keyboard”), our results suggest that the emergence
of character-detector representations is due to a large number of watermarked images in the training
dataset that are not equally distributed across ImageNet classes. As ImageNet does not have a category
for watermarks, these representations could be seen as Clever-Hans artifacts and deviate from desired
decision-making Lapuschkin et al. (2019); Anders et al. (2022). To verify these representations can
detect watermarks, we created two binary classification datasets between watermarked and normal
images, evaluating sensitivity using AUC ROC. To ensure the detection of characters and not specific
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words/phrases (unlike CLIP models Goh et al. (2021)), the probing datasets were generated with
random characters (for more details we refer to the Appendix). Our results show that not only the
reported outliers but also neighboring representations in EA distance are affected by artifactual
behavior. Lastly, we find that this behavior persists during transfer learning, posing a risk for
safety-critical fields like medicine.

IMAGENET RESNET18

We applied DORA to analyze the Average Pooling layer, which consists of the last 512 high-level
representations of the “feature extractor” that are commonly used without further modification
during transfer learning. Following the DORA approach, we calculated n = 5 s-AMS per each
representation, with m = 500, based on our findings in the section A.5. After calculating the EA
distances, we used the LOF method with a contamination parameter p = 0.01 (corresponding to the
top 1% of representations) and the number of neighbors was set to 20 (the default value used in the
sklearn package Pedregosa et al. (2011)).

DORA identified five outlier representations, namely neurons 7, 99, 154, 160, 162, and 393. The
outlier with the highest outlier score, neuron 154, displayed a specific, recognizable pattern in s-AMS
that could be perceived as the presence of Chinese logograms. By probing the network on a binary
classification problem between images watermarked with Chinese logograms vs normal images,
Neuron 154 showed a strong sensitivity (AUC ROC of 0.94) towards the class with watermarked
images, providing significant evidence that this representation is susceptible to the Clever-Hans
effect. Further analysis of neighboring representations in EA distance showed that they also exhibit
similar behavior. The results of the analysis of the ResNet 18 average pooling layer are shown in
Figure 9, illustrating the cluster of Clever-Hans representations found, along with their s-AMS and
AUC ROC performance on the binary classification problem. Additional information on the dataset
generation and the identified outlier representations can be found in the appendix. Furthermore, the
high sensitivity of these representations in terms of their ability to detect artifacts in the data suggests
a possible application for using such representations to identify artifacts in training data. Note that in
general, the presence of such artifacts could indeed pose serious risks and may lead to a degradation
in classifier performance (see Anders et al. (2022)).

Figure 9: Cluster of Clever-Hans representations in the ResNet 18 feature extractor. From left
to right: representation atlas of the ResNet 18 average pooling layer with the highlighted cluster
of Clever-Hans representations (left), s-AMS of the representations in the cluster (middle), and
AUC ROC sensitivity scores for the detection of images with Chinese watermarks in the binary
classification problem(right), where colored curves correspond to the behavior of representations in
the cluster and gray curves for other representations. From the s-AMS of neuron 154, which is the
representation with the highest outlier score, we can observe symbolic patterns resembling Chinese
logograms learned by the neuron as well as by its closest neighbor neurons. We can observe that the
outlier neuron 154 exhibits the highest AUC value (green curve), followed by its nearest neighbors.

In the further investigation of the model, we inferenced s-AMS signals of representations in the re-
ported CH-cluster and obtained their predictions by the model. Among the selected signals, the model
predominantly predicted an affiliation of these signals with the classes “carton”, “swab”, “apron”,
“monitor” and “broom”. Upon computing the corresponding s-AMS signals for these logits, we were
able to confirm their association with CH-behaviour, as they displayed clear, visible logographic
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patterns, specific to Chinese character detectors, in their corresponding s-AMS. Corresponding signals
and additional information could be found in Appendix.

IMAGENET MOBILENETV2

Figure 10: Cluster of Clever-Hans representations in the MobileNet V2 feature extractor. The
left figure illustrates the outlier representations as identified by the LOF OD method, overlaid on the
DORA representation atlas. The middle figure displays the sensitivity of the neural representations to
Chinese watermarks, where the highly-sensitive cluster of neurons can be clearly observed in the
bottom-right part of the atlas, including 3 reported outlier representations. The right graph illustrates
the s-AMS of several of the reported outlier neurons, which exhibit a distinctive logographic pattern
typical of Chinese character detectors.

We used DORA with the same parameters as in the previous experiment (n = 5 s-AMS per each
representation and m = 500 epochs for s-AMS generation) to analyze the “features” layer of
MobileNetV2 network Sandler et al. (2018), which consists of 1280 channels with 7× 7 activation
maps. The analysis was performed on channels by averaging the resulting activation maps of
neurons. We calculated the EA distances between representations and applied the LOF method with
a contamination parameter of 0.01 which yielded 13 outlier representations. Upon visual inspection
of the s-AMS of these representations, we observed distinct patterns specific to Chinese character
detectors in neurons 397, 484, 806, and 1131. Figure 10 illustrates the s-AMS of these neurons, as
well as the sensitivity of neurons in the Chinese-character detection task. We can observe that the
neighbors of these neurons (397, 484, 806, 1131) are sensitive to CH artifacts and form a distinctive
cluster visible in the representation atlas.

IMAGENET DENSENET 121

Figure 12: Persistent Latin text detector. Neuron
427 in the DenseNet121 network learns to detect
Latin text during pre-training and does not unlearn
this behavior after fine-tuning on the CheXpert
dataset, as shown by the ROC detection curves.

We conducted a similar analysis on the last layer
of the feature extractor of the ImageNet pre-
trained DenseNet121 model, which consists of
1024 channel representations with 7× 7 activa-
tion maps. We calculated n = 5 s-AMS per rep-
resentation with m = 150 optimization steps for
quicker experimentation. The LOF outlier de-
tection method with a contamination parameter
of p = 0.01 identified 10 outlier representations.
One of these, neuron 768, was found to be a Chi-
nese character detector (more information can
be found in the Appendix). By increasing the
contamination parameter to p = 0.035 (corre-
sponding to the top 3.5% or 35 representations),
we also identified neuron 427, which is susceptible to the detection of Latin text and watermarks.
Figure 11 illustrates the representation atlas, highlighting representation 427 along with several
neighboring representations, namely neurons 733, 507, and 463, which also exhibit a high detection
rate for unintended concepts.
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Figure 11: DenseNet121 — Latin text detector. Applying DORA to the last layer of the feature
extractor of DenseNet121 yields, among others, Neuron 427 as an outlier, which corresponds to
the upper left of the 4 feature visualizations. From neuron 427 as well as from its three closest
neighbors (shown left), we can observe semantic concepts resembling Latin text characters. The
AUC values were computed using the average channel activations on the Latin probing dataset. As
shown, the AUCs are high for the representation outliers found by DORA, compared to most of the
other representations, which indicates that they indeed learned to detect Latin text patterns.

CLEVER HANS REPRESENTATIONS SURVIVE TRANSFER LEARNING

Given the widespread use of pre-trained models in safety-critical areas, it is essential that the artifacts
embodied in a pre-trained model are made ineffective or unlearned during the transfer learning task
(see also Anders et al. (2022)). To this end, we examined the effect of fine-tuning the pre-trained
DenseNet121 model on the CheXpert challenge Irvin et al. (2019), which benchmarks classifiers on a
multi-label chest radiograph dataset. Despite the modification of all model parameters during fine-
tuning, neurons 427 and 768, which were Latin and Chinese characters detectors in the pre-trained
model, retained their original semantic information and remained outliers after applying DORA. We
studied neuron 427’s ability to detect Latin text and found that it had an AUC value of 0.84 in the
pre-trained model and 0.81 in the fine-tuned model, as shown in Figure 12. The results indicate that
the Clever-Hans effect persisted after fine-tuning, possibly due to small Latin text characters in the
dataset.

A.8.2 CLIP RESNET50

Figure 13: AMS for reported outlier
representation. LOF identified neu-
ron 1865 as the strongest outlier. Anal-
ysis of s-AMS and ImageNet n-AMS
indicate that it primarily detects white
images/backgrounds, which is atypical
compared to other high-level representa-
tions in the same layer.

CLIP (Contrastive Language-Image Pre-training) models
predict relationships between text and images, trained
using contrastive learning objective Dai and Lin (2017);
Hjelm et al. (2018) on large datasets and fine-tuned on
tasks such as image classification Agarwal et al. (2021)
or text-to-image synthesis, where CLIP models also often
serve as text encoders (e.g. Stable Diffusion Rombach
et al. (2022)).

In this experiment, we explore the representation space
of the CLIP ResNet50 model Radford et al. (2021) focus-
ing on the last layer of its image feature extractor (“layer
4”). The training dataset was not publicly disclosed, but
it is reported to be much larger than standard computer
vision datasets like ImageNet, resulting in greater variabil-
ity of concepts compared to ImageNet networks. We used
DORA on 2048 channel representations from ”layer 4”,
generating n = 3 signals per representation with m = 512
and using similar settings as (Goh et al., 2021).

Analysis of the outlier representations with contamination
parameter p = 0.0025 yielded 6 outlier neurons, namely
631, 658, 838, 1666, 1865, and 1896. Representation 1865
– neuron with the highest outlier score – was found to detect
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the unusual concept of white images/background, as shown by synthetic and natural (collected from
OpenAI Microscope) AMS in the Figure 13. However, the other outlier representations could
not be concluded to be undesirable as they seemed to detect rare but natural concepts. Further details
and analysis of the other outlier representations can be found in the Appendix.

Figure 14: Representation atlas of CLIP ResNet50 “layer 4”. Representation atlas for
CLIP ResNet50 “layer 4”, where several clusters of representations are highlighted. Activation-
Maximisation signals associated with the Explicit/Pornographic representations were omitted due to
the presence of explicit concepts in the signals.
After computing the representation atlas for “layer 4”, we manually investigated several distinc-
tive clusters. Figure 14 illustrates the representation atlas alongside several reported clusters of
semantically similar representations. With our analysis, we found a cluster of Explicit/Pornographic
representations. Furthermore, we were able to confirm the presence of geographical neurons, as
reported in (Goh et al., 2021) and we noted that representations from neighboring geographical
regions, such as India, China, Korea, and Japan, were located close to one another. Additional
information and more detailed visualizations can be found in the appendix.
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