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ABSTRACT

Spatiotemporal prediction models facilitate various smart-city applications across
various domains,such as traffic and climate. While current advancements in these
models emphasize leveraging cutting-edge technologies to enhance spatiotempo-
ral learning, they often operate under the implicit assumption of spatiotemporal
feature consistency between inputs and labels, overlooking the critical issue of
historical-future inconsistency. In this study, we introduce a universal spatiotempo-
ral backward inconsistency learning module capable of seamless integration into a
variety of models, offering a notable performance boost by explicitly integrating
label features to address historical-future inconsistency. Our approach includes
the development of a spatiotemporal residual theory, advocating for a holistic
spatiotemporal learning that encompasses both forward spatiotemporal learning
to capture input data’s spatiotemporal features for generating base predictions,
akin to existing STNNs, and a backward process to learn residuals that rectify
historical-future inconsistency, thereby refining the base predictions. Based on this
theory, we design the Spatio-Temporal Backward Inconsistency Learning Module
(STBIM) for this backward correction process, comprising a residual learning
module for decoupling inconsistency information from input representations and
label representations, and a residual propagation module for smoothing residual
terms to facilitate stable learning. The generated prediction correction is used
to enhance the prediction accuracy. Experimental results on 11 datasets from
the traffic and atmospheric domains, combined with 15 spatiotemporal prediction
models, demonstrate the broad positive impact of the proposed STBIM. The code
is available at https://anonymous.4open.science/r/ICLR2025-2598.

1 INTRODUCTION

Spatiotemporal prediction is critical for smart cities, having significant impacts in the transportation
and atmospheric domains(Miao et al., 2022; Liu et al., 2024a; 2021). Current advances in spatiotem-
poral neural networks (STNNs) focus on crafting more expressive architectures beyond conventional
models such as GCN (Kipf and Welling, 2017) or Transformer (Vaswani et al., 2017). Drawing
inspiration from the fields of natural language and vision, innovative architectural concepts are being
integrated into STNNs, such as the adoption of masked autoencoder (MAE) technology.

However, as the complexity of the models increases, the potential for performance gains may decrease
(Shao et al., 2022a; Tang et al., 2022). In contrast to this prevailing trend, we delve into existing
Spatiotemporal Neural Networks (STNNs) to uncover avenues for improvement: the majority of
STNNs engage in a forward learning process to capture the spatiotemporal features of historical
observations (inputs). Subsequently, the acquired representations, known as label representations, are
fed into a predictor (e.g., a fully connected layer) for decoding and generating labels. This traditional
approach implicitly operates under the assumption of historical-future consistency, presupposing that
the spatiotemporal features of the input data and labels align seamlessly. However, this assumption is
precarious, as discrepancies in spatiotemporal features between the input and labels can exist. We
term such discrepancies as historical-future inconsistency. In the spatial dimension, this inconsistency
can manifest in two scenarios: 1) similar input data following by different labels, and 2) different
input data following by similar labels. To illustrate this concept, we depict time series data collected
from two sensors (#15 and #600) in the LargeST-SD dataset (Liu et al., 2024b). In Figure 1 (a),
these two sensors exhibit similar traffic flow patterns in the input data. However, in the subsequent
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prediction future values, they show distinctly different patterns. Conversely, in Figure1 (b), despite
differences in the distribution of traffic flow in the input data, they exhibit significant similarity
in the subsequent labels. As illustrated in Figure 1 (c), inconsistencies in temporal features exist
between historical and future values. Typical examples of this phenomenon include abnormal signals
characterized by a rapid increase or decrease in traffic flow. STNNs encounter difficulty in accurately
discerning historical-future inconsistencies, consequently leading to prediction errors. Despite the
implementation of specialized techniques, such as node embedding, to support the forward learning
process by some researchers (Deng et al., 2021; Shao et al., 2022a), we contend that STNNs grounded
in the historical-future consistency assumption may encounter persistent challenges to effectively
mitigate this inconsistency due to suboptimal modeling of label features.

We propose integrating label features into the spatiotemporal learning process to enhance the ef-
fectiveness of the model in addressing historical-future inconsistencies. Our approach involves the
development of the spatiotemporal residual theory, which advocates for a bidirectional spatiotemporal
learning paradigm that extends a backward process within the existing paradigm. Specifically, the
theory reveals that considering label features, the final prediction should be determined by two key
components: the base prediction obtained from forward spatiotemporal learning of input data features,
akin to existing STNNs, termed as the base prediction, and the prediction correction term generated
through learning residuals, representing historical-future inconsistencies.
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Figure 1: historical-future inconsistency in the dimensions of spatial and temporal.

Building upon this novel paradigm, we design a simple yet effective Spatio-Temporal Backward
Inconsistency Learning Module, namely STBIM. This module, designed to be model-agnostic,
seamlessly integrates into existing STNNs to enhance performance. Specifically, any STNN is
used to perform forward spatiotemporal learning, generating label representations and making
base predictions. Subsequently, STBIM disentangles the residual terms by comparing the label
representation with the input representation. The use of label representation enables us to model
spatiotemporal inconsistency across diverse dimensions without directly accessing the labels, as
they closely mirror the distribution of the labels, akin to high-dimensional feature mappings of the
labels(Li et al., 2015; Shalev et al., 2018). After smoothing the generated residuals with a propagation
kernel to avoid outlier signals, we decode the residuals to generate correction terms for improving
accuracy by correcting base prediction. During training, STBIM can be updated end-to-end with
the STNN to effectively model label-input inconsistency, while during inference, STBIM can drive
STNN to generate more precise predictions. We thoroughly evaluate the effectiveness of STBIM on
12 datasets with over 11 advanced STNNs, and results demonstrate the extensive effectiveness of our
module. The maximum performance increase can be up to 21.18%.

Our contributions can be summarized as: (1) Novel paradigm. We develop the spatiotemporal
residual theory, promoting a novel bidirectional spatiotemporal learning paradigm integrating with
label features. (2) Universal module. STBIM, a straightforward yet potent module, seamlessly
integrates with existing STNNs, which perform a backward process to explicitly model historical-
future inconsistency. (3) Thorough experiment. We comprehensively evaluate our model on 11
commonly used spatiotemporal datasets from transportation and atmospheric domains with over 15
advanced STNNs to demonstrate the effectiveness of the STBIM module.

2 RELATED WORK

Spatiotemporal prediction. Recently, STNNs are the most representative approaches for spatiotem-
poral prediction tasks (Zhou et al., 2023; Wang et al., 2023; Xia et al., 2023; Huang et al., 2024; Zhou
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Figure 2: The overall framework of STBIM for spatiotemporal learning.

et al., 2020), which typically include a spatial module that captures spatial dependencies and a se-
quential module that captures temporal dependencies respectively. For example, SSTBAN (Guo et al.,
2023) follows a multi-task framework by incorporating a self-supervised learner to produce robust
latent representations for historical traffic data. STID (Shao et al., 2022a) identified spatiotemporal
deviation phenomena and proposed utilizing node embeddings to alleviate spatiotemporal deviation.
However, it did not effectively model label features, thus failing to thoroughly capture spatiotemporal
inconsistencies, especially regarding temporal inconsistency features. In the experimental section,
we provide a detailed comparison with STID in Appendix B.6. Some studies explore non-model
approaches such as ST-LoRA (Ruan et al., 2024) to improve existing models with node-adaptive
low-rank layers, the reported results show limited enhancements. Furthermore, Adaptive Graph
Sparsification (AGS) (Duan et al., 2023) and Graph Winning Ticket (GWT) (Duan et al., 2024)
algorithms focus on optimizing adjacency matrices in prediction models to improve operational
efficiency of Adaptive Spatial-Temporal Graph Neural Networks like AGCRN. In contrast to the
aforementioned work, we propose a universal module that can significantly enhance the performance
of models across various tasks.

Spatiotemporal shift learning in OOD scenario. Traditional spatiotemporal architectures adhere to
the independent and identically distributed (IID) assumption, while spatiotemporal data shift poses a
challenge for out-of-distribution (OOD) generalization. Several spatiotemporal out-of-distribution
(OOD) models have emerged in recent literature. For instance, CauSTG (Zhou et al., 2023) introduces
a causal framework designed to transfer both local and global spatiotemporal invariant relationships
to OOD scenarios. CaST (Xia et al., 2023) utilizes a structural causal model (SCM) to interpret the
data generation processes of spatiotemporal graphs. Similarly, STEVE (Hu et al., 2023) encodes
traffic data into two disentangled representations and incorporates spatiotemporal environments
as self-supervised signals, thereby integrating contextual information into these representations.
Additionally, STONE (Wang et al., 2024) proposes a causal graph structure aimed at learning robust
spatiotemporal semantic graphs for OOD learning. However, while these models focus on addressing
overall shifts between training and testing data, we focus on a granular shift between historical
observed data (input) and predicted future data. This shift is present in both OOD and IID scenarios.

3 PROBLEM PRELIMINARIES

Spatiotemporal graph data. We use a graph G = (V, E ,A) to represent spatiotemporal data, where
V means the node set with N nodes, E means the set of edges, and A ∈ RN×N is the weighted
adjacency matrix of the graph G. We use xt ∈ RN×f to represent the observed spatiotemporal graph
data of N nodes at time step t, where f indicates the number of feature channels.

Spatiotemporal prediction. Given the graph G and the historical data of the past T time steps
x = {x1, ..., xT } ∈ RT×N×f as inputs, this task aims to learn a function F that can effectively
predict the values (i.e., labels) y = {xT+1, ..., xT+TP

} ∈ RTP×N×f in further TP time steps.
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4 METHOD

In this section, we present details of the proposed STBIM, as shown in Figure 2 and Algorithm 1. We
first develop a spatiotemporal residual theory to elucidate a comprehensive learning paradigm that
considers label features. Subsequently, based on this theory, we design our model and introduce the
implementation of the module. We summarize some important definitions in Table 6.

4.1 SPATIOTEMPORAL RESIDUAL THEORY WITH GAUSSIAN MARKOV RANDOM FIELD

The Gaussian Markov Random Field (GMRF) is a highly effective tool for modeling complex
dependencies among random variables in a structured manner, which has been widely utilized in
spatiotemporal dynamic analyses (Zheng and Su, 2016; Furtlehner et al., 2021). Drawing insights
from these pioneering studies, we incorporate the GMRF model into our research to capture intricate
relationships in spatiotemporal data. This GMRF maps spatiotemporal data points to variables and
analyzes the interdependencies among these variables. Throughout the subsequent sections, we
denote spatiotemporal data points using regular font and their corresponding random variables in the
GMRF using italic font. For instance, x and x represent spatiotemporal data and their associated
variables in the GMRF, respectively.

First, we stack the input data x and the label y along the temporal dimension into a tensor T :=
[x,y] ∈ R(T+TP )×N×f . We use Tt,:,: ∈ RN×f to denote spatiotemporal data of all nodes at t-th
time step. We also use T:,u,: ∈ R(T+TP )×f to represent the spatiotemporal data of u-th node during
all time steps. As mentioned above, the random variable of T in our GMRF is denoted as T .

In a GMRF, all values in the matrix T are jointly sampled from a distribution over the random variable
T . The joint distribution of T in the GMRF is characterized by a probability density function(Baz
et al., 2022; Rue and Held, 2005).

fT (T = T |W, θ) =
e−Φ(T|W,θ)∫

dT′e−Φ(T′|W,θ)
, (1)

where W ∈ R(T+TP )×(T+TP ) and θ ∈ R(T+TP ) are the parameters of GMRF. W should be
symmetric positive definite and θ is entry-wise positive. The exponent power function Φ is defined as

Φ (T |W, θ) :=
1

2

∑
u∈V

T⊤
:,u,:WT:,u,: +

1

2

T+TP∑
t=1

θtT
⊤
t,:,:A (A)Tt,:,:, (2)

=
1

2
V (T)

⊤
ΓV (T) , (3)

where the potential matrix Γ reflects the dependence of variables of GRMF in temporal and spatial
dimensions, which can be computed as

Γ := (W ⊗ IN ) + diag (θ)⊗A (A) ∈ R[(T+TP )N ]×[(T+TP )N ]. (4)

Here A (A) = IN − N (A) is a graph Laplace-like operator, and IN is the identity matrix of the
adjacency matrix A, N (·) is a normalization operator such as the normalized graph Laplacian
A (A) = IN −D−1/2AD−1/2 with degree matrix D = diag

(∑
u∈V A1,u, ...,

∑
u∈V AN,u

)
and

diagonalization operator diag (·). V (·) is a vectorization operator to unfold the first two dimensions of
the input, i.e., V (T) = (T1,1,:, ...,TT+TP ,N,:)

⊤ ∈ R[(T+TP )N ]×f , and ⊗ is the Kronecker product.

In a Gaussian Markov Random Field (GMRF), two key parameters play important roles in modeling
the relationships within the spatiotemporal graph. The parameter θ reflects the concept of homophily
among nodes in the graph, indicating that a higher value of θ signifies greater compatibility among
the features of nodes at the same time step. On the other hand, the parameter W is responsible for
controlling the level of noise present in the spatiotemporal environment. Specifically, it represents
the inverse of the variance between temporal data on each node, if there is no correlation between
nodes, i.e., A (A) = 0. For more detailed information about the parameters of the Gaussian Markov
Random Field, please refer to the provided Appendix A.

Theory 1. Forward spatiotemporal learning. Existing spatiotemporal learning models aims to
learn the conditional distribution of the future variable y with respect to historical input data x,

4
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i.e., y|x = x. In GMRF model, this goal can be be expressed in closed form as a composite of
spatiotemporal operations. Specifically, for any further time step t = {1, 2, · · · , TP }, the expectation
of the variable yt ∈ R1×N×f representing labels all nodes at t-th future time step with respect to the
input data x can be computed as:

E [yt|x] = (1− γt)

∞∑
k=0

(γtN (A))
k
x⊤ ×2 β

⊤
t , (5)

= (1− γt)

∞∑
k=0

(γtN (A))
k ×2 (βtx)

⊤
, (6)

where γt =
θ′
t

Wt′,t′+θ′
t

is a scaling scalar, and Wt′,t′ means the value of t′-th row and t′-th column of

W with t′ = T + t. βt = −
Wt′,1:T
Wt′,t′

∈ R1×T is a coefficient vector, where Wt′,1:T means the first T
column and t′-th row of W . ×2 implies performing tensor multiplication operations in the second
dimension. Detailed proofs for this theory are provided in Appendix A.2.

Equation 5 outlines a general learning paradigm employed by existing STNNs, where features from
both spatial and temporal dimensions are learned on input data x to generate predictions. The
spatial operator

∑∞
k=0 (γtN (A))

k corresponds to the graph convolution operation, utilizing Graph
Convolutional Networks (GCN) (Shao et al., 2022c) or Transformers (Jiang et al., 2023) as operators.
Conversely, the temporal operator βt captures the relationship between the current prediction time
step and the past T time steps. This component typically functions as a time series model, such as
those from the Temporal Convolutional Network (TCN) class (Bai et al., 2018), Recurrent Neural
Network (RNN) class (Cheng et al., 2024), or Transformer class (Wang et al., 2013).

Theory 2. Spatiotemporal residual theory. The paradigm discussed earlier focuses solely on
the spatiotemporal features of the input data, without effectively addressing the historical-future
inconsistency. To tackle this issue, we are interested in exploring the integration of label features into
the learning process. Let yt,u ∈ Rf represent the label of node u at time step t, and denote the labels
of the other nodes (excluding node u) as yt,û :=

[
y⊤
t,1, ...,y

⊤
t,u−1,y

⊤
t,u+1...,y

⊤
N

]⊤ ∈ R(N−1)×f .
There exist correlations between yt,u and the labels of the other nodes, considering only the spatial
correlation at each time step and disregarding the dependence across different time steps. Our
objective is to incorporate the spatiotemporal features into the Gaussian Markov Random Field
(GMRF) framework. The condition for the GMRF is to predict the variable yt,u with the goal of
minimizing the difference from the label yt,u. For any future time step t = {1, 2, · · · , TP }, the
expectation of yt,u with respect to x and yt,û is

E [yt,u|x,yt,û] = E [yt,u|x]︸ ︷︷ ︸
Base prediction

+βt,u (IN + αtA (A))u,û︸ ︷︷ ︸
Propagation Kernel

×2 rt,û︸︷︷︸
Residual︸ ︷︷ ︸

Correction

(7)

Detailed proofs of this theory are explained in Appendix A.2. The base prediction is generated by
forward spatiotemporal learning corresponding to Theory 1. The smoothing coefficient is used to

smooth the residual term for smooth learning. And τt,u =
[
(1 + αt)

(
1 + αtA (A)u,u

)]−1

is a

scalar with αt =
θt′

Wt′,t′
and t′ = T + t, where A (A)u,u indicates the entry on the u-th row and u-th

column of A (A), and (IN + αtA (A))u,û ∈ R1×(N−1) is the u-th row of IN + αtA (A) excluding
itself. The smoothing coefficient signifies the affinity between node u and the remaining nodes. In
fact, it can be regarded as a part from the graph kernel. To differentiate, we call this graph kernel
as residual propagation kernel. The residual term rt,û represents the difference between predicted
expectations and labels, which is denoted as follows:

rt,û := E [yt,û|x]− E [yt,û] ∈ R1×(N−1)×f . (8)

In Equation 8, the base prediction expectation E [yt,û|x] is determined by the high-dimensional
representation of the input data, while E [yt,û] depends on the autocorrelation of the labels. Therefore,
the residual term actually represents the difference in feature between the input and the label.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Mark. Theory 2 unveils that a holistic spatiotemporal learning paradigm integrating label infor-
mation should encompass both a forward process and a backward process. The forward process in
spatiotemporal learning captures the interdependencies in the input data to produce base predictions,
whereas the backward process is dedicated to modeling residuals for generating correction terms.
These residuals encapsulate the discrepant features of the input and labels. The ultimate prediction is
derived from the amalgamation of the base prediction and the correction terms. This theory aligns
perfectly with our assertion.

4.2 STBIM

We initially outline the general structure of conventional STNNs utilized for forward spatiotemporal
learning. Subsequently, we provide a comprehensive description of our innovative STBIM module
and elucidate its seamless integration with STNNs.

4.2.1 FORWARD SPATIOTEMPORAL LEARNING

As shown in Figure 2, existing spatiotemporal prediction models typically consist of three parts: (1)
An input encoder maps the input data into a high-dimensional feature space, generally combining
enhancement strategies such as node embedding technology. This function is denoted as FE : x 7→
Ze ∈ RT×N×de , where Ze is termed as the input representation; (2) A STNN module FST is used
to capture spatiotemporal features of input representation and generate the label representation Zh:
FST : Ze 7→ Zh ∈ RT×N×dh . The trained label representations Zh can approximate the high-
dimensional feature mapping of the labels; (3) A base decoder FD decodes the label representation
Zh to generate base prediction ybase, FD : Zh 7→ ybase ∈ RTP×N×f .

4.2.2 BACKWARD SPATIOTEMPORAL INCONSISTENCY LEARNING

Residual learning. In Equation 8, the residual term delineates the feature disparity between
the input and the labels. Our methodology involves modeling the input representation Ze and
the label representation Zh to calculate this residual. The initial label representations are derived
through spatiotemporal learning of input data. Post-training, these representations closely mirror
the distribution of the labels, akin to high-dimensional feature mappings of the labels. Leveraging
these representations for residual computation allows us to capture inconsistencies across diverse
dimensions. Furthermore, this strategy alleviates the requirement to access the real labels, particularly
in situations where acquiring the true labels is impractical during the inference phase.

Specifically, we employ a Multi-Layer Perceptron (MLP) with Gaussian Error Linear Units (GELU)
activation function (Hendrycks and Gimpel, 2016; Devlin et al., 2018) to map the label representation
Zh to the same space: Zh 7→ Zr ∈ RT×N×de . Subsequently, we decouple the spatiotemporal
inconsistent features by subtracting the two representations Ze −Zr, which helps filter out redundant
spatiotemporal features. This deviation is then fed into the STNN module FST , placing particular
emphasis on the model’s relearning of this information. Consequently, the resulting output Zres

represents the residual term. The overall calculation process can be outlined as follows:

Zres = FST (Ze −MLP (Zh)) . (9)

Residual propagation kernel. As show in Theory 2, it is essential to use spatiotemporal correlation
to smooth this residual term Zres. The smoothing process is similar to an aggregation process
based on a residual propagation kernel, i.e., graph kernel. In this paper, we thoroughly investi-
gate the effectiveness of different types of graph kernels, including predefined kernel, diffusion
kernel, adaptive kernel, and data-driven kernel; and their definition is obtained in Appendix A.3.
In order to enhance the representation ability of models, we deploy K kernels (K1,K2, ...,KK).
Let K := τ

(
IN + 1

K

∑K
i=1 αiKi

)
, where αi = diag (αi,1, αi,2, ..., αi,N ) ∈ (−1, 1)N×N and

τ = diag (τ1, τ2, ..., τN ) ∈ (0, 1)
N×N are the learnable parameters. The variable a represents the

intensity of residual diffusion across the global spatiotemporal graph originating from a particular
node, indicated by its magnitude. The sign of a determines whether the correlation between nodes
is positive or negative, thereby mitigating the risk of weak regression caused by an overly strong
assumption of homogeneity for anomalous data nodes (Xu et al., 2021; Kim et al., 2022). The
parameter τ plays a crucial role in determining the overall magnitude of the residual impact.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In fact, this residual propagation under this combination of kernels is equivalent to the linear Graph
Convolution (Wu et al., 2019a; He et al., 2020a) operation with residual skip connections. We denote
the residual propagation layer as FRP , and if we denote the number of residual propagation layers as
L, we get the smoothed residual Z̃res along the overall spatiotemporal structure as

Z̃res =

[
τ

(
IN +

1

K

K∑
i=1

αiKi

)
×2 Zres

]L
. (10)

Prediction correction. We employ a MLP layer with the GELU activation function as a residual
decoder FR to generate a prediction correction term ycor = FR

(
Z̃res

)
. Finally, this correction is

added into the base prediction ybase to yield final prediction ŷ:
ŷ = ybase + ycor. (11)

Training strategy of STBIM. We introduce two training strategies for STBIM: ”Joint Training”
and ”Fine-tuning.” In Joint Training, STBIM and STNN are trained end-to-end from scratch. The
fine-tuning method involves fine-tuning both pre-trained STNN and STBIM together.

5 EXPERIMENT

In this section, we evaluate the effectiveness of the proposed generic modules across eleven datasets
and over fifteen baselines. We primarily address the following potential concerns: Q.1 Does the
proposed module enhance performance prediction for existing STNNs? Q.2 How sensitive is the
model to hyperparameters? Q.3 Can the modules effectively handle historical-future inconsistency?
Furthermore, in the appendix, we detail the comparison between STID and STBIM, the computational
costs of STBIM, and its additional convergence computation benefits.

Datasets. We deploy experiments on 11 datasets from two domains: transportation and atmo-
sphere. In the transportation domain, we cover several commonly used PeMS0X (X=03, 04, 07, 08),
PEMS3-Stream (Chen et al., 2021), and METR-LA datasets, as well as an emerging dataset called
LargeST (Liu et al., 2023b), which consists of three sub-datasets, including an extremely large-scale
dataset with 8,600 nodes. The KnowAir (Wang et al., 2020) dataset records 4-year PM2.5 features
from 184 atmospheric monitoring stations, and we further spilt KnowAir into 3 sub-datasets. The
details of these datasets are shown in Table 1. We divide traffic datasets into training, validation, and
test sets along time dimension with a ratio of 6:2:2. More details of training/validation/test sets can
be found in Appendix B.1.

Table 1: Summary of spatiotemporal datasets.
Dataset Nodes Edges Frames

LargeST-SD 716 17,319 525,888
LargeST-GBA 2,352 61,246 525,888
LargeST-GLA 3,834 98,703 525,888
LargeST-CA 8,600 201,363 525,888

PEMS03 358 546 26,208
PEMS04 307 338 16,992
PEMS07 883 865 28,224
PEMS08 170 276 17,856

METR-LA 207 1,515 34,272
PEMS3-Stream 655 1,577 8,928

KnowAir 184 3,796 3,4380

Implementation. We use the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with a learning
rate of 0.002 for optimizing. To assess the efficacy
of our framework, we employ commonly utilized
Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Mean Absolute Percentage Error
(MAPE) as metrics. The models are executed on
a Nvidia A100 with 40GB memory, and the code
environment is based on the PyTorch framework
using Python 3.8.3. The length of the input time
window and future prediction window are both set to
12 in traffic datasets and 24 in atmosphere datasets.
When training STNNs with STBIM, we maintain the
hyperparameters of STNNs, ensuring that the performance gain comes only from STBIM.

Baselines. We eployed STBIM into a dozen STNNs to evaluate the efficacy. These baselines
consist of various models including LSTM, STGCN (Yu et al., 2017), STNN (He et al., 2020b),
ASTGCN (Guo et al., 2019), STAEFormer (Liu et al., 2023a), AGCRN (Bai et al., 2020), STID (Shao
et al., 2022b), GC-LSTM (Qi et al., 2019), PM2.5GNN (Wang et al., 2020), nodesFC-GRU (Wang
et al., 2020), stemGNN (Cao et al., 2020), STWA (Cirstea et al., 2022), D2STGNN (Shao et al.,
2022d), DGCRN (Li et al., 2023), DDGCRN (Weng et al., 2023), and BigST (Han et al., 2024). All
models are executed using the hyperparameters outlined in the official code (Liu et al., 2023b; Wang
et al., 2020). Further information regarding these baselines can be found in Appendix B.2.
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Table 2: Prediction performance of models on traffic datasets. We sequentially report the performance
of each model without STBIM modules, with STBIM modules in joint-training manner (+JT), and
with STBIM modules in fine-tuning manner (+FT). ’Average improvement’ reports the improvement
of average prediction performance during 12 time steps using STBIM relative to basemodels.

LargeST-SD dataset

Method STBIM
Horizon 3 Horizon 6 Horizon 12 Average improvement

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

LSTM
- 19.13 30.80 11.62 26.07 41.34 16.32 37.87 59.37 25.08 - - -

+JT 17.55 27.97 11.42 21.71 34.64 14.68 26.91 44.06 19.44 +19.50% +18.20% +13.37%
+FT 18.68 30.07 11.52 24.79 39.08 15.94 35.20 54.96 23.86 +5.33% +5.73% +3.24%

STID
- 15.39 25.71 9.90 18.05 30.53 12.02 22.01 39.06 15.35 - - -

+JT 14.66 24.71 9.45 17.08 29.03 11.20 20.83 35.64 14.31 +5.11% +5.95% +6.06%
+FT 15.15 25.35 9.84 17.00 29.99 11.89 21.61 38.15 15.01 +1.61% +1.92% +1.24%

STAEFormer
- 15.68 25.71 10.65 18.33 30.42 12.66 22.77 38.64 15.99 - - -

+JT 15.48 25.92 10.14 17.91 30.31 11.86 21.61 37.13 14.96 +3.09% +1.40% +4.89%
+FT 15.46 25.66 10.31 18.14 30.42 12.18 21.90 38.17 15.11 +2.22% +0.68% +3.63%

STGCN
- 17.37 29.91 12.36 19.29 33.36 13.39 22.99 40.28 15.80 - - -

+JT 16.05 27.39 10.80 18.30 31.45 12.21 22.17 39.22 15.12 +5.73% +5.77% +8.79%
+FT 15.97 27.52 10.76 18.25 31.67 12.34 22.07 39.27 15.36 +5.94% +5.24% +8.13%

STTN
- 18.11 28.92 11.33 21.26 34.33 13.30 25.78 41.43 17.06 - - -

+JT 15.94 25.76 10.66 18.49 30.26 12.33 22.54 38.58 16.10 +12.18% +9.85% +6.12%
+FT 16.16 26.50 10.60 18.62 31.10 12.52 22.65 39.29 15.62 +11.27% +7.30% +6.49%

ASTGCN
- 20.23 32.17 13.09 25.94 40.54 17.13 32.34 50.86 22.23 - - -

+JT 17.41 28.24 11.17 20.92 34.05 13.59 24.80 40.51 17.22 +18.74% +16.00% +21.18%
+FT 18.58 29.84 12.31 23.43 37.90 15.96 29.70 48.73 21.58 +8.36% +5.44% +6.92%

AGCRN
- 15.57 28.49 11.39 17.66 31.44 12.86 21.40 40.44 16.35 - - -

+JT 15.14 25.49 10.16 17.39 29.70 11.70 20.95 29.96 14.91 +2.03% +7.39% +9.57%
+FT 15.52 28.51 11.48 17.65 31.38 12.79 21.39 40.42 16.40 +0.17% +0.15% +0.08%

DGCRN
- 15.83 28.48 12.60 20.50 33.24 14.08 24.16 40.67 16.68 - - -

+JT 15.28 25.45 10.98 17.33 29.27 11.55 21.20 36.57 14.55 +1.14% -0.07% +4.30%
+FT 15.72 25.39 10.28 17.41 29.20 11.01 21.10 36.23 14.19 +1.48% +1.65% +0.18%

DDGCRN
- 15.64 29.23 11.12 18.34 33.19 12.82 22.79 40.97 16.46 - - -

+JT 15.59 28.00 11.10 18.13 31.53 11.99 22.10 39.17 15.02 +1.73% +3.80% +5.95%
+FT 15.66 29.35 11.11 18.34 33.26 12.77 22.63 40.78 16.09 +0.06% -0.09% +0.23%

D2STGNN
- 14.93 25.29 10.37 17.40 29.69 12.16 21.31 36.30 14.99 - - -

+JT 14.83 24.68 9.79 17.23 28.72 11.17 20.61 34.42 13.58 +1.41% +3.55% +8.11%
+FT 14.89 24.83 9.74 17.42 28.81 11.31 20.81 34.58 13.81 +1.21% +3.56% +6.02%

BigST
- 15.83 26.04 11.38 18.17 31.13 13.12 22.92 39.63 16.34 - - -

+ JT 14.39 24.27 10.24 17.56 29.09 11.78 21.01 36.01 14.88 +8.63% +6.52% +10.31%
+ FT 14.62 24.41 10.50 17.90 29.48 12.16 21.17 36.20 14.94 +7.08% +5.913% +7.92

LargeST-GBA dataset

Method STBIM
Horizon 3 Horizon 6 Horizon 12 Average improvement

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

LSTM
- 20.21 33.22 15.14 27.28 43.34 23.08 38.55 60.13 36.68 - - -

+FT 17.67 31.24 15.14 24.47 38.37 22.09 31.77 49.32 32.92 +11.89% +12.70% +6.34%
+JT 19.34 31.70 14.96 24.71 39.26 21.90 32.18 50.35 33.26 +11.06% +10.92% +6.34%

STID
- 17.80 29.56 14.32 21.04 34.76 17.28 25.23 42.22 21.48 - - -

+JT 17.43 29.35 13.37 20.43 34.19 15.94 24.35 40.90 19.92 +2.74% +1.88% +7.08%
+FT 17.67 29.65 13.71 20.77 34.80 16.51 24.79 41.75 20.60 +1.25% +0.43% +4.15%

STAEFormer
- 18.55 29.94 14.99 21.69 34.65 16.87 26.42 41.50 21.31 - - -

+JT 18.05 29.40 14.43 21.18 34.04 16.17 25.76 41.21 20.80 +3.46% +1.16% +1.93%
+FT 18.32 29.84 14.15 21.25 34.15 16.91 25.66 40.83 21.34 +1.94% +0.96% +1.05%

STGCN
- 20.47 33.85 15.26 22.75 37.49 17.03 25.51 42.13 19.80 - - -

+JT 19.38 32.14 14.52 22.16 36.65 16.73 25.61 42.62 20.04 +2.31% +2.02% +3.25%
+FT 20.22 33.55 15.12 22.56 37.40 16.91 25.44 42.12 19.79 +0.80% +0.40% +0.53%

STTN
- 18.92 30.48 15.25 22.31 35.50 18.88 26.59 42.58 23.35 - - -

+JT 18.70 29.98 15.07 21.99 35.02 17.89 26.05 42.06 22.49 +1.73% +1.45% +4.27%
+FT 18.81 29.37 14.98 21.34 35.01 17.16 26.03 42.04 22.70 +2.14% +2.67% +3.89%

ASTGCN
- 21.53 34.07 17.44 26.31 40.36 24.71 34.00 52.97 30.15 - - -

+JT 19.91 31.60 16.29 24.73 38.52 21.18 30.51 47.44 27.73 +7.01% +5.35% +9.04%
+FT 20.44 33.63 16.52 25.14 39.77 24.66 32.96 50.67 29.80 +0.61% +1.00% +2.76%

AGCRN
- 18.04 30.11 13.99 20.79 34.29 16.33 24.28 39.65 20.21 - - -

+JT 16.80 28.56 12.52 20.10 33.45 14.98 23.73 39.10 18.79 +2.00% +1.80% +6.95%
+FT 17.90 29.99 12.99 20.75 34.27 15.41 24.24 39.01 19.17 +0.29% +0.38% +5.91%

DGCRN
- 18.02 28.97 15.23 21.09 33.88 18.13 25.86 41.02 23.66 - - -

+JT 17.86 28.43 15.10 20.89 32.76 18.03 25.69 40.89 22.35 +1.38% +0.57% +4.67%
+FT 17.89 28.54 15.13 20.77 32.55 17.98 25.66 40.76 22.56 +1.52% +0.45% +4.23%

DDGCRN
- 17.86 29.11 15.26 21.05 33.86 18.07 25.62 41.15 23.55 - - -

+JT 17.47 28.22 15.24 20.72 32.74 18.00 25.57 40.81 22.19 +2.64% +0.81% +5.49%
+FT 17.67 28.60 14.99 20.81 32.50 17.93 25.42 40.59 23.55 +1.61% +0.75% +0.11%

D2STGNN
- 17.23 29.91 12.22 20.50 34.79 14.96 25.13 41.8 19.67 - - -

+JT 16.83 29.27 11.97 20.32 34.35 14.56 24.81 41.21 19.27 +1.03% +1.19% +5.13%
+FT 17.06 29.59 12.01 20.37 34.64 14.71 24.92 41.72 19.25 +0.31% +1.26% +1.72%

BigST
- 18.29 29.79 15.18 21.98 35.39 18.91 26.74 43.48 23.91 - - -

+ JT 17.37 29.26 13.78 20.88 33.87 15.89 24.79 41.52 20.32 +17.36% +3.48% +15.50%
+ FT 17.35 29.44 13.74 20.85 33.36 15.93 24.91 40.94 20.28 +17.44% +4.39% +15.01%

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.1 ANALYSIS OF EXPERIMENT RESULTS (Q.1)

We report the performance of the proposed STBIM combined with various STNNs on LargeST-SD
and -GBA datasets in Table 2. Note that due to space constraints, experiment analysis on the other
datasets can be obtained in Appendix B.5.

The AGCRN model demonstrates low prediction errors due to its adaptive graph learning strategy,
enabling the model to accurately capture spatial dependencies. Interestingly, the MLP-based architec-
ture STID achieves competitive predictions, possibly attributed to its utilization of spatial identity
encoding, which enhances the representation of spatial node embeddings. When the spatiotemporal
prediction baselines are combined with the proposed STBIM module, all models exhibit improved
performance. Particularly noteworthy is the significant performance enhancement observed in certain
underperforming models, with ASTGCN showing an average improvement of 15% on the LargeST-
SD dataset with the integration of STBIM. Even for competitive baselines like STID and AGCRN, our
module yields substantial performance gains. Notably, even for complex models such as D2STGNN
and DDGCRN, the benefits of our module remain effective.

By comparing the training strategies of two STBIMs, it is evident that in various scenarios, the joint
training approach generally outperforms the alternative methods. This advantage can be attributed to
the stronger adaptability provided by joint training. In conclusion, experimental results demonstrate
that our module significantly enhances the prediction accuracy of spatiotemporal prediction models in
a wide range of scenarios. This improvement stems from modeling the inconsistent features between
input and labels, rather than simply increasing the parameter size (as analyzed in Appendix C.0.1).

5.2 HYPERPARAMETER SENSITIVITY ANALYSIS (Q.2)

The number of residual propagation layers L. We evaluate the sensitivity of L in Equation 10.
Taking STID and STGCN as examples, experiment results on the LargeST-SD dataset are reported
in Figure 3. We can see that optimal values of these two models are 2 and 3, respectively. When
L is smaller than the optimal value, shallow residual propagation may not effectively propagate
sufficient spatiotemporal information of labels. If L is equal to 0, it means that we do not utilize label
information, and the large prediction errors also prove the validity of STBIM. On the other hand,
when L exceeds the optimal value, excessive smoothing of information may occur due to deep layers.
Particularly, when L is excessively large, STBIM may have a negative impact, potentially due to
overfitting caused by increased model complexity.

Figure 3: Hyperparameter experiment of L with
STID (Upper) and STGCN (lower).

Table 3: Kernel function sensitivity analysis.

Kernel
STID

MAE RMSE MAPE

Transition 17.63 30.40 11.76
DoubleTransition 17.40 29.56 11.44

Adaptive 17.12 28.59 11.19
Data-driven 17.99 30.14 12.84

Kernel
STGCN

MAE RMSE MAPE

Transition 19.04 33.53 13.42
DoubleTransition 18.85 32.99 12.90

Adaptive 18.56 32.34 12.68
Data-driven 19.30 32.94 13.17

Kernel function. We evaluate the effect of different graph kernel types on model performance, which
is explained in Equation 3. The definitions of these kernels are described in Appendix A.3. We
take STGCN and STID as examples, and the results are shown in Table 3. We find that adaptive
kernel function for residual propagation achieves more accurate performance for both models. The
underlying reason is that it can capture a more comprehensive spatiotemporal information.
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5.3 EFFECTIVENESS ANALYSIS FOR HISTORICAL-FUTURE INCONSISTENCY (Q.3)

We assess STBIM’s effectiveness in addressing inconsistencies in spatial and temporal dimensions.
Temporal inconsistency is evaluated based on samples where the increase ratio of input data mean
compared to label mean exceeds 75%. Spatial inconsistency is identified when the similarity of
input sequences between two nodes ranks in the top 20%, while their predicted label similarity
falls within the lowest 5%. The experimental results for the Large-SD datasets, as presented in
Tables 4 and 5, indicate that while some models attempt to enhance node uniqueness representation
through node embedding, existing high-level architectures still struggle to effectively manage non-
consistent samples due to the input-label consistency assumption. Our models improve label features
by explicitly modeling them. The prediction visualizations are illustrated in Figure 4. For a more
detailed comparison between STID and STBIM, please refer to Appendix B.6.

Table 4: Temporal inconsistency modeling.
Model MAE RMSE MAPE

STGCN 27.67 40.42 45.20
+STBIM 24.34 37.60 42.27

STID 27.06 41.40 43.63
+STBIM 20.55 32.16 33.50

STAEformer 25.63 36.06 35.26
+STBIM 21.79 34.19 33.91

D2STGNN 21.09 33.37 34.64
+STBIM 20.31 31.37 32.85

Table 5: Spatial inconsistency modeling.
Model MAE RMSE MAPE

STGCN 29.43 43.61 46.34
+STBIM 25.12 39.89 43.10

STID 25.78 39.15 28.68
+STBIM 23.06 38.22 24.31

STAEformer 27.71 35.12 26.40
+STBIM 23.89 34.19 22.91

D2STGNN 24.31 34.62 24.71
+STBIM 21.09 33.74 21.13
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(a) Visualization cases of historical-future inconsistency in the temporal dimension
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Figure 4: Visualization cases of historical-future inconsistency.

6 CONCLUSION

In this research, we introduce a versatile module named STBIM designed to boost the predictive
capabilities of STNNs. STBIM effectively integrates label information into spatiotemporal learning
by utilizing residuals. Initially, it separates the residual elements from the input and labels. It then
refines these residuals by incorporating spatiotemporal correlations. Finally, the module leverages the
enhanced residuals to adjust the predictions, thereby improving the model’s accuracy. By integrating
the STBIM module into various spatiotemporal prediction models and conducting comprehensive
experiments, we observed substantial performance enhancements of up to 21.18%.
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A MATHEMATICAL PROPOSITIONS AND PROOFS

A.1 SPATIOTEMPORAL MULTIVARIATE GAUSSIAN DISTRIBUTION

Multivariate Gaussian distribution. Consider the multivariate Gaussian distribution (Goodman,
1963) over spatiotemporal variables T ∼ N (T̄,Σ), including historical and future temporal variables,
where T̄ is the expectation and Σ is the covariance matrix. The probability density of T is

fT
(
T|T̄,Σ

)
=

det (Σ)
1
2 exp

(
− 1

2

(
V (T)− V

(
T̄
))⊤

Σ−1
(
V (T)− V

(
T̄
)))

(√
2π
)(T+TP )N

. (12)

In the statements and proofs in Appendix, we use the bold subscript symbols x and y to denote the
subtensor of the tensor corresponding to the rows and columns of the x and y parts of T . Split the
variable into historical and future temporal part, then the spatiotemporal variables has the distribution
in the block form,

[x,y] ∼ N
(
[x̄, ȳ] ,

[
Σxx Σxy

Σyx Σyy

])
. (13)

In many case, the covariance matrix is dense while the precision matrix (or inverse covariance matrix)
Γ = Σ−1 is sparse (Fan et al., 2016), hence it is oftentimes economical-friendly to work with Γ. We
rewrite the block form distribution of spatiotemporal variables with precision matrix.

[x,y] ∼ N

(
[x̄, ȳ] ,

[
Γxx Γxy

Γyx Γyy

]−1
)
. (14)

Marginal distribution. The marginal distribution of future temporal variable y is simply self-relevant
from the mean and covariance

y ∼ N (ȳ,Σyy) . (15)
By the property of the inverse of block matrix (Choi, 2009), we have Σyy =(
Γyy − ΓyxΓ

−1
xxΓxy

)−1
, hence we rewrite the marginal distribution of future temporal variable in

the form of precision matrix,

y ∼ N
(
ȳ,
(
Γyy − ΓyxΓ

−1
xxΓxy

)−1
)
. (16)

Conditional distribution. The conditional distribution of future temporal variable y with respect to
history temporal variable x = x is also a multivariate Gaussian distribution

y|x = x ∼ N
(
ȳ +ΣyxΣ

−1
xx (x− x̄) ,Σyy −ΣyxΣ

−1
xxΣxy

)
. (17)

Moreover, one can show that ΣyxΣ
−1
xx = −Γ−1

yyΓyx and
(
Σyy −ΣyxΣ

−1
xxΣxy

)
= Γ−1

yy by the
block matrix inversion, then the conditional distribution can be written as

y|x = x ∼ N
(
ȳ − Γ−1

yyΓyx (x− x̄) ,Γ−1
yy

)
. (18)

Statements about parameters W and θ. The two parameters of GMRF: W and θ represent the
noise level in the spatiotemporal environment and homophily of nodes in the spatiotemporal graph
respectively.

We expain the proposition of W firstly. If we assume there is no correlation between nodes, i.e.,
A (A) = 0, then the potential matrix of MRF in the definition 4.1 reduces to

Γ = W ⊗ IN ∈ R[(T+TP )N ]×[(T+TP )N ]. (19)
Thus by the corresponding spatiotemporal multivariate gaussian distribution in the above explanation,
as example of variable y|x = x, the covariance matrix Σ′ of multivariate random variable yt|x = x
for arbitrary t = 1, 2, ..., TP satisfying

Σ′ = (Γyt,yt
)
−1

= (Wt′,t′IN )
−1

= W−1
t′,t′IN , (20)

for t′ = T + t. Hence variables in yt|x = x are independent and identically distributed (i.i.d.) and
variance of each variable in it is W−1

t′,t′ , that is what we claim.

As to θ, the greater the value of θ means that the feature of nodes in the corresponding time step
is more compatible. We consider the extreme cases. If all entries in θ are 0, which reduce to the
case deliberated above, then all nodes all i.i.d. through all time step, that is data among on the
nodes is not circulating, which is the most heterogeneous situation. If all entries in θ is converge to
positive infinity, then the data on the node is independent of itself and is only equal to the normalized
summation of the adjacent node (Zhou et al., 2003).
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A.2 PROOFS OF THEORY

Proof of Theory 1 By the definition 4.1 of GMRF, we can define the multivariate Gaussian distribu-
tion A.1 of probability density function,

fT (T) = (2π)
−N(T+TP )

2 det
(
Γ−1

) 1
2 exp

(
−1

2
V (T)

⊤
ΓV (T)

)
, (21)

where

Γ =

[
Γxx Γxy

Γyx Γyy

]
= Σ−1, (22)

is the precision matrix, i.e., the inverse of covariance matrix Σ. The temporal tensor are jointly
sampled via multivariate Gaussian distribution V (T ) ∼ N (0,Γ−1). Here, W satisfying symmetric
positive definite and θ satisfying entry-wise positive are the pseudo parameters of standard MRF
model. Hence we have y|x ∼ N

(
−Γ−1

yyΓyxV (x) ,Γ−1
yy

)
, i.e.,

E [y|x] = −Γ−1
yyΓyxV (x) = − (Wyy ⊗ IN + diag (θy)⊗A (A))

−1
(Wyx ⊗ IN ))V (x) . (23)

Hence for arbitrary t ∈ 1, 2, ..., TP , we have

E [yt|x] = − (WT+t,T+tIN + θT+tA (A))
−1

(WT+t,1:T ⊗ IN )V (x) , (24)

= − (WT+t,T+tIN + θT+tA (A))
−1

x⊤ ×2 W
⊤
T+t,1:T , (25)

= (WT+t,T+tIN + θT+tA (A))
−1 ×2 (−WT+t,1:Tx)

⊤
. (26)

where ×i is the matrix multiplication of tensor on the i-th dimension. Let αt = θt
WT+t,T+t

and

βt = − WT+t,1:T

WT+t,T+t
, we obtain reduce the above equation like

E [yt|x] = (IN + αtA (A))
−1

x⊤ ×2 β
⊤
t , (27)

= (IN + αtA (A))
−1 ×2 (βtx)

⊤
. (28)

Moreover, since limk→∞N (A)
k
= 0, we expand (IN + αtA (A))

−1 in terms of the Neumann
series (Moulinec et al., 2018) as

(IN + αtA (A))
−1

= ((1 + αt) IN − αtN (A))
−1

, (29)

=
1

1 + αt

(
IN −

αt

1 + αt
N (A)

)−1

, (30)

= (1− γt)

∞∑
k=0

(γtN (A))
k
. (31)

where γt = αt/ (1 + αt). Hence we can get

E [yt|x] = (1− γt)

∞∑
k=0

(γtN (A))
k
x⊤ ×2 β

⊤
t , (32)

= (1− γt)

∞∑
k=0

(γtN (A))
k ×2 (βtx)

⊤
,∀t ∈ 1, 2, ..., TP , (33)

which completes the proof.

Proof of Theory 2 Without loss of generality, we simplify the subsequent calculations by assuming
two nodes disjoint union partition V = V1∪V2, i.e., V1∩V2 = ∅ to explore what are the implications
for spatiotemporal learning when adding future impacts between data. Recall the result of Theory 1
and above proof, we get

y|x ∼ N
(
E [y|x] ,Γ−1

yy

)
, (34)

hence the conditional distribution of yt,V1
respect to yt,V2

and x for the disjoint union V1 ∪ V2 of
node set V and arbitrary t = 1, 2, ..., TP is

yt,V1
|x,yt,V2

∼ N
(
E [yt,V1

|x] + Γ−1
t,V1V1

Γt,V1V2
×2 (E [yt,V1

|x]− yt,V2
) ,Γ−1

t,V1V1

)
, (35)
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where yt,Vi
:=
[
y⊤
t,u,: | ∀u ∈ Vi

]⊤
for i = 1, 2. Hence the above expectation is,

E [yt,V1 |x,yt,V2 ] (36)

= E [yt,V1
|x] + Γ−1

t,V1V1
Γt,V1V2

(E [yt,V1
|x]− yt,V2

) , (37)

= E [yt,V1 |x] + (WT+t,T+tIN + θT+tA (A))
−1
V1V1

(WT+t,T+tIN + θT+tA (A))V1V2
×2 rt,V2 ,

(38)

= E [yt,V1
|x] + (IN + αtA (A))

−1
V1V1

(IN + αtA (A))V1V2
×2 rt,V2

, (39)

= E [yt,V1
|x] + (1− γt)

∞∑
k=0

(
γtN (A)V1,V1

)k
(IN + αtA (A))V1,V2

×2 rt,V2
, (40)

still from the expansion of Neumann series (Moulinec et al., 2018) where αt = θt
WT+t,T+t

and
γt = αt/ (1 + αt). The term (IN + αtA (A))V1,V2

indicates the submatrix consisting of rows
corresponding to entries in V1 and columns corresponding to entries in V2 for IN + αtA (A),
similarity to N (A)V1,V1

, which illustrates the dynamics of residual propagation in this context. It
must be noted, however, that the results of the closed form are independent of the node disjoint union
partition chosen, as determined by the equivariance of the GMRF (Baz et al., 2022). Hence, the case
we considered in Theory 2 is just a special example in the proof when V1 = {u} and V2 = V \ {u}.

A.3 RESIDUAL PROPAGATION KERNEL

In traditional spatiotemporal graph learning, there are four widely used approaches to generate the
associations between nodes (i.e., adjacency kernel function): predefined kernel, adaptive kernel, and
data-driven kernel.

Predefined kernel. This kernel is typically constructed based on various prior information, such
as the geographical information of nodes. This kernel function remains static during the model
learning process. Specifically, for traffic data, we calculate the geographical distance between nodes
ds ∈ RN×N (Li et al., 2017; Wu et al., 2019b; Yu et al., 2017; Liu et al., 2024b) (Shuman et al.,
2013), then we construct the adjacency matrix kernel in the following manner:

As := e−
ds
σ2 ⊙ I{ds<−σ2 ln ε|ε∈(0,1)} and N (As) = AsD

−1
s , (41)

with degree matrix Ds and diagonalization operator diag. I is indicator function1and hyperparameter
ε ∈ (0, 1) filters through an extremely weak correlation to ease the burden of training. σ is the standard
deviation of ds. ⊙ is Hadamard Product. And for atmosphere data, we calculate the geographic
adjacency matrix based on longitude-latitude geodesic distance matrix dgeo ∈ RN×N (Wang et al.,
2014) and relative altitude matrix halt ∈ RN×N (Wang et al., 2020) if existing,

Ageo := I{dgeo<ε|ε>0} ⊙ I{halt<ξ|ξ>0} and N (Ageo) = D−1/2
geo AgeoD

−1/2
geo , (42)

where halt [u, v] := supλ∈(0,1) {hw −max {hu, hv} |w = λu+ (1− λ) v}.

Diffusion kernel. The diffusion kernel represents a diffusion process where information is assumed
to transfer from one node to its neighboring nodes with certain transition probabilities. This concept
has a strong analogy in spatiotemporal graph domains, such as the traffic flow between nodes, which
can be viewed as a diffusion process. Specifically, it is generally obtained in the following ways:

Adouble :=
[
Aroad,A

⊤
road

]
and N (Adouble) = AdoubleD

−1
double. (43)

Adaptive kernel. The adaptive kernel is generated with two learnable node embeddings that can
capture more complex node features from the data (Wu et al., 2019b; Shao et al., 2022d; Bai et al.,
2020), which can be computed as:

Aadp := ReLU
(
E1E

⊤
2

)
and N (Aadp) = Softmax (Aadp − diag (Aadp)) , (44)

where E1 and E2 ∈ RN×dadp are two learning node embeddings.
1The indicator function can also be replaced by some transformation of Heaviside step function (Weisstein,

2002).
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Data-driven kernel. This kernel is generated by a complex neural network, notably using the
Transformer architecture (Shao et al., 2022d; Jiang et al., 2023). Following these inspirations, we use
Transformer to compute this kind of kernel:

Aatt :=
MLP1

(
Z

(t)
res

)
MLP2

(
Z

(t)
res

)⊤
√
dhid

and N (Aatt) = Softmax (Aatt − diag (Aatt)) , (45)

where Z
(t)
res is the residual representation of t-th time step.

A.4 IMPORTANT VARIABLES AND DEFINITIONS

We explain the meaning or definition of each variable in detail, as shown in Table 6.

Table 6: Some important variables and their definitions.

Variable Definition

x/x Data/ its corresponding variable in GMRF
y/y Label/ its corresponding variable in GMRF
W /θ Parameters of GMRF
Ze Input representation
Zh Label representation

Zresres Residual representation/Smoothed residual representation
ybase/ycorr Base predition/Prediction correction
FE Input encoder
FST STNN
FD Base encoder
FR Residual decoder
T The length of input time step
N The number of nodes
Tp The length of label time step
f The number of features of spatiotemporal data
K The number of kernels in residual propagation kernel
L The number of residual propagation layers

A.5 PSEUDOCODE OF STBIM

In Algorithm 1, we present the pseudocode of STBIM, including the forward learning process and the
backward correction process. The forward spatiotemporal learning aims to capture the spatiotemporal
features of input data and generate label representations. The backward correction process utilizes
the inconsistencies between input and label representations to generate correction terms. It is worth
noting that we use label representations instead of directly using labels, eliminating the need for
direct access to labels in our method. Label representations can be seen as high-dimensional feature
mappings of labels, preserving rich information.

B EXPERIMENTS

B.1 DATASETS DETAILS

LargeST-SD, -GBA, -GLA, and -CA datasets used in our experiments are indeed subsets of the
LargeST which is a large-scale traffic benchmark introduced in (Liu et al., 2023b). LargeST is a
comprehensive dataset specifically designed for evaluating spatiotemporal traffic prediction tasks. It
collects highway speed records from the PeMS (Performance Measurement System) with a sampling
frequency of 15 minutes over a period of 5 years. In our experiments, we use LargeST-SD, -GBA,
and -CA datasets in 2019. The datails are shown in Table 7.

The PEMS3-Stream dataset (Chen et al., 2021) is gathered by the California Transportation Agencies
(CalTrans) Performance Measurement System (PeMS) in real-time at 30-second intervals. The data

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1: STBIM for spatiotemporal prediction

Input: Input data x ∈ RT×N×f ; // No label required
Output: Future label ŷ ∈ RTP×N×f

1 Ze ← FE (x); // Input representation
2 # Forward spatiotemporal learning;
3 Zh ← FST (Ze); // Label representation learning
4 ybase ← FST (Zh); // Base prediction
5 # Backward residual correction;
6 Zres ← FST (Ze −MLP (Zh)); // Residual learning

7 Z̃res =
[
τ
(
IN + 1

K

∑K
i=1 αiKi

)
×2 Zres

]L
; // Residual propagation

8 ycorr ← FR

(
Z̃res

)
; // Correction prediction

9 # Final prediction;
10 ŷ← ybase + ycorr; // Final prediction

is aggregated into 5-minute intervals from the 30-second data instances. PEMS3-Stream comprises
traffic flow data from 655 nodes in the North Central Area, collecting data for the month of July from
2011 to 2017, with a sampling frequency of 5 minutes. For our experiment, we utilized the data in
2011.

The KnowAir dataset (Wang et al., 2020) is a collection of PM2.5 measurements from 184 cities in
China, covering a period of four years from January 1, 2015, to December 31, 2018. To comprehen-
sively evaluate the capabilities of the models, the dataset is divided into three subsets along the time
dimension, as presented in Table 8.

Table 7: The details of traffic datasets used in this paper.

Dataset Nodes Edges Time Range Frames

LargeST-SD 716 17,319 01/01/2019-31/12/2019 525,888
LargeST-GBA 2,352 61,246 01/01/2019-31/12/2019 525,888
LargeST-GLA 3,834 98,703 01/01/2019-31/12/2019 525,888
LargeST-CA 8,600 201,363 01/01/2019-31/12/2019 525,888

PEMS03 358 546 09/01/2018 – 11/30/2018 26,208
PEMS04 307 338 01/01/2018 – 02/28/2018 16,992
PEMS08 170 276 07/01/2016 – 08/31/2016 17,856
PEMS07 883 865 05/01/2017 – 08/06/2017 28,224

METR-LA 207 1,515 03/01/2012 – 06/27/2012 34,272
PEMS3-Stream 655 1,577 07/01/2011 - 07/31/2011 8,928

Table 8: The details of atmospheric datasets used in this paper.

Dataset KnowAir-1 KnowAir-2 KnowAir-3

Nodes 184 184 184
Train range 2015/1/1 - 2016/12/31 2015/11/1 - 2016/2/28 2016/9/1 - 2016/11/30

Validate range 2017/1/1 - 2017/12/31 2016/11/1 - 2017/2/28 2016/12/1 - 2016/12/31
Test range 2018/1/1 - 2018/12/31 2017/11/1 - 2018/2/28 2017/1/1 - 2017/1/31

Sampling frequency 3 hour 3 hour 3 hour

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.2 BASELINES

In this section, we describes the baselines used in detail. Most of the model codes with their
hyperparameters are from the official benchmark LargeST (Liu et al., 2023b) and KownAir (Wang
et al., 2020), with a small number of models sourced from their official codes.

• HL (Liang et al., 2021) selects the data from the last observation as the predicted value for
all future time points.

• LSTM (Hochreiter and Schmidhuber, 1997) is an RNN variant to model long-term temporal
dependencies.

• STAEFormer (Liu et al., 2023a) presents a novel component called spatiotemporal adaptive
embedding that can yield outstanding results with vanilla transformers.

• STGCN (Yu et al., 2017) consists of multiple spatiotemporal convolution blocks, each
of which forms a ”sandwich” structure with two gated sequence convolution layers and a
spatial graph convolution layer in the middle.

• AGCRN (Bai et al., 2020) proposes an adaptive graph convolution network to automatically
capture fine-grained spatiotemporal correlations of traffic sequences.

• DGCRN (Li et al., 2023) uses the hypernetwork to exploit and extract the dynamic features
of the node properties, while the parameters of the dynamic filter are generated at each time
step.

• DGCRN (Weng et al., 2023) generates spatiotemporal embeddings using time information
in traffic signals, and combines spatiotemporal embeddings with dynamic signals extracted
from graph data to generate dynamic semantic graphs.

• STID (Shao et al., 2022b) is based on a fully connected layer architecture and incorporates
additional spatiotemporal identity information to enhance performance.

• STNN (He et al., 2020b) is a spatiotemporal Transformer network model, which combines
dynamic directed spatial dependence and long-term dependence to improve the accuracy of
spatiotemporal graph prediction.

• GC-LSTM (Qi et al., 2019) integrates LSTM as the updating function and GCN to model
the temporal and spatial dependency respectively.

• PM2.5-GNN (Wang et al., 2020) is knowledge-enhanced GNN devised to capture pol-
lutants’ horizontal transport by leveraging neighboring information and updating nodes’
representations. A spatiotemporal GRU is applied after updates to model pollutants’ vertical
accumulation and diffusion under the influence of weather.

• NodeFC-GRU (Wang et al., 2020) is a degrading version of PM2.5GNN. It is implemented
by replacing the GNN module in PM2.5-GNN with MLPs.

• D2STGNN (Shao et al., 2022d) can decouple the hidden time series generated by the
diffusion process from the hidden time series independent of other sensors, allowing for
more accurate modeling of different parts of the traffic data.

• GWNet (Wu et al., 2019b) is based on a wavenet structure with double transition matrices,
which are used to simulate the diffusion process of traffic flow. Furthermore, an adaptive
matrix is employed to enhance the model.

• STNorm (Deng et al., 2021) is based on the Wavenet structure and uses the special spatial
and temporal regularisation approach to complete the feature extraction of the spatiotemporal
features.

• stemGNN (Cao et al., 2020) combines the Graph Fourier Transform (GFT) and the Discrete
Fourier Transform (DFT), where GFT models inter-series correlations and DFT models
temporal dependencies in an end-to-end framework.

• STWA (Cirstea et al., 2022) encodes time series from different locations into stochastic
variables, from which we generate location-specific and time-varying model parameters to
better capture the spatiotemporal dynamics.
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Table 9: Predictive performance of the model on KnowAir dataset. ’Average improvement’ reports
the improvement of average prediction performance during 12 time steps using STRID relative to
only baselines.

KnowAir-1

Method STBIM
Average Average relative improvement

MAE ↓ RMSE ↓ MAPE (%) ↓ CSI (%) ↑ POD (%) ↑ FAR (%) ↓ MAE RMSE MAPE CS POD FAR

nodesFC-GRU
- 8.94 15.67 28.00 66.60 77.11 16.99 - - - - - -

+JT 8.91 15.65 27.21 66.36 76.58 16.75 +0.34% +0.13% +2.82% -0.36% -0.69% +1.41%
+FT 8.82 15.44 27.50 66.69 77.52 16.32 +1.34% +1.47% +1.79% +0.14% +0.53% +3.94%

GC LSTM
- 9.18 16.01 28.40 65.94 75.07 16.80 - - - - - -

+JT 8.82 15.45 27.36 66.92 75.71 14.77 +3.92% +3.50% +3.66% +1.49% +0.85% +12.08%
+FT 9.15 15.94 28.37 65.78 74.88 15.60 +0.33% +0.44% +0.11% -0.24% -0.25% +7.14%

STID
- 7.95 13.99 25.22 70.66 78.16 14.36 - - - - - -

+JT 7.84 13.84 24.21 70.73 79.62 13.64 +1.38% +1.07% +4.00% +0.10% +1.87% +5.01%
+FT 7.85 13.89 23.60 70.47 78.84 13.10 +1.26% +0.71% +6.42% -0.27% +0.87% +8.77%

STAEFormer
- 7.60 13.48 22.21 71.24 79.81 13.09 - - - - - -

+JT 7.55 13.36 22.17 71.54 79.91 12.76 +0.66% +0.89% +0.18% +0.42% +0.13% +2.52%
+FT 7.54 13.42 22.16 71.29 80.10 13.06 +0.79% +0.45% +0.23% +0.07% +0.36% +0.23%

AGCRN
- 7.85 13.86 23.56 70.50 80.05 14.47 - - - - - -

+JT 7.79 13.22 23.01 70.88 80.99 14.31 +0.76% +4.62% +2.33% +0.54% +0.17% +1.11%
+FT 7.80 13.8 23.08 70.60 80.92 14.17 +0.64% +0.43% +2.04% +0.14% +1.09% +2.07%

DDGCRN
- 8.01 14.11 24.85 70.11 79.87 14.84 - - - - - -

+JT 7.93 14.03 23.86 70.93 79.01 14.11 +1.00% +0.57% +3.98 % +1.17% +1.08% +4.92%
+FT 8.01 14.11 24.68 70.07 79.97 14.33 +0.00% +0.00% +0.68% -0.06% +0.13% +3.44%

PM2.5GNN
- 8.87 15.50 28.63 67.00 76.04 15.07 - - - - - -

+JT 8.49 15.02 24.66 67.50 75.43 13.47 +4.28% +3.10% +13.87% +0.75% +0.80% +10.62%
+FT 8.78 15.39 27.02 67.29 76.79 15.02 +1.01% +0.71% +5.62% +0.43% +0.99% +0.33%

KnowAir-2

Method STBIM
Average Average relative improvement

MAE ↓ RMSE ↓ MAPE (%) ↓ CSI (%) ↑ POD (%) ↑ FAR (%) ↓ MAE RMSE MAPE CSI POD FAR

nodesFC-GRU
- 14.28 24.82 31.53 69.77 80.58 16.13 - - - - - -

+JT 14.26 24.12 30.87 70.60 81.23 16.06 +0.14% +2.82% +2.09% +1.19% +0.81% +0.43%
+FT 14.27 24.66 31.46 69.97 81.85 16.15 +0.07% +0.64% +0.22% +0.29% +1.58% -0.12%

GC LSTM
- 14.87 25.71 33.05 68.36 80.22 17.79 - - - - - -

+JT 14.47 25.19 31.00 68.32 81.60 15.05 +2.69% +2.02% +6.20% -0.06% +1.72% +15.4%
+FT 14.08 25.99 33.01 68.39 81.02 16.84 +5.31% -1.09% +0.12% +0.04% +1.00% +5.34%

STID
- 13.57 23.46 31.96 71.54 82.52 15.69 - - - - - -

+JT 13.19 22.94 29.35 72.45 83.71 15.66 +2.80% +2.22% +8.17% +1.27% +1.44% +0.19%
+FT 13.56 23.33 31.45 71.39 82.41 15.78 +0.07% +0.55% +1.60% -0.21% -0.13% -0.57%

STAEFormer
- 13.21 23.65 29.90 72.70 83.30 16.89 - - - - - -

+JT 13.21 23.00 28.94 72.08 82.95 15.38 +0.00% +2.75% +3.21% -0.85% -0.42% +8.94%
+FT 13.09 22.71 29.90 72.87 84.86 16.24 +0.91% +0.39% +0.00% +0.23% +1.87 +3.85%

AGCRN
- 13.88 24.24 30.10 70.24 79.28 13.97 - - - - - -

+JT 13.25 23.70 29.16 70.72 79.45 13.94 +4.54% +2.23% +3.12% + 0.68% +0.21% +0.21%
+FT 13.11 23.43 29.79 70.52 81.37 13.89 +5.55% +3.34% +1.03% +0.40% +2.64% +0.57%

DDGCRN
- 13.99 24.16 33.48 70.83 81.33 16.47 - - - - - -

+JT 13.91 24.10 32.02 70.22 82.21 15.07 +0.57% +0.25% +4.36% -0.86% +1.08% +8.50%
+FT 13.94 24.13 32.45 70.66 82.09 15.40 +0.36% +0.12% +3.08% -0.24% +0.93% +6.50%

PM2.5GNN
- 14.55 25.09 33.26 68.94 81.28 18.05 - - - - - -

+JT 14.39 24.90 32.39 69.20 81.21 17.61 +1.01% +0.76% +2.62% +0.38% +0.09% +2.44%
+FT 14.57 25.12 33.31 68.81 81.09 18.03 -0.13% -0.12% -0.15% -0.19% -0.22% +0.11%

KnowAir-3

Method STBIM
Average Average relative improvement

MAE ↓ RMSE ↓ MAPE(%) ↓ CSI (%) ↑ POD (%) ↑ FAR (%) ↓ MAE RMSE MAPE CSI POD FAR

nodesFC-GRU
- 20.48 35.10 39.11 71.54 87.88 21.42 - - - - - -

+JT 19.60 34.71 37.97 72.46 88.92 20.27 +4.30% +1.11% +2.91% +1.29% +1.18% +5.37%
+FT 19.88 34.63 35.63 72.62 87.42 18.90 +2.93% +1.34% +8.90% +1.51% -0.52% +11.76%

GC LSTM
- 20.91 36.00 39.32 72.30 88.94 20.56 - - - - - -

+JT 19.49 33.89 36.14 73.71 88.36 18.36 +6.79% +5.86% +8.09% +1.95% -0.65% +10.7%
+FT 20.86 35.94 39.05 72.34 88.61 20.37 +0.24% +0.17% +0.69% +0.06% -0.37% +0.92%

STID
- 17.50 31.63 33.04 76.04 88.75 15.85 - - - - - -

+JT 17.47 30.88 32.07 76.60 92.13 15.33 +0.17% +2.37% +2.94% +0.74% +3.81% +3.28%
+FT 17.41 30.97 33.16 76.72 89.26 15.69 +0.51% +2.09% -0.36% +0.89% +0.57% +1.01%

STAEFormer
- 18.28 31.33 36.42 75.68 90.89 19.67 - - - - - -

+JT 17.56 30.41 33.97 76.54 92.28 18.22 +3.94% +2.94% +6.72% +1.14% +1.53% +7.37%
+FT 17.64 30.70 32.57 76.25 90.63 17.22 +3.50% +2.01% +10.57% +0.75% -0.29% +12.46%

AGCRN
- 19.83 34.25 39.00 73.24 90.14 20.38 - - - - - -

+JT 19.61 33.41 38.62 73.32 90.67 19.49 +1.11% +2.45% +0.97% +0.11% +0.59% +4.37%
+FT 19.66 34.17 36.95 73.19 90.77 19.34 +0.86% +0.23% +5.26% -0.07% +0.70% +5.10%

DDGCRN
- 19.68 34.60 36.36 72.94 86.29 18.49 - - - - - -

+JT 19.00 34.22 36.28 72.91 88.54 17.86 +3.46% +1.01% +0.22% -0.04% +2.61% +3.41%
+FT 19.65 34.51 36.22 72.98 87.37 17.66 +0.15% +0.26% +0.39% +0.05% +1.25% +4.49%

PM2.5GNN
- 20.28 34.97 38.25 72.27 88.43 20.18 - - - - - -

+JT 18.99 32.97 36.75 74.35 89.45 18.50 +6.36% +5.72% +3.92% +2.88% +1.15% +8.33%
+FT 19.39 33.69 35.43 73.57 88.19 18.39 +4.39% +3.66% +7.73% +1.80% -0.27% +8.87%

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.3 METRIC

To assess the efficacy of our framework, we employed metrics commonly utilized in spatiotemporal
prediction tasks, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
Mean Absolute Percentage Error (MAPE). Moreover, we consider specific metrics, including Critical
Success Index (CSI), Probability of Detection (POD), and False Alarm Rate (FAR), to assess the
performance of the system in atmospheric tasks. Let the prediction value be ŷ:,u and ground truth
value be y:,u for a specific node u, then the common metrics satisfy,

MAE =

∑TP

t=1 |yt,u − ŷt,u|
TP

, (46)

RMSE =

√∑TP

t=1 (yt,u − ŷt,u)
2

TP
, (47)

MAPE =
1

TP

TP∑
t=1

|yt,u − ŷt,u|
yt,u

. (48)

More over, we choose ε = 75µg/m3 to be the demarcation point of good air quality (Zhao et al.,
2016). Hence the specific metrics satisfy,

CSI =
# {t | yt,u ≥ ε, ŷt,u ≥ ε}

24−# {t | yt,u < ε, ŷt,u < ε}
, (49)

POD =
# {t | yt,u ≥ ε, ŷt,u ≥ ε}

# {t | yt,u ≥ ε, ŷt,u ≥ ε}+# {t | yt,u ≥ ε, ŷt,u < ε}
, (50)

FAR =
# {t | yt,u < ε, ŷt,u ≥ ε}

# {t | yt,u ≥ ε, ŷt,u ≥ ε}+# {t | yt,u < ε, ŷt,u ≥ ε}
, (51)

where # calculates the cardinal of the following set. It is important to note that smaller metrics
represent better model performance for all metrics except CSI and POD. the opposite is true for
CSI and POD metrics. It is crucial to acknowledge that smaller metrics indicate superior model
performance for all metrics except CSI and POD. Conversely, the opposite is true for CSI and POD
metrics.

B.4 ANALYSIS OF EXPERIMENTAL RESULTS ON THE OTHER DATASETS

In this section, we analyze the effectiveness of the proposed module on the other traffic dataset and
Know Air dataset from the atmospheric domain. Traffic datasets include PeMS03, PeMS04, PeMS08,
PeMS07, METR-LA, PEMS3-Stream, Large-LA, and Large-CA.

For KnowAir datasets, we we also complement specialized models that perform well in atmospheric
prediction tasks including GC-LSTM (Qi et al., 2019), nodesFC-GRU, and PM2.5GNN (Wang
et al., 2020). In addition, for a more comprehensive evaluation, we introduce several indicators that
are widely used in the field of atmospheric forecasting, including the critical success index (CSI),
probability of detection (POD), and false alarm rate (FAR). Please mote that higher values for the
first two metrics mean better performance. As shown in Table 9, we find that STID still performs the
best on the KnowAir dataset, surpassing several dedicated atmospheric prediction models. This is
because the fundamental challenge in both spatiotemporal atmospheric prediction and traffic tasks
lies in modeling spatiotemporal correlations, which STID evidently does better. The experimental
conclusions are consistent with those from the main experiments; our module can significantly aid
spatiotemporal graph models in predicting future atmospheric data.

The results are shown in Table 10, and we can see that AGCRN exhibits low prediction errors due to
its adaptive graph learning strategy, which enables more accurate capture of spatial dependencies.
Interestingly, the MLP-based architecture STID demonstrates competitive performance, likely owing
to its use of spatial identity encoding, enhancing the spatial representation of nodes. When the spa-
tiotemporal prediction baselines are integrated with the proposed STBIM module, all models exhibit
performance improvements. For complex models with numerous parameters, such as D2STGNN, the
proposed modules can enhance their representational capacity for inconsistencies. Especially on the
PEMS3-Stream dataset, the limited amount of data for just one month results in D2STGNN struggling
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Table 10: Average performance of models on 8 datasets. ”+STBIM” means the baseline with STBIM
in the joint training manner. ”Imp.” is the percentage improvement of performance over the baseline.
We bold the best performance in every baseline experiment.

Dataset PeMS03 PeMS04 PeMS08 METR-LA
Method MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
LSTM 21.33 35.11 23.33 23.81 36.62 18.12 21.31 32.10 17.47 3.55 7.10 10.18

+STBIM 16.21 27.44 15.83 21.37 33.65 14.30 16.27 26.04 10.43 3.27 6.42 9.28
Imp. +24.00% +21.84% +32.14% +10.24% +8.11% +21.08% +23.65% +18.87% +40.29% +7.88% +9.57% +8.84%
STID 15.36 25.97 16.20 18.60 30.14 12.28 14.21 23.43 9.28 3.22 6.58 9.16

+STBIM 15.08 25.75 15.49 17.89 29.66 11.99 13.80 23.09 9.18 3.06 6.19 8.54
Imp. +1.82% +0.85% +4.38% +3.81% +1.59% +2.36% +2.88% +1.45% +1.07% +4.96% +5.92% +6.76%

STAEFormer 15.45 27.39 15.08 18.17 29.99 11.92 13.59 23.93 8.83 3.02 6.07 8.35
+STBIM 15.13 26.80 14.72 18.02 28.56 11.08 13.36 23.35 8.43 2.99 6.06 8.16

Imp. +2.07% +2.15% +2.38% +0.82% +4.76% +7.04% +1.69% +2.42% +4.53% +1.00% +0.16% +2.27%
STGCN 17.47 28.81 17.08 20.01 31.82 13.32 15.69 25.19 10.31 3.11 6.26 8.60
+STBIM 16.74 28.12 16.89 19.13 30.83 13.15 15.07 24.50 9.91 3.03 6.10 8.24

Imp. +4.18% +2.39% +1.11% +4.39% +3.11% +1.27% +3.95% +2.73% +3.87% +2.57% +2.55% +4.18%
AGCRN 16.06 28.49 15.85 19.83 32.26 12.97 15.59 25.07 10.19 3.15 6.38 8.81
+STBIM 15.27 26.91 14.71 18.85 30.95 12.41 15.15 24.89 10.07 3.14 6.31 8.71

Imp. +4.91% +5.54% +7.19% +4.94% +4.06% +4.31% +2.82% +0.71% +1.17% +0.31% +1.09% +1.13%
STNorm 15.28 25.73 14.71 19.57 32.36 12.28 15.61 24.97 10.05 3.13 6.41 8.72
+STBIM 14.99 25.46 14.21 18.69 30.34 12.06 14.85 23.80 9.30 3.12 6.39 8.71

Imp. +1.89% +1.05% +3.40% +4.49% +6.42% +1.79% +4.86% +4.68% +7.46% +0.32% +0.31% +0.11%
GWNet 16.77 27.57 16.11 21.79 33.79 14.85 18.03 27.86 9.41 3.03 6.04 8.22

+STBIM 16.41 27.00 15.20 21.11 32.87 14.37 17.96 27.56 9.10 3.01 6.02 8.21
Imp. +2.14% +2.06% +5.64% +3.12% +2.72% +3.23% +0.38% +1.07% +3.29% +0.66% +0.33% +0.12%

STWA 15.19 26.76 15.99 19.37 31.28 12.63 15.59 24.67 10.79 3.30 6.71 9.45
+STBIM 14.96 25.80 15.66 18.90 30.50 12.01 14.95 23.86 10.77 3.29 6.66 9.24

Imp. +1.51% +3.59% +2.06% +2.43% +2.49% +4.90% +4.10% +3.28% +0.19% +0.31% +0.75% +2.22%
stemGNN 16.42 27.52 15.65 22.02 34.24 15.51 17.70 27.48 11.66 3.28 6.73 9.30
+STBIM 16.20 26.49 15.35 21.43 33.36 14.99 16.92 26.39 11.16 3.06 6.46 8.93

Imp. +1.33% +3.74% +1.92% +2.68% +2.57% +3.35% 17.65 +4.40% +3.96% +6.70% +4.01% +3.97%
D2STGNN 14.62 25.09 14.23 18.53 30.68 12.17 14.36 23.76 9.37 3.01 6.05 8.41
+STBIM 14.51 24.54 13.92 18.22 30.17 12.00 13.77 23.35 8.99 2.94 6.02 8.12

Imp. +0.75% +1.35% +2.14% +1.67% +1.66% +1.40% +4.10% +1.73% +4.05% +1.00% +0.50% +3.45%
Dataset PeMS07 PEMS3-Stream GLA CA
Method MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STNorm 20.56 34.88 8.63 11.92 18.56 15.63 21.31 34.53 14.06 19.30 31.98 14.02
+STBIM 19.88 33.25 8.30 11.63 18.14 15.26 21.09 33.80 12.71 19.03 31.35 13.23

Imp. +3.30% +4.67% +3.82% +2.43% +2.37% +1.29% +1.03% +2.11% +9.60% +1.40% +1.94% +5.62%
GWNet 24.55 38.36 10.15 12.44 18.98 16.78 21.21 33.63 13.73 21.74 34.22 17.41

+STBIM 23.46 37.65 9.86 11.59 17.81 15.33 20.65 32.97 13.42 19.97 32.26 14.28
Imp. +4.44% +1.85% +2.85% +3.74% +3.56% +8.64% +3.60% +1.96% +2.25% +8.14% +3.37% +3.13%
STID 19.52 32.90 8.27 12.58 19.36 16.21 21.69 35.20 14.39 19.10 32.00 14.73

+STBIM 19.17 32.45 8.18 11.72 17.96 15.57 21.46 34.57 13.61 18.50 30.92 13.61
Imp. +1.79% +1.37% +1.09% +6.83% +7.23% +3.95% +1.06% +1.78% +5.28% +3.14% +3.38% +7.60%

STGCN 21.62 34.89 13.99 13.42 20.27 17.73 22.62 38.71 14.12 21.36 36.42 16.55
+STBIM 20.47 32.76 12.94 12.07 19.14 16.56 21.51 37.15 13.19 19.85 34.30 14.43

Imp. +10.05% +5.57% +6.60% +5.73% +4.91% +4.03% +6.59% +2.02% +0.35% +7.06% +5.82% +12.80%
D2STGNN 19.77 33.08 8.40 12.98 20.36 17.24

Out of memory+STBIM 19.52 32.53 8.11 11.72 17.96 16.21
Imp. +1.26% +1.66% +3.45% +9.71% +11.78% +6.08%
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to fully learn spatiotemporal features, leading to an issue of underfitting. Our module serves as
a powerful auxiliary tool to assist D2STGNN in acquiring more information, thereby achieving a
significant performance boost. Large-CA is a large-scale traffic dataset with 8600 nodes, which to
our knowledge is currently the largest publicly available road network dataset. Even on large-scale
datasets, our model continues to improve effectiveness of STNNs.

B.5 EFFECTIVENESS OF INPUT-LAEBL INCONSISTENT FEATURE MODELING

We evaluate the effectiveness of the model on samples with inconsistencies in spatial and tempo-
ral dimensions. We include more time-inconsistent samples by considering samples where the
Surge/Plumment ratio of the mean of input data relative to the mean of label data ranged from 25%
to 75% as time-inconsistent samples. As shown in Table 11 of the experimental results, we found
that our proposed modules effectively enhance the modeling capability of STNN for spatiotemporal
inconsistency features. For STID and D2STGNN, the proposed modules explicitly utilize label
features to mitigate the negative impact of these inconsistencies.

Table 11: Modeling preformance of temporal historical-future inconsistencies with different change
radio. We use LargeST-SD dataset as example and train STBIM with STNNs in a join-training
manner.

Surge
25% - 50% 50% - 75% 75% - 100%

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

STGCN
- 18.12 46.81 12.10 23.80 36.83 13.65 27.67 40.42 45.20

+STBIM 15.07 29.82 10.32 18.13 27.55 13.06 24.34 37.60 42.27
Imp. +16.83% +36.29% +14.71% +23.82 +25.19% +4.32% +12.03% +6.98% +6.48%

STID
- 14.82 29.17 11.78 19.65 30.24 13.47 27.06 41.40 43.63

+STBIM 12.04 26.12 9.16 15.15 24.02 10.56 20.55 32.16 33.50
Imp. +18.76% +10.46% +22.24% +22.90% +20.57% +21.60% +24.06% +22.32% +23.21%

STAEformer
- 12.79 25.57 10.21 15.26 28.61 11.64 25.63 36.06 35.26

+STBIM 11.74 25.38 9.86 15.59 24.21 10.78 21.79 34.19 33.91
Imp. +8.21% +0.74% +3.43% 2.16% +15.38% +7.39% +14.98% +5.19% +3.83%

D2STGNN
- 11.79 25.07 9.92 14.89 23.35 10.14 21.09 33.37 34.64

+STBIM 11.38 24.40 9.04 14.25 22.59 9.98 20.31 31.37 32.85
Imp. +3.48% +2.67% +8.87% +4.30% +3.25% +1.58% +3.70% +5.99% +5.17%

Plumment
25% - 50% 50% - 75% 75% - 100%

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

STGCN
- 24.07 56.63 18.31 28.10 48.14 20.65 33.25 47.47 22.61

+STBIM 19.59 35.74 13.06 21.03 36.49 16.81 22.95 39.08 19.73
Imp. +18.61% +36.89% +28.67% +25.16% +24.20% +18.60% +30.98% +17.67% +12.74%

STID
- 26.70 53.64 15.09 27.15 51.77 20.77 27.54 47.78 26.23

+STBIM 14.44 26.78 9.50 15.38 27.26 11.92 17.18 29.59 14.24
Imp. +45.92% +50.07% +37.04% +43.35% +47.34% +42.61% +37.62% +38.07% +45.71%

STAEformer
- 18.12 37.22 13.25 19.94 37.92 26.00 23.40 39.45 18.62

+STBIM 17.30 36.17 10.79 18.48 36.27 15.59 20.04 36.41 16.64
Imp. +4.53% +2.82% +18.57% +7.32% +4.35% +40.04% +14.36% +7.71% +10.63%

D2STGNN
- 14.05 27.23 10.41 15.30 28.23 13.16 17.46 30.28 15.35

+STBIM 13.54 26.58 9.61 15.11 27.44 11.89 17.09 29.78 14.06
Imp. +3.63% +2.39% +7.68% +1.24% +2.80% +9.65% +2.12% +1.65% +8.40%

B.6 COMPARISON BETWEEN STID AND STBIM FOR INPUT-LAEBL INCONSISTENT MODELING

First and foremost, we emphasize that our motivation is not to surpass specific techniques
within the model. Our contribution lies in introducing a general module to enhance existing
spatiotemporal prediction models, which is orthogonal to existing technologies. Just as the
analysis below illustrates: the combination of STID and STBIM outperforms other variants in terms
of inconsistent feature performance, our model can synergize with other advanced technologies to
generate a broader and more comprehensive impact.
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B.6.1 PERFORMANCE COMPARISON

STID identifies spatiotemporal deviations and rectifies spatial inconsistencies using node embedding
techniques. We integrated the embedding technique from STID with STBIM through a joint training
approach. A comparison of spatial and temporal inconsistency samples is presented in Table 12.

Our analysis demonstrates that the proposed module excels in capturing spatiotemporal deviation
features compared to node embedding techniques, particularly in addressing temporal inconsistency
challenges. This enhanced performance is attributed to our method’s explicit utilization of label
information, resulting in more precise modeling. Additionally, it highlights that the node embedding
technique introduced by STID may not effectively resolve spatiotemporal deviation issues. Conversely,
STID+STBIM achieves competitive performance, showcasing the synergistic potential of integrating
advanced technologies with STBIM.

Table 12: Modeling preformance of temporal historical-future inconsistencies with different change
radio, and we use LargeST-SD dataset as example.

Model
25% - 50% 50% - 75% 75% - 100%

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

STID
- 14.82 29.17 11.78 19.65 30.24 13.47 27.06 41.40 43.63

w/o em+STBIM 14.03 28.79 11.53 19.31 29.72 12.46 25.68 35.97 38.42
STID+STBIM 12.04 26.12 9.16 15.15 24.02 10.56 20.55 32.16 33.50
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Figure 5: Node embedding and temporal embedding of STID in LargeST-SD dataset.
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Figure 6: The prediction errors between base prediction and labels with correction prediction of
STBIM.

B.6.2 ROOT CAUSE ANALYSIS

We further visualize the node embedding and temporal embedding of STID, as shown in Figure 5.
Regarding node embeddings, STID focuses on capturing shared patterns among nodes where nodes
with similar traffic distributions cluster together. Hence, the node embeddings exhibit cluster dis-
tribution (Shao et al., 2022a). Clearly, these shared patterns among nodes have limited utility in
distinguishing spatial inconsistency features among nodes. Concerning time embeddings, STID
captures periodic features which exhibit repetitive cycles (Shao et al., 2022a), while temporal incon-
sistency features where traffic suddenly increases or decreases are rare. Therefore, this embedding
evidently fails to capture temporal inconsistencies.

We further demonstrate some prediction cases of STBIM in Figure 6. the errors between the base
prediction of STID and the labels (i.e.,ybase − ŷ), and the prediction correction terms (ycorr)
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Figure 7: A comparison of the convergence speed and convergence results in validation phrase of
baselines without STBIM, with STBIM+JT and with STBIM+FT on the LargeST-SD dataset.

generated by combining STID in two training modes with STBIM are shown. We can find that the
correction terms produced by STBIM can fit the bias of the base prediction, illustrating the improved
handling of spatiotemporal inconsistencies by STBIM.

B.7 COMPUTATIONAL COMPLEXITY

B.7.1 EFFICIENCY ANALYSIS

In our evaluation on the LargeST-SD and LargeST-CA dataset, we present the efficiency costs
associated with integrating STBIM with various advanced models. One key advantage of STBIM is
observed in accelerating the convergence speed of the models. Through visualizations, we showcase
the training processes of several STNNs with STBIM. By visualizing the model training procedures
using the SD and Knowair-1 datasets with multiple spatiotemporal prediction as examples, as depicted
in Figures 7, we observe that the integration of STBIM leads to faster convergence, especially when
employing the joint training strategy. This acceleration in convergence speed can be attributed to
the improved model fitting to the data distribution by correcting prediction, thereby alleviating the
learning burden caused by redundant features.

Furthermore, we delve into the computational complexity of STBIM by examining several advanced
space-time prediction models, as illustrated in Table 13. Our analysis reveals that STBIM offers
substantial performance gains at a relatively modest model parameter cost. To optimize training
efficiency, we utilize the fine-tuning training method by directly fine-tuning the pre-trained STNN
with STBIM, thereby minimizing time overhead. In conclusion, given the significant performance
enhancements, the complexity burden introduced by STBIM is considered acceptable. It is important
to note that our primary focus lies on the model’s performance rather than efficiency, which differs
from the current emphasis in the spatiotemporal community.
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Table 13: Model efficiency analysis on the LargeST-SD dataset. We report the improvement in
average prediction performance over MAPE.

Method
Parameter Train time/epoch(s) Total train time (h) Inference time (s) Memroy (MB) ImprovementBaseline STBIM

STGCN
- 508K 90.89 2.09 12.83 3523 -

+ JT 624K 148.64 3.52 20.47 6180 +8.79%
+ FT 624K 108 1.86 20.47 4202 +8.13%

STID
- 128K 7.69 0.32 1.61 980 -

+ JT 244K 12.27 0.39 2.16 1520 +6.06%
+ FT 244K 8.50 0.18 2.16 1176 +1.24%

ASTGCN
- 2.2M 466.95 7.36 28.47 10396 -

+ JT 2.6M 900.16 10.23 50.39 22878 + 14.13%
+ FT 2.6M 505.66 12.09 50.39 15727 +8.68%

AGCRN
- 761K 365.29 7.63 32.45 7827 -

+ JT 1.0M 609.40 11.92 55.29 13827 +9.57%
+ FT 1.0M 455.57 1.97 55.29 8080 + 0.08%

Table 14: Model efficiency analysis on the LargeST-CA dataset. We report the improvement in
average prediction performance over MAPE.

Method
Parameter Train time/epoch(s) Total train time (h) Inference time (s) Memroy (MB) ImprovementBaseline STBIM

STGCN
- 508K 788.75 30.21 236.77 29470 -

+JT 624K 1319.47 55.19 271.07 53156 +7.60%
+FT 624K 882.39 33.52 271.07 31615 +5.63%

STID
- 150K 232.95 4.94 55.15 6704

+JT 270K 303.17 9.23 72.38 11265 +12.80%
+FT 270K 276.38 5.58 72.38 7261 +14.61%

B.7.2 FURTHER ANALYSIS

Using STID and D2STGNN datasets as example, we aim to demonstrate that the performance
improvement brought by STBIM does not stem from increasing parameter size or computational
efforts, which can not achieve the same effect of our STBIM, we have create a variant which stacks
two STNNs (STID and D2STGNN) to increase the parameter size, and we increase computational
effort by training STNNs using double maximum epochs and the patience of the early stop strategy,
and this variant is defined as STNN-Plus. The experimental results are shown in Table 15, and it is
evident that simply increasing complexity does not provide substantial benefits compared to STBIM.
For certain complex models, such as D2STGNN, an excessive parameter size can result in overfitting.
This observation highlights that while more parameterized models may have the potential to extract
richer features from input data, they still fail to adequately approximate label features. Consequently,
the input-label consistency assumption inherent in existing spatiotemporal architectures is inherently
fragile, underscoring the critical need to explicitly model label features in order to enhance predictive
performance.

Table 15: Average performance comparison of STNN, STNN-Plus, and STNN+STBIM on LargeST-
SD dataset.

Model MAE RMSE MAPE

STID 18.00 30.75 12.05
STID-Plus 17.94 30.43 12.13

STID+STBIM 17.08 28.92 11.32

D2STGNN 17.44 29.58 12.18
D2STGNN-Plus 17.68 31.04 12.57

D2STGNN+STBIM 17.19 28.53 11.20
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C RELATED WORK OF SPATIOTEMPORAL SHIFT

Traditional spatiotemporal architectures adhere to the independent and identically distributed (IID)
assumption, while spatiotemporal data shift poses a challenge for out-of-distribution generalization;
however, spatiotemporal data distribution shift poses a challenge for out-of-distribution (OOD)
generalization. Several spatiotemporal out-of-distribution (OOD) models have emerged in recent
literature. For instance, CauSTG (Zhou et al., 2023) introduces a causal framework designed to
transfer both local and global spatiotemporal invariant relationships to OOD scenarios. CaST (Xia
et al., 2023) utilizes a structural causal model (SCM) to interpret the data generation processes of
spatiotemporal graphs, employing back-door adjustment techniques to isolate invariant components
from the temporal environment. Similarly, STEVE (Hu et al., 2023) encodes traffic data into two
disentangled representations and incorporates spatiotemporal environments as self-supervised signals,
thereby integrating contextual information into these representations. Additionally, STONE (Wang
et al., 2024) proposes a causal graph structure aimed at learning robust spatiotemporal semantic
graphs for OOD learning. However, while these models focus on addressing overall shifts between
training and testing data, we focus on a more granular shift between historical observed data (input)
and predicted data. This shift is present in both OOD and IID scenarios.

C.0.1 ABLATION EXPERIMENT

We conduct ablation experiments on the Large-SD dataset using the STGCN. We created two variants:
”w/o MLP” means we remove the retrospect MLP, and ”w/o kernel” means that we remove the
propagation kernel for smoothing. The experimental results are shown in Table 16. ”w/o MLP”
showed significantly higher errors, as this retrospect MLP is used to map label features to the same
hidden space as input features, leading to smoother training. The experiment without the kernel
resulted in poor prediction performance because residual smoothing benefits the model’s learning
process.

Table 16: Ablation experiment.
STGCN

Model MAE RMSE MAPE
w/o MLP 19.24 32.63 12.99
w/o kernel 18.75 32.38 12.62

STBIM 18.41 31.84 12.45
D2STGNN

Model MAE RMSE MAPE
w/o MLP 19.57 33.44 13.80
w/o kernel 18.95 32.65 12.68

STBIM 17.19 28.53 11.20

D DISCUSSION

we develop a generic module that can be combined with STNNs to improve their learning ability. In
this section, we discuss the limitations of the work, which will serve as future research directions.

Firstly, we will explore more expressive models for label correlation modeling. In this paper, we
used simple GCNs to capture spatiotemporal correlations in labels, which were then used to correct
the model’s prediction. In the future, we aim to explore more complex models to further enhance
performance.

Second, we discussed four most commonly used kernel functions for residual information propagation
in this paper. In fact, in spatiotemporal graph learning, there are also some other methods. For
example, some works (Li and Zhu, 2021; Lan et al., 2022) represent the kernel as the similarity of
data distributions between nodes. In the future, we will explore a broader range of kernel methods.
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