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Abstract

Asynchronous event sequence clustering aims to group similar event sequences in
an unsupervised manner. Mixture models of temporal point processes have been
proposed to solve this problem, but they often suffer from overfitting, leading to
excessive cluster generation with a lack of diversity. To overcome these limita-
tions, we propose a Bayesian mixture model of Temporal Point Processes with
Determinantal Point Process Prior (TP2DP2) and accordingly an efficient posterior
inference algorithm based on conditional Gibbs sampling. Our work provides a
flexible learning framework for event sequence clustering, enabling automatic iden-
tification of the potential number of clusters and accurate grouping of sequences
with similar features. It is applicable to a wide range of parametric temporal point
processes, including neural network-based models. Experimental results on both
synthetic and real-world data suggest that our framework could produce moderately
fewer yet more diverse mixture components, and achieve outstanding results across
multiple evaluation metrics.

1 Introduction

As a powerful tool of asynchronous event sequence modeling, the temporal point process (TPP) plays a
crucial role in many application scenarios [5, 7, 9, 28]. In practice, event sequences often demonstrate
clustering characteristics, with certain sequences showcasing greater similarities when compared
with others. For instance, event sequences of patient admissions may exhibit clustering patterns in
response to specific medical treatments. Being able to accurately cluster event sequences can bring
many benefits, including facilitating healthcare decision making. In recent years, researchers have
built mixture models of TPPs to tackle the event sequence clustering problem [23, 22, 27]. However,
these models often suffer from overfitting during training, leading to excessive cluster generation
with a lack of diversity. Moreover, these methods require either manually setting the number of
clusters in advance [22] or initializing a large number of clusters and gradually removing excessive
clusters through hard thresholding [23, 27]. In addition, without imposing proper prior knowledge,
the clusters obtained by these models may have limited diversity and cause the identifiability issue.

In this study, we propose a novel Bayesian mixture model of temporal point processes named
TP2DP2 for event sequence clustering, imposing a determinantal point process prior to enhance
the diversity of clusters and developing a universally applicable conditional Gibbs sampler-based
algorithm for the model’s posterior inference. As illustrated in Figure 1, TP2DP2 leverages the
determinantal point process (DPP) as a repulsive prior for the parameters of cluster components,
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Figure 1: The pipeline of TP2DP2.

which contributes to generating TPPs with diverse parameters. To make TP2DP2 applicable for the
TPPs with a large number of parameters, we apply Bayesian subnetwork inference [6], employing
Bayesian inference to partially selected parameters while utilizing maximum likelihood estimation
for the remaining parameters. For selected parameters, we further categorize them into central and
non-central parameters, in which the central parameters mainly determine the clustering structure
and thus we apply DPP priors. We design an efficient conditional Gibbs sampler-based posterior
inference algorithm, in which the stochastic gradient Langevin dynamics [21] is introduced into
the updating process to facilitate convergence. To our knowledge, TP2DP2 is the first work that
explores event sequence clustering based on the TPP mixture model with DPP prior. It automatically
identifies cluster numbers,with clustering results more reliable than existing variational inference
methods [23, 27].

2 Preliminaries

Temporal Point Processes TPP is a kind of stochastic process that characterizes the random occur-
rence of events in multiple dimensions, whose realizations can be represented as event sequences, i.e.,
{(ti, di)}Ii=1, where ti ∈ [0, T ] are time stamps and di ∈ D = {1, ..., D} are different dimensions
(a.k.a. event types). Typically, we characterize a TPP by conditional intensity functions:

λ∗(t) =
∑D

d=1
λ∗d(t), and λ∗d(t)dt = E[dNd(t) | Ht]. (1)

Here, λ∗d(t) is the conditional intensity function of the type-d event at time t, Nd(t) denotes the
number of the occurred type-d events prior to time t, and Ht denotes the historical events happening
before time t. Given an event sequence s = {(ti, di)}Ii=1, the likelihood function of a TPP can be
derived based on its conditional intensity functions:

L(s) =
∏I

i=1
λ∗di

(ti) exp
(
−
∫ T

0

λ∗(τ)dτ
)
. (2)

By maximizing the likelihood in Eq. (2), we can learn the TPP model to fit the observed sequence.

Mixture Models of TPPs Given multiple event sequences belonging to different clusters, i.e.,
{sn}Nn=1, we often leverage a mixture model of TPPs to describe their generative mechanism, leading
to a hierarchical sampling process:

1) Determine cluster: m ∼ Categorical(π), 2) Sample sequence: s ∼ TPP(θm), (3)

where π = [π1, ..., πM ] ∈ ∆M−1 indicates the distribution of clusters defined on the (M−1)-simplex,
TPP(θm) is the TPP model of the m-th cluster, whose parameters are denoted as θm.

Determinantal Point Processes DPP [13] is a stochastic point process characterized by the unique
property that its sample sets exhibit determinantal correlation. The structure of DPP is captured
through a kernel function [14, 4]. Denote the kernel function by κ : X ×X 7→ R, where X represents
a sample space. The density function for samples x1, ..., xM ∈ X in one realization of DPP is:

p(x1, ..., xM ) ∝ det{K(x1, ..., xM )}, (4)
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where K(x1, ..., xM ) = [κ(xi, xj)] is a M × M Gram matrix corresponding to the samples.
Given arbitrary two samples xi and xj , we have p(xi, xj) = κ(xi, xi)κ(xj , xj) − κ(xi, xj)

2 =
p(xi)p(xj)− κ(xi, xj)

2 ≤ p(xi)p(xj). Therefore, DPP manifests the repulsion between xi and xj .
As such, using DPP as the prior can help enhance the diversity of clustering results.

3 Proposed TP2DP2 Model & Corresponding Posterior Inference Algorithm

The mixture model in Eq. (3) reveals that each event sequence s obeys a mixture density, i.e.,∑M
m=1 πmL(s | θm), where M is a random variable denoting the number of clusters, π =

[π1, ..., πM ] ∈ ∆M−1 specifies the probability of each cluster component (a TPP), and L(s | θm) is
the likelihood of the m-th TPP parametrized by θm. Given N event sequences S = {sn}Nn=1, we
denote cluster allocation variables of each sequence c = [c1, ..., cN ] ∈ {1, ...,M}N , where each set
{sn | cn = m} contains the sequences assigned to the m-th cluster. Accordingly, we derive the joint
distribution of all variables, i.e., p(M,Θ,π, c,S), as

p(M)p(Θ |M)p(π |M) p(c | π)p(S | Θ, c)︸ ︷︷ ︸∏N
n=1 πcnL(sn|θcn )

,
(5)

where Θ = {θm}Mm=1 ∈ RP . p(M), p(Θ |M) and p(π |M) are prior distributions of M , Θ and
π, respectively. By Bayes theorem, the posterior p(M,Θ,π, c | S) is proportional to Eq. (5).

The exact sampling from p(M,Θ,π, c | S) is often intractable because the parameters of the TPPs
in practice (especially those neural TPPs [15, 8, 26, 29, 16]) are too many to perform full Bayesian
posterior calculation. To overcome this issue, we conduct posterior inference only on a subset
of model parameters [6, 18, 12] (i.e., the “subnetwork” of the whole model). In particular, we
approximate the full posterior of the TPPs’ parameters Θ as

p(Θ | S) ≈ p (ΘS | S) δ(ΘR − Θ̂R) = p(U | S)p(W | S)δ(ΘR − Θ̂R), (6)

where we split the model parameters Θ into two parts, i.e., ΘS and ΘR, respectively. ΘS =
{θS,m}Mm=1 corresponds to the subnetworks of the TPPs in the mixture model, while ΘR =
{θR,m}Mm=1 denotes the remaining parameters. In Eq. (6), p(Θ | S) is decomposed into the
posterior of the subnetworks p(ΘS | S) and a Dirac delta function on the remaining parameters
ΘR, in which ΘR is estimated by their point estimation Θ̂R = {θ̂R,m}Mm=1, e.g., the maximum
likelihood estimation achieved by stochastic gradient descent.

Unlike existing work, in Eq. (6), we further decompose the parameters in the subnetworks into two
parts, i.e., ΘS = {U ,W }, where U = {µm}Mm=1 and W = {wm}Mm=1, respectively. For the
m-th TPP in the mixture model, µm corresponds to the “central” parameters of their conditional
intensity functions, which significantly impacts the overall dynamics of event occurrence (e.g.
the base intensity of Hawkes process [11]). Accordingly, the other “non-central” parameters in
each subnetwork are denoted as wm, which are contingent upon specific architectures of different
models. Imposing the conditional independence on the central and non-central parameters, i.e.,
p(ΘS |M) = p(U |M)p(W |M), we have

p(M,Θ,π, c|S) ∝ p(M)p(U |M)p(W |M)p(π|M)
∏N

n=1
πcnL(sn|θS,cn , θ̂R,cn), (7)

where θ̂R,cn denotes the point estimates of the remaining parameters in the cn-th TPP. The DPP
prior p(U | M) is introduced to the central parameter U to mitigate the overfitting problem and
diversify the cluster result. The computational method of DPP prior construction is introduced
in Appendix. p(W | M) =

∏M
m=1 p(wm) is the prior of non-central parameters which can be

Gaussian. For prior of π, instead of directly sampling {πm}Mm=1 from its posterior distribution,
we apply the ancillary variable method [3, 1] to make the posterior calculation tractable for the
mixture weights {πm}Mm=1. Consider r = [r1, ..., rM ], which consists of i.i.d. positive continuous
random variables following the Gamma distribution Γ(1, 1), each rm is independent of M and r is
independent of {U ,W }. Defining t =

∑M
m=1 rm and π = [r1/t, ..., rM/t], we establish a one-to-

one correspondence between π and (r, t). By introducing an extra random variable v ∼ Γ(N, 1),
we define the ancillary variable u = v/t, with p(u) = uN−1

Γ(N)

∫∞
0
tNe−utp(t)dt. Introducing u makes

3



Algorithm 1 Conditional Gibbs Sampler for TP2DP2

Input: Event sequences S, priors, initialization of the cluster number, maximum number of iteration
T, number of burn-in, step sizes for each update, point estimates Θ̂R.
Output: Posterior samples of variables in the model {M,U , r,W , c}.

1: Initialize parameters and set j = 0.
2: while convergence not reached and j < T do
3: Sample non-allocated variables (U (na), r(na),W (na)) using collapsed Gibbs sampler. The

sampling for U (na) is given by:

p(U (na) | U (a), r(a),W (a), c, u,S) ∝ p(U (a) ∪U (na))ψ(u)l, where ψ(u) denotes the

Laplace transform of p(rm), i.e. ψ(u)l =
∫ l∏

m=1

exp(−ur(na)m )p(r(na)m )dr(na)

The r(na) and W (na) is given by:

p(r(na) | · · · ) ∝
∏l

m=1
p(r(na)m )e−ur(na)

m , p(W (na) | · · · ) ∝
∏l

m=1
p(w(na)

m ).

4: Sample allocated variables (U (a), r(a),W (a)).

p(U (a) | · · · ) ∝ p(U (a) ∪U (na))
∏k

m=1

∏
i:ci=m

L(si | (µ(a)
m ,w(a)

m , θ̂R,m),

p(r(a) | · · · ) ∝
∏k

m=1
p(r(a)m )(r(a)m )nm exp(−ur(a)m ).

p(W (a) | · · · ) ∝
∏k

m=1
p(w(a)

m )
∏

i:ci=m
L(si | (µ(a)

m ,w(a)
m , θ̂R,m)).

5: Sample cluster labels c using full conditional distribution:

p(ci = m | · · · ) ∝

{
r
(a)
m L(si | µ(a)

m ,w
(a)
m , θ̂R,m) for m = 1, ..., k,

r
(na)
m L(si | µ(na)

m ,w
(na)
m , θ̂R,m) for m = k + 1, ..., k + l.

6: Update ancillary variable u by u ∼ Gamma(N, 1t ).
7: Increment j.
8: end while

the posterior computation of π factorizable and gets rid of the sum-to-one constraint imposed on
{πm}Mm=1, significantly simplifying the subsequent MCMC simulation process.

In summary, the joint posterior density function becomes

p(M,Θ, c, r, u | S) ∝ p(U)
∏M

m=1
p(wm)p(rm)

∏N

n=1
πcnL(sn | θS,cn , θ̂R,cn)

p(u | t)
tN

, (8)

where p(U) := p(M)p(U |M) is the DPP prior.

Since the number of clusters changes dynamically as these algorithms proceed, it is helpful to further
partition model parameters into parameters of allocated clusters and those of non-allocated clusters
when applying posterior sampling. In particular, we partition U into two sets according to cluster
allocations c: one comprising cluster centers currently used for data allocation, denoted as U (a) =
{µc1 , . . . ,µcn}, and the other containing cluster centers not involved in the allocation, denoted as
U (na) = U \U (a). Note that the product measure dµ×dµ in Ω×Ω lifted by the map (x,y) 7→ x∪y
results in the measure dµ, so the prior density of (U (a),U (na)) is equivalent to p(U (a),U (na)) =
p(U (a) ∪ U (na)), which follows the DPP density. W and r are partitioned in the same way. As
(U ,π,W , c) and (U (a), r(a),W (a),U (na), r(na),W (na), c) are in a one-to-one correspondence,
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we can refer to Eq. (8) and obtain the posterior of (M,U (a), r(a),W (a), c,U (na), r(na),W (na), u):

p(M,U (a), r(a),W (a), c,U (na), r(na),W (na), u|S)

∝p(U (a) ∪U (na))
[∏k

m=1
p(w(a)

m )p(r(a)m )(r(a)m )nm

∏
i:ci=m

L(si | µ(a)
m ,w(a)

m , θ̂R,m)
]

×
[∏l

m=1
p(w(na)

m )p(r(na)m )
]
p(u | t) 1

tN
,

(9)

where nm is the number of sequences allocated to the m-th component, k denotes the cardinality of
allocated clusters, and l denotes that of non-allocated ones. r(a)m and r(na)m denote the allocated and
non-allocated unnormalized weight, respectively. p(u | t) = uN−1

(N−1)!e
−uttN .

Our posterior inference algorithm follows the principle of conditional Gibbs sampler [17]. We
split all parameters into three groups: an allocated block (U (a), r(a),W (a)), a non-allocated block
(U (na), r(na),W (na)), and remaining parameters {c, u}, and update them in an alternating scheme.
The posterior sampling procedure of TP2DP2 is summarized in Algorithm 1. More detailed derivations
are elaborated in Appendix.

4 Experiments

Our model is compatible with various TPP backbones, which can detect clusters and fit event
sequence data originating from a mixture of hybrid TPPs. To verify our claim, we generate a set
of event sequences based on five different TPPs, including 1) Homogeneous Poisson process, 2)
Inhomogeneous Poisson process, 3) Self-correcting process, 4) Hawkes process, and 5) Neural
Hawkes process [15]. Based on the sequences, we construct three datasets with the number of
mixture components ranging from three to five. For each dataset, we learn a mixture model of
TPPs and set the backbone of the TPPs to be 1) the classic Hawkes process [11], 2) the recurrent
marked temporal point process (RMTPP) [8], and 3) the Transformer Hawkes process (THP) [29],
respectively. The learning methods include the variational EM of Dirichlet mixture model (Dirichlet
Mixture) [27] and our TP2DP2. The results in Table 1 show that our method achieves competitive
performance. Especially when the backbone is Hawkes process, applying our method leads to notable
improvements in purity [23] and ARI [20], which means that our method is more robust to the model
misspecification issue. In addition, learning RMTPP and THP by our method results in the best
performance when KGT = 5, showcasing TP2DP2’s adaptability to complex event sequences. More
experiments are in Appendix.

Table 1: Experimental results on synthetic mixture of hybrid point processes datasets.

Backbone Method KGT = 3 KGT = 4 KGT = 5
Purity ARI Purity ARI Purity ARI

Hawkes Dirichlet Mixture 0.678±0.134 0.622±0.097 0.620±0.120 0.564±0.126 0.574±0.045 0.545±0.046
TP2DP2 0.884±0.009 0.745±0.052 0.739±0.004 0.626±0.008 0.603±0.008 0.538±0.013

RMTPP Dirichlet Mixture 0.983±0.112 0.972±0.124 0.751±0.131 0.712±0.213 0.708±0.030 0.633±0.027
TP2DP2 0.974±0.073 0.971±0.109 0.753±0.003 0.708±0.014 0.732±0.024 0.674±0.017

THP Dirichlet Mixture 0.941±0.093 0.870±0.201 0.746±0.007 0.666±0.038 0.610±0.007 0.559±0.043
TP2DP2 0.980±0.035 0.897±0.110 0.749±0.002 0.652±0.007 0.650±0.007 0.600±0.020

5 Conclusion

In this paper, we propose the Bayesian mixture model TP2DP2 for event sequence clustering. It is
shown that TP2DP2 could flexibly integrate various parametric TPPs including the neural network-
based TPPs as components, achieve satisfying event sequence clustering results and produce more
separated clusters. In the future, we plan to study the impact of alternative repulsive priors on
event sequence clustering, and develop event sequence clustering methods in high-dimensional and
spatio-temporal scenarios.

5



References
[1] Raffaele Argiento and Maria De Iorio. Is infinity that far? A Bayesian nonparametric perspective of finite

mixture models. The Annals of Statistics, 50(5):2641 – 2663, 2022.

[2] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research, 18:1–43,
2018.

[3] Mario Beraha, Raffaele Argiento, Jesper Møller, and Alessandra Guglielmi. Mcmc computations for
bayesian mixture models using repulsive point processes. Journal of Computational and Graphical
Statistics, 31(2):422–435, 2022.

[4] Ilaria Bianchini, Alessandra Guglielmi, and Fernando A. Quintana. Determinantal Point Process Mixtures
Via Spectral Density Approach. Bayesian Analysis, 15(1):187 – 214, 2020.

[5] Niccolo Dalmasso, Renbo Zhao, Mohsen Ghassemi, Vamsi Potluru, Tucker Balch, and Manuela Veloso.
Efficient event series data modeling via first-order constrained optimization. In Proceedings of the Fourth
ACM International Conference on AI in Finance, page 463–471, New York, NY, USA, 2023. Association
for Computing Machinery.

[6] Erik Daxberger, Eric Nalisnick, James U Allingham, Javier Antorán, and José Miguel Hernández-Lobato.
Bayesian deep learning via subnetwork inference. In International Conference on Machine Learning,
pages 2510–2521. PMLR, 2021.

[7] Fangyu Ding, Junchi Yan, and Haiyang Wang. c-ntpp: learning cluster-aware neural temporal point
process. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth
Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational
Advances in Artificial Intelligence. AAAI Press, 2023.

[8] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages 1555–1564,
2016.

[9] Guanhua Fang, Ganggang Xu, Haochen Xu, Xuening Zhu, and Yongtao Guan. Group network hawkes
process. Journal of the American Statistical Association, pages 1–17, 2023.

[10] Charles J Geyer and Jesper Møller. Simulation procedures and likelihood inference for spatial point
processes. Scandinavian journal of statistics, pages 359–373, 1994.

[11] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,
58(1):83–90, 1971.

[12] Pavel Izmailov, Wesley J Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Subspace inference for bayesian deep learning. In Uncertainty in Artificial Intelligence, pages
1169–1179. PMLR, 2020.

[13] Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. Foundations and
Trends® in Machine Learning, 5(2–3):123–286, 2012.

[14] Frédéric Lavancier, Jesper Møller, and Ege Rubak. Determinantal point process models and statistical
inference. Journal of the Royal Statistical Society Series B: Statistical Methodology, 77(4):853–877, 2015.

[15] Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating multivariate
point process. Advances in neural information processing systems, 30, 2017.

[16] Hongyuan Mei, Chenghao Yang, and Jason Eisner. Transformer embeddings of irregularly spaced events
and their participants. In International Conference on Learning Representations, 2022.

[17] Omiros Papaspiliopoulos and Gareth O Roberts. Retrospective markov chain monte carlo methods for
dirichlet process hierarchical models. Biometrika, 95(1):169–186, 2008.

[18] Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do bayesian neural networks
need to be fully stochastic? In International Conference on Artificial Intelligence and Statistics, pages
7694–7722. PMLR, 2023.

[19] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

6



[20] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In Proceedings of the 26th annual international
conference on machine learning, pages 1073–1080, 2009.

[21] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings
of the 28th international conference on machine learning (ICML-11), pages 681–688, 2011.

[22] Weichang Wu, Junchi Yan, Xiaokang Yang, and Hongyuan Zha. Discovering temporal patterns for event
sequence clustering via policy mixture model. IEEE Transactions on Knowledge and Data Engineering,
34(2):573–586, 2022.

[23] Hongteng Xu and Hongyuan Zha. A dirichlet mixture model of hawkes processes for event sequence
clustering. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[24] Siqiao Xue, Xiaoming Shi, Zhixuan Chu, Yan Wang, Hongyan Hao, Fan Zhou, Caigao JIANG, Chen Pan,
James Y. Zhang, Qingsong Wen, JUN ZHOU, and Hongyuan Mei. EasyTPP: Towards open benchmarking
temporal point processes. In The Twelfth International Conference on Learning Representations, 2024.

[25] Siqiao Xue, Xiaoming Shi, James Y Zhang, and Hongyuan Mei. Hypro: a hybridly normalized probabilistic
model for long-horizon prediction of event sequences. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc.

[26] Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In Interna-
tional conference on machine learning, pages 11183–11193. PMLR, 2020.

[27] Yunhao Zhang, Junchi Yan, Xiaolu Zhang, Jun Zhou, and Xiaokang Yang. Learning mixture of neural
temporal point processes for multi-dimensional event sequence clustering. In Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, Vienna, Austria, pages 23–29, 2022.

[28] Shixiang Zhu, Alexander Bukharin, Liyan Xie, Khurram Yamin, Shihao Yang, Pinar Keskinocak, and Yao
Xie. Early detection of covid-19 hotspots using spatio-temporal data. IEEE Journal of Selected Topics in
Signal Processing, 16(2):250–260, 2022.

[29] Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes process. In
International conference on machine learning, pages 11692–11702. PMLR, 2020.

7



A Redundant Cluster Generation Problem in Traditional Mixture Models of
Temporal Point Processes

In recent years, researchers have built mixture models of TPPs to tackle the event sequence clustering
problem [23, 22, 27]. However, these models often suffer from overfitting during training, leading
to excessive cluster generation with a lack of diversity. We illustrate this issue in the left panel of
Figure 2.
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Figure 2: The t-SNE plots [19] of RMTPP’s event sequence embeddings [8] for a synthetic dataset
with three clusters. NTPP-MIX [27] (left) produces four clusters wrongly, while our TP2DP2 (right)
leads to the clustering results matching well with the ground truth.

B DPP Construction

DPP prior is introduced to the central parameter U to mitigate the overfitting problem and diversify the
cluster result. We leverage the spectral density approach to approximate the DPP density. For a DPP
shown in Eq. (4), its kernel function has a spectral representation κ(µi,µj) =

∑∞
i=1 λiϕi(µi)ϕi(µj),

in which each eigenfunction could be approximated via the Fourier expansion and eigenvalues are
specified by the spectral distribution, as defined in [14]. In this way, the DPP density approximation
is

p(U |M) ≈ exp (|R| −Dapp) det{K̃}(µ1, · · · ,µM ),

where κ̃(µi,µj) =
∑

z∈Zq φ̃(z)e2πiz·(µi−µj),Dapp =
∑

z∈Zq log(1+ φ̃(z)), {µ1, · · · ,µM} ⊂ R,
|R| is the volume of the range of the parameter space, φ̃(z) = φ(z)/(1−φ(z)), Zq is q-dimensional
integer lattice, and φ is the spectral distribution.

C Derivation of the Posterior Sampling Method of TP2DP2

Our posterior inference algorithm follows the principle of conditional Gibbs sampler [17]. We
split all parameters into three groups: an allocated block (U (a), r(a),W (a)), a non-allocated block
(U (na), r(na),W (na)), and remaining parameters {c, u}, and update them in an alternating scheme.

Sampling non-allocated variables: We begin with sampling U (na) from its conditional density:

p(U (na) | U (a), r(a),W (a), c, u,S)

=

∫∫
p(U (na), r(na),W (na) | · · · ) dr(na) dW (na)

∝
∫∫

p(U (a) ∪U (na))
[∏l

m=1
p(w(na)

m )p(r(na)m )
]

× p(u|t) 1

tN
dr(na) dW (na) = p(U (a) ∪U (na))ψ(u)l,

(10)

where “· · · ” denotes variables excluding the target variable to be sampled, together with all the
sample sequences S, and henceforth. p(U (a) ∪ U (na)) is the DPP density. The second term
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ψ(u)l =
∫
[
∏l

m=1 exp(−ur
(na)
m )p(r

(na)
m )]dr(na), due to the fact that

p(u | t) = uN−1

(N − 1)!
e−uttN =

tNuN−1

(N − 1)!

[∏k

m=1
e−ur(a)

m

][∏l

m=1
e−ur(na)

m

]
. (11)

Applying Birth-and-death Metropolis-Hastings algorithm [10], we sample U (na) and determine the
final number of clusters accordingly.

We then sample r(na) and W (na) using the classical Metropolis-Hastings algorithm. The cardinality
of non-allocated variables (i.e., l) is determined by the size of U (na), so we have

p(r(na) | · · · ) ∝
∏l

m=1
p(r(na)m )e−ur(na)

m ,

p(W (na) | · · · ) ∝
∏l

m=1
p(w(na)

m ).
(12)

Sampling allocated variables: The allocated central parameter U (a) is sampled from

p(U (a) | · · · ) ∝ p(U (a) ∪U (na))
∏k

m=1

∏
i:ci=m

L(si | (µ(a)
m ,w(a)

m , θ̂R,m), (13)

where the p(U (a) ∪U (na)) is again governed by the DPP. Subsequently, we sample r(a) from its
full conditional using the Metropolis-Hastings algorithm:

p(r(a) | · · · ) ∝
∏k

m=1
p(r(a)m )(r(a)m )nm exp(−ur(a)m ). (14)

The W (a)’s full conditional is:

p(W (a) | · · · ) ∝
∏k

m=1
p(w(a)

m )
∏

i:ci=m
L(si | (µ(a)

m ,w(a)
m , θ̂R,m)). (15)

As W (a) represents all the allocated parameters of the point process model to be inferred, excluding
µ, it may still exhibit high dimensionality. To align with our framework and boost convergence, we
leverage the stochastic gradient Langevin dynamics [21] when sampling W (a). The proposed update
for each w

(a)
m is provided by:

∆w(a)
m = ηj +

ϵj
2

(
∇ log p(w(a)

m ) +
nm
n∗

∑
ci=m

∇ logL(si | µ(a)
m ,w(a)

m , θ̂R,m)
)
, (16)

where j is the counting number of iterations, ηj ∼ N (0, ϵj), ϵj is the step size at the j-th iteration
which is set to decay towards zero, and n∗ in the above equation is the number of selected sequences
from each cluster to perform stochastic approximation. ∇ logL(si | µ(a)

m ,w
(a)
m , θ̂R,m) is calculated

through the automatic differentiation [2].

Sampling c and u: Each cluster label ci is sampled from

p(ci = m | · · · ) ∝

{
r
(a)
m L(si | µ(a)

m ,w
(a)
m , θ̂R,m) for m = 1, ..., k,

r
(na)
m L(si | µ(na)

m ,w
(na)
m , θ̂R,m) for m = k + 1, ..., k + l.

(17)

Note that after this step, there is a positive probability that ci > k for certain indices i,
indicating that some initially non-allocated components become allocated, and vice versa—
some initially allocated components become non-allocated. Consequently, a relabeling of
(U (a), r(a),W (a),U (na), r(na),W (na)) and c is performed, ensuring that c takes values within
the set {1, . . . , k}N . Thus, k may either increase or decrease or remain unchanged after the relabeling
step. Finally, we sample u from a gamma distribution with a shape parameter of N and an inverse
scale parameter of t.

D Experiments

To comprehensively evaluate the effectiveness of our TP2DP2 model and its inference algorithm, we
test our method on both synthetic and real-world datasets and compare it with state-of-the-art event
sequence clustering methods. For each method, we evaluate its clustering performance by clustering
purity [23] and adjusted rand index (ARI) [20] and its data fitness by the expected log-likelihood per
event (ELL) [24]. In addition, we report the expected posterior value of the number of clusters (M )
in real-world dataset, which reveals the inferred number of components given data. The code for
TP2DP2 is publicly available at https://anonymous.4open.science/r/TP2DP2/.
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Figure 3: The means and standard deviations of clustering purity obtained by DMHP and TP2DP2

with different δ. The left panel is the result when the ground truth cluster number KGT = 4, and the
right is the result of KGT = 5.

D.1 Experiments on Mixtures of Hawkes Processes

We first investigate the clustering capability of TP2DP2 and demonstrate the rationality of DPP priors
on the synthetic datasets generated by mixture models of Hawkes processes, in which each Hawkes
process generates 100 event sequences with 3 event types. All Hawkes processes apply the same
triggering function, and their base intensities are set to µm = (0.5+ δm)13, where δm = δ · (m− 1)
for m ∈ {1, 2, 3, · · · ,KGT }, where KGT denotes the true number of clusters. In other words, these
Hawkes processes exhibit distinct temporal patterns because of their different base intensities. The
experiments are carried out for KGT = 4, 5 for multiple datasets, each dataset having different δ
values, δ ∈ {0.1, 0.15, 0.2, 0.25, 0.3, · · · , 1}.

We compare our TP2DP2 with the Dirichlet mixture model of Hawkes processes (DMHP) learned
by the variational EM algorithm [23]. For a fair comparison, we use the same Hawkes process
backbone as in DMHP, ensuring identical parametrization, and we consider all model parameters in
the Bayesian inference phase. For each method, we initialize the number of clusters randomly in the
range [KGT − 1,KGT + 1]. The averaged results in five trials are presented in Figure 3.

When the disparity in the true base intensity among different point processes is minimal, the inherent
distinctions within event sequences are not apparent, as shown in Figure 4. In this case, TP2DP2 tends
to categorize these event sequences into fewer groups than the ground truth, resulting in a relatively
modest purity when δ is small. As δ increases, TP2DP2 exhibits increasingly robust clustering
capabilities, with means consistently outperforming DMHP when δ > 0.55.

In addition, we examine the posterior distribution of base intensity parameters when both algorithms
converge. At δ = 0.6, box plots in Figure 5 depict posterior estimations of base intensities for the
first two clusters (the ground truth base intensities are 0.5 and 1.1). It is noteworthy that DMHP
consistently underestimates the true values in all trials due to multiple times of approximations in
its learning algorithm, and DMHP shows marginal disparity between clusters. In contrast, TP2DP2

better captures the true base intensity values, meantime exhibiting greater dispersion between clusters
compared with DMHP. Similar patterns are also observed in other datasets.

D.2 Experiments on Mixtures of Hybrid TPPs

In experiments on mixtures of hybrid TPPs, we further investigate the effect of incorporating DPP
prior to different parameters in the models, and the results are shown in Table 2. In this experiment,
we aim to verify adding DPP priors to central parameters of TPPs would lead to superior performance.
For Hawkes Process, the base intensity reflects the average level of event occurrence rate, and is
considered the most crucial for analyzing the feature of corresponding event sequences [11]. For
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Figure 4: The t-SNE plot of the ground truth distribution for the synthetic mixture of Hawkes
processes datasets with δ values of 0.2 (upper left), 0.4 (upper right), 0.6 (lower left), and 0.8 (lower
right).
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Figure 5: The base intensity µ of first two clusters learned by two methods across 5 random trials.
The dotted line represents the ground truth µ in two clusters.

example, in the field of seismology, the base intensity specifically relates to background seismicity
that needs special attention. Thus, for the event sequence clustering task, we also add DPP priors
to the base intensity of the Hawkes process components, and find this yields the best clustering
performance. For both RMTPP and THP, adding DPP prior to the output linear layer bias achieves the
best purity and ARI scores, which are also consistently higher than the Dirichlet mixture frameworks
or models without DPP priors. According to the architecture of these two neural point processes,
the bias term of the last output layer has a direct impact on the estimated intensity function. This
experimental result shows the effectiveness of applying DPP to the parameters that play a decisive
role in intensity.
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Table 2: Experimental results on the synthetic mixture of hybrid point processes dataset (KGT = 4)
when adding DPP prior to different parts of Hawkes processes or the bias of different layers in NTPPs.
None denotes we do not impose DPP prior.

Model Layer Purity ARI

Hawkes
None 0.702 0.648

Diagonal Elements of Infectivity Matrix 0.655 0.572
Base Intensity 0.739 0.626

RMTPP
None 0.750 0.679

Time Embedding Layer 0.747 0.664
Output Layer 0.753 0.708

THP

None 0.722 0.605
Post-attention Feedforward Layer 1 0.740 0.630
Post-attention Feedforward Layer 2 0.738 0.610
Post-attention Feedforward Layer 3 0.745 0.647
Post-attention Feedforward Layer 4 0.748 0.647

Output Layer 0.749 0.652

Table 3: Experimental results on real-world datasets.

Backbone Method Amazon BookOrder

ELL M ELL M

Hawkes Dirichlet Mixture -2.355 5.0 4.832 3.6
TP2DP2 -2.352 5.0 4.810 3.0

RMTPP Dirichlet Mixture -2.251 3.8 5.613 2.6
TP2DP2 -2.052 3.0 5.624 2.2

THP Dirichlet Mixture 1.629 3.0 5.814 2.6
TP2DP2 1.631 2.8 5.981 2.4

D.3 Experiments on Real-World Datasets

To examine the performance of our method on real-world data, we use the following two benchmark
datasets: 1) Amazon [25]. This dataset comprises time-stamped user product review events spanning
from January 2008 to October 2018, with each event capturing the timestamp and the category of
the reviewed product. Data is pre-processed according to the procedure in [24]. The final dataset
consists of 5,200 most active users with 16 distinct event types, and the average sequence length is
70. 2) BookOrder 2. This book order dataset comprises 200 sequences, with two event types in each
sequence. The sequence length varies from hundreds to thousands.

To ensure fairness, hyperparameters of the Dirichlet mixture models are tuned first and we intention-
ally make each backbone TPP model in TP2DP2 smaller or equivalent in scale compared to those
of the Dirichlet mixture framework, which means that all hyperparameters related to the backbone
structure, such as hidden size, number of layers, and number of heads within the TP2DP2 framework
are set to be less than or equal to their corresponding counterparts in the Dirichlet mixture framework.
In this case, if TP2DP2 model achieves a higher log-likelihood with fewer cluster numbers, it indicates
that our method is better at capturing the characteristics of the data and provides a better fit. Table 3
summarizes the average results for different models in five trials.

In the experiment on the real-world dataset, the Dirichlet Mixture framework performs generally
worse than TP2DP2 in both dataset, but the number of posterior cluster numbers inferred by the
Dirichlet Mixture framework is generally larger. This reflects that TP2DP2 moderately reduces the
number of clusters to obtain more dispersed components without sacrificing much fitting capability.

2https://ant-research.github.io/EasyTemporalPointProcess/user_guide/dataset.html
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