SPATIOTEMPORAL BACKWARD INCONSISTENCY LEARNING GIVES STNNS ICING ON THE CAKE

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

025

026

027

028

029

031

032

034

Paper under double-blind review

ABSTRACT

Spatiotemporal prediction models facilitate various smart-city applications across various domains, such as traffic and climate. While current advancements in these models emphasize leveraging cutting-edge technologies to enhance spatiotemporal learning, they often operate under the implicit assumption of spatiotemporal feature consistency between inputs and labels, overlooking the critical issue of historical-future inconsistency. In this study, we introduce a universal spatiotemporal backward inconsistency learning module capable of seamless integration into a variety of models, offering a notable performance boost by explicitly integrating label features to address historical-future inconsistency. Our approach includes the development of a spatiotemporal residual theory, advocating for a holistic spatiotemporal learning that encompasses both forward spatiotemporal learning to capture input data's spatiotemporal features for generating base predictions, akin to existing STNNs, and a backward process to learn residuals that rectify historical-future inconsistency, thereby refining the base predictions. Based on this theory, we design the Spatio-Temporal Backward Inconsistency Learning Module (STBIM) for this backward correction process, comprising a residual learning module for decoupling inconsistency information from input representations and label representations, and a residual propagation module for smoothing residual terms to facilitate stable learning. The generated prediction correction is used to enhance the prediction accuracy. Experimental results on 11 datasets from the traffic and atmospheric domains, combined with 15 spatiotemporal prediction models, demonstrate the broad positive impact of the proposed STBIM. The code is available at https://anonymous.4open.science/r/ICLR2025-2598.

1 INTRODUCTION

 Spatiotemporal prediction is critical for smart cities, having significant impacts in the transportation and atmospheric domains(Miao et al., 2022; Liu et al., 2024a; 2021). Current advances in spatiotemporal neural networks (STNNs) focus on crafting more expressive architectures beyond conventional models such as GCN (Kipf and Welling, 2017) or Transformer (Vaswani et al., 2017). Drawing inspiration from the fields of natural language and vision, innovative architectural concepts are being integrated into STNNs, such as the adoption of masked autoencoder (MAE) technology.

However, as the complexity of the models increases, the potential for performance gains may decrease 042 (Shao et al., 2022a; Tang et al., 2022). In contrast to this prevailing trend, we delve into existing 043 Spatiotemporal Neural Networks (STNNs) to uncover avenues for improvement: the majority of 044 STNNs engage in a forward learning process to capture the spatiotemporal features of historical observations (inputs). Subsequently, the acquired representations, known as label representations, are 046 fed into a predictor (e.g., a fully connected layer) for decoding and generating labels. This traditional 047 approach implicitly operates under the assumption of historical-future consistency, presupposing that 048 the spatiotemporal features of the input data and labels align seamlessly. However, this assumption is precarious, as discrepancies in spatiotemporal features between the input and labels can exist. We term such discrepancies as historical-future inconsistency. In the spatial dimension, this inconsistency 051 can manifest in two scenarios: 1) similar input data following by different labels, and 2) different input data following by similar labels. To illustrate this concept, we depict time series data collected 052 from two sensors (#15 and #600) in the LargeST-SD dataset (Liu et al., 2024b). In Figure 1 (a), these two sensors exhibit similar traffic flow patterns in the input data. However, in the subsequent 054 prediction future values, they show distinctly different patterns. Conversely, in Figure 1 (b), despite 055 differences in the distribution of traffic flow in the input data, they exhibit significant similarity in the subsequent labels. As illustrated in Figure 1 (c), inconsistencies in temporal features exist 057 between historical and future values. Typical examples of this phenomenon include abnormal signals 058 characterized by a rapid increase or decrease in traffic flow. STNNs encounter difficulty in accurately discerning historical-future inconsistencies, consequently leading to prediction errors. Despite the implementation of specialized techniques, such as node embedding, to support the forward learning 060 process by some researchers (Deng et al., 2021; Shao et al., 2022a), we contend that STNNs grounded 061 in the historical-future consistency assumption may encounter persistent challenges to effectively 062 mitigate this inconsistency due to suboptimal modeling of label features. 063

We propose integrating label features into the spatiotemporal learning process to enhance the effectiveness of the model in addressing historical-future inconsistencies. Our approach involves the development of the spatiotemporal residual theory, which advocates for a bidirectional spatiotemporal learning paradigm that extends a backward process within the existing paradigm. Specifically, the theory reveals that considering label features, the final prediction should be determined by two key components: the base prediction obtained from forward spatiotemporal learning of input data features, akin to existing STNNs, termed as the base prediction, and the prediction correction term generated through learning residuals, representing historical-future inconsistencies.

Figure 1: historical-future inconsistency in the dimensions of spatial and temporal.

082 Building upon this novel paradigm, we design a simple yet effective Spatio-Temporal Backward 083 Inconsistency Learning Module, namely STBIM. This module, designed to be model-agnostic, 084 seamlessly integrates into existing STNNs to enhance performance. Specifically, any STNN is 085 used to perform forward spatiotemporal learning, generating label representations and making base predictions. Subsequently, STBIM disentangles the residual terms by comparing the label representation with the input representation. The use of label representation enables us to model 087 spatiotemporal inconsistency across diverse dimensions without directly accessing the labels, as 880 they closely mirror the distribution of the labels, akin to high-dimensional feature mappings of the 089 labels(Li et al., 2015; Shalev et al., 2018). After smoothing the generated residuals with a propagation 090 kernel to avoid outlier signals, we decode the residuals to generate correction terms for improving 091 accuracy by correcting base prediction. During training, STBIM can be updated end-to-end with 092 the STNN to effectively model label-input inconsistency, while during inference, STBIM can drive STNN to generate more precise predictions. We thoroughly evaluate the effectiveness of STBIM on 094 12 datasets with over 11 advanced STNNs, and results demonstrate the extensive effectiveness of our 095 module. The maximum performance increase can be up to 21.18%. 096

Our contributions can be summarized as: (1) **Novel paradigm**. We develop the spatiotemporal residual theory, promoting a novel bidirectional spatiotemporal learning paradigm integrating with label features. (2) **Universal module**. STBIM, a straightforward yet potent module, seamlessly integrates with existing STNNs, which perform a backward process to explicitly model historicalfuture inconsistency. (3) **Thorough experiment**. We comprehensively evaluate our model on 11 commonly used spatiotemporal datasets from transportation and atmospheric domains with over 15 advanced STNNs to demonstrate the effectiveness of the STBIM module.

103 104

105

072 073

074

075

076

077

078

079

081

- 2 RELATED WORK
- Spatiotemporal prediction. Recently, STNNs are the most representative approaches for spatiotemporal prediction tasks (Zhou et al., 2023; Wang et al., 2023; Xia et al., 2023; Huang et al., 2024; Zhou

Figure 2: The overall framework of STBIM for spatiotemporal learning.

et al., 2020), which typically include a spatial module that captures spatial dependencies and a se-126 127 quential module that captures temporal dependencies respectively. For example, SSTBAN (Guo et al., 2023) follows a multi-task framework by incorporating a self-supervised learner to produce robust 128 latent representations for historical traffic data. STID (Shao et al., 2022a) identified spatiotemporal 129 deviation phenomena and proposed utilizing node embeddings to alleviate spatiotemporal deviation. 130 However, it did not effectively model label features, thus failing to thoroughly capture spatiotemporal 131 inconsistencies, especially regarding temporal inconsistency features. In the experimental section, 132 we provide a detailed comparison with STID in Appendix B.6. Some studies explore non-model 133 approaches such as ST-LoRA (Ruan et al., 2024) to improve existing models with node-adaptive 134 low-rank layers, the reported results show limited enhancements. Furthermore, Adaptive Graph 135 Sparsification (AGS) (Duan et al., 2023) and Graph Winning Ticket (GWT) (Duan et al., 2024) 136 algorithms focus on optimizing adjacency matrices in prediction models to improve operational 137 efficiency of Adaptive Spatial-Temporal Graph Neural Networks like AGCRN. In contrast to the aforementioned work, we propose a universal module that can significantly enhance the performance 138 of models across various tasks. 139

140 Spatiotemporal shift learning in OOD scenario. Traditional spatiotemporal architectures adhere to 141 the independent and identically distributed (IID) assumption, while spatiotemporal data shift poses a 142 challenge for out-of-distribution (OOD) generalization. Several spatiotemporal out-of-distribution 143 (OOD) models have emerged in recent literature. For instance, CauSTG (Zhou et al., 2023) introduces a causal framework designed to transfer both local and global spatiotemporal invariant relationships 144 to OOD scenarios. CaST (Xia et al., 2023) utilizes a structural causal model (SCM) to interpret the 145 data generation processes of spatiotemporal graphs. Similarly, STEVE (Hu et al., 2023) encodes 146 traffic data into two disentangled representations and incorporates spatiotemporal environments 147 as self-supervised signals, thereby integrating contextual information into these representations. 148 Additionally, STONE (Wang et al., 2024) proposes a causal graph structure aimed at learning robust 149 spatiotemporal semantic graphs for OOD learning. However, while these models focus on addressing 150 overall shifts between training and testing data, we focus on a granular shift between historical 151 observed data (input) and predicted future data. This shift is present in both OOD and IID scenarios.

152 153 154

155

125

3 PROBLEM PRELIMINARIES

Spatiotemporal graph data. We use a graph $\mathcal{G} = (V, \mathcal{E}, \mathbf{A})$ to represent spatiotemporal data, where V means the node set with N nodes, \mathcal{E} means the set of edges, and $\mathbf{A} \in \mathbb{R}^{N \times N}$ is the weighted adjacency matrix of the graph \mathcal{G} . We use $x_t \in \mathbb{R}^{N \times f}$ to represent the observed spatiotemporal graph data of N nodes at time step t, where f indicates the number of feature channels.

160 **Spatiotemporal prediction.** Given the graph \mathcal{G} and the historical data of the past T time steps 161 $\mathbf{x} = \{x_1, ..., x_T\} \in \mathbb{R}^{T \times N \times f}$ as inputs, this task aims to learn a function \mathcal{F} that can effectively predict the values (i.e., labels) $\mathbf{y} = \{x_{T+1}, ..., x_{T+T_P}\} \in \mathbb{R}^{T_P \times N \times f}$ in further T_P time steps.

162 4 METHOD

163 164

167

168 169

170

187 188 189

190

196

197

199

200

In this section, we present details of the proposed STBIM, as shown in Figure 2 and Algorithm 1. We 165 first develop a spatiotemporal residual theory to elucidate a comprehensive learning paradigm that 166 considers label features. Subsequently, based on this theory, we design our model and introduce the implementation of the module. We summarize some important definitions in Table 6.

SPATIOTEMPORAL RESIDUAL THEORY WITH GAUSSIAN MARKOV RANDOM FIELD 4 1

The Gaussian Markov Random Field (GMRF) is a highly effective tool for modeling complex 171 dependencies among random variables in a structured manner, which has been widely utilized in 172 spatiotemporal dynamic analyses (Zheng and Su, 2016; Furtlehner et al., 2021). Drawing insights 173 from these pioneering studies, we incorporate the GMRF model into our research to capture intricate 174 relationships in spatiotemporal data. This GMRF maps spatiotemporal data points to variables and 175 analyzes the interdependencies among these variables. Throughout the subsequent sections, we 176 denote spatiotemporal data points using regular font and their corresponding random variables in the 177 GMRF using *italic font*. For instance, \mathbf{x} and \mathbf{x} represent spatiotemporal data and their associated 178 variables in the GMRF, respectively.

179 First, we stack the input data x and the label y along the temporal dimension into a tensor $\mathbf{T} \coloneqq$ 180 $[\mathbf{x}, \mathbf{y}] \in \mathbb{R}^{(T+T_P) \times N \times f}$. We use $\mathbf{T}_{t,::} \in \mathbb{R}^{N \times f}$ to denote spatiotemporal data of all nodes at t-th 181 time step. We also use $\mathbf{T}_{:,u,:} \in \mathbb{R}^{(T+T_P) \times f}$ to represent the spatiotemporal data of u-th node during 182 all time steps. As mentioned above, the random variable of \overline{T} in our GMRF is denoted as T. 183

In a GMRF, all values in the matrix T are jointly sampled from a distribution over the random variable 185 T. The joint distribution of T in the GMRF is characterized by a probability density function (Baz et al., 2022; Rue and Held, 2005). 186

$$f_{T}(T = \mathbf{T} \mid W, \theta) = \frac{e^{-\Phi(\mathbf{T} \mid W, \theta)}}{\int d\mathbf{T}' e^{-\Phi(\mathbf{T}' \mid W, \theta)}},$$
(1)

(3)

where $W \in \mathbb{R}^{(T+T_P) \times (T+T_P)}$ and $\theta \in \mathbb{R}^{(T+T_P)}$ are the parameters of GMRF. W should be symmetric positive definite and θ is entry-wise positive. The exponent power function Φ is defined as

$$\Phi\left(\mathbf{T} \mid W, \theta\right) \coloneqq \frac{1}{2} \sum_{u \in V} \mathbf{T}_{:,u,:}^{\top} W \mathbf{T}_{:,u,:} + \frac{1}{2} \sum_{t=1}^{T+T_P} \theta_t \mathbf{T}_{t,:,:}^{\top} \mathcal{A}\left(\mathbf{A}\right) \mathbf{T}_{t,:,:},$$
(2)

$$=rac{1}{2}\mathcal{V}\left(\mathbf{T}
ight)^{ op}$$

where the potential matrix Γ reflects the dependence of variables of GRMF in temporal and spatial dimensions, which can be computed as

 $\Gamma \mathcal{V}(\mathbf{T})$,

 $\boldsymbol{\Gamma} \coloneqq (W \otimes \mathbf{I}_N) + \operatorname{diag}\left(\theta\right) \otimes \mathcal{A}\left(\mathbf{A}\right) \in \mathbb{R}^{\left[(T+T_P)N\right] \times \left[(T+T_P)N\right]}.$ (4)

201 Here $\mathcal{A}(\mathbf{A}) = \mathbf{I}_N - \mathcal{N}(\mathbf{A})$ is a graph Laplace-like operator, and \mathbf{I}_N is the identity matrix of the 202 adjacency matrix A, $\mathcal{N}(\cdot)$ is a normalization operator such as the normalized graph Laplacian 203 $\mathcal{A}(\mathbf{A}) = \mathbf{I}_{\mathbf{N}} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ with degree matrix $\mathbf{D} = \text{diag} \left(\sum_{u \in V} \mathbf{A}_{1,u}, ..., \sum_{u \in V} \mathbf{A}_{N,u} \right)$ and 204 diagonalization operator diag (·). $\mathcal{V}(\cdot)$ is a vectorization operator to unfold the first two dimensions of 205 the input, i.e., $\mathcal{V}(\mathbf{T}) = (\mathbf{T}_{1,1,:}, ..., \mathbf{T}_{T+T_P,N,:})^{\top} \in \mathbb{R}^{[(T+T_P)N] \times f}$, and \otimes is the Kronecker product. 206 In a Gaussian Markov Random Field (GMRF), two key parameters play important roles in modeling 207 the relationships within the spatiotemporal graph. The parameter θ reflects the concept of homophily 208 among nodes in the graph, indicating that a higher value of θ signifies greater compatibility among 209 the features of nodes at the same time step. On the other hand, the parameter W is responsible for 210 controlling the level of noise present in the spatiotemporal environment. Specifically, it represents 211 the inverse of the variance between temporal data on each node, if there is no correlation between 212 nodes, i.e., $\mathcal{A}(\mathbf{A}) = \mathbf{0}$. For more detailed information about the parameters of the Gaussian Markov 213 Random Field, please refer to the provided Appendix A. 214

Theory 1. Forward spatiotemporal learning. Existing spatiotemporal learning models aims to 215 learn the conditional distribution of the future variable y with respect to historical input data x,

225 226

251

253 254

259

261

266 267

216 i.e., y|x = x. In GMRF model, this goal can be be expressed in closed form as a composite of 217 spatiotemporal operations. Specifically, for any further time step $t = \{1, 2, \dots, T_P\}$, the expectation of the variable $y_t \in \mathbb{R}^{1 \times N \times f}$ representing labels all nodes at t-th future time step with respect to the 218 219 input data x can be computed as: 220

$$\mathbb{E}\left[\boldsymbol{y}_{t}|\mathbf{x}\right] = (1 - \gamma_{t}) \sum_{k=0}^{\infty} \left(\gamma_{t} \mathcal{N}\left(\mathbf{A}\right)\right)^{k} \mathbf{x}^{\top} \times_{2} \boldsymbol{\beta}_{t}^{\top},$$
(5)

$$= (1 - \gamma_t) \sum_{k=0}^{\infty} (\gamma_t \mathcal{N}(\mathbf{A}))^k \times_2 (\boldsymbol{\beta}_t \mathbf{x})^\top, \qquad (6)$$

where $\gamma_t = \frac{\theta'_t}{W_{t',t'} + \theta'_t}$ is a scaling scalar, and $W_{t',t'}$ means the value of t'-th row and t'-th column of 227 W with t' = T + t. $\beta_t = -\frac{W_{t',1:T}}{W_{t',t'}} \in \mathbb{R}^{1 \times T}$ is a coefficient vector, where $W_{t',1:T}$ means the first T 228 229 column and t'-th row of W. \times_2 implies performing tensor multiplication operations in the second 230 dimension. Detailed proofs for this theory are provided in Appendix A.2. 231

Equation 5 outlines a general learning paradigm employed by existing STNNs, where features from 232 both spatial and temporal dimensions are learned on input data x to generate predictions. The 233 spatial operator $\sum_{k=0}^{\infty} (\gamma_t \mathcal{N}(\mathbf{A}))^k$ corresponds to the graph convolution operation, utilizing Graph Convolutional Networks (GCN) (Shao et al., 2022c) or Transformers (Jiang et al., 2023) as operators. 234 235 Conversely, the temporal operator β_t captures the relationship between the current prediction time 236 step and the past T time steps. This component typically functions as a time series model, such as 237 those from the Temporal Convolutional Network (TCN) class (Bai et al., 2018), Recurrent Neural 238 Network (RNN) class (Cheng et al., 2024), or Transformer class (Wang et al., 2013). 239

Theory 2. Spatiotemporal residual theory. The paradigm discussed earlier focuses solely on 240 the spatiotemporal features of the input data, without effectively addressing the historical-future 241 inconsistency. To tackle this issue, we are interested in exploring the integration of label features into 242 the learning process. Let $\mathbf{y}_{t,u} \in \mathbb{R}^f$ represent the label of node u at time step t, and denote the labels 243 of the other nodes (excluding node u) as $\mathbf{y}_{t,\hat{u}} \coloneqq \begin{bmatrix} \mathbf{y}_{t,1}^{\top}, ..., \mathbf{y}_{t,u-1}^{\top}, \mathbf{y}_{t,u+1}^{\top}..., \mathbf{y}_{N}^{\top} \end{bmatrix}^{\top} \in \mathbb{R}^{(N-1) \times f}$. There exist correlations between $y_{t,u}$ and the labels of the other nodes, considering only the spatial 244 245 correlation at each time step and disregarding the dependence across different time steps. Our 246 objective is to incorporate the spatiotemporal features into the Gaussian Markov Random Field 247 (GMRF) framework. The condition for the GMRF is to predict the variable $y_{t,u}$ with the goal of 248 minimizing the difference from the label $\mathbf{y}_{t,u}$. For any future time step $t = \{1, 2, \dots, T_P\}$, the 249 expectation of $y_{t,u}$ with respect to x and $y_{t,\hat{u}}$ is 250

$$\mathbb{E}\left[\boldsymbol{y}_{t,u}|\mathbf{x}, \mathbf{y}_{t,\hat{u}}\right] = \underbrace{\mathbb{E}\left[\boldsymbol{y}_{t,u}|\mathbf{x}\right]}_{\text{Base prediction}} + \underbrace{\beta_{t,u}\left(\mathbf{I}_{N} + \alpha_{t}\mathcal{A}\left(\mathbf{A}\right)\right)_{u,\hat{u}}}_{\text{Propagation Kernel}} \times 2 \underbrace{\mathbf{r}_{t,\hat{u}}}_{\text{Residual}}$$
(7)

255 Detailed proofs of this theory are explained in Appendix A.2. The base prediction is generated by 256 forward spatiotemporal learning corresponding to Theory 1. The smoothing coefficient is used to 257 smooth the residual term for smooth learning. And $\tau_{t,u} = \left[(1 + \alpha_t) \left(1 + \alpha_t \mathcal{A} \left(\mathbf{A} \right)_{u,u} \right) \right]^{-1}$ is a 258 scalar with $\alpha_t = \frac{\theta_{t'}}{W_{t',t'}}$ and t' = T + t, where $\mathcal{A}(\mathbf{A})_{u,u}$ indicates the entry on the *u*-th row and *u*-th 260 column of $\mathcal{A}(\mathbf{A})$, and $(\mathbf{I}_{N} + \alpha_{t}\mathcal{A}(\mathbf{A}))_{u,\hat{u}} \in \mathbb{R}^{1 \times (N-1)}$ is the *u*-th row of $\mathbf{I}_{N} + \alpha_{t}\mathcal{A}(\mathbf{A})$ excluding itself. The smoothing coefficient signifies the affinity between node u and the remaining nodes. In 262 fact, it can be regarded as a part from the graph kernel. To differentiate, we call this graph kernel 263 as residual propagation kernel. The residual term $\mathbf{r}_{t,\hat{u}}$ represents the difference between predicted 264 expectations and labels, which is denoted as follows: 265

$$\mathbf{r}_{t,\hat{u}} \coloneqq \mathbb{E}\left[\mathbf{y}_{t,\hat{u}} | \mathbf{x}\right] - \mathbb{E}\left[\mathbf{y}_{t,\hat{u}}\right] \in \mathbb{R}^{1 \times (N-1) \times f}.$$
(8)

In Equation 8, the base prediction expectation $\mathbb{E}[y_{t,\hat{u}}|\mathbf{x}]$ is determined by the high-dimensional 268 representation of the input data, while $\mathbb{E}[\mathbf{y}_{t,\hat{u}}]$ depends on the autocorrelation of the labels. Therefore, 269 the residual term actually represents the difference in feature between the input and the label.

Mark. Theory 2 unveils that a holistic spatiotemporal learning paradigm integrating label information should encompass both a forward process and a backward process. The forward process in spatiotemporal learning captures the interdependencies in the input data to produce base predictions, whereas the backward process is dedicated to modeling residuals for generating correction terms. These residuals encapsulate the discrepant features of the input and labels. The ultimate prediction is derived from the amalgamation of the base prediction and the correction terms. This theory aligns perfectly with our assertion.

4.2 STBIM

We initially outline the general structure of conventional STNNs utilized for forward spatiotemporal learning. Subsequently, we provide a comprehensive description of our innovative STBIM module and elucidate its seamless integration with STNNs.

283 284

277 278

4.2.1 FORWARD SPATIOTEMPORAL LEARNING

As shown in Figure 2, existing spatiotemporal prediction models typically consist of three parts: (1) An input encoder maps the input data into a high-dimensional feature space, generally combining enhancement strategies such as node embedding technology. This function is denoted as $\mathcal{F}_E : \mathbf{x} \mapsto$ $\mathbf{Z}_e \in \mathbb{R}^{T \times N \times d_e}$, where \mathbf{Z}_e is termed as the *input representation*; (2) A STNN module \mathcal{F}_{ST} is used to capture spatiotemporal features of input representation and generate the *label representation* \mathbf{Z}_h : $\mathcal{F}_{ST} : \mathbf{Z}_e \mapsto \mathbf{Z}_h \in \mathbb{R}^{T \times N \times d_h}$. The trained label representations \mathbf{Z}_h can approximate the highdimensional feature mapping of the labels; (3) A base decoder \mathcal{F}_D decodes the label representation \mathbf{Z}_h to generate base prediction \mathbf{y}_{base} , $\mathcal{F}_D : \mathbf{Z}_h \mapsto \mathbf{y}_{base} \in \mathbb{R}^{T_P \times N \times f}$.

292 293

4.2.2 BACKWARD SPATIOTEMPORAL INCONSISTENCY LEARNING

295 In Equation 8, the residual term delineates the feature disparity between **Residual learning.** the input and the labels. Our methodology involves modeling the input representation \mathbf{Z}_e and 296 the label representation \mathbf{Z}_h to calculate this residual. The initial label representations are derived 297 through spatiotemporal learning of input data. Post-training, these representations closely mirror 298 the distribution of the labels, akin to high-dimensional feature mappings of the labels. Leveraging 299 these representations for residual computation allows us to capture inconsistencies across diverse 300 dimensions. Furthermore, this strategy alleviates the requirement to access the real labels, particularly 301 in situations where acquiring the true labels is impractical during the inference phase. 302

Specifically, we employ a Multi-Layer Perceptron (MLP) with Gaussian Error Linear Units (GELU) activation function (Hendrycks and Gimpel, 2016; Devlin et al., 2018) to map the label representation \mathbf{Z}_h to the same space: $\mathbf{Z}_h \mapsto \mathbf{Z}_r \in \mathbb{R}^{T \times N \times d_e}$. Subsequently, we decouple the spatiotemporal inconsistent features by subtracting the two representations $\mathbf{Z}_e - \mathbf{Z}_r$, which helps filter out redundant spatiotemporal features. This deviation is then fed into the STNN module \mathcal{F}_{ST} , placing particular emphasis on the model's relearning of this information. Consequently, the resulting output \mathbf{Z}_{res} represents the residual term. The overall calculation process can be outlined as follows:

- 310
- 311

$$\mathbf{Z}_{res} = \mathcal{F}_{ST} \left(\mathbf{Z}_e - \mathrm{MLP} \left(\mathbf{Z}_h \right) \right). \tag{9}$$

Residual propagation kernel. As show in Theory 2, it is essential to use spatiotemporal correlation 312 to smooth this residual term \mathbf{Z}_{res} . The smoothing process is similar to an aggregation process 313 based on a residual propagation kernel, i.e., graph kernel. In this paper, we thoroughly investi-314 gate the effectiveness of different types of graph kernels, including predefined kernel, diffusion 315 kernel, adaptive kernel, and data-driven kernel; and their definition is obtained in Appendix A.3. 316 In order to enhance the representation ability of models, we deploy K kernels $(\mathcal{K}_1, \mathcal{K}_2, ..., \mathcal{K}_K)$. Let $\mathcal{K} \coloneqq \boldsymbol{\tau} \left(\mathbf{I}_N + \frac{1}{K} \sum_{i=1}^K \boldsymbol{\alpha}_i \mathcal{K}_i \right)$, where $\boldsymbol{\alpha}_i = \text{diag} \left(\alpha_{i,1}, \alpha_{i,2}, ..., \alpha_{i,N} \right) \in (-1, 1)^{N \times N}$ and $\boldsymbol{\tau} = \text{diag} \left(\tau_1, \tau_2, ..., \tau_N \right) \in (0, 1)^{N \times N}$ are the learnable parameters. The variable *a* represents the 317 318 319 320 intensity of residual diffusion across the global spatiotemporal graph originating from a particular 321 node, indicated by its magnitude. The sign of a determines whether the correlation between nodes is positive or negative, thereby mitigating the risk of weak regression caused by an overly strong 322 assumption of homogeneity for anomalous data nodes (Xu et al., 2021; Kim et al., 2022). The 323 parameter τ plays a crucial role in determining the overall magnitude of the residual impact.

In fact, this residual propagation under this combination of kernels is equivalent to the *linear Graph Convolution* (Wu et al., 2019a; He et al., 2020a) operation with residual skip connections. We denote the residual propagation layer as \mathcal{F}_{RP} , and if we denote the number of residual propagation layers as *L*, we get the smoothed residual $\tilde{\mathbf{Z}}_{res}$ along the overall spatiotemporal structure as

$$\tilde{\mathbf{Z}}_{res} = \left[\boldsymbol{\tau} \left(\mathbf{I}_N + \frac{1}{K} \sum_{i=1}^K \boldsymbol{\alpha}_i \boldsymbol{\mathcal{K}}_i \right) \times_2 \mathbf{Z}_{res} \right]^L.$$
(10)

Prediction correction. We employ a MLP layer with the GELU activation function as a residual decoder \mathcal{F}_R to generate a prediction correction term $\mathbf{y}_{cor} = \mathcal{F}_R\left(\tilde{\mathbf{Z}}_{res}\right)$. Finally, this correction is added into the base prediction \mathbf{y}_{base} to yield final prediction $\hat{\mathbf{y}}$:

$$\hat{\mathbf{y}} = \mathbf{y}_{base} + \mathbf{y}_{cor}.\tag{11}$$

Training strategy of STBIM. We introduce two training strategies for STBIM: "Joint Training" and "Fine-tuning." In Joint Training, STBIM and STNN are trained end-to-end from scratch. The fine-tuning method involves fine-tuning both pre-trained STNN and STBIM together.

³⁴¹ 5 EXPERIMENT 342

336 337

338

339

340

In this section, we evaluate the effectiveness of the proposed generic modules across eleven datasets and over fifteen baselines. We primarily address the following potential concerns: **Q.1** Does the proposed module enhance performance prediction for existing STNNs? **Q.2** How sensitive is the model to hyperparameters? **Q.3** Can the modules effectively handle historical-future inconsistency? Furthermore, in the appendix, we detail the comparison between STID and STBIM, the computational costs of STBIM, and its additional convergence computation benefits.

349 **Datasets.** We deploy experiments on 11 datasets from two domains: transportation and atmo-350 sphere. In the transportation domain, we cover several commonly used PeMS0X (X=03, 04, 07, 08), 351 PEMS3-Stream (Chen et al., 2021), and METR-LA datasets, as well as an emerging dataset called 352 LargeST (Liu et al., 2023b), which consists of three sub-datasets, including an extremely large-scale 353 dataset with 8,600 nodes. The KnowAir (Wang et al., 2020) dataset records 4-year PM2.5 features from 184 atmospheric monitoring stations, and we further spilt KnowAir into 3 sub-datasets. The 354 details of these datasets are shown in Table 1. We divide traffic datasets into training, validation, and 355 test sets along time dimension with a ratio of 6:2:2. More details of training/validation/test sets can 356 be found in Appendix B.1. 357

358 Implementation. We use the AdamW optimizer (Loshchilov and Hutter, 2017) with a learning 359 rate of 0.002 for optimizing. To assess the efficacy 360 of our framework, we employ commonly utilized 361 Mean Absolute Error (MAE), Root Mean Square 362 Error (RMSE), and Mean Absolute Percentage Error (MAPE) as metrics. The models are executed on 364 a Nvidia A100 with 40GB memory, and the code 365 environment is based on the PyTorch framework 366 using Python 3.8.3. The length of the input time 367 window and future prediction window are both set to 368 12 in traffic datasets and 24 in atmosphere datasets. 369 When training STNNs with STBIM, we maintain the

	Table 1	:	Summary	of	sp	atiotem	poral	datasets
--	---------	---	---------	----	----	---------	-------	----------

7 1	1	
Nodes	Edges	Frames
716	17,319	525,888
2,352	61,246	525,888
3,834	98,703	525,888
8,600	201,363	525,888
358	546	26,208
307	338	16,992
883	865	28,224
170	276	17,856
207	1,515	34,272
655	1,577	8,928
184	3,796	3,4380
	Nodes 716 2,352 3,834 8,600 358 307 883 170 207 655 184	Nodes Edges 716 17,319 2,352 61,246 3,834 98,703 8,600 201,363 358 546 307 338 883 865 170 276 207 1,515 655 1,577 184 3,796

³⁷⁰ hyperparameters of STNNs, ensuring that the performance gain comes only from STBIM.

Baselines. We eployed STBIM into a dozen STNNs to evaluate the efficacy. These baselines
consist of various models including LSTM, STGCN (Yu et al., 2017), STNN (He et al., 2020b),
ASTGCN (Guo et al., 2019), STAEFormer (Liu et al., 2023a), AGCRN (Bai et al., 2020), STID (Shao
et al., 2022b), GC-LSTM (Qi et al., 2019), PM2.5GNN (Wang et al., 2020), nodesFC-GRU (Wang
et al., 2020), stemGNN (Cao et al., 2020), STWA (Cirstea et al., 2022), D²STGNN (Shao et al., 2022d), DGCRN (Li et al., 2023), DDGCRN (Weng et al., 2023), and BigST (Han et al., 2024). All
models are executed using the hyperparameters outlined in the official code (Liu et al., 2023b; Wang
et al., 2020). Further information regarding these baselines can be found in Appendix B.2.

Table 2: Prediction performance of models on traffic datasets. We sequentially report the performance of each model without STBIM modules, with STBIM modules in joint-training manner (+JT), and with STBIM modules in fine-tuning manner (+FT). 'Average improvement' reports the improvement of average prediction performance during 12 time steps using STBIM relative to basemodels.

								-					
Method	STRIM		Horizon	3		Horizon	6		Horizon 1	2	Aver	age improve	ement
Method	SIDIM	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
LSTM	- +JT +FT	19.13 17.55 18.68	30.80 27.97 30.07	11.62 11.42 11.52	26.07 21.71 24.79	41.34 34.64 39.08	16.32 14.68 15.94	37.87 26.91 35.20	59.37 44.06 54.96	25.08 19.44 23.86	- +19.50% +5.33%	+18.20% +5.73%	+13.37 +3.249
STID	- +JT +FT	15.39 14.66 15.15	25.71 24.71 25.35	9.90 9.45 9.84	18.05 17.08 17.00	30.53 29.03 29.99	12.02 11.20 11.89	22.01 20.83 21.61	39.06 35.64 38.15	15.35 14.31 15.01	- +5.11% +1.61%	- +5.95% +1.92%	- +6.069 +1.249
STAEFormer	- +JT +FT	15.68 15.48 15.46	25.71 25.92 25.66	10.65 10.14 10.31	18.33 17.91 18.14	30.42 30.31 30.42	12.66 11.86 12.18	22.77 21.61 21.90	38.64 37.13 38.17	15.99 14.96 15.11	- +3.09% +2.22%	- +1.40% +0.68%	+4.899
STGCN	- +JT +FT	17.37 16.05 15.97	29.91 27.39	12.36 10.80	19.29 18.30	33.36 31.45 31.67	13.39 12.21	22.99 22.17 22.07	40.28 39.22 39.27	15.80 15.12	+5.73%	+5.77%	+8.79
STTN	- +JT +FT	18.11 15.94	28.92 25.76 26.50	11.33 10.66	21.26 18.49	34.33 30.26 31.10	13.30 12.33 12.52	25.78 22.54 22.65	41.43 38.58 39.29	17.06 16.10 15.62	+12.18%	+9.85%	+6.12
ASTGCN	- +JT	20.23 17.41	32.17 28.24	13.09 11.17	25.94 20.92	40.54 34.05 37.00	17.13 13.59	32.34 24.80	50.86 40.51	22.23 17.22	+18.74%	+16.00%	+21.18
AGCRN	+F1 - +JT	15.57 15.14	29.84 28.49 25.49	12.31 11.39 10.16	17.66 17.39	31.44 29.70	12.86 11.70	29.70 21.40 20.95	48.73 40.44 29.96	16.35 14.91	+8.30%	+7.39%	+0.92
DGCRN	+FT - +JT	15.52 15.83 15.28	28.51 28.48 25.45	11.48 12.60 10.98	17.65 20.50 17.33	31.38 33.24 29.27	12.79 14.08 11.55	21.39 24.16 21.20	40.42 40.67 36.57	16.40 16.68 14.55	+0.17%	+0.15%	+0.08
DDCCRN	+FT - +IT	15.72 15.64 15.59	25.39 29.23 28.00	10.28 11.12 11.10	17.41 18.34 18.13	29.20 33.19 31.53	11.01 12.82 11.99	21.10 22.79 22.10	36.23 40.97 39 17	14.19 16.46 15.02	+1.48%	+1.65%	+0.189
DDGCRN	+FT	15.66	29.35 25.29	11.11	18.34	33.26 29.69	12.77	22.63	40.78	16.09 14.99	+0.06%	-0.09%	+0.239
D ² STGNN	+JT +FT -	14.83 14.89 15.83	24.68 24.83 26.04	9.79 9.74 11.38	17.23 17.42 18.17	28.72 28.81 31.13	11.17 11.31 13.12	20.61 20.81 22.92	34.42 34.58 39.63	13.58 13.81 16.34	+1.41% +1.21%	+3.55% +3.56%	+8.119 +6.029
BigST	+ JT + FT	14.39 14.62	24.27 24.41	10.24 10.50	17.56 17.90	29.09 29.48	11.78 12.16	21.01 21.17	36.01 36.20	14.88 14.94	+8.63% +7.08%	+6.52% +5.913%	+10.31 +7.92
			** •		I	argeST-C	BA datas	et					
Method	STBIM	MAE	Horizon .	5 MADE	MAE	PMSE	6 MADE	MAE	Horizon I	2 MADE	Aver	age improve	MAD
LSTM	+FT	20.21 17.67	33.22 31.24 31.70	15.14 15.14	27.28 24.47	43.34 38.37	23.08	38.55	60.13 49.32	36.68	-	-	-
STID	+J1	19.54	51.70		2471	20.26	22.09	22.10	50.25	32.92	+11.89%	+12.70%	+6.34
	+JT	17.80 17.43	29.56 29.35	14.32 13.37	24.71 21.04 20.43 20.77	39.26 34.76 34.19 34.80	21.90 21.90 17.28 15.94	32.18 25.23 24.35 24.70	50.35 42.22 40.90	32.92 33.26 21.48 19.92 20.60	+11.89% +11.06%	+12.70% +10.92%	+6.34 +6.34 +7.08
STAEFormer	+JT +FT - +JT	17.80 17.43 17.67 18.55 18.05	29.56 29.35 29.65 29.94 29.40 29.84	14.32 13.37 13.71 14.99 14.43	24.71 21.04 20.43 20.77 21.69 21.18 21.25	39.26 34.76 34.19 34.80 34.65 34.04 24.15	21.90 17.28 15.94 16.51 16.87 16.17	32.18 25.23 24.35 24.79 26.42 25.76	50.35 42.22 40.90 41.75 41.50 41.21	32.92 33.26 21.48 19.92 20.60 21.31 20.80 21.24	+11.89% +11.06% +2.74% +1.25% - +3.46%	+12.70% +10.92% - +1.88% +0.43% - +1.16%	+6.34 +6.34 +7.08 +4.15 - +1.93
STAEFormer STGCN	+JT +FT - +JT +FT - +JT +JT	17.80 17.43 17.67 18.55 18.05 18.32 20.47 19.38	29.56 29.35 29.65 29.94 29.40 29.84 33.85 32.14	14.96 14.32 13.37 13.71 14.99 14.43 14.15 15.26 14.52	24.71 21.04 20.43 20.77 21.69 21.18 21.25 22.75 22.75 22.16	39.26 34.76 34.19 34.80 34.65 34.04 34.15 37.49 36.65	21.90 21.90 17.28 15.94 16.51 16.87 16.17 16.91 17.03 16.73 16.73	32.18 25.23 24.35 24.79 26.42 25.76 25.66 25.51 25.61	50.35 42.22 40.90 41.75 41.50 41.21 40.83 42.13 42.62 42.13	32.92 33.26 21.48 19.92 20.60 21.31 20.80 21.34 19.80 20.04	+11.89% +11.06% +2.74% +1.25% +3.46% +1.94% +2.31% +2.31%	+12.70% +10.92% - +1.88% +0.43% - +1.16% +0.96% - +2.02%	+6.34 +6.34 +7.08 +4.15 +1.93 +1.05 +3.25
STAEFormer STGCN STTN	+JT +FT +JT +JT +FT - +JT +FT - +JT +JT	17.80 17.43 17.67 18.55 18.05 18.32 20.47 19.38 20.22 18.92 18.70	29.56 29.35 29.65 29.94 29.84 33.85 32.14 33.55 30.48 29.98	14.96 14.32 13.37 13.71 14.99 14.43 14.15 15.26 14.52 15.12 15.25 15.07	24.71 21.04 20.43 20.77 21.69 21.18 21.25 22.75 22.16 22.56 22.31 21.99	39.26 34.76 34.19 34.80 34.65 34.04 34.15 37.49 36.65 37.40 35.50 35.02	21.90 21.90 17.28 15.94 16.51 16.87 16.17 16.91 17.03 16.73 16.91 18.88 17.89	32.18 32.18 25.23 24.35 24.79 26.42 25.76 25.66 25.51 25.61 25.61 25.44 26.59 26.05	50.35 50.35 42.22 40.90 41.75 41.50 41.21 40.83 42.13 42.62 42.12 42.58 42.06	32.92 33.26 21.48 19.92 20.60 21.31 20.80 21.34 19.80 20.04 19.79 23.35 22.49	+11.89% +11.06% +2.74% +1.25% +3.46% +1.94% +2.31% +0.80% - +1.73%	+12:70% +10.92% - +1.88% +0.43% - +1.16% +0.96% - +2.02% +0.40% +1.45%	+6.34 +6.34 - +7.08 +4.15 - +1.93 +1.05 - +3.25 +0.53 - +4.27
STAEFormer STGCN STTN	+JT +FT - +JT +FT - +FT - +FT - +FT - +FT - +FT - +FT - - +JT +FT	17.80 17.43 17.67 18.55 18.05 18.32 20.47 19.38 20.22 18.92 18.92 18.92 18.81 21.53 19.91	29.56 29.35 29.65 29.94 29.84 33.85 32.14 33.55 30.48 29.98 29.37 34.07 31.60	14.30 14.32 13.37 13.71 14.99 14.43 14.15 15.26 14.52 15.12 15.25 15.07 14.98 17.44 16.29	24.71 21.04 20.43 20.77 21.69 21.18 21.25 22.75 22.75 22.56 22.56 22.56 22.31 21.99 21.34 26.31 24.73	39.26 34.76 34.19 34.80 34.65 34.04 34.15 37.49 36.65 37.40 35.00 35.00 35.01 40.36 38.52	21.90 17.28 15.94 16.51 16.87 16.91 17.03 16.73 16.91 17.03 16.91 18.88 17.89 17.16 24.71 21.18	32.18 25.23 24.35 24.79 26.42 25.76 25.66 25.51 25.61 25.61 25.61 25.61 25.63 26.03 34.00 30.51	50.35 42.22 40.90 41.75 41.50 41.21 40.83 42.13 42.62 42.12 42.58 42.04 52.97 47.44	32.92 33.26 21.48 19.92 20.60 21.31 20.80 21.34 19.80 20.04 19.79 23.35 22.49 22.70 30.15 27.73	+11.89% +11.06% +2.74% +2.74% +1.25% +3.46% +1.94% +2.31% +0.80% +2.14% +7.01%	+12.70% +10.92% +10.92% +0.43% +0.43% +1.88% +0.43% +1.66% +0.40% - - +2.02% +0.40% - +1.45% +2.67% +2.67%	+6.34 +6.34 +7.08 +4.15 - +1.93 +1.05 - +3.25 +0.53 - +4.27 +3.89 - +9.04
STAEFormer STGCN STTN ASTGCN	+JT +FT - +JT +FT - +JT +FT - +JT +FT - +JT +FT - - +JT +FT - - - - - - - - - - -	17.80 17.43 17.67 18.55 18.05 18.32 20.47 19.38 20.22 18.92 18.92 18.70 18.81 21.53 19.91 20.44 18.04 18.04 16.80	29.56 29.35 29.65 29.94 29.40 29.84 33.85 32.14 33.55 30.48 29.98 29.37 34.07 31.60 33.63 30.11 28.56	14.30 14.32 13.37 13.71 14.99 14.43 14.15 15.26 14.43 15.25 15.25 15.07 14.98 17.44 16.29 16.52 13.99 12.52	24.71 21.04 20.43 20.77 21.69 21.18 21.25 22.75 22.16 22.56 22.31 21.99 21.34 26.31 24.73 25.14 20.79 20.10	39.26 34.76 34.19 34.80 34.65 34.04 34.15 37.49 36.65 37.49 36.65 37.40 35.50 35.01 40.36 38.52 39.77 34.29 33.45	21.90 17.28 15.94 16.51 16.87 16.17 17.03 16.73 16.91 17.03 16.73 16.91 17.03 16.73 16.91 17.16 24.71 21.18 24.66 16.33 14.98	32.18 32.18 25.23 24.35 24.79 26.42 25.76 25.66 25.61 25.61 25.61 25.61 25.44 26.59 26.05 26.03 34.00 30.51 32.96 34.00 30.51 32.92 24.28 23.73	50.35 42.22 40.90 41.75 41.50 41.21 40.83 42.13 42.62 42.12 42.58 42.04 52.97 47.44 50.67 39.67 39.10	32.92 33.26 21.48 19.92 20.60 21.31 20.60 21.31 20.60 21.31 20.60 21.34 19.80 20.04 19.79 23.35 22.49 22.70 30.15 27.73 29.80 20.21 18.79	+11.89% +11.06% +2.74% +1.25% +3.46% +1.94% +2.31% +0.80% +2.14% +2.14% +7.01% +0.61% +2.00%	+12.70% +10.92% - +10.92% +0.43% - +1.88% +0.43% - +1.06% +0.43% - +2.02% +0.40% - - +1.45% +1.60% +1.00%	+6.34 +6.34 +7.08 +4.15 +1.93 +1.05 +3.25 +0.53 - +4.27 +3.89 - +9.04 +2.76 +6.95
STAEFormer STGCN STTN ASTGCN AGCRN	+JT +FT +FT +JT +JT +JT +FT - +JT +FT - +JT +FT - +JT +FT - - - - - - - - - - - - - - - - - - -	17.80 17.43 17.67 18.55 18.05 18.32 20.47 19.38 20.22 18.70 18.81 21.53 19.91 20.44 18.04 16.80 17.90	29.56 29.35 29.65 29.94 29.40 29.84 33.85 32.14 33.55 30.48 29.98 29.37 34.07 31.60 33.63 30.11 28.56 29.99 28.97 28.97	14.30 14.32 13.37 13.71 14.99 14.43 14.15 15.26 14.52 15.25 15.07 14.98 17.44 16.29 16.52 13.99 12.52 12.99	24.71 21.04 20.43 20.77 21.69 21.18 21.25 22.75 22.16 22.56 22.31 21.99 21.34 26.31 24.73 25.14 20.79 20.10 20.75 21.09	39.26 34.76 34.19 34.80 34.65 34.04 34.15 37.49 36.65 37.40 35.50 35.02 35.01 40.36 38.52 39.77 34.29 33.45 34.27 33.88 32.27	21.90 17.28 15.94 16.51 16.87 16.91 17.03 16.73 16.91 17.03 16.91 18.88 17.89 17.16 24.71 21.18 24.63 14.98 15.44 18.13 18.13	32.18 32.18 25.23 24.35 24.79 26.42 25.76 25.76 25.76 25.61 25.61 25.61 25.61 25.64 26.05 26.03 34.00 30.51 32.96 24.28 23.73 24.24 25.86	50.35 50.35 42.22 40.90 41.75 41.75 41.75 42.13 42.13 42.12 42.12 42.12 42.06 42.04 52.97 47.44 50.65 39.01 41.02	32.92 33.26 21.48 19.92 20.60 21.31 20.60 21.31 20.60 21.34 19.80 20.04 19.79 23.35 22.49 22.70 30.15 27.73 29.80 20.21 18.79 19.17 23.66	+11.89% +11.06% - +2.74% +1.25% +3.46% +1.94% +2.31% +0.80% - +2.31% +0.80% - +2.14% +2.14% +2.10% +0.61% +2.00% +0.29%	+12.70% +10.92% 	+6.34 +6.34 +7.08 +4.15 - +7.08 +4.15 - +1.93 +1.05 - +3.25 +0.53 - +4.27 +3.89 - +9.04 +2.76 - +6.95 +5.91
STAEFormer STGCN STTN ASTGCN AGCRN DGCRN	+TT +FT +FT +FT +JT +FT +JT +FT +FT +T +FT +FT +FT - +JT +FT - +FT -	17.80 17.43 17.67 18.55 18.05 18.32 20.47 19.38 20.22 18.92 18.92 18.92 18.70 18.81 21.53 19.91 20.44 18.04 16.80 17.90 18.02 17.86	29.56 29.35 29.69 29.94 29.84 33.85 32.14 33.85 30.48 29.98 29.37 34.07 31.60 33.63 30.11 28.56 29.99 28.97 28.43 28.54 29.11	14.30 14.32 13.37 13.71 14.99 14.43 14.15 15.26 14.52 15.25 15.07 14.98 17.44 16.29 16.52 13.99 12.52 12.99 15.23 15.13	24.71 21.04 20.43 20.77 21.69 21.18 21.25 22.75 22.16 22.31 21.92 21.34 26.31 26.31 26.31 20.75 21.09 20.75 21.09 20.77 21.05	39.26 34.76 34.19 34.80 34.65 34.04 34.15 37.49 36.65 37.40 35.50 35.02 35.01 35.02 35.01 40.36 38.52 39.77 34.29 33.45 34.27 33.88 32.76 33.88	21.90 17.28 15.94 16.51 16.87 16.91 17.03 16.73 16.91 17.03 16.73 16.91 17.03 16.73 16.91 17.03 16.73 16.91 17.03 16.73 16.91 17.03 16.73 16.73 16.73 16.91 17.03 16.73 17.03 16.73 16.73 17.03 16.73 16.73 16.73 17.03 18.88 17.89 17.16 17.16 17.03 18.88 17.89 17.16 17.16 17.16 17.16 17.17 18.88 17.89 17.16 17.17 18.88 17.89 17.16 17.18 14.98 15.41 18.13 18.07 18.80 17.98 18.80 17.98 17.98 17.98 17.98 18.80 17.98 17.98 17.98 18.80 17.98 17.98 18.80 17.98 17.98 18.80 17.98 17.98 18.80 17.98 18.80 17.98 18.80 17.98 18.80 17.98 18.80 17.98 18.80 17.98 18.80 17.98 18.80 18.80 17.98 18.80 18.80 17.98 18.807 18.80	32.18 32.18 25.23 24.35 24.79 26.42 25.76 25.76 25.76 25.61 25.61 25.61 25.61 25.61 25.63 34.00 30.51 32.96 24.28 23.73 24.24 25.86 25.66 25.66	50.35 42.22 40.90 41.75 41.50 41.21 40.83 42.13 42.62 42.13 42.62 42.62 42.06 42.04 52.97 47.44 50.67 39.65 39.01 41.02 40.90 41.21 40.90 41.21 42.58 42.06 42.04 42.04 42.04 42.04 42.04 42.04 42.04 42.04 42.04 42.05 39.01 41.02 40.90 41.05 41.05 42.05 40.05 39.01 41.02 40.75 40.05 40	32.92 33.26 21.48 19.92 20.60 21.31 20.60 21.34 19.80 20.04 19.79 23.35 22.49 22.70 30.15 27.73 29.80 20.21 18.79 19.17 23.66 22.35 22.55	+11.89% +11.06% - +2.74% +1.25% +3.46% +1.94% +2.31% +0.80% - +2.31% +0.80% - +1.73% +2.14% +0.61% +0.29% +0.29% +1.52% -	+12.70% +10.92% - +1.88% +0.43% - +1.16% +0.96% - +2.02% +0.05% +2.02% +0.05% +1.45% +2.67% +1.45% +1.80% +0.38% - -	+6.34 +6.34 - +7.08 +4.15 - - - +1.05 - - - +1.05 - - +3.25 +1.05 - - +3.25 - +4.55 - - - +4.27 + - - - - - - - - - - - - - - - - - -
STAEFormer STGCN STTN ASTGCN AGCRN DGCRN DDGCRN	+JT +FT - +JT +JT +JT +FT - +JT +FT - +JT +FT - +JT +FT - +JT +FT - +JT +FT - +JT +FT - +JT +FT - - + - - - - - - - - - - - - - - - -	17.80 17.43 17.67 18.55 18.05 18.32 20.47 19.38 20.22 18.92 18.92 18.90 18.81 21.53 19.91 20.44 18.04 16.80 17.90 18.80 17.86 17.89 17.86 17.47 17.23	29.56 29.35 29.65 29.94 29.40 29.84 33.85 32.14 33.85 30.48 29.98 29.37 30.48 29.98 29.37 30.47 31.60 33.63 30.11 28.56 29.99 28.97 28.97 28.97 28.97 28.54 29.11 28.22 28.64	14.30 14.32 13.37 13.71 14.99 14.43 14.15 15.26 14.52 15.27 15.27 14.98 17.44 16.29 16.52 13.99 12.52 12.99 15.23 15.13 15.26 15.13	24.71 21.04 20.43 20.77 21.69 21.18 21.25 22.75 22.16 22.56 22.31 21.99 21.34 26.31 24.73 25.14 20.79 20.79 20.79 20.77 21.09 20.77 21.09 20.77 21.05 20.72 20.50	39.26 34.76 34.19 34.80 34.65 34.04 34.15 37.49 36.65 37.40 35.02 35.01 40.36 38.52 39.77 34.29 33.45 34.27 33.88 32.76 33.86 32.74 33.86 32.74 33.86	21.90 17.28 15.94 16.51 16.87 16.91 17.03 16.73 16.91 17.03 16.91 17.03 16.91 17.03 16.91 17.03 16.91 18.88 17.89 17.16 24.71 21.18 24.66 16.33 14.98 18.07 18.00 17.98 18.07 18.00 17.98 14.96	32.18 32.18 25.23 24.35 24.79 26.42 25.76 25.76 25.76 25.51 25.61 25.51 25.61 25.61 25.63 26.05 26.03 34.00 30.51 32.96 24.28 23.73 24.24 25.86 25.57 25.62 25.57 25.62 25.57 25.62 25.57 25.42	50.35 42.22 40.90 41.75 41.50 41.21 40.83 42.13 42.13 42.62 42.04 42.04 42.04 52.97 47.44 50.67 39.65 39.01 41.02 40.81 40.81 40.81 41.9 41	32.92 33.26 21.48 19.92 20.60 21.31 20.60 21.31 20.60 21.31 20.60 21.34 19.80 20.04 19.79 23.35 22.49 22.70 30.15 27.73 29.80 20.21 18.79 19.17 23.65 22.56 23.55 22.19 23.55 22.19 23.55	+11.89% +11.06% - +2.74% +1.25% +3.46% +1.94% +1.94% +0.80% - +2.31% +0.80% +1.32% +1.73% +2.14% +0.61% - +2.00% +0.29% - +1.52% +1.52% +1.52% +1.52%	+12.70% +10.92% - +1.88% +0.43% - +1.16% +0.96% - +1.06% - +1.05% - +1.05% - +1.80% +0.45% - +1.80% +0.38% - - +0.81% +0.75%	$\begin{array}{c} +6.34\\ +6.34\\ +6.34\\ +6.34\\ +6.34\\ +2.76\\ +1.93\\ +1.95\\ +1.93\\ +1.95\\ +3.25\\ +0.53\\ +3.25\\ +0.54\\ +2.76\\ +4.27\\ +5.49\\ +0.11\\ +0.11\\ \end{array}$
STAEFormer STGCN STTN ASTGCN AGCRN DGCRN DDGCRN D ² STGNN	+JT +FT - +JT +JT +FT - +JT +FT - +JT +FT - +JT +FT - +JT +FT - +JT +FT - +JT +FT - +JT +FT - +JT +FT - +FT - - - - - - - - - - - - - - - - - - -	17.80 17.43 17.67 18.55 18.05 18.32 20.47 19.38 20.22 18.92 18.70 18.81 21.53 19.91 20.44 18.04 16.80 17.90 18.80 17.86 17.89 17.86 17.47 17.23 16.83 17.06	29.56 29.35 29.64 29.40 29.84 33.85 30.48 29.98 29.37 34.07 31.60 33.63 30.11 28.56 29.99 28.97 28.43 28.54 29.11 28.54 29.91 28.54	14.30 14.32 13.37 13.71 14.99 14.43 14.15 15.26 14.52 15.27 14.98 17.44 16.29 15.23 15.09 12.52 13.99 12.52 13.99 12.52 13.99 15.13 15.26 15.13 15.26 15.24 14.97 12.22 11.97 12.20	24.71 21.04 20.43 20.77 21.69 21.18 21.25 22.75 22.16 22.56 22.31 21.99 21.34 26.31 24.73 25.14 20.79 20.10 20.75 21.09 20.77 21.09 20.77 21.05 20.77 21.05 20.72 20.37	39.26 34.76 34.19 34.80 34.80 34.65 34.04 34.15 37.49 36.65 37.40 35.02 35.01 40.36 38.52 39.77 34.29 33.45 33.45 33.88 32.76 32.55 33.86 32.74 32.55 33.86 32.74 33.87 34.27	21.90 21.90 17.28 15.94 16.51 16.87 16.91 17.03 16.73 16.91 17.03 16.73 17.03 16.73 16.73 17.03 16.73 17.03 16.73 17.03 16.73 17.03 16.73 17.03 16.73 17.03 16.73 17.03 16.73 17.03 18.88 17.89 17.16 24.71 21.18 8.466 16.33 14.98 18.07 14.96 14.71 14.96 14.96 14.71 14.96 14.71 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14.75 14.96 14	32.18 32.18 25.23 24.35 24.79 26.42 25.76 25.76 25.51 25.61 25.61 25.61 25.61 25.61 25.61 25.61 25.61 25.63 34.00 30.51 32.96 24.28 23.73 24.24 25.86 25.66 25.66 25.62 25.57 25.62 25.57 25.42 25.13 24.81 24.92	50.35 50.35 42.22 40.90 41.75 41.50 41.21 40.83 42.13 42.13 42.62 42.14 42.58 42.06 42.04 52.97 47.44 50.67 39.65 39.01 41.02 41.02 40.81 40.81 41.5 41.5 41.5 41.5 41.5 41.5 41.21 41.5 41.21 41.5 41.21 41.5 41.21 41.5 41.21 41.5 41.21 41.50 41.21 42.58 42.06 42.04 42.04 42.04 42.05 42.04 42.05 42.04 42.05 42.04 42.04 42.05 41.05 41.05 41.05 42.04 42.05 42.04 42.05 41.05 41.05 41.05 41.05 41.05 41.05 41.05 41.05 41.05 41.05 41.05 41.05 41.05 41.05 41.21 41.5 41.5 40.81 41.5 41.75 41.	32.92 33.26 21.48 19.92 20.60 21.31 20.60 21.34 19.80 20.04 19.79 23.35 22.49 22.70 30.15 27.73 29.80 20.21 18.79 19.17 23.66 23.35 22.56 23.55 22.56 23.55 22.56 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 35 35 35 35 35 35 35 	+11.89% +11.06% - +2.74% +1.25% +3.46% +1.94% +1.94% +2.31% +0.80% - +2.31% +0.80% +1.73% +2.14% +1.73% +0.61% - - +2.00% +0.29% - +1.52%+1.52% +1.52% +1.52%+1.52% +1.52% +1.52%+1.52% +1.52%+1.5	+12.70% +10.92% - +1.88% +0.43% - +1.16% +2.02% +0.40% - +2.02% +0.40% - +2.02% +0.45% +2.67% - +1.80% +0.38% +0.38% +0.57% +0.45% - +0.81% +0.45% +0.43% - +1.6% +0.43% - +1.6% +0.43% - +1.6% +0.43% +0.43% - +1.6% +0.43% +0.45%+0.45% +0.45% +0.45% +0.45%+0.45% +0.45% +0.45%+00% +0.45%+00% +0	$\begin{array}{c} +6.34\\ +6.34\\ +6.34\\ +6.34\\ +6.34\\ +6.32\\ -\\ +7.08\\ +4.15\\ -\\ -\\ +1.93\\ +1.05\\ -\\ -\\ +3.25\\ +0.51\\ -\\ -\\ +4.27\\ +3.89\\ -\\ -\\ +4.67\\ +4.23\\ -\\ -\\ +5.91\\ -\\ -\\ -\\ +5.13\\ +1.72\\ \end{array}$

432 5.1 ANALYSIS OF EXPERIMENT RESULTS (Q.1)

We report the performance of the proposed STBIM combined with various STNNs on LargeST-SD and -GBA datasets in Table 2. Note that due to space constraints, experiment analysis on the other datasets can be obtained in Appendix B.5.

The AGCRN model demonstrates low prediction errors due to its adaptive graph learning strategy, enabling the model to accurately capture spatial dependencies. Interestingly, the MLP-based architec-ture STID achieves competitive predictions, possibly attributed to its utilization of spatial identity encoding, which enhances the representation of spatial node embeddings. When the spatiotemporal prediction baselines are combined with the proposed STBIM module, all models exhibit improved performance. Particularly noteworthy is the significant performance enhancement observed in certain underperforming models, with ASTGCN showing an average improvement of 15% on the LargeST-SD dataset with the integration of STBIM. Even for competitive baselines like STID and AGCRN, our module yields substantial performance gains. Notably, even for complex models such as D²STGNN and DDGCRN, the benefits of our module remain effective.

By comparing the training strategies of two STBIMs, it is evident that in various scenarios, the joint training approach generally outperforms the alternative methods. This advantage can be attributed to the stronger adaptability provided by joint training. In conclusion, experimental results demonstrate that our module significantly enhances the prediction accuracy of spatiotemporal prediction models in a wide range of scenarios. This improvement stems from modeling the inconsistent features between input and labels, rather than simply increasing the parameter size (as analyzed in Appendix C.0.1).

 5.2 Hyperparameter sensitivity analysis (Q.2)

The number of residual propagation layers L. We evaluate the sensitivity of L in Equation 10. Taking STID and STGCN as examples, experiment results on the LargeST-SD dataset are reported in Figure 3. We can see that optimal values of these two models are 2 and 3, respectively. When L is smaller than the optimal value, shallow residual propagation may not effectively propagate sufficient spatiotemporal information of labels. If L is equal to 0, it means that we do not utilize label information, and the large prediction errors also prove the validity of STBIM. On the other hand, when L exceeds the optimal value, excessive smoothing of information may occur due to deep layers. Particularly, when L is excessively large, STBIM may have a negative impact, potentially due to overfitting caused by increased model complexity.

Figure 3: Hyperparameter experiment of L with STID (Upper) and STGCN (lower).

		STID	
Kernel	MAE	RMSE	MAPE
Transition	17.63	30.40	11.76
DoubleTransition	17.40	29.56	11.44
Adaptive	17.12	28.59	11.19
Data-driven	17.99	30.14	12.84
		STGCN	
Kernel	1445	D 1 (0 D	
riemer	MAE	RMSE	MAPE
Transition	MAE 19.04	33.53	MAPE 13.42
Transition DoubleTransition	MAE 19.04 18.85	33.53 32.99	MAPE 13.42 <u>12.90</u>
Transition DoubleTransition Adaptive	MAE 19.04 <u>18.85</u> 18.56	RMSE 33.53 32.99 32.34	MAPE 13.42 <u>12.90</u> 12.68

Kernel function. We evaluate the effect of different graph kernel types on model performance, which
 is explained in Equation 3. The definitions of these kernels are described in Appendix A.3. We
 take STGCN and STID as examples, and the results are shown in Table 3. We find that adaptive
 kernel function for residual propagation achieves more accurate performance for both models. The
 underlying reason is that it can capture a more comprehensive spatiotemporal information.

487 5.3 Effectiveness Analysis for historical-future Inconsistency (Q.3)

We assess STBIM's effectiveness in addressing inconsistencies in spatial and temporal dimensions. Temporal inconsistency is evaluated based on samples where the increase ratio of input data mean compared to label mean exceeds 75%. Spatial inconsistency is identified when the similarity of input sequences between two nodes ranks in the top 20%, while their predicted label similarity falls within the lowest 5%. The experimental results for the Large-SD datasets, as presented in Tables 4 and 5, indicate that while some models attempt to enhance node uniqueness representation through node embedding, existing high-level architectures still struggle to effectively manage non-consistent samples due to the input-label consistency assumption. Our models improve label features by explicitly modeling them. The prediction visualizations are illustrated in Figure 4. For a more detailed comparison between STID and STBIM, please refer to Appendix B.6.

Table 5: Spatial inconsistency model							
Model	MAE	RMSE	MAPE				
STGCN	29.43	43.61	46.34				
+STBIM	25.12	39.89	43.10				
STID	25.78	39.15	28.68				
+STBIM	23.06	38.22	24.31				
STAEformer	27.71	35.12	26.40				
+STBIM	23.89	34.19	22.91				
D ² STGNN	24.31	34.62	24.71				
+STBIM	21.09	33.74	21.13				

b) visualization cases of historical-future inconsistency in the spatial unitension

Figure 4: Visualization cases of historical-future inconsistency.

6 CONCLUSION

In this research, we introduce a versatile module named STBIM designed to boost the predictive capabilities of STNNs. STBIM effectively integrates label information into spatiotemporal learning by utilizing residuals. Initially, it separates the residual elements from the input and labels. It then refines these residuals by incorporating spatiotemporal correlations. Finally, the module leverages the enhanced residuals to adjust the predictions, thereby improving the model's accuracy. By integrating the STBIM module into various spatiotemporal prediction models and conducting comprehensive experiments, we observed substantial performance enhancements of up to 21.18%.

540	REFERENCES
541	

550

551

552

553

554 555

556

558

565

567

570

577

578

- Bai, L., Yao, L., Li, C., Wang, X., and Wang, C. (2020). Adaptive graph convolutional recurrent 542 network for traffic forecasting. Proc. of NeurIPS. 543
- 544 Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. 546
- Baz, J., Díaz, I., Montes, S., and Pérez-Fernández, R. (2022). Some results on the gaussian markov 547 random field construction problem based on the use of invariant subgraphs. Test, 31(3):856–874. 548
 - Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang, C., Tong, Y., Xu, B., Bai, J., Tong, J., et al. (2020). Spectral temporal graph neural network for multivariate time-series forecasting. Advances in neural information processing systems, 33:17766–17778.
 - Chen, X., Wang, J., and Xie, K. (2021). Trafficstream: A streaming traffic flow forecasting framework based on graph neural networks and continual learning. arXiv preprint arXiv:2106.06273.
 - Cheng, Z., Qiu, S., Sun, L., Han, D., Li, Q., and Chen, M. (2024). Spatial-temporal traffic prediction model based on adaptive graphs fusion and dual-graph collaborative convolution. In 2024 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE.
- Choi, Y. (2009). New form of block matrix inversion. In 2009 IEEE/ASME International Conference 559 on Advanced Intelligent Mechatronics, pages 1952–1957. IEEE. 560
- 561 Cirstea, R.-G., Yang, B., Guo, C., Kieu, T., and Pan, S. (2022). Towards spatio-temporal aware traffic 562 time series forecasting. In 2022 IEEE 38th International Conference on Data Engineering (ICDE), 563 pages 2900–2913. IEEE.
- Deng, J., Chen, X., Jiang, R., Song, X., and Tsang, I. W. (2021). St-norm: Spatial and temporal normalization for multi-variate time series forecasting. In Proceedings of the 27th ACM SIGKDD 566 conference on knowledge discovery & data mining, pages 269–278.
- 568 Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional 569 transformers for language understanding. arXiv preprint arXiv:1810.04805.
- Duan, W., Fang, T., Rao, H., and He, X. (2024). Pre-training identification of graph winning tickets 571 in adaptive spatial-temporal graph neural networks. In Proceedings of the 30th ACM SIGKDD 572 Conference on Knowledge Discovery and Data Mining, pages 701–712. 573
- 574 Duan, W., He, X., Zhou, Z., Thiele, L., and Rao, H. (2023). Localised adaptive spatial-temporal 575 graph neural network. In Proceedings of the 29th acm sigkdd conference on knowledge discovery and data mining, pages 448-458. 576
 - Fan, J., Liao, Y., and Liu, H. (2016). An overview of the estimation of large covariance and precision matrices. The Econometrics Journal, 19(1):C1-C32.
- 580 Furtlehner, C., Lasgouttes, J.-M., Attanasi, A., Pezzulla, M., and Gentile, G. (2021). Short-term forecasting of urban traffic using spatio-temporal markov field. IEEE Transactions on Intelligent 581 Transportation Systems, 23(8):10858–10867. 582
- 583 Goodman, N. R. (1963). Statistical analysis based on a certain multivariate complex gaussian 584 distribution (an introduction). The Annals of mathematical statistics, 34(1):152–177. 585
- Guo, S., Lin, Y., Feng, N., Song, C., and Wan, H. (2019). Attention based spatial-temporal graph 586 convolutional networks for traffic flow forecasting. In Proc. of AAAI.
- 588 Guo, S., Lin, Y., Gong, L., Wang, C., Zhou, Z., Shen, Z., Huang, Y., and Wan, H. (2023). Self-589 supervised spatial-temporal bottleneck attentive network for efficient long-term traffic forecasting. In Proc. of ICDE.
- Han, J., Zhang, W., Liu, H., Tao, T., Tan, N., and Xiong, H. (2024). Bigst: Linear complexity spatio-592 temporal graph neural network for traffic forecasting on large-scale road networks. Proceedings of 593 the VLDB Endowment, 17(5):1081–1090.

- 594 He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang, M. (2020a). Lightgen: Simplifying and 595 powering graph convolution network for recommendation. In Proceedings of the 43rd International 596 ACM SIGIR conference on research and development in Information Retrieval, pages 639–648. 597 He, Z., Chow, C.-Y., and Zhang, J.-D. (2020b). Stnn: A spatio-temporal neural network for traffic 598 predictions. *IEEE Transactions on Intelligent Transportation Systems*, 22(12):7642–7651. 600 Hendrycks, D. and Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv preprint 601 arXiv:1606.08415. 602 Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735-603 1780. 604 605 Hu, J., Liang, Y., Fan, Z., Chen, H., Zheng, Y., and Zimmermann, R. (2023). Graph neural processes 606 for spatio-temporal extrapolation. arXiv preprint arXiv:2305.18719. 607 Huang, Q., Shen, L., Zhang, R., Ding, S., Wang, B., Zhou, Z., and Wang, Y. (2024). Crossgnn: 608 Confronting noisy multivariate time series via cross interaction refinement. Proc. of NeurIPS. 609 610 Jiang, J., Han, C., Zhao, W. X., and Wang, J. (2023). Pdformer: Propagation delay-aware dynamic 611 long-range transformer for traffic flow prediction. arXiv preprint arXiv:2301.07945. 612 Kim, H., Lee, B. S., Shin, W.-Y., and Lim, S. (2022). Graph anomaly detection with graph neural 613 networks: Current status and challenges. IEEE Access, 10:111820–111829. 614 Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks. 615 616 In International Conference on Learning Representations. 617 Lan, S., Ma, Y., Huang, W., Wang, W., Yang, H., and Li, P. (2022). Dstagnn: Dynamic spatial-618 temporal aware graph neural network for traffic flow forecasting. In Proc. of ICML. 619 Li, F., Feng, J., Yan, H., Jin, G., Yang, F., Sun, F., Jin, D., and Li, Y. (2023). Dynamic graph 620 convolutional recurrent network for traffic prediction: Benchmark and solution. ACM Transactions 621 on Knowledge Discovery from Data. 622 623 Li, M. and Zhu, Z. (2021). Spatial-temporal fusion graph neural networks for traffic flow forecasting. 624 In Proc. of AAAI. 625 Li, X., Guo, Y., and Schuurmans, D. (2015). Semi-supervised zero-shot classification with label 626 representation learning. In Proceedings of the IEEE international conference on computer vision, 627 pages 4211–4219. 628 Li, Y., Yu, R., Shahabi, C., and Liu, Y. (2017). Diffusion convolutional recurrent neural network: 630 Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926. 631 Liang, Y., Ouyang, K., Wang, Y., Liu, Y., Zhang, J., Zheng, Y., and Rosenblum, D. S. (2021). 632 Revisiting convolutional neural networks for citywide crowd flow analytics. In Proc. of KDD. 633 634 Liu, C., Xiao, Z., Wang, D., Wang, L., Jiang, H., Chen, H., and Yu, J. (2021). Exploiting spatiotem-635 poral correlations of arrive-stay-leave behaviors for private car flow prediction. IEEE Transactions 636 on Network Science and Engineering. 637 Liu, C., Yang, S., Xu, Q., Li, Z., Long, C., Li, Z., and Zhao, R. (2024a). Spatial-temporal large 638 language model for traffic prediction. arXiv preprint arXiv:2401.10134. 639 Liu, H., Dong, Z., Jiang, R., Deng, J., Deng, J., Chen, Q., and Song, X. (2023a). Spatio-temporal 640 adaptive embedding makes vanilla transformer sota for traffic forecasting. In Proc. of CIKM. 641 642 Liu, X., Xia, Y., Liang, Y., Hu, J., Wang, Y., Bai, L., Huang, C., Liu, Z., Hooi, B., and Zimmermann, 643 R. (2023b). Largest: A benchmark dataset for large-scale traffic forecasting. arXiv preprint 644 arXiv:2306.08259. 645 Liu, X., Xia, Y., Liang, Y., Hu, J., Wang, Y., Bai, L., Huang, C., Liu, Z., Hooi, B., and Zimmermann, 646 647
- R. (2024b). Largest: A benchmark dataset for large-scale traffic forecasting. Advances in Neural Information Processing Systems, 36.

648 649 650	Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. <i>arXiv preprint arXiv:1711.05101</i> .
651 652	Miao, H., Fei, Y., Wang, S., Wang, F., and Wen, D. (2022). Deep learning based origin-destination prediction via contextual information fusion. <i>Multimedia Tools and Applications</i> .
653 654 655	Moulinec, H., Suquet, P., and Milton, G. W. (2018). Convergence of iterative methods based on neumann series for composite materials: Theory and practice. <i>International Journal for Numerical Methods in Engineering</i> , 114(10):1103–1130.
656 657 658	Qi, Y., Li, Q., Karimian, H., and Liu, D. (2019). A hybrid model for spatiotemporal forecasting of pm2. 5 based on graph convolutional neural network and long short-term memory. <i>Science of the Total Environment</i> , 664:1–10.
660 661	Ruan, W., Chen, W., Dang, X., Zhou, J., Li, W., Liu, X., and Liang, Y. (2024). Low-rank adaptation for spatio-temporal forecasting. <i>arXiv preprint arXiv:2404.07919</i> .
662 663	Rue, H. and Held, L. (2005). <i>Gaussian Markov random fields: theory and applications</i> . Chapman and Hall/CRC.
665 666	Shalev, G., Adi, Y., and Keshet, J. (2018). Out-of-distribution detection using multiple semantic label representations. <i>Advances in Neural Information Processing Systems</i> , 31.
667 668	Shao, Z., Zhang, Z., Wang, F., Wei, W., and Xu, Y. (2022a). Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting. In <i>Proc. of CIKM</i> .
659 670 671 672	Shao, Z., Zhang, Z., Wang, F., Wei, W., and Xu, Y. (2022b). Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting. In <i>Proceedings of the 31st ACM International Conference on Information & Knowledge Management</i> , page 4454–4458.
673 674 675	Shao, Z., Zhang, Z., Wang, F., and Xu, Y. (2022c). Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting. In <i>Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining</i> , pages 1567–1577.
676 677 678	Shao, Z., Zhang, Z., Wei, W., Wang, F., Xu, Y., Cao, X., and Jensen, C. S. (2022d). Decoupled dynamic spatial-temporal graph neural network for traffic forecasting. <i>arXiv preprint arXiv:2206.09112</i> .
680 681 682	Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. <i>IEEE signal processing magazine</i> , 30(3):83–98.
683 684 685 686	Tang, Y., Qu, A., Chow, A. H., Lam, W. H., and Ma, W. (2022). Domain adversarial spatial-temporal network: A transferable framework for short-term traffic forecasting across cities. In <i>Proceedings</i> of the 31st ACM International Conference on Information & Knowledge Management, pages 1905–1915.
687 688 689	Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. <i>Advances in neural information processing systems</i> , 30.
690 691 692 693	Wang, B., Ma, J., Wang, P., Wang, X., Zhang, Y., Zhou, Z., and Wang, Y. (2024). Stone: A spatio- temporal ood learning framework kills both spatial and temporal shifts. In <i>Proceedings of the 30th</i> ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 2948–2959.
694 695 696	Wang, B., Tu, Z., and Tsotsos, J. K. (2013). Dynamic label propagation for semi-supervised multi- class multi-label classification. In <i>Proceedings of the IEEE international conference on computer</i> <i>vision</i> , pages 425–432.
697 698 699	Wang, B., Zhang, Y., Wang, X., Wang, P., Zhou, Z., Bai, L., and Wang, Y. (2023). Pattern expansion and consolidation on evolving graphs for continual traffic prediction. In <i>Proc. of KDD</i> .
700 701	Wang, H., Tan, SC., Wang, Y., Jiang, C., Shi, Gy., Zhang, MX., and Che, HZ. (2014). A multisource observation study of the severe prolonged regional haze episode over eastern china in january 2013. <i>Atmospheric Environment</i> , 89:807–815.

702 703 704 705	Wang, S., Li, Y., Zhang, J., Meng, Q., Meng, L., and Gao, F. (2020). Pm2. 5-gnn: A domain knowledge enhanced graph neural network for pm2. 5 forecasting. In <i>Proceedings of the 28th international conference on advances in geographic information systems</i> , pages 163–166.
706	Weisstein, E. W. (2002). Heaviside step function. https://mathworld. wolfram. com/.
707 708 709	Weng, W., Fan, J., Wu, H., Hu, Y., Tian, H., Zhu, F., and Wu, J. (2023). A decomposition dynamic graph convolutional recurrent network for traffic forecasting. <i>Pattern Recognition</i> , 142:109670.
710 711 712	Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. (2019a). Simplifying graph convolutional networks. In <i>International conference on machine learning</i> , pages 6861–6871. PMLR.
713 714	Wu, Z., Pan, S., Long, G., Jiang, J., and Zhang, C. (2019b). Graph wavenet for deep spatial-temporal graph modeling. <i>arXiv preprint arXiv:1906.00121</i> .
715 716 717	Xia, Y., Liang, Y., Wen, H., Liu, X., Wang, K., Zhou, Z., and Zimmermann, R. (2023). Deciphering spatio-temporal graph forecasting: A causal lens and treatment. <i>arXiv preprint arXiv:2309.13378</i> .
718 719	Xu, J., Wu, H., Wang, J., and Long, M. (2021). Anomaly transformer: Time series anomaly detection with association discrepancy. <i>arXiv preprint arXiv:2110.02642</i> .
720 721 722	Yu, B., Yin, H., and Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. <i>arXiv preprint arXiv:1709.04875</i> .
723 724 725	Zhao, B., Su, Y., He, S., Zhong, M., and Cui, G. (2016). Evolution and comparative assessment of ambient air quality standards in china. <i>Journal of Integrative Environmental Sciences</i> , 13(2-4):85–102.
726 727 728	Zheng, Z. and Su, D. (2016). Traffic state estimation through compressed sensing and markov random field. <i>Transportation Research Part B: Methodological</i> , 91:525–554.
729 730	Zhou, D., Bousquet, O., Lal, T., Weston, J., and Schölkopf, B. (2003). Learning with local and global consistency. <i>Advances in neural information processing systems</i> , 16.
731 732 733	Zhou, Z., Huang, Q., Yang, K., Wang, K., Wang, X., Zhang, Y., Liang, Y., and Wang, Y. (2023). Maintaining the status quo: Capturing invariant relations for ood spatiotemporal learning.
734 735 736	Zhou, Z., Wang, Y., Xie, X., Chen, L., and Zhu, C. (2020). Foresee urban sparse traffic accidents: A spatiotemporal multi-granularity perspective. <i>IEEE TKDE</i> .
737	
738	
740	
741	
742	
743	
744	
745	
746	
747	
748	
749	
751	
759	
753	
754	

758

759

760

761

770 771

775 776

784

797

801 802

MATHEMATICAL PROPOSITIONS AND PROOFS А

A.1 SPATIOTEMPORAL MULTIVARIATE GAUSSIAN DISTRIBUTION

Multivariate Gaussian distribution. Consider the multivariate Gaussian distribution (Goodman, 1963) over spatiotemporal variables $T \sim \mathcal{N}(\mathbf{T}, \boldsymbol{\Sigma})$, including historical and future temporal variables, where $\overline{\mathbf{T}}$ is the expectation and Σ is the covariance matrix. The probability density of T is

$$f_{T}\left(\mathbf{T}|\bar{\mathbf{T}}, \mathbf{\Sigma}\right) = \frac{\det\left(\mathbf{\Sigma}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{2}\left(\mathcal{V}\left(\mathbf{T}\right) - \mathcal{V}\left(\bar{\mathbf{T}}\right)\right)^{\top} \mathbf{\Sigma}^{-1}\left(\mathcal{V}\left(\mathbf{T}\right) - \mathcal{V}\left(\bar{\mathbf{T}}\right)\right)\right)}{\left(\sqrt{2\pi}\right)^{(T+T_{P})N}}.$$
 (12)

766 In the statements and proofs in Appendix, we use the bold subscript symbols x and y to denote the 767 subtensor of the tensor corresponding to the rows and columns of the x and y parts of T. Split the 768 variable into historical and future temporal part, then the spatiotemporal variables has the distribution in the block form. 769

$$[\boldsymbol{x}, \boldsymbol{y}] \sim \mathcal{N}\left(\left[\bar{\mathbf{x}}, \bar{\mathbf{y}} \right], \begin{bmatrix} \boldsymbol{\Sigma}_{\boldsymbol{x}\boldsymbol{x}} & \boldsymbol{\Sigma}_{\boldsymbol{x}\boldsymbol{y}} \\ \boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{x}} & \boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{y}} \end{bmatrix} \right).$$
 (13)

In many case, the covariance matrix is dense while the precision matrix (or inverse covariance matrix) 772 $\Gamma = \Sigma^{-1}$ is sparse (Fan et al., 2016), hence it is oftentimes economical-friendly to work with Γ . We 773 rewrite the block form distribution of spatiotemporal variables with precision matrix. 774

$$[\mathbf{x}, \mathbf{y}] \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{\bar{x}}, \mathbf{\bar{y}} \end{bmatrix}, \begin{bmatrix} \Gamma_{\mathbf{xx}} & \Gamma_{\mathbf{xy}} \\ \Gamma_{\mathbf{yx}} & \Gamma_{\mathbf{yy}} \end{bmatrix}^{-1} \right).$$
 (14)

777 **Marginal distribution.** The marginal distribution of future temporal variable y is simply self-relevant 778 from the mean and covariance 779

$$\boldsymbol{y} \sim \mathcal{N}\left(\bar{\mathbf{y}}, \boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{y}}\right).$$
 (15)

780 By the property of the inverse of block matrix (Choi, 2009), we have Σ_{uu} = 781 $(\Gamma_{yy} - \Gamma_{yx}\Gamma_{xx}^{-1}\Gamma_{xy})^{-1}$, hence we rewrite the marginal distribution of future temporal variable in 782 the form of precision matrix, 783

$$\boldsymbol{y} \sim \mathcal{N}\left(\bar{\mathbf{y}}, \left(\boldsymbol{\Gamma}_{\boldsymbol{y}\boldsymbol{y}} - \boldsymbol{\Gamma}_{\boldsymbol{y}\boldsymbol{x}}\boldsymbol{\Gamma}_{\boldsymbol{x}\boldsymbol{x}}^{-1}\boldsymbol{\Gamma}_{\boldsymbol{x}\boldsymbol{y}}\right)^{-1}\right).$$
 (16)

785 Conditional distribution. The conditional distribution of future temporal variable y with respect to 786 history temporal variable x = x is also a multivariate Gaussian distribution 787

$$\boldsymbol{y}|\boldsymbol{x} = \boldsymbol{x} \sim \mathcal{N}\left(\bar{\boldsymbol{y}} + \boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{x}}\boldsymbol{\Sigma}_{\boldsymbol{x}\boldsymbol{x}}^{-1}\left(\boldsymbol{x} - \bar{\boldsymbol{x}}\right), \boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{y}} - \boldsymbol{\Sigma}_{\boldsymbol{y}\boldsymbol{x}}\boldsymbol{\Sigma}_{\boldsymbol{x}\boldsymbol{x}}^{-1}\boldsymbol{\Sigma}_{\boldsymbol{x}\boldsymbol{y}}\right).$$
(17)

788 Moreover, one can show that $\Sigma_{yx}\Sigma_{xx}^{-1} = -\Gamma_{yy}^{-1}\Gamma_{yx}$ and $(\Sigma_{yy} - \Sigma_{yx}\Sigma_{xx}^{-1}\Sigma_{xy}) = \Gamma_{yy}^{-1}$ by the 789 block matrix inversion, then the conditional distribution can be written as 790

$$\mathbf{y}|\mathbf{x} = \mathbf{x} \sim \mathcal{N}\left(\bar{\mathbf{y}} - \mathbf{\Gamma}_{\mathbf{y}\mathbf{y}}^{-1}\mathbf{\Gamma}_{\mathbf{y}\mathbf{x}}\left(\mathbf{x} - \bar{\mathbf{x}}\right), \mathbf{\Gamma}_{\mathbf{y}\mathbf{y}}^{-1}\right).$$
(18)

791 Statements about parameters W and θ . The two parameters of GMRF: W and θ represent the 792 noise level in the spatiotemporal environment and homophily of nodes in the spatiotemporal graph 793 respectively. 794

We expain the proposition of W firstly. If we assume there is no correlation between nodes, i.e., 795 $\mathcal{A}(\mathbf{A}) = \mathbf{0}$, then the potential matrix of MRF in the definition 4.1 reduces to 796

$$\Gamma = W \otimes \mathbf{I}_N \in \mathbb{R}^{[(T+T_P)N] \times [(T+T_P)N]}.$$
(19)

798 Thus by the corresponding spatiotemporal multivariate gaussian distribution in the above explanation, 799 as example of variable y|x = x, the covariance matrix Σ' of multivariate random variable $y_t|x = x$ 800 for arbitrary $t = 1, 2, ..., T_P$ satisfying

$$\boldsymbol{\Sigma}' = (\boldsymbol{\Gamma}_{\boldsymbol{y}_t, \boldsymbol{y}_t})^{-1} = (W_{t', t'} \mathbf{I}_N)^{-1} = W_{t', t'}^{-1} \mathbf{I}_N,$$
(20)

for t' = T + t. Hence variables in $y_t | x = x$ are independent and identically distributed (i.i.d.) and 803 variance of each variable in it is $W_{t',t'}^{-1}$, that is what we claim. 804

805 As to θ , the greater the value of θ means that the feature of nodes in the corresponding time step 806 is more compatible. We consider the extreme cases. If all entries in θ are 0, which reduce to the 807 case deliberated above, then all nodes all i.i.d. through all time step, that is data among on the nodes is not circulating, which is the most heterogeneous situation. If all entries in θ is converge to 808 positive infinity, then the data on the node is independent of itself and is only equal to the normalized 809 summation of the adjacent node (Zhou et al., 2003).

A.2 PROOFS OF THEORY

Proof of Theory 1 By the definition 4.1 of GMRF, we can define the multivariate Gaussian distribution A.1 of probability density function,

$$f_{\boldsymbol{T}}(\mathbf{T}) = (2\pi)^{\frac{-N(T+T_{P})}{2}} \det\left(\boldsymbol{\Gamma}^{-1}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{2}\mathcal{V}(\mathbf{T})^{\top} \boldsymbol{\Gamma} \mathcal{V}(\mathbf{T})\right),$$
(21)

817 where

$$\Gamma = \begin{bmatrix} \Gamma_{xx} & \Gamma_{xy} \\ \Gamma_{yx} & \Gamma_{yy} \end{bmatrix} = \Sigma^{-1},$$
(22)

is the precision matrix, i.e., the inverse of covariance matrix Σ . The temporal tensor are jointly sampled via multivariate Gaussian distribution $\mathcal{V}(\mathbf{T}) \sim \mathcal{N}(\mathbf{0}, \Gamma^{-1})$. Here, W satisfying symmetric positive definite and θ satisfying entry-wise positive are the pseudo parameters of standard MRF model. Hence we have $\mathbf{y}|\mathbf{x} \sim \mathcal{N}\left(-\Gamma_{\mathbf{yy}}^{-1}\Gamma_{\mathbf{yx}}\mathcal{V}(\mathbf{x}), \Gamma_{\mathbf{yy}}^{-1}\right)$, i.e.,

$$\mathbb{E}\left[\boldsymbol{y}|\mathbf{x}\right] = -\boldsymbol{\Gamma}_{\boldsymbol{y}\boldsymbol{y}}^{-1}\boldsymbol{\Gamma}_{\boldsymbol{y}\boldsymbol{x}}\mathcal{V}\left(\mathbf{x}\right) = -\left(W_{\boldsymbol{y}\boldsymbol{y}}\otimes\mathbf{I}_{N} + \operatorname{diag}\left(\theta_{\boldsymbol{y}}\right)\otimes\mathcal{A}\left(\mathbf{A}\right)\right)^{-1}\left(W_{\boldsymbol{y}\boldsymbol{x}}\otimes\mathbf{I}_{N}\right)\mathcal{V}\left(\mathbf{x}\right).$$
(23)

Hence for arbitrary $t \in 1, 2, ..., T_P$, we have

$$\mathbb{E}\left[\boldsymbol{y}_{t}|\mathbf{x}\right] = -\left(W_{T+t,T+t}\mathbf{I}_{N} + \theta_{T+t}\mathcal{A}\left(\mathbf{A}\right)\right)^{-1}\left(W_{T+t,1:T}\otimes\mathbf{I}_{N}\right)\mathcal{V}\left(\mathbf{x}\right),\tag{24}$$

$$= -\left(W_{T+t,T+t}\mathbf{I}_N + \theta_{T+t}\mathcal{A}\left(\mathbf{A}\right)\right)^{-1}\mathbf{x}^{\top} \times_2 W_{T+t,1:T}^{\top},\tag{25}$$

$$= \left(W_{T+t,T+t}\mathbf{I}_N + \theta_{T+t}\mathcal{A}\left(\mathbf{A}\right)\right)^{-1} \times_2 \left(-W_{T+t,1:T}\mathbf{x}\right)^{\top}.$$
(26)

where \times_i is the matrix multiplication of tensor on the *i*-th dimension. Let $\alpha_t = \frac{\theta t}{W_{T+t,T+t}}$ and $\beta_t = -\frac{W_{T+t,1:T}}{W_{T+t,T+t}}$, we obtain reduce the above equation like

$$\mathbb{E}\left[\boldsymbol{y}_{t}|\mathbf{x}\right] = \left(\mathbf{I}_{N} + \alpha_{t}\mathcal{A}\left(\mathbf{A}\right)\right)^{-1}\mathbf{x}^{\top} \times_{2} \boldsymbol{\beta}_{t}^{\top}, \qquad (27)$$

$$= (\mathbf{I}_N + \alpha_t \mathcal{A}(\mathbf{A}))^{-1} \times_2 (\boldsymbol{\beta}_t \mathbf{x})^{\top}.$$
(28)

Moreover, since $\lim_{k\to\infty} \mathcal{N}(A)^k = 0$, we expand $(\mathbf{I}_N + \alpha_t \mathcal{A}(\mathbf{A}))^{-1}$ in terms of the Neumann series (Moulinec et al., 2018) as

=

$$\left(\mathbf{I}_{N}+\alpha_{t}\mathcal{A}\left(\mathbf{A}\right)\right)^{-1}=\left(\left(1+\alpha_{t}\right)\mathbf{I}_{N}-\alpha_{t}\mathcal{N}\left(\mathbf{A}\right)\right)^{-1},$$
(29)

$$=\frac{1}{1+\alpha_t}\left(\mathbf{I}_N-\frac{\alpha_t}{1+\alpha_t}\mathcal{N}\left(\mathbf{A}\right)\right)^{-1},\tag{30}$$

$$= (1 - \gamma_t) \sum_{k=0}^{\infty} (\gamma_t \mathcal{N} (\mathbf{A}))^k.$$
(31)

where $\gamma_t = \alpha_t / (1 + \alpha_t)$. Hence we can get

$$\mathbb{E}\left[\boldsymbol{y}_{t}|\mathbf{x}\right] = \left(1 - \gamma_{t}\right) \sum_{k=0}^{\infty} \left(\gamma_{t} \mathcal{N}\left(\mathbf{A}\right)\right)^{k} \mathbf{x}^{\top} \times_{2} \boldsymbol{\beta}_{t}^{\top},$$
(32)

$$= (1 - \gamma_t) \sum_{k=0}^{\infty} (\gamma_t \mathcal{N}(\mathbf{A}))^k \times_2 (\boldsymbol{\beta}_t \mathbf{x})^\top, \forall t \in 1, 2, ..., T_P,$$
(33)

which completes the proof.

Proof of Theory 2 Without loss of generality, we simplify the subsequent calculations by assuming two nodes disjoint union partition $V = V_1 \cup V_2$, i.e., $V_1 \cap V_2 = \emptyset$ to explore what are the implications for spatiotemporal learning when adding future impacts between data. Recall the result of Theory 1 and above proof, we get

$$\mathbf{y}|\mathbf{x} \sim \mathcal{N}\left(\mathbb{E}\left[\mathbf{y}|\mathbf{x}\right], \mathbf{\Gamma}_{\mathbf{y}\mathbf{y}}^{-1}\right),$$
(34)

hence the conditional distribution of y_{t,V_1} respect to y_{t,V_2} and \mathbf{x} for the disjoint union $V_1 \cup V_2$ of node set V and arbitrary $t = 1, 2, ..., T_P$ is

$$\boldsymbol{y}_{t,V_1}|\mathbf{x}, \mathbf{y}_{t,V_2} \sim \mathcal{N}\left(\mathbb{E}\left[\boldsymbol{y}_{t,V_1}|\mathbf{x}\right] + \boldsymbol{\Gamma}_{t,V_1V_1}^{-1}\boldsymbol{\Gamma}_{t,V_1V_2} \times_2 \left(\mathbb{E}\left[\boldsymbol{y}_{t,V_1}|\mathbf{x}\right] - \mathbf{y}_{t,V_2}\right), \boldsymbol{\Gamma}_{t,V_1V_1}^{-1}\right), \quad (35)$$

864 where $\mathbf{y}_{t,V_i} \coloneqq \begin{bmatrix} \mathbf{y}_{t.u.}^\top & | \forall u \in V_i \end{bmatrix}^\top$ for i = 1, 2. Hence the above expectation is, 865 $\mathbb{E}\left[\boldsymbol{y}_{t,V_1}|\mathbf{x},\mathbf{y}_{t,V_2}\right]$ 866 (36)867 $= \mathbb{E}\left[\boldsymbol{y}_{t,V_1}|\mathbf{x}\right] + \boldsymbol{\Gamma}_{t,V_1V_1}^{-1}\boldsymbol{\Gamma}_{t,V_1V_2}\left(\mathbb{E}\left[\boldsymbol{y}_{t,V_1}|\mathbf{x}\right] - \mathbf{y}_{t,V_2}\right),$ (37)868 $=\mathbb{E}\left[\boldsymbol{y}_{t,V_{1}}|\mathbf{x}\right]+\left(W_{T+t,T+t}\mathbf{I}_{N}+\theta_{T+t}\mathcal{A}\left(\mathbf{A}\right)\right)_{V_{1}V_{1}}^{-1}\left(W_{T+t,T+t}\mathbf{I}_{N}+\theta_{T+t}\mathcal{A}\left(\mathbf{A}\right)\right)_{V_{1}V_{2}}\times_{2}\mathbf{r}_{t,V_{2}},$ (38)870 $= \mathbb{E}\left[\boldsymbol{y}_{t,V_{1}}|\mathbf{x}\right] + \left(\mathbf{I}_{N} + \alpha_{t}\mathcal{A}\left(\mathbf{A}\right)\right)_{V_{1}V_{1}}^{-1} \left(\mathbf{I}_{N} + \alpha_{t}\mathcal{A}\left(\mathbf{A}\right)\right)_{V_{1}V_{2}} \times_{2} \mathbf{r}_{t,V_{2}},$ 871 (39)872 $= \mathbb{E}\left[\boldsymbol{y}_{t,V_{1}}|\mathbf{x}\right] + (1-\gamma_{t})\sum_{k=0}^{\infty} \left(\gamma_{t}\mathcal{N}\left(\mathbf{A}\right)_{V_{1},V_{1}}\right)^{k} \left(\mathbf{I}_{N} + \alpha_{t}\mathcal{A}\left(\mathbf{A}\right)\right)_{V_{1},V_{2}} \times_{2} \mathbf{r}_{t,V_{2}},$ 873 (40)874 875 still from the expansion of Neumann series (Moulinec et al., 2018) where $\alpha_t = \frac{\theta_t}{W_{T+t,T+t}}$ and 876 $\gamma_t = \alpha_t / (1 + \alpha_t)$. The term $(\mathbf{I}_N + \alpha_t \mathcal{A}(\mathbf{A}))_{V_1, V_2}$ indicates the submatrix consisting of rows 877 878 corresponding to entries in V_1 and columns corresponding to entries in V_2 for $\mathbf{I}_N + \alpha_t \mathcal{A}(\mathbf{A})$, similarity to $\mathcal{N}(\mathbf{A})_{V_1,V_1}$, which illustrates the dynamics of residual propagation in this context. It 879 must be noted, however, that the results of the closed form are independent of the node disjoint union 880 partition chosen, as determined by the equivariance of the GMRF (Baz et al., 2022). Hence, the case

A.3 **RESIDUAL PROPAGATION KERNEL**

883

884 885

894 895

896

897

899

900 901 902

903

908 909

914 915

916

In traditional spatiotemporal graph learning, there are four widely used approaches to generate the associations between nodes (i.e., adjacency kernel function): predefined kernel, adaptive kernel, and 887 data-driven kernel.

we considered in Theory 2 is just a special example in the proof when $V_1 = \{u\}$ and $V_2 = V \setminus \{u\}.\square$

Predefined kernel. This kernel is typically constructed based on various prior information, such 889 as the geographical information of nodes. This kernel function remains static during the model 890 learning process. Specifically, for traffic data, we calculate the geographical distance between nodes 891 $\mathbf{d}_{s} \in \mathbb{R}^{N \times N}$ (Li et al., 2017; Wu et al., 2019b; Yu et al., 2017; Liu et al., 2024b) (Shuman et al., 892 2013), then we construct the adjacency matrix kernel in the following manner: 893

$$\mathbf{A}_{s} \coloneqq e^{-\frac{\mathbf{a}_{s}}{\sigma^{2}}} \odot \mathbb{I}_{\{\mathbf{d}_{s} < -\sigma^{2} \ln \varepsilon | \varepsilon \in (0,1)\}} \text{ and } \mathcal{N}(\mathbf{A}_{s}) = \mathbf{A}_{s} \mathbf{D}_{s}^{-1}, \tag{41}$$

with degree matrix \mathbf{D}_s and diagonalization operator diag. I is indicator function¹ and hyperparameter $\varepsilon \in (0,1)$ filters through an extremely weak correlation to ease the burden of training. σ is the standard deviation of d_s . \odot is Hadamard Product. And for atmosphere data, we calculate the geographic adjacency matrix based on longitude-latitude geodesic distance matrix $\mathbf{d}_{qeo} \in \mathbb{R}^{N \times N}$ (Wang et al., 2014) and relative altitude matrix $\mathbf{h}_{alt} \in \mathbb{R}^{N \times N}$ (Wang et al., 2020) if existing,

$$\mathbf{A}_{geo} \coloneqq \mathbb{I}_{\{\mathbf{d}_{geo} < \varepsilon | \varepsilon > 0\}} \odot \mathbb{I}_{\{\mathbf{h}_{alt} < \xi | \xi > 0\}} \text{ and } \mathcal{N}\left(\mathbf{A}_{geo}\right) = \mathbf{D}_{geo}^{-1/2} \mathbf{A}_{geo} \mathbf{D}_{geo}^{-1/2}, \tag{42}$$

$$[u, v] \coloneqq \sup_{\lambda \in (0, 1)} \{h_w - \max\{h_w, h_v\} | w = \lambda u + (1 - \lambda) v\}.$$

where
$$\mathbf{h}_{alt}[u, v] \coloneqq \sup_{\lambda \in (0, 1)} \{h_w - \max\{h_u, h_v\} | w = \lambda u + (1 - \lambda)$$

904 **Diffusion kernel.** The diffusion kernel represents a diffusion process where information is assumed 905 to transfer from one node to its neighboring nodes with certain transition probabilities. This concept 906 has a strong analogy in spatiotemporal graph domains, such as the traffic flow between nodes, which can be viewed as a diffusion process. Specifically, it is generally obtained in the following ways: 907

$$\mathbf{A}_{double} \coloneqq \begin{bmatrix} \mathbf{A}_{road}, \mathbf{A}_{road}^{\top} \end{bmatrix} \text{ and } \mathcal{N}\left(\mathbf{A}_{double}\right) = \mathbf{A}_{double} \mathbf{D}_{double}^{-1}.$$
 (43)

910 Adaptive kernel. The adaptive kernel is generated with two learnable node embeddings that can 911 capture more complex node features from the data (Wu et al., 2019b; Shao et al., 2022d; Bai et al., 912 2020), which can be computed as: 913

$$\mathbf{A}_{adp} \coloneqq \operatorname{ReLU}\left(\mathbf{E}_{1}\mathbf{E}_{2}^{\top}\right) \text{ and } \mathcal{N}\left(\mathbf{A}_{adp}\right) = \operatorname{Softmax}\left(\mathbf{A}_{adp} - \operatorname{diag}\left(\mathbf{A}_{adp}\right)\right), \tag{44}$$

where \mathbf{E}_1 and $\mathbf{E}_2 \in \mathbb{R}^{N \times d_{adp}}$ are two learning node embeddings.

¹The indicator function can also be replaced by some transformation of Heaviside step function (Weisstein, 917 2002).

Data-driven kernel. This kernel is generated by a complex neural network, notably using the Transformer architecture (Shao et al., 2022d; Jiang et al., 2023). Following these inspirations, we use Transformer to compute this kind of kernel:

$$\mathbf{A}_{att} \coloneqq \frac{\mathrm{MLP}_{1}\left(\mathbf{Z}_{res}^{(t)}\right) \mathrm{MLP}_{2}\left(\mathbf{Z}_{res}^{(t)}\right)^{\top}}{\sqrt{d_{hid}}} \text{ and } \mathcal{N}\left(\mathbf{A}_{att}\right) = \mathrm{Softmax}\left(\mathbf{A}_{att} - \mathrm{diag}\left(\mathbf{A}_{att}\right)\right), \quad (45)$$

where $\mathbf{Z}_{res}^{(t)}$ is the residual representation of *t*-th time step.

A.4 IMPORTANT VARIABLES AND DEFINITIONS

We explain the meaning or definition of each variable in detail, as shown in Table 6.

Table 6: Some important variables and their definitions.

Variable	Definition
\mathbf{x}/x	Data/ its corresponding variable in GMRF
\mathbf{y}/\mathbf{y}	Label/ its corresponding variable in GMRF
W/θ	Parameters of GMRF
\mathbf{Z}_{e}	Input representation
\mathbf{Z}_h	Label representation
\mathbf{Z}_{resres}	Residual representation/Smoothed residual representation
y_{base}/y_{corr}	Base predition/Prediction correction
\mathcal{F}_E	Input encoder
\mathcal{F}_{ST}	STNN
\mathcal{F}_D	Base encoder
\mathcal{F}_R	Residual decoder
T	The length of input time step
N	The number of nodes
T_p	The length of label time step
\hat{f}	The number of features of spatiotemporal data
\check{K}	The number of kernels in residual propagation kernel
L	The number of residual propagation layers

A.5 PSEUDOCODE OF STBIM

In Algorithm 1, we present the pseudocode of STBIM, including the forward learning process and the backward correction process. The forward spatiotemporal learning aims to capture the spatiotemporal features of input data and generate label representations. The backward correction process utilizes the inconsistencies between input and label representations to generate correction terms. It is worth noting that we use label representations instead of directly using labels, **eliminating the need for direct access to labels** in our method. Label representations can be seen as high-dimensional feature mappings of labels, preserving rich information.

- **B** EXPERIMENTS
- 963 B.1 DATASETS DETAILS

LargeST-SD, -GBA, -GLA, and -CA datasets used in our experiments are indeed subsets of the
LargeST which is a large-scale traffic benchmark introduced in (Liu et al., 2023b). LargeST is a
comprehensive dataset specifically designed for evaluating spatiotemporal traffic prediction tasks. It
collects highway speed records from the PeMS (Performance Measurement System) with a sampling
frequency of 15 minutes over a period of 5 years. In our experiments, we use LargeST-SD, -GBA,
and -CA datasets in 2019. The datails are shown in Table 7.

971 The PEMS3-Stream dataset (Chen et al., 2021) is gathered by the California Transportation Agencies (CalTrans) Performance Measurement System (PeMS) in real-time at 30-second intervals. The data

972 973	Algorithm 1: STBIM for spatiotemporal predict	ion
974	Input: Input data $\mathbf{x} \in \mathbb{R}^{T \times N \times f}$;	// No label required
975	Output: Future label $\hat{\mathbf{y}} \in \mathbb{R}^{T_P \times N \times f}$	
976	1 $\mathbf{Z}_{e} \leftarrow \mathcal{F}_{E}\left(\mathbf{x} ight);$	<pre>// Input representation</pre>
977	2 # Forward spatiotemporal learning;	
978	$\mathbf{z}_{h} \leftarrow \mathcal{F}_{ST}\left(\mathbf{Z}_{e}\right);$	/ Label representation learning
979	4 $\mathbf{y}_{base} \leftarrow \mathcal{F}_{ST} \left(\mathbf{Z}_h \right);$	<pre>// Base prediction</pre>
980	5 # Backward residual correction;	
981	6 $\mathbf{Z}_{res} \leftarrow \mathcal{F}_{ST} \left(\mathbf{Z}_{e} - \mathrm{MLP} \left(\mathbf{Z}_{h} \right) \right);$	// Residual learning
982	$ au \; ilde{\mathbf{Z}}_{res} = \left[oldsymbol{ au} \Big(\mathbf{I}_N + rac{1}{K} \sum_{i=1}^K oldsymbol{lpha}_i \mathcal{K}_i \Big) imes_2 \; \mathbf{Z}_{res} ight]^L;$	<pre>// Residual propagation</pre>
983 984	$\mathbf{s} \; \mathbf{y}_{corr} \leftarrow \mathcal{F}_R\left(\tilde{\mathbf{Z}}_{res}\right);$	<pre>// Correction prediction</pre>
985	9 # Final prediction;	
986	10 $\hat{\mathbf{y}} \leftarrow \mathbf{y}_{base} + \mathbf{y}_{corr};$	<pre>// Final prediction</pre>

is aggregated into 5-minute intervals from the 30-second data instances. PEMS3-Stream comprises traffic flow data from 655 nodes in the North Central Area, collecting data for the month of July from 2011 to 2017, with a sampling frequency of 5 minutes. For our experiment, we utilized the data in 2011.

The KnowAir dataset (Wang et al., 2020) is a collection of PM2.5 measurements from 184 cities in
China, covering a period of four years from January 1, 2015, to December 31, 2018. To comprehensively evaluate the capabilities of the models, the dataset is divided into three subsets along the time
dimension, as presented in Table 8.

Table 7: The details of traffic datasets used in this paper.

Dataset	Nodes	Edges	Time Range	Frames
LargeST-SD	716	17,319	01/01/2019-31/12/2019	525,888
LargeST-GBA	2,352	61,246	01/01/2019-31/12/2019	525,888
LargeST-GLA	3,834	98,703	01/01/2019-31/12/2019	525,888
LargeST-CA	8,600	201,363	01/01/2019-31/12/2019	525,888
PEMS03	358	546	09/01/2018 - 11/30/2018	26,208
PEMS04	307	338	01/01/2018 - 02/28/2018	16,992
PEMS08	170	276	07/01/2016 - 08/31/2016	17,856
PEMS07	883	865	05/01/2017 - 08/06/2017	28,224
METR-LA	207	1,515	03/01/2012 - 06/27/2012	34,272
PEMS3-Stream	655	1,577	07/01/2011 - 07/31/2011	8,928

Table 8: The details of atmospheric datasets used in this paper.

Dataset	KnowAir-1	KnowAir-2	KnowAir-3
Nodes	184	184	184
Train range	2015/1/1 - 2016/12/31	2015/11/1 - 2016/2/28	2016/9/1 - 2016/11/30
Validate range	2017/1/1 - 2017/12/31	2016/11/1 - 2017/2/28	2016/12/1 - 2016/12/31
Test range	2018/1/1 - 2018/12/31	2017/11/1 - 2018/2/28	2017/1/1 - 2017/1/31
Sampling frequency	3 hour	3 hour	3 hour

1026 B.2 BASELINES 1027

1028 1029	In this section, we describes the baselines used in detail. Most of the model codes with their hyperparameters are from the official benchmark LargeST (Liu et al., 2023b) and KownAir (Wang
1030	et al., 2020), with a small number of models sourced from their official codes.
1031	
1032	• HL (Liang et al., 2021) selects the data from the last observation as the predicted value for
1033	all future time points.
1034	• LSTM (Hochreiter and Schmidhuber, 1997) is an RNN variant to model long-term temporal
1035	dependencies.
1036	STAFFormer (Linget al. 2022a) and and a more learning and a stick and a dention
1037	• STALFormer (Life et al., 2023a) presents a novel component carled spatiotemporal adaptive embedding that can yield outstanding results with vanilla transformers.
1030	• STGCN (Yu et al., 2017) consists of multiple spatiotemporal convolution blocks, each
1039	of which forms a "sandwich" structure with two gated sequence convolution layers and a spatial graph convolution layer in the middle.
1041	
1042 1043	• AGCRN (Bai et al., 2020) proposes an adaptive graph convolution network to automatically capture fine-grained spatiotemporal correlations of traffic sequences.
1044	• DGCRN (Li et al. 2023) uses the hypernetwork to exploit and extract the dynamic features
1045	of the node properties, while the parameters of the dynamic filter are generated at each time
1046	step.
1047	• DGCRN (Weng et al., 2023) generates spatiotemporal embeddings using time information
1048 1049	in traffic signals, and combines spatiotemporal embeddings with dynamic signals extracted from graph data to generate dynamic semantic graphs.
1050	• STID (Shao et al. 2022b) is based on a fully connected layer architecture and incorporates
1051	additional spatiotemporal identity information to enhance performance.
1052	
1053	• STINN (He et al., 2020b) is a spatiotemporal Transformer network model, which combines dynamic directed spatial dependence and long term dependence to improve the accuracy of
1054	spatiotemporal graph prediction
1055	
1056 1057	• GC-LSTM (Qi et al., 2019) integrates LSTM as the updating function and GCN to model the temporal and spatial dependency respectively.
1058	• PM2.5-GNN (Wang et al., 2020) is knowledge-enhanced GNN devised to capture pol-
1059	lutants' horizontal transport by leveraging neighboring information and updating nodes'
1060	representations. A spatiotemporal GRU is applied after updates to model pollutants' vertical
1061	accumulation and diffusion under the influence of weather.
1062	• NodeFC-GRU (Wang et al., 2020) is a degrading version of PM2.5GNN. It is implemented
1063	by replacing the GNN module in PM2.5-GNN with MLPs.
1064	• \mathbf{D}^2 STCNN (Shap et al. 2022d) can decouple the hidden time series generated by the
1065	diffusion process from the hidden time series independent of other sensors, allowing for
1066	more accurate modeling of different parts of the traffic data.
1067	
1068	• GWNet (will et al., 2019b) is based on a wavenet structure with double transition matrices,
1069	matrix is employed to enhance the model
1070	
1071	• STNorm (Deng et al., 2021) is based on the Wavenet structure and uses the special spatial
1072	and temporal regularisation approach to complete the feature extraction of the spatiotemporal
1073	
1074	• stemGNN (Cao et al., 2020) combines the Graph Fourier Transform (GFT) and the Discrete
1075	Fourier Transform (DFT), where GFT models inter-series correlations and DFT models
1076	temporal dependencies in an end-to-end framework.
1077	• STWA (Cirstea et al., 2022) encodes time series from different locations into stochastic
1078	variables, from which we generate location-specific and time-varying model parameters to
1079	better capture the spatiotemporal dynamics.

Table 9: Predictive performance of the model on KnowAir dataset. 'Average improvement' reports
the improvement of average prediction performance during 12 time steps using STRID relative to
only baselines.

						KnowAir-1							
Method	STBIM	$\text{MAE}\downarrow$	$\mathbf{RMSE}\downarrow$	A MAPE (%)↓	verage CSI (%) ↑	POD (%) ↑	FAR (%) \downarrow	MAE	Av RMSE	erage relativ MAPE	ve improver CS	nent POD	FAR
nodesFC-GRU	- +JT +FT	8.94 8.91 8.82	15.67 15.65 15.44	28.00 27.21 27.50	66.60 66.36 66.69	77.11 76.58 77.52	16.99 16.75 16.32	- +0.34% +1.34%	- +0.13% +1.47%	- +2.82% +1.79%	-0.36% +0.14%	-0.69% +0.53%	- +1.41% +3.94%
GC_LSTM	- +JT +FT	9.18 8.82 9.15	16.01 15.45 15.94	28.40 27.36 28.37	65.94 66.92 65.78	75.07 75.71 74.88	16.80 14.77 15.60	- +3.92% +0.33%	- +3.50% +0.44%	- +3.66% +0.11%	+1.49% -0.24%	+0.85% -0.25%	- +12.08% +7.14%
STID	+JT +FT	7.95 7.84 7.85	13.99 13.84 13.89	25.22 24.21 23.60	70.66 70.73 70.47	78.16 79.62 78.84	14.36 13.64 13.10	+1.38% +1.26%	+1.07% +0.71%	+4.00% +6.42%	+0.10% -0.27%	+1.87%	+5.01% +8.77%
STAEFormer	- +JT +FT	7.60 7.55 7.54	13.48 13.36 13.42	22.21 22.17 22.16	71.24 71.54 71.29	79.81 79.91 80.10	13.09 12.76 13.06	- +0.66% +0.79%	- +0.89% +0.45%	+0.18%	+0.42%	+0.13%	+2.52% +0.23%
AGCRN	- +JT +FT	7.85 7.79 7.80	13.86 13.22	23.56 23.01 23.08	70.50 70.88 70.60	80.05 80.99 80.92	14.47 14.31 14.17	- +0.76% +0.64%	+4.62%	+2.33%	+0.54%	+0.17%	+1.11%
DDGCRN	+JT +FT	8.01 7.93 8.01	14.11 14.03	24.85 23.86 24.68	70.11 70.93 70.07	79.87 79.01 79.97	14.84 14.11 14.33	+1.00%	+0.57%	+3.98 %	+1.17%	+1.08%	+4.92%
PM2.5GNN	- +JT +FT	8.87 8.49 8.78	15.50 15.02	28.63 24.66 27.02	67.00 67.50 67.29	76.04 75.43 76.79	15.07 13.47 15.02	- +4.28%	+3.10%	+13.87%	+0.75%	+0.80%	+10.62%
		0.70	15.57	27.02	01.27	KnowAir-2	13.02	11.01%	10.7170	15.62 %	10.4570	10.7770	10.5570
Method	STRIM			A	verage				Av	erage relativ	ve improver	nent	
nodesFC-GRU	- +JT	MAE↓ 14.28 14.26	RMSE↓ 24.82 24.12	MAPE (%)↓ 31.53 30.87	CSI (%) ↑ 69.77 70.60	POD (%)↑ 80.58 81.23	FAR (%)↓ 16.13 16.06	MAE - +0.14%	RMSE +2.82%	- +2.09%	CSI +1.19%	POD - +0.81%	FAR +0.43%
CC I STM	+FT - +JT	14.27 14.87 14.47	24.66 25.71 25.19	31.46 33.05 31.00	69.97 68.36 68.32	81.85 80.22 81.60	16.15 17.79 15.05	+0.07%	+0.64%	+0.22%	+0.29%	+1.58%	-0.12%
OC-LSTM	+FT	14.08	25.99	33.01	68.39	81.02	16.84	+5.31%	-1.09%	+0.12%	+0.04%	+1.00%	+5.34%
STID	+JT +FT	13.57 13.19 13.56	23.46 22.94 23.33	29.35 31.45	72.45 71.39	82.32 83.71 82.41	15.69 15.66 15.78	+2.80% +0.07%	+2.22% +0.55%	+8.17% +1.60%	+1.27% -0.21%	+1.44% -0.13%	+0.19% -0.57%
STAEFormer	+JT +FT	13.21 13.21 13.09	23.65 23.00 22.71	29.90 28.94 29.90	72.70 72.08 72.87	83.30 82.95 84.86	16.89 15.38 16.24	- +0.00% +0.91%	+2.75% +0.39%	+3.21% +0.00%	-0.85% +0.23%	-0.42% +1.87	+8.94% +3.85%
AGCRN	- +JT +FT	13.88 13.25 13.11	24.24 23.70 23.43	30.10 29.16 29.79	70.24 70.72 70.52	79.28 79.45 81.37	13.97 13.94 13.89	- +4.54% +5.55%	+2.23% +3.34%	+3.12% +1.03%	+ 0.68% +0.40%	+0.21% +2.64%	+0.21% +0.57%
DDGCRN	+JT +FT	13.99 13.91 13.94	24.16 24.10 24.13	33.48 32.02 32.45	70.83 70.22 70.66	81.33 82.21 82.09	16.47 15.07 15.40	- +0.57% +0.36%	+0.25% +0.12%	+4.36% +3.08%	-0.86% -0.24%	+1.08% +0.93%	+8.50% +6.50%
PM2.5GNN	+JT +FT	14.55 14.39 14.57	25.09 24.90 25.12	33.26 32.39 33.31	68.94 69.20 68.81	81.28 81.21 81.09	18.05 17.61 18.03	- +1.01% -0.13%	- +0.76% -0.12%	- +2.62% -0.15%	- +0.38% -0.19%	- +0.09% -0.22%	- +2.44% +0.11%
						KnowAir-3							
Method	STBIM	$\text{MAE}\downarrow$	$\text{RMSE} \downarrow$	A MAPE(%)↓	verage CSI (%) ↑	POD (%) †	FAR (%) \downarrow	MAE	Av RMSE	erage relativ MAPE	ve improver CSI	nent POD	FAR
nodesFC-GRU	- +JT +FT	20.48 19.60 19.88	35.10 34.71 34.63	39.11 37.97 35.63	71.54 72.46 72.62	87.88 88.92 87.42	21.42 20.27 18.90	- +4.30% +2.93%	- +1.11% +1.34%	+2.91% +8.90%	+1.29% +1.51%	+1.18% -0.52%	- +5.37% +11.76%
GC_LSTM	+JT +FT	20.91 19.49 20.86	36.00 33.89 35.94	39.32 36.14 39.05	72.30 73.71 72.34	88.94 88.36 88.61	20.56 18.36 20.37	+6.79% +0.24%	+5.86%	+8.09% +0.69%	+1.95% +0.06%	-0.65% -0.37%	+10.7% +0.92%
STID	- +JT +FT	17.50 17.47 17.41	31.63 30.88 30.97	33.04 32.07 33.16	76.04 76.60 76.72	88.75 92.13 89.26	15.85 15.33 15.69	- +0.17% +0.51%	+2.37% +2.09%	+2.94% -0.36%	+0.74% +0.89%	+3.81% +0.57%	+3.28% +1.01%
STAEFormer	- +JT +FT	18.28 17.56 17.64	31.33 30.41 30.70	36.42 33.97 32.57	75.68 76.54 76.25	90.89 92.28 90.63	19.67 18.22 17.22	- +3.94% +3.50%	+2.94% +2.01%	+6.72% +10.57%	+1.14% +0.75%	- +1.53% -0.29%	+7.37% +12.46%
AGCRN	+JT +FT	19.83 19.61 19.66	34.25 33.41 34.17	39.00 38.62 36.95	73.24 73.32 73.19	90.14 90.67 90.77	20.38 19.49 19.34	- +1.11% +0.86%	+2.45% +0.23%	+0.97% +5.26%	- +0.11% -0.07%	- +0.59% +0.70%	+4.37% +5.10%
DDGCRN	- +JT +FT	19.68 19.00 19.65	34.60 34.22 34.51	36.36 36.28 36.22	72.94 72.91 72.98	86.29 88.54 87.37	18.49 17.86 17.66	+3.46% +0.15%	+1.01% +0.26%	+0.22% +0.39%	-0.04% +0.05%	+2.61% +1.25%	+3.41% +4.49%
					72.27	00.42	20.10						

1134 B.3 METRIC

To assess the efficacy of our framework, we employed metrics commonly utilized in spatiotemporal prediction tasks, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). Moreover, we consider specific metrics, including Critical Success Index (CSI), Probability of Detection (POD), and False Alarm Rate (FAR), to assess the performance of the system in atmospheric tasks. Let the prediction value be $\hat{y}_{:,u}$ and ground truth value be $y_{:,u}$ for a specific node u, then the common metrics satisfy,

1142 1143

$$MAE = \frac{\sum_{t=1}^{T_P} |\mathbf{y}_{t,u} - \hat{\mathbf{y}}_{t,u}|}{T_P},$$
(46)

1147 1148

1149

1153 1154 1155

1156 1157 1158

1159

1165

 $RMSE = \sqrt{\frac{\sum_{t=1}^{T_P} (\mathbf{y}_{t,u} - \hat{\mathbf{y}}_{t,u})^2}{T_P}},$ (47)

$$MAPE = \frac{1}{T_P} \sum_{t=1}^{T_P} \frac{|\mathbf{y}_{t,u} - \hat{\mathbf{y}}_{t,u}|}{\mathbf{y}_{t,u}}.$$
(48)

1150 1151 1152 More over, we choose $\varepsilon = 75 \mu g/m^3$ to be the demarcation point of good air quality (Zhao et al., 2016). Hence the specific metrics satisfy,

$$\mathbf{CSI} = \frac{\#\left\{t \mid \mathbf{y}_{t,u} \ge \varepsilon, \hat{\mathbf{y}}_{t,u} \ge \varepsilon\right\}}{24 - \#\left\{t \mid \mathbf{y}_{t,u} < \varepsilon, \hat{\mathbf{y}}_{t,u} < \varepsilon\right\}},\tag{49}$$

$$POD = \frac{\#\{t \mid \mathbf{y}_{t,u} \ge \varepsilon, \hat{\mathbf{y}}_{t,u} \ge \varepsilon\}}{\#\{t \mid \mathbf{y}_{t,u} \ge \varepsilon, \hat{\mathbf{y}}_{t,u} \ge \varepsilon\} + \#\{t \mid \mathbf{y}_{t,u} \ge \varepsilon, \hat{\mathbf{y}}_{t,u} < \varepsilon\}},$$
(50)

$$FAR = \frac{\#\{t \mid \mathbf{y}_{t,u} < \varepsilon, \hat{\mathbf{y}}_{t,u} \ge \varepsilon\}}{\#\{t \mid \mathbf{y}_{t,u} \ge \varepsilon, \hat{\mathbf{y}}_{t,u} \ge \varepsilon\} + \#\{t \mid \mathbf{y}_{t,u} < \varepsilon, \hat{\mathbf{y}}_{t,u} \ge \varepsilon\}},$$
(51)

where # calculates the cardinal of the following set. It is important to note that smaller metrics represent better model performance for all metrics except CSI and POD. the opposite is true for CSI and POD metrics. It is crucial to acknowledge that smaller metrics indicate superior model performance for all metrics except CSI and POD. Conversely, the opposite is true for CSI and POD metrics.

1166 B.4 ANALYSIS OF EXPERIMENTAL RESULTS ON THE OTHER DATASETS

In this section, we analyze the effectiveness of the proposed module on the other traffic dataset and
 Know Air dataset from the atmospheric domain. Traffic datasets include PeMS03, PeMS04, PeMS08,
 PeMS07, METR-LA, PEMS3-Stream, Large-LA, and Large-CA.

For KnowAir datasets, we we also complement specialized models that perform well in atmospheric 1171 prediction tasks including GC-LSTM (Qi et al., 2019), nodesFC-GRU, and PM2.5GNN (Wang 1172 et al., 2020). In addition, for a more comprehensive evaluation, we introduce several indicators that 1173 are widely used in the field of atmospheric forecasting, including the critical success index (CSI), 1174 probability of detection (POD), and false alarm rate (FAR). Please mote that higher values for the 1175 first two metrics mean better performance. As shown in Table 9, we find that STID still performs the 1176 best on the KnowAir dataset, surpassing several dedicated atmospheric prediction models. This is 1177 because the fundamental challenge in both spatiotemporal atmospheric prediction and traffic tasks 1178 lies in modeling spatiotemporal correlations, which STID evidently does better. The experimental 1179 conclusions are consistent with those from the main experiments; our module can significantly aid spatiotemporal graph models in predicting future atmospheric data. 1180

The results are shown in Table 10, and we can see that AGCRN exhibits low prediction errors due to its adaptive graph learning strategy, which enables more accurate capture of spatial dependencies. Interestingly, the MLP-based architecture STID demonstrates competitive performance, likely owing to its use of spatial identity encoding, enhancing the spatial representation of nodes. When the spatiotemporal prediction baselines are integrated with the proposed STBIM module, all models exhibit performance improvements. For complex models with numerous parameters, such as D²STGNN, the proposed modules can enhance their representational capacity for inconsistencies. Especially on the PEMS3-Stream dataset, the limited amount of data for just one month results in D²STGNN struggling

Table 10: Average performance of models on 8 datasets. "+STBIM" means the baseline with STBIM in the joint training manner. "Imp." is the percentage improvement of performance over the baseline. We bold the best performance in every baseline experiment.

1202	We bold the	he best j	perform	ance in	every b	aseline	experim	ient.					
1000	Dataset		PeMS03			PeMS04			PeMS08			METR-LA	
1203	Method	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
1204	LSTM	21.33	35.11	23.33	23.81	36.62	18.12	21.31	32.10	17.47	3.55	7.10	10.18
	+STBIM	16.21	27.44	15.83	21.37	33.65	14.30	16.27	26.04	10.43	3.27	6.42	9.28
1205	Imp.	+24.00%	+21.84%	+32.14%	+10.24%	+8.11%	+21.08%	+23.65%	+18.87%	+40.29%	+7.88%	+9.57%	+8.84%
1206	STID	15.36	25.97	16.20	18.60	30.14	12.28	14.21	23.43	9.28	3.22	6.58	9.16
1200	+SIBIM	15.08	23.13	15.49	17.89	1 50%	11.99	13.80	25.09	9.18	3.00	0.19	0.34
1207	STAFFormer	15.45	27.30	15.08	18 17	20.00	11.02	13.50	23.03	8.83	3.02	6.07	8 35
1000	+STRIM	15.43	26.80	14 72	18.02	28.56	11.92	13.36	23.35	8 43	2.99	6.06	8 16
1200	Imp.	+2.07%	+2.15%	+2.38%	+0.82%	+4.76%	+7.04%	+1.69%	+2.42%	+4.53%	+1.00%	+0.16%	+2.27%
1209	STGCN	17.47	28.81	17.08	20.01	31.82	13.32	15.69	25.19	10.31	3.11	6.26	8.60
1010	+STBIM	16.74	28.12	16.89	19.13	30.83	13.15	15.07	24.50	9.91	3.03	6.10	8.24
1210	Imp.	+4.18%	+2.39%	+1.11%	+4.39%	+3.11%	+1.27%	+3.95%	+2.73%	+3.87%	+2.57%	+2.55%	+4.18%
1211	AGCRN	16.06	28.49	15.85	19.83	32.26	12.97	15.59	25.07	10.19	3.15	6.38	8.81
1.2	+STBIM	15.27	26.91	14.71	18.85	30.95	12.41	15.15	24.89	10.07	3.14	6.31	8.71
1212	Imp.	+4.91%	+5.54%	+7.19%	+4.94%	+4.06%	+4.31%	+2.82%	+0.71%	+1.17%	+0.31%	+1.09%	+1.13%
1012	STNorm	15.28	25.73	14.71	19.57	32.36	12.28	15.61	24.97	10.05	3.13	6.41	8.72
1213	+STBIM	14.99	25.46	14.21	18.69	30.34	12.06	14.85	23.80	9.30	3.12	6.39	8.71
1214	Imp.	+1.89%	+1.05%	+5.40%	+4.49%	+0.42%	+1./9%	+4.86%	+4.68%	+/.46%	+0.32%	+0.31%	+0.11%
1015	+STRIM	10.// 16.41	27.57	10.11	21.79	33.19 33.87	14.85	18.05	27.80	9.41	3.03	6.04 6.02	8.22
1215	Imp	+2.14%	+2.06%	+5 64%	+3.12%	+2.72%	+3 23%	+0.38%	+1.07%	+3 29%	+0.66%	+0.33%	+0.12%
1216	STWA	15.19	26.76	15.99	19.37	31.28	12.63	15 59	24.67	10.79	3 30	6.71	9.45
1210	+STBIM	14.96	25.80	15.66	18.90	30.50	12.03	14.95	23.86	10.77	3.29	6.66	9.24
1217	Imp.	+1.51%	+3.59%	+2.06%	+2.43%	+2.49%	+4.90%	+4.10%	+3.28%	+0.19%	+0.31%	+0.75%	+2.22%
1218	stemGNN	16.42	27.52	15.65	22.02	34.24	15.51	17.70	27.48	11.66	3.28	6.73	9.30
1210	+STBIM	16.20	26.49	15.35	21.43	33.36	14.99	16.92	26.39	11.16	3.06	6.46	8.93
1219	Imp.	+1.33%	+3.74%	+1.92%	+2.68%	+2.57%	+3.35%	17.65	+4.40%	+3.96%	+6.70%	+4.01%	+3.97%
1000	D ² STGNN	14.62	25.09	14.23	18.53	30.68	12.17	14.36	23.76	9.37	3.01	6.05	8.41
1220	+STBIM	14.51	24.54	13.92	18.22	30.17	12.00	13.77	23.35	8.99	2.94	6.02	8.12
1221	Imp.	+0.75%	+1.35%	+2.14%	+1.67%	+1.66%	+1.40%	+4.10%	+1.73%	+4.05%	+1.00%	+0.50%	+3.45%
1000	Dataset	MAE	PeMS0/	MADE	P	EMS3-Strea	MADE	MAE	GLA	MADE	MAE	CA	MADE
1222	STNorm	20.56	24.99	MAPE 8.62	MAE 11.02	18 56	MAPE 15.62	MAE 21.21	24.52	MAPE	MAE 10.20	21.09	MAPE 14.02
1223	STROIM	20.30	34.00	8 30	11.92	18.30	15.05	21.51	34.35	12 71	19.50	31.96	13.23
	Imp	+3 30%	+4 67%	+3.82%	+2 43%	+2 37%	+1 29%	+1.03%	+2 11%	+9.60%	+1 40%	+1 94%	+5 62%
1224	GWNet	24.55	38.36	10.15	12.44	18.98	16.78	21.21	33.63	13.73	21.74	34.22	17.41
1225	+STBIM	23.46	37.65	9.86	11.59	17.81	15.33	20.65	32.97	13.42	19.97	32.26	14.28
1225	Imp.	+4.44%	+1.85%	+2.85%	+3.74%	+3.56%	+8.64%	+3.60%	+1.96%	+2.25%	+8.14%	+3.37%	+3.13%
1226	STÎD	19.52	32.90	8.27	12.58	19.36	16.21	21.69	35.20	14.39	19.10	32.00	14.73
1007	+STBIM	19.17	32.45	8.18	11.72	17.96	15.57	21.46	34.57	13.61	18.50	30.92	13.61
1227	Imp.	+1.79%	+1.37%	+1.09%	+6.83%	+7.23%	+3.95%	+1.06%	+1.78%	+5.28%	+3.14%	+3.38%	+7.60%
1228	STGCN	21.62	34.89	13.99	13.42	20.27	17.73	22.62	38.71	14.12	21.36	36.42	16.55
	+STBIM	20.47	32.76	12.94	12.07	19.14	16.56	21.51	37.15	13.19	19.85	34.30	14.43
1229	Imp.	+10.05%	+5.57%	+6.60%	+5.73%	+4.91%	+4.03%	+6.59%	+2.02%	+0.35%	+7.06%	+5.82%	+12.80%
1230	D ² STGNN	19.77	33.08	8.40	12.98	20.36	17.24						
1200	+STBIM	19.52	32.53	8.11	11.72	17.96	16.21			Out of m	emory		
1231	imp.	+1.20%	+1.00%	+3.43%	+9./1%	+11./8%	+0.08%						

to fully learn spatiotemporal features, leading to an issue of underfitting. Our module serves as a powerful auxiliary tool to assist D²STGNN in acquiring more information, thereby achieving a significant performance boost. Large-CA is a large-scale traffic dataset with 8600 nodes, which to our knowledge is currently the largest publicly available road network dataset. Even on large-scale datasets, our model continues to improve effectiveness of STNNs.

B.5 EFFECTIVENESS OF INPUT-LAEBL INCONSISTENT FEATURE MODELING

We evaluate the effectiveness of the model on samples with inconsistencies in spatial and tempo-ral dimensions. We include more time-inconsistent samples by considering samples where the Surge/Plumment ratio of the mean of input data relative to the mean of label data ranged from 25% to 75% as time-inconsistent samples. As shown in Table 11 of the experimental results, we found that our proposed modules effectively enhance the modeling capability of STNN for spatiotemporal inconsistency features. For STID and D²STGNN, the proposed modules explicitly utilize label features to mitigate the negative impact of these inconsistencies.

Table 11: Modeling preformance of temporal historical-future inconsistencies with different change radio. We use LargeST-SD dataset as example and train STBIM with STNNs in a join-training

Iaiiiitti.											
			25% - 50%			50% - 75%			75% - 100%	2	
Surg	e	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	
STGCN	-	18.12	46.81	12.10	23.80	36.83	13.65	27.67	40.42	45.20	
	+STBIM	15.07	29.82	10.32	18.13	27.55	13.06	24.34	37.60	42.27	
	Imp.	+16.83%	+36.29%	+14.71%	+23.82	+25.19%	+4.32%	+12.03%	+6.98%	+6.48%	
STID	-	14.82	29.17	11.78	19.65	30.24	13.47	27.06	41.40	43.63	
	+STBIM	12.04	26.12	9.16	15.15	24.02	10.56	20.55	32.16	33.50	
	Imp.	+18.76%	+10.46%	+22.24%	+22.90%	+20.57%	+21.60%	+24.06%	+22.32%	+23.21%	
STAEformer	-	12.79	25.57	10.21	15.26	28.61	11.64	25.63	36.06	35.26	
	+STBIM	11.74	25.38	9.86	15.59	24.21	10.78	21.79	34.19	33.91	
	Imp.	+8.21%	+0.74%	+3.43%	2.16%	+15.38%	+7.39%	+14.98%	+5.19%	+3.83%	
D ² STGNN	-	11.79	25.07	9.92	14.89	23.35	10.14	21.09	33.37	34.64	
	+STBIM	11.38	24.40	9.04	14.25	22.59	9.98	20.31	31.37	32.85	
	Imp.	+3.48%	+2.67%	+8.87%	+4.30%	+3.25%	+1.58%	+3.70%	+5.99%	+5.17%	
		25% - 50%				50% - 75%			75% - 100%		
Plumm	ient	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	
STGCN	-	24.07	56.63	18.31	28.10	48.14	20.65	33.25	47.47	22.61	
	+STBIM	19.59	35.74	13.06	21.03	36.49	16.81	22.95	39.08	19.73	
	Imp.	+18.61%	+36.89%	+28.67%	+25.16%	+24.20%	+18.60%	+30.98%	+17.67%	+12.74%	
STID	-	26.70	53.64	15.09	27.15	51.77	20.77	27.54	47.78	26.23	
	+STBIM	14.44	26.78	9.50	15.38	27.26	11.92	17.18	29.59	14.24	
	Imp.	+45.92%	+50.07%	+37.04%	+43.35%	+47.34%	+42.61%	+37.62%	+38.07%	+45.71%	
STAEformer	-	18.12	37.22	13.25	19.94	37.92	26.00	23.40	39.45	18.62	
	+STBIM	17.30	36.17	10.79	18.48	36.27	15.59	20.04	36.41	16.64	
	Imp.	+4.53%	+2.82%	+18.57%	+7.32%	+4.35%	+40.04%	+14.36%	+7.71%	+10.63%	
D ² STGNN	-	14.05	27.23	10.41	15.30	28.23	13.16	17.46	30.28	15.35	
	+STBIM	13.54	26.58	9.61	15.11	27.44	11.89	17.09	29.78	14.06	
	Imp.	+3.63%	+2.39%	+7.68%	+1.24%	+2.80%	+9.65%	+2.12%	+1.65%	+8.40%	

COMPARISON BETWEEN STID AND STBIM FOR INPUT-LAEBL INCONSISTENT MODELING B 6

First and foremost, we emphasize that our motivation is not to surpass specific techniques within the model. Our contribution lies in introducing a general module to enhance existing spatiotemporal prediction models, which is orthogonal to existing technologies. Just as the analysis below illustrates: the combination of STID and STBIM outperforms other variants in terms of inconsistent feature performance, our model can synergize with other advanced technologies to generate a broader and more comprehensive impact.

1296 B.6.1 PERFORMANCE COMPARISON 1297

1298 STID identifies spatiotemporal deviations and rectifies spatial inconsistencies using node embedding techniques. We integrated the embedding technique from STID with STBIM through a joint training 1299 approach. A comparison of spatial and temporal inconsistency samples is presented in Table 12. 1300

1301 Our analysis demonstrates that the proposed module excels in capturing spatiotemporal deviation 1302 features compared to node embedding techniques, particularly in addressing temporal inconsistency 1303 challenges. This enhanced performance is attributed to our method's explicit utilization of label information, resulting in more precise modeling. Additionally, it highlights that the node embedding 1304 technique introduced by STID may not effectively resolve spatiotemporal deviation issues. Conversely, 1305 STID+STBIM achieves competitive performance, showcasing the synergistic potential of integrating 1306 advanced technologies with STBIM. 1307

1308

1319

1320 1321 1322

1323 1324

1326 1327

1328

1336

1337

1338

1309 Table 12: Modeling preformance of temporal historical-future inconsistencies with different change 1310 radio, and we use LargeST-SD dataset as example.

		25% - 50%			50% - 75%			75% - 100%		
	Model	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
STID	- w/o em+STBIM STID+STBIM	14.82 14.03 12.04	29.17 28.79 26.12	11.78 11.53 9.16	19.65 19.31 15.15	30.24 29.72 24.02	13.47 12.46 10.56	27.06 25.68 20.55	41.40 35.97 32.16	43.63 38.42 33.50

Figure 5: Node embedding and temporal embedding of STID in LargeST-SD dataset.

Figure 6: The prediction errors between base prediction and labels with correction prediction of STBIM.

1339 B.6.2 **ROOT CAUSE ANALYSIS** 1340

We further visualize the node embedding and temporal embedding of STID, as shown in Figure 5. 1341 Regarding node embeddings, STID focuses on capturing shared patterns among nodes where nodes 1342 with similar traffic distributions cluster together. Hence, the node embeddings exhibit cluster dis-1343 tribution (Shao et al., 2022a). Clearly, these shared patterns among nodes have limited utility in 1344 distinguishing spatial inconsistency features among nodes. Concerning time embeddings, STID 1345 captures periodic features which exhibit repetitive cycles (Shao et al., 2022a), while temporal inconsistency features where traffic suddenly increases or decreases are rare. Therefore, this embedding 1347 evidently fails to capture temporal inconsistencies. 1348

We further demonstrate some prediction cases of STBIM in Figure 6. the errors between the base 1349 prediction of STID and the labels (i.e., $y_{base} - \hat{y}$), and the prediction correction terms (y_{corr})

Figure 7: A comparison of the convergence speed and convergence results in validation phrase of baselines without STBIM, with STBIM+JT and with STBIM+FT on the LargeST-SD dataset.

generated by combining STID in two training modes with STBIM are shown. We can find that the
 correction terms produced by STBIM can fit the bias of the base prediction, illustrating the improved
 handling of spatiotemporal inconsistencies by STBIM.

1385 B.7 COMPUTATIONAL COMPLEXITY

1387 B.7.1 EFFICIENCY ANALYSIS

1378

1379 1380

1384

1386

1388 In our evaluation on the LargeST-SD and LargeST-CA dataset, we present the efficiency costs 1389 associated with integrating STBIM with various advanced models. One key advantage of STBIM is 1390 observed in accelerating the convergence speed of the models. Through visualizations, we showcase 1391 the training processes of several STNNs with STBIM. By visualizing the model training procedures 1392 using the SD and Knowair-1 datasets with multiple spatiotemporal prediction as examples, as depicted 1393 in Figures 7, we observe that the integration of STBIM leads to faster convergence, especially when 1394 employing the joint training strategy. This acceleration in convergence speed can be attributed to 1395 the improved model fitting to the data distribution by correcting prediction, thereby alleviating the learning burden caused by redundant features. 1396

Furthermore, we delve into the computational complexity of STBIM by examining several advanced space-time prediction models, as illustrated in Table 13. Our analysis reveals that STBIM offers substantial performance gains at a relatively modest model parameter cost. To optimize training efficiency, we utilize the fine-tuning training method by directly fine-tuning the pre-trained STNN with STBIM, thereby minimizing time overhead. In conclusion, given the significant performance enhancements, the complexity burden introduced by STBIM is considered acceptable. It is important to note that our primary focus lies on the model's performance rather than efficiency, which differs from the current emphasis in the spatiotemporal community.

Meth	Method		Method						
Baseline	STBIM	Parameter	Train time/epoch(s)	Total train time (h)	Inference time (s)	Memroy (MB)	Improvement		
	-	508K	90.89	2.09	12.83	3523	-		
STGCN	+ JT	624K	148.64	3.52	20.47	6180	+8.79%		
broom	+ FT	624K	108	1.86	20.47	4202	+8.13%		
	-	128K	7.69	0.32	1.61	980	-		
STID	+ JT	244K	12.27	0.39	2.16	1520	+6.06%		
0110	+ FT	244K	8.50	0.18	2.16	1176	+1.24%		
	-	2.2M	466.95	7.36	28.47	10396	-		
ASTGCN	+ JT	2.6M	900.16	10.23	50.39	22878	+ 14.13%		
	+ FT	2.6M	505.66	12.09	50.39	15727	+8.68%		
	-	761K	365.29	7.63	32.45	7827	-		
AGCRN	+ JT	1.0M	609.40	11.92	55.29	13827	+9.57%		
	+ FT	1.0M	455.57	1.97	55.29	8080	+0.08%		

Table 13: Model efficiency analysis on the LargeST-SD dataset. We report the improvement in

Table 14: Model efficiency analysis on the LargeST-CA dataset. We report the improvement in average prediction performance over MAPE.

Met	noa	_					_
Baseline	STBIM	Parameter	Train time/epoch(s)	Total train time (h)	Inference time (s)	Memroy (MB)	Improvement
	-	508K	788.75	30.21	236.77	29470	-
STGCN	+JT	624K	1319.47	55.19	271.07	53156	+7.60%
	+FT	624K	882.39	33.52	271.07	31615	+5.63%
	-	150K	232.95	4.94	55.15	6704	
STID	+JT	270K	303.17	9.23	72.38	11265	+12.80%
	+FT	270K	276.38	5.58	72.38	7261	+14.61%

B.7.2 FURTHER ANALYSIS

Using STID and D²STGNN datasets as example, we aim to demonstrate that the performance improvement brought by STBIM does not stem from increasing parameter size or computational efforts, which can not achieve the same effect of our STBIM, we have create a variant which stacks two STNNs (STID and D^2 STGNN) to increase the parameter size, and we increase computational effort by training STNNs using double maximum epochs and the patience of the early stop strategy, and this variant is defined as STNN-Plus. The experimental results are shown in Table 15, and it is evident that simply increasing complexity does not provide substantial benefits compared to STBIM. For certain complex models, such as D²STGNN, an excessive parameter size can result in overfitting. This observation highlights that while more parameterized models may have the potential to extract richer features from input data, they still fail to adequately approximate label features. Consequently, the input-label consistency assumption inherent in existing spatiotemporal architectures is inherently fragile, underscoring the critical need to explicitly model label features in order to enhance predictive performance.

Table 15: Average performance comparison of STNN, STNN-Plus, and STNN+STBIM on LargeST-SD dataset.

Model	MAE	RMSE	MAPE
STID	18.00	30.75	12.05
STID-Plus	17.94	30.43	12.13
STID+STBIM	17.08	28.92	11.32
D ² STGNN	17.44	29.58	12.18
D ² STGNN-Plus	17.68	31.04	12.57
D ² STGNN+STBIM	17.19	28.53	11.20

1458 С **RELATED WORK OF SPATIOTEMPORAL SHIFT**

1459

1474

1484

1460 Traditional spatiotemporal architectures adhere to the independent and identically distributed (IID) 1461 assumption, while spatiotemporal data shift poses a challenge for out-of-distribution generalization; 1462 however, spatiotemporal data distribution shift poses a challenge for out-of-distribution (OOD) 1463 generalization. Several spatiotemporal out-of-distribution (OOD) models have emerged in recent 1464 literature. For instance, CauSTG (Zhou et al., 2023) introduces a causal framework designed to transfer both local and global spatiotemporal invariant relationships to OOD scenarios. CaST (Xia 1465 et al., 2023) utilizes a structural causal model (SCM) to interpret the data generation processes of 1466 spatiotemporal graphs, employing back-door adjustment techniques to isolate invariant components 1467 from the temporal environment. Similarly, STEVE (Hu et al., 2023) encodes traffic data into two 1468 disentangled representations and incorporates spatiotemporal environments as self-supervised signals, 1469 thereby integrating contextual information into these representations. Additionally, STONE (Wang 1470 et al., 2024) proposes a causal graph structure aimed at learning robust spatiotemporal semantic 1471 graphs for OOD learning. However, while these models focus on addressing overall shifts between 1472 training and testing data, we focus on a more granular shift between historical observed data (input) 1473 and predicted data. This shift is present in both OOD and IID scenarios.

1475 C.0.1 ABLATION EXPERIMENT 1476

We conduct ablation experiments on the Large-SD dataset using the STGCN. We created two variants: 1477 "w/o MLP" means we remove the retrospect MLP, and "w/o kernel" means that we remove the 1478 propagation kernel for smoothing. The experimental results are shown in Table 16. "w/o MLP" 1479 showed significantly higher errors, as this retrospect MLP is used to map label features to the same 1480 hidden space as input features, leading to smoother training. The experiment without the kernel 1481 resulted in poor prediction performance because residual smoothing benefits the model's learning 1482 process. 1483

1485	Table 16	Table 16: Ablation experiment.						
1486		STGCN						
1487	Model	MAE	RMSE	MAPE				
1488	w/o MLP	19.24	32.63	12.99				
1489	w/o kernel	18.75	32.38	12.62				
1490	STBIM	18.41	31.84	12.45				
1491		D2STGNN						
1492	Model	MAE	RMSE	MAPE				
1494	w/o MLP	19.57	33.44	13.80				
1495	w/o kernel	18.95 17 10	32.65 28 53	12.68				
1/06	SIDIM	1/.17	20.33	11.40				

14 1497 1498

1499

1500

DISCUSSION D

1501 we develop a generic module that can be combined with STNNs to improve their learning ability. In 1502 this section, we discuss the limitations of the work, which will serve as future research directions.

1503 Firstly, we will explore more expressive models for label correlation modeling. In this paper, we 1504 used simple GCNs to capture spatiotemporal correlations in labels, which were then used to correct 1505 the model's prediction. In the future, we aim to explore more complex models to further enhance 1506 performance. 1507

Second, we discussed four most commonly used kernel functions for residual information propagation 1508 in this paper. In fact, in spatiotemporal graph learning, there are also some other methods. For 1509 example, some works (Li and Zhu, 2021; Lan et al., 2022) represent the kernel as the similarity of 1510 data distributions between nodes. In the future, we will explore a broader range of kernel methods. 1511