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Abstract
Metallic Glasses (MGs) are widely used materials
that are stronger than steel while being shapeable
as plastic. While understanding the structure-
property relationship of MGs remains a challenge
in materials science, studying their energy barri-
ers (EBs) as an intermediary step shows promise.
In this work, we utilize Graph Neural Networks
(GNNs) to model MGs and study EBs. We con-
tribute a new dataset for EB prediction and a
novel Symmetrized GNN (SymGNN) model that
is E(3)-invariant in expectation. SymGNN han-
dles invariance by aggregating over orthogonal
transformations of the graph structure. When
applied to EB prediction, SymGNN are more
accurate than molecular dynamics (MD) local-
sampling methods and other machine-learning
models. Compared to precise MD simulations,
SymGNN reduces the inference time on new MGs
from roughly 41 days to less than one second.
We apply explanation algorithms to reveal the re-
lationship between structures and EBs. The struc-
tures that we identify through explanations match
the medium-range order (MRO) hypothesis and
possess unique topological properties. Our work
enables effective prediction and interpretation of
MG EBs, bolstering material science research. 1

1. Introduction
Metallic glasses (MGs) combine good properties of metals
and plastics in one material, making them stronger than
steel while being shapeable as plastic (Schroers et al., 2011).
Their extensive applications span various industries includ-
ing aerospace, sports equipment, luxury goods, biomedical
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Figure 1. EBs represent mobility, which can further influence the
MG dynamics and their physical properties.

devices, and many more (Trexler & Thadhani, 2010). The
unique properties of MGs lie in their non-crystalline amor-
phous atomic structure, which sets them apart from the
crystalline structure found in traditional metals (Trexler &
Thadhani, 2010; Bansal & Doremus, 2013). Despite exten-
sive research on MGs, the details of their structure-property
relationship are still not well understood (Starr et al., 2002;
Ding et al., 2014; Patinet et al., 2016; Cao et al., 2018).

One promising approach for studying the structure-property
relationship of MGs is through a special property called
Energy Barrier (EB). EBs describe the local roughness of
the energy landscape by comparing the average energy dif-
ference around an atom’s local neighbors. Many studies
have shown that understanding EBs can act as an impor-
tant intermediary step for studying the MG physical proper-
ties (Debenedetti & Stillinger, 2001; Yu et al., 2012; Tang
et al., 2021). As shown in Figure 1, EBs represent mo-
bility, which can influence the MG dynamics and further
their physical properties like glass transition and ductil-
ity (Berthier & Biroli, 2011; Kirchner et al., 2022). However,
the precise simulation of EBs is challenging and often re-
quires time-consuming computation (Barkema & Mousseau,
1996; Mousseau et al., 2012; Jay et al., 2022). For exam-
ple, even with a high-performance computing (HPC) cluster
and the advanced Activation-Relaxation Technique nouveau
(ARTn) (Cances et al., 2009), calculating EBs for an MG
system with 3,000 atoms can take 41 days.

Given the usefulness and computational difficulty of EBs,
we explore machine learning (ML) approaches to efficiently
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Figure 2. Example graphs demonstrating model expressiveness.
SchNet cannot distinguish the embeddings of node 1 in these two
graphs but SymGNN can.

predict them from MG atomic structures. Similar to recent
ML investigations on glassy systems (Bapst et al., 2020;
Reiser et al., 2022), we phrase the EB prediction problem
as a graph ML problem and solve it using Graph Neural
Networks (GNNs). Under this formalization, atoms become
nodes in a graph, and edges are constructed between nearby
nodes to represent the atomic structure. Atom types are used
as node features. Displacement vectors constructed from
3D node coordinates are used as edge features. Then EB
prediction becomes a node regression task on graphs.

We simulate MG systems and employ ARTn to calculate
some EBs as training labels. Given the challenge of collect-
ing data, a more data-efficient model with a stronger induc-
tive bias is desired. In particular, the EB prediction problem
exhibits E(3)-invariance, i.e., invariance to graph structure
transformations including translations, rotations, reflections,
and their combinations. We aim for a GNN that can handle
such invariance, but general message-passing-based GNNs
like GCN (Kipf & Welling, 2017) cannot. Some specially
designed models are E(3)-invariant (Schütt et al., 2017; Lu
et al., 2019; Gasteiger et al., 2020b; Thölke & De Fabritiis,
2022; Liao & Smidt, 2022; Batatia et al., 2022; Batzner
et al., 2022), but, to the best of our knowledge, none of the
existing methods can achieve invariance, expressiveness,
and scalability at the same time as we show in Table 1.

To achieve an invariant model that is both expressive and
scalable, we propose a simple but effective Symmetrized
GNN (SymGNN), which is E(3)-invariant in expectation.
SymGNN achieves E(3) invariance by introducing a sym-
metrization module to aggregate embeddings produced un-
der different orthogonal transformations of the graph struc-
ture. It is expressive as there is no higher-order information
loss caused by “feature scalarization” as in models like
SchNet (Schütt et al., 2017). For example, for the two
graphs in Figure 2, SchNet will pass the same message to
the central node of an isosceles triangle as if the middle
node of a flat line, but SymGNN will easily distinguish be-
tween these two configurations (details in Appendix A.4).
Also, SymGNN does not involve complex equivariant calcu-
lation, so it is much more scalable than methods relying on
equivariant feature extraction (Liao & Smidt, 2022; Batatia

Methods Invariance
Expressiveness

Scalability

GCN ✗ ✓ ✓
EGNN ? ✓ ✓
SchNet ✓ ✗ ✓
MGCN ✓ ✗ ✓
FAENet ✓ ✗ ✓
DimeNet ✓ ✓ ✗
Torch-MD Net ✓ ✓ ✗
Equiformer ✓ ✓ ✗
SymGNN (ours) E ✓ ✓

Table 1. Comparison of different methods. ✓ means the model per-
forms well evaluated by the corresponding category, ✗ means not,
and ? means “unclear”, or “possible after non-trivial extensions”.
The E indicates that the model satisfies the property in expectation.

et al., 2022; Batzner et al., 2022). In our experiments, we
demonstrate that when applied to MG graphs, SymGNN
outperforms a variety of widely used GNNs.

Moreover, to better understand the EB prediction and bene-
fit MG research, we also generate explanations along with
the model prediction. Our proposed explanation method
extends GNNExplainer (Ying et al., 2019) to the node re-
gression task to generate edge-based structure explanations.
It helps us to identify and visualize the importance of each
edge in predicting an EB. We also show that the generated
explanations match the medium-range order (MRO) hypoth-
esis of MGs and possess unique topological properties that
correlate with the optimal-volume cycles in a persistent
diagram (Obayashi, 2018). Our findings provide further
insights into the understanding of EBs, and our explana-
tions can potentially benefit new scientific discoveries. We
summarize our contributions as the following:

1. We formulate a material science research problem of
predicting MG EBs as an ML problem of node regres-
sion on graphs.

2. We collect MG data for ML research, with precisely
simulated EBs using ARTn.

3. We propose a simple but effective SymGNN model that
exhibits E(3)-invariance in expectation and predicts
MG EBs accurately and fast.

4. We generate explanations for EB predictions that match
the MRO hypothesis, express unique topological prop-
erties, and provide insights for scientific discoveries.

2. Related work
2.1. ML in Material Science

The application of ML in materials science has seen signifi-
cant advancements recently, with various models to tackle
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different aspects of material science problems. Among
these, GNNs have emerged as a powerful tool for represent-
ing and analyzing materials at the atomic level, owing to
their ability to capture the complex relationships and interac-
tions between atoms in a material. For example, estimating
the propensity of individual atoms (Bapst et al., 2020), po-
tential energy exhibited by a system of atoms (Schütt et al.,
2017). In these settings, inductive bias of equivariance and
invariance often plays a key role in the generalizability of
network. For example, in our problem the EB only depends
on local molecule configuration and thus are invariant on
translation, rotation, and reflection of graphs. To incorpo-
rate this physical inductive bias, various invariant and equiv-
ariant GNNs have been proposed. Invariant GNNs often
restrict graph features to be rotationally invariant, such as
edge distances and angles, or reducing the inputs by project-
ing it onto PCA frames (Schütt et al., 2017; Gasteiger et al.,
2020b;a; Duval et al., 2023b), whereas equivariant networks
are proposed to leverage tensorial transformation that can
extract equivariant node features (Schütt et al., 2021; Liao
& Smidt, 2022; Batatia et al., 2022; Batzner et al., 2022;
Thölke & De Fabritiis, 2022).

Several evaluation benchmarks for equivariant ML models
on molecular dynamics (Bihani et al., 2024) and solid-state
materials systems (Choudhary et al., 2020; Lee et al., 2023)
have been proposed. EGRaffBench (Bihani et al., 2024)
provides insights into the performance of various equivari-
ant architectures in predicting forces in molecular systems,
highlighting their potentials in simulating atomistic interac-
tions. Moreover, JARVIS (Choudhary et al., 2020) and the
MatSciML benchmark (Lee et al., 2023) represent signifi-
cant efforts in benchmarking MLs to solid-state materials
systems. These works demonstrate the potential of ML
models, including various GNNs, in predicting properties
and behaviors of solid-state materials, thereby aiding in
materials design and discovery. Furthermore, a comprehen-
sive overview of geometric GNNs for 3D atomic systems
is provided by Duval et al. in their recent review (Duval
et al., 2023a). This guide offers valuable insights into the
development and application of GNNs in materials science,
emphasizing the importance of geometric considerations in
modeling atomic systems.

2.2. MGs and EBs

Understanding the relationship between the atomic struc-
ture and physical properties of MGs is one of the greatest
challenges for both material science and condensed matter
physics (Falk & Langer, 2011; Sun & Wang, 2015; Nicolas
et al., 2018). However, the structure-property relationship of
MGs is often challenging to characterize directly due to the
complexity of the physical properties (Cubuk et al., 2017;
Bapst et al., 2020). EBs describe the local roughness of the
energy landscape by comparing the average energy differ-

ence around an atom’s local neighbors. They are influential
in MG dynamics and their physical properties (Berthier &
Biroli, 2011; Kirchner et al., 2022), for example, the degree
of ductility during fracture (Tang et al., 2021). Therefore,
EBs can act as an important intermediary step when pre-
dicting the physical properties with the atomic structures
as inputs (Debenedetti & Stillinger, 2001; Yu et al., 2012;
Wang et al., 2020; Tang et al., 2021). ML methods have been
applied to investigate the relationship between the atomic
structures and physical properties in MG (Bapst et al., 2020).
For EBs in particular, (Wang et al., 2020) explored using
XGBoost to classify nodes with the highest 5 percent activa-
tion energy. Our work furthers the investigation of (Wang
et al., 2020) by leveraging the natural graph structure us-
ing GNNs to perform a regression for EBs and generating
insightful explanations.

3. Problem Setup and Preliminaries
3.1. EB Prediction with GNNs

The problem of predicting EBs of MGs can be formalized
as a node regression problem on graphs. Under this for-
mulation, atoms become nodes in a graph, and edges are
constructed between nearby nodes. The MG data thus be-
comes a graph with n nodes and m edges. We represent the
graph structure with G, which indicates all the edges and
is normally represented in the form of an adjacency matrix.
The node features are the atom types, which we represent
with Z = {z1, z2, . . . ,zn}. The edge features are the dis-
placement vectors constructed from 3D node coordinates,
which we represent with X = {x1,x2, . . . ,xm |xi ∈ R3}.
The regression task is to predict the EB label y ∈ R of each
node with the graph structure and features as inputs, i.e.,
a model that maximizes P (y|G,Z,X). We further break
down the prediction process into two steps. The first step
encodes node and edge features to embeddings H . The sec-
ond step predicts y with G and H as inputs. The objective
to maximize becomes the following,

P (y|G,Z,X) =

∫
H

P (y|G,H)P (H|G,Z,X)dH

(1)
We solve this problem with the state-of-the-art graph ML
models - GNNs.

3.2. Orthogonality and Invariance

EB is invariant to Euclidean transformations of the atomic
graph structure, for example, rotations, reflections, and trans-
lations, because it is the average energy needed for a node
to hop between its current and nearby energy subbasins.
Given that the graph is described with displacement vectors
of relative positions, translations will be canceled, and the
invariance to Euclidean transformations can be reduced to
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the invariance to orthogonal transformations (Hall & Hall,
2013), which is defined as the following,

Definition 3.1 (Orthogonal Transformation). A linear trans-
formation T : Rd → Rd is called an orthogonal transfor-
mation if it preserves the inner produce ⟨·, ·⟩ on Rd, i.e.,
∀x1,x2 ∈ Rd, ⟨T (x1), T (x2)⟩ = ⟨x1,x2⟩. Then, the ma-
trix form of T has |det(T )| = 1. The orthogonal group in
dimension d is the group of all such orthogonal transforma-
tions on Rd and is denoted as O(d).

We also state a well-known lemma in group theory (Hall &
Hall, 2013) and a theorem by Euler (Slabaugh, 1999) for de-
composing the orthogonal group and rotations respectively.
They will be useful for modeling invariance.

Lemma 3.2 (O(3) Decomposition). The orthogonal group
O(3) can be decomposed into rotations and non-rotations.
The rotations also form a group denoted as SO(3), and it
contains all transformations R whose matrix forms have
det(R) = 1. The non-rotations contain all the reflec-
tions and roto-reflections (also called improper rotation)
R̃, whose matrix form have det(R̃) = −1. Non-rotations
can be denoted as P · SO(3), with P being any reflection
transformation through the origin.

Theorem 3.3. (Euler) Define the rotations around the three
coordinate axes x1, x2, and x3 in R3 by

Ox1
(α) =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)



Ox2(β) =

cos(β) 0 − sin(β)
0 1 0

sin(β) 0 cos(β)


Ox3(γ) =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


Then any rotation R ∈ SO(3) can be written as Rα,β,γ =
Ox1

(α)Ox2
(β)Ox3

(γ) for some angles [α, β, γ] ∈
[−π, π]3. These angles are called the Euler angles.

Then we formally introduce the invariant/equivariant trans-
formation.

Definition 3.4 (Invariant/Equivariant Transformation).
Given a group K acts on Rd. A transformation T : Rd →
Rd is invariant to K if T (x) = T (k · x) and equivariant to
K if k · T (x) = T (k · x) for all k ∈ K and for all x ∈ Rd.

3.3. GNNExplainer

As a representative GNN explanation method, GNNEx-
plainer seeks to explain GNN classifications by selecting
an important edge-induced subgraph GS that minimizes the
entropy H(·) of the label Y . Since GS is discrete, GN-
NExplainer learns a continuous distribution G over GS that

gives the minimal expected entropy, where G can be imple-
mented as a learnable edge mask M ∈ R|G| applied on
edges of G after a sigmoid function σ. Mathematically, the
optimization objective is

min
G

EGS∼GH(Y |G = GS) = min
M

H(Y |G = σ(M)⊙G)

(2)

4. Method
In this section, we present SymGNN for solving the EB
prediction problem we formalized in Section 3.1. We first
introduce the theory behind the core symmetrization module
for capturing O(3) invariance in Section 4.1, then the full
SymGNN model in Section 4.2, and finally how we apply
explanation algorithms to SymGNN to reveal the connection
between the atomic structures and EBs in Section 4.4.

4.1. Theory of Symmetrization Over O(3)

Although EB is invariant to Euclidean transformations of
the atomic graph structure, most GNNs are not designed to
automatically capture such invariance. There are existing
GNNs specialized for molecular graphs that can handle
such invariance, but they either utilize scalarization that
cannot handle higher-order information, or cannot scale
up to graphs with thousands of nodes like MGs. We thus
propose a symmetrization module that can better capture
invariance and efficiently scale up. This section presents the
theory behind the symmetrization.

For the node regression problem formalized in Section 3.1,
X only represents one set of displacement vectors under
one particular coordinate system. To achieve O(3)-invariant
(and thus E(3)-invariant as explained in Section 3.2) predic-
tions, we propose a symmetrization over all orthogonal trans-
formations of X , denoted as X = {T (X) | ∀T ∈ O(3)}.
Under symmetrization, we reformulate the feature encoding
step in Equation 1, i.e.,P (H |G,Z,X ), as a probability
integrated over X , i.e.,

P (H |G,Z,X ) =

∫
T∈O(3)

P (H |G,Z, T (X))P (T ) dT

(3)

Notice that a truly O(3)-invariant model will give the same
result for P (H |G,Z,X) and P (H |G,Z,X ). In the new
formulation, when maximizing P (H |G,Z,X ), the model
will learn the desired invariance by foreseeing and aggregat-
ing different transformed graphs. To model such an integral,
we first define the distribution of T on O(3) through the
following two lemmas.

Lemma 4.1. Any non-rotation R̃ ∈ P ·SO(3) can be written
as R̃α,β,γ = −Ox1(α)Ox2(β)Ox3(γ) for some parameters
[α, β, γ] ∈ [−π, π]3.
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Proof. Please refer to Appendix A.2.

Intuitively, Theorem 3.3 says that any rotation in 3D can be
decomposed into a combination of rotations that rotate only
around the x1-axis, x2-axis, and x3-axis and parameterized
with the Euler angels. Similarly, Lemma 4.1 says a sim-
ilar decomposition and parameterization can be achieved
for non-rotations as well. Bring these two results together
gives the following lemma for decomposing any orthogonal
transformation T ∈ O(3).

Lemma 4.2. Any orthogonal transformation T ∈ O(3) can
be written as Tλ,α,β,γ = (−1)λOx1(α)Ox2(β)Ox3(γ) for
some parameters λ ∈ {0, 1} and [α, β, γ] ∈ [−π, π]3.

Proof. Follow from Lemma 3.2, Theorem 3.3, and
Lemma 4.1.

Lemma 4.2 allows the integral in Equation 3 to be reduced
into an integral over λ and [α, β, γ] in Equation 4, which is
the objective our GNN will model.

P (H |G,Z,X ) = (4)∫
λ,α,β,γ

P (H |G,Z, Tλ,α,β,γ(X))P (Tλ,α,β,γ) dλdαdβdγ

4.2. Symmetrized GNN

We now present the full SymGNN model with an illustration
shown in Figure 3. SymGNN consists of two sub-modules.
The first is the symmetrization module mentioned above for
producing O(3)-invariant embeddings H , which we indi-
cate with H = Sym(G,Z,X). The second is a prediction
module that takes the symmetrized H and G to perform
message passing with attention and then node regression.

The Sym module produces embeddings following the ob-
jective in Equation 4 with a learnable encoder Enc, i.e.,

H = Sym(G,Z,X) (5)

=

∫
λ,α,β,γ

Enc(G,Z, Tλ,α,β,γ(X))P (Tλ,α,β,γ)dλdαdβdγ

However, one challenge is that there are infinitely many
T ∈ O(3), which makes the integral intractable. To model
such an integral, we generate transformations T1, . . . , Tk

from O(3) by sampling λ and [α, β, γ] to approximate the
Sym in Equation 5, which gives the SymT1,...,Tk

we use in
practice.

SymT1,...,Tk
(G,Z,X) =

1

k

k∑
i=1

Enc(G,Z, Ti(X)) (6)

We show that SymT1,...,Tk
is O(3)-invariant in expectation

under assumptions of uniform distributions.

Theorem 4.3. Assume T1, . . . , Tk are random trans-
formations that follow a uniform distribution over all
T ∈ O(3). Then, Sym is O(3)-invariant in expecta-
tion in the sense that ET1,...,Tk

[SymT1,...,Tk
(G,Z,X)] =

ET1,...,Tk
[SymT1,...,Tk

(G,Z, T0X)] for any T0 ∈ O(3).

Proof. Please refer to Appendix A.3.

Sym can learn from a variety of orthogonal transformations
and achieve invariance. In practice, we fix λ to be Bern(0.5)
to balance rotations and non-rotations uniformly, but we
parametrize α, β, γ with learnable von Mises (Tikhonov)
distributions (Mardia & Zemroch, 1975) instead of uniform.
Learnable distributions help Sym more efficiently sample
orthogonal transformation that benefits the prediction. The
von Mises parameterization indeed leads to better empirical
performance than uniform, since these distributions closely
approximate the wrapped normal distribution on [−π, π].

The second prediction module takes the invariant embed-
dings H produced by Sym to perform message passing and
predict y. Given the complexity of the prediction problem
and to enhance model expressiveness, we also compute at-
tention of edge features and add skip connections during
message passing. Specifically, we build up on the Edge
Graph Attention Network (EGAT) (Kamiński et al., 2021)
model to add edge features to the attention calculation in
addition to the regular GAT.

Specifically, after the message from each node is computed,
we first calculate an attention score aij over the edge be-
tween nodes i and j. Then the representation of node i in the
l+1-th layer (el+1

i ) is constructed as the attention-weighted
average of the neighbor representations from the l-th layer.
We show the formula in the following, where σ represents
the non-linear activation function and N (i) represents the
set of neighbors of node i.

alij =
expxl

ij∑
k∈N (i) expx

l
ik

, el+1
i = σ(

∑
j∈N (i)

aije
l
j)

4.3. Computation Time Analysis

We provide a theoretical analysis of the time complexity of
SymGNN against three other baselines including SchNet,
DimeNet, and Equiformer. For SymGNN, the time complex-
ity is O(kn+nd2), where k denotes the number of sampled
orthogonal transformation, n denotes the number of nodes,
and d denotes the average number of neighbors a node has.
The first kn term comes from the symmetrization of k or-
thogonal transformations, the second nd2 term comes from
the attention operation among a node’s neighbors. Add
these two terms together we essentially get O(nd2) (em-
pirically we set k = 6). In comparison, SchNet is faster
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Figure 3. Illustration of the SymGNN framework. Given an input graph with node features being atom types and edge feature the relative
distance, the symmetrization module of SymGNN aggregates encoding results on various orthogonally transformed graphs sampled from
a learnable distribution to achieve O(3)-invariant in expectation. The invariant embeddings are then passed to message-passing layers
with attention to aggregate information and predict label.

Table 2. Theoretical Time Complexity.

SymGNN SchNet Equiformer DimeNet

Complexity O(kn+ nd2) O(nd) Ω(nd2) O(n4)

as it is O(nd). But for DimeNet, since it considers pair-
wise edge interaction, the time complexity grows at least
as O(m2) = O(n4), which makes it prohibitively slow for
our graphs with thousands of nodes. For Equiformer, its
exact time complexity is unknown to us. It is a transformer-
based method where they change attention to equivariant
attention and linear layer to equivariant linear layer using
complex tensor operations, which implies that its big-O time
complexity is lower bounded by O(nd2). Empirically, we
found that training Equiformer is excessively slow for our
large-scale graphs. A list of analyzed time complexity can
be found in Table 2.

4.4. Explanations for Structure-EB Relationship

ML models have emerged as powerful tools in scientific
research, and their utility can extend beyond mere predic-
tions to explanations. This explanatory aspect is crucial
because it aligns with the fundamental objective of ML for
science: identifying patterns that can elude human analysis
and understanding the underlying mechanisms that govern
phenomena.

To make the best use of the SymGNN model and truly bol-
ster the scientific research of MGs, we generate explanations
to better reveal the structure-EB relationship. We choose
GNNExplainer as a starting point for selecting a subgraph
GS with important edges. Since GNNExplainer was devel-

oped for classification problems, the cross-entropy-based
objective does not apply to the regression problem of EB
prediction. Therefore, we still learn an edge mask M on all
edges, but modify the objective in Equation 2 by replacing
entropy with mean squared error (MSE) as below, with f
representing the SymGNN model.

min
G

EGS∼GMSE(f(GS)) = min
M

MSE(f(σ(M)⊙G))

(7)

This regression explainer considers all edges involved in
the prediction of EB for one node and assigns a score to
each edge. These scores represent the importance of their
corresponding edges for making the prediction. In Section 6,
we demonstrate that the important edges identified by our
explainer match the MRO insights mentioned in previous
material research and possess unique topological properties.

5. Experiments
We conduct experiments by first constructing an MG dataset
with energy barriers simulated by molecular dynamics.
Then we apply SymGNN to this dataset and compare its
performance with other baseline models. We also perform
ablation studies of the symmetrization module to show its
effectiveness.

5.1. Dataset

The proposed Cu64Zr36 dataset. We employ molecu-
lar dynamics to simulate the behavior of a representative
Cu64Zr36 MG subjected to shear deformation. The simu-
lated MG system comprises 8000 atoms, generated through
the conventional melting-quenching procedure. To evaluate
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the influence of system size, we also simulate small systems
with 3000 atoms. To ensure the statistical robustness of our
findings, 9 independent metallic glass samples are gener-
ated. To obtain the energy barriers of atoms, we employ the
activation-relaxation technique nouveau (ARTn) (Barkema
& Mousseau, 1996; Cances et al., 2009) to calculate the
energy barriers. The simulated results are used to con-
struct a dataset consisting of nine graphs. Among them, six
graphs are used for training, one graph is for validation, and
two graphs are for testing. Each training/validation graph
has 8,000 nodes and roughly 260,000 edges, and each test
graph has 3,000 nodes and roughly 100,000 edges. In Ap-
pendix A.5, we provide a detailed description of the dataset
construction process including the simulation temperature,
pressure control, cooling rates, ARTn saddle point search
algorithms, edge construction threshold, and etc.

Cu-Zr MGs from (Wang et al., 2020) We also tested our
method on other metallic glass dataset. We adopted the
dataset proposed in one of the previous work (Wang et al.,
2020), which includes two additional Cu-Zr type metallic
glasses Cu80Zr80 and Cu50Zr50. For each type of material
the dataset contains two graphs each with 5000 nodes and
around 650000 edges. We picked one as training graph and
the other one for testing.

5.2. Experiment Settings

Baselines: We evaluate our model against a variety of other
ML models including Graph Convolutional Network (GCN)
(Kipf & Welling, 2017) withe edge features, E(n) Equiv-
ariant GNN (EGNN) (Satorras et al., 2022) that are de-
signed to handle equivariant features, a non-graph based
multi-layer perceptron (MLP) model, and various invariant
baselines that are proposed to handle molecular data includ-
ing SchNet (Schütt et al., 2017), MGCN (Lu et al., 2019),
DimeNet (Gasteiger et al., 2020b), Torch-MD Net (Thölke
& De Fabritiis, 2022), Equiformer (Liao & Smidt, 2022),
and FAENet (Duval et al., 2023b),. Furthermore, we per-
form two ablation studies named SymGNN w/o symmetriza-
tion where we remove the symmtrization layer and Data
Augmentation where we only aggregated the embedding
from three fixed orthogonal transformation instead of a
learned one. In addition we have include a simple base-
line in which we use the absolute length of edge instead
of its 3D coordinates as an input edge feature to achieve
invariance. We also compared to MD based local sampling
approximation that is widely used by material scientists
(Krishnan et al., 2017; Sastry et al., 1998).

Evaluation: The predicted energy barriers are evaluated by
the Pearson product-moment correlation coefficient against
the true values following from previous work in material
science literature (Bapst et al., 2020). We run each experi-
ment 4 times with different random initializations. On our

Cu64Zr36 dataset, we use the validation set to determine
the best model and compute the score with the best model
on the test set. For the other Cu-Zr MGs dataset, we com-
pute the test accuracy on the final epoch since there is no
validation set.

Implementation: For our proposed Cu64Zr36 dataset, we
train 4-layer GNNs for 20,000 epochs using an Amsgrad
optimizer (Reddi et al., 2019) with a learning rate of 0.0001.
We adopt an early stopping scheme if the model’s prediction
score on the validation set did not improve for 1000 epochs.
For the other Cu-Zr MGs dataset, we train each model to
a fixed number of epochs as there is no validation set. For
those models that have smaller scale and faster convergence,
i.e., MLP, GCN, EGNN, EGAT, SchNet, and MGCN, we
train to 5000 epochs. For SymGNN, we trained the model
to 10000 epochs for better convergence. In all the datasets
for SymGNN, the distribution over the angles α, β, and γ is
parameterized by the von Mises (Tikhonov) distribution.

5.3. Prediction Results

We report the results of SymGNN and other baselines in
Table 3. It can be seen from the table that SymGNN out-
performs the baselines by a large amount and exhibits a
much stronger generalization power. When we remove the
symmetrization module, (i.e. SymGNN w/o symmetriza-
tion), the ablated model cannot generalize well, and a similar
performance drops is observed when we only aggregates em-
bedding from three fixed orthogonal transformations. This
demonstrates the effectiveness of the symmetrization mod-
ule. Also we observe that models capable of handling in-
variance can lead to much better result compared to the
ones that cannot, which again highlights the importance of
symmetrization module in achieving good prediction perfor-
mance. In addition, we also ran Equiformer, Torch-MD Net,
and DimeNet as our baselines. However, we noticed that
the training time for these methods are prohibitively long
(i.e longer than 2 days) on our dataset.

5.4. Computation Time Analysis

We notice that SymGNN reaches high performance without
dramatically increase both the training cost or the inference
cost. Table 4 provides an empirical time comparison for the
time needed to train the model for one epoch. We observe
that DimeNet would run indefinitely for our larger graph,
and the time taken by Equiformer is also prohibitively long.
Table 5 shows a inference time comparison. Compared to
traditional MD simulation, our ML-based approach needs
much fewer computation resources and is much more ef-
ficient. For precise MD simulation with ARTn, the calcu-
lation of the energy barrier for each atom takes around 20
minutes in a supercomputer with 16 parallel threads. There-
fore, for a MG system that has the size of our test graph, i.e.,
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Table 3. Training and testing scores of the molecular dynamics (MD) method and machine learning (ML) methods. Test results are with
the best model on the validation set. Our SymGNN significantly outperforms the MD method and achieves the best among all the ML
methods.

Methods Cu64Zr36 Cu80Zr20 Cu50Zr50

MD Local Sampling (Sastry et al., 1998) 0.3614 − −

Non-Invariant ML MLP 0.0575± 0.0127 0.0727 ± 0.0154 -0.0652 ± 0.0099
GCN with Edge Features 0.5123± 0.0507 0.2478 ± 0.0051 0.1395 ± 0.0068

Invariant ML

E(n) Equivariant GNN 0.2588± 0.0077 0.1382 ± 0.0113 0.1381 ± 0.0098
EGAT (Edge Length as 1D Feature) 0.7264± 0.0063 0.5489 ± 0.0218 0.1571 ± 0.0095
SchNet 0.7588± 0.0088 0.2505 ± 0.0128 0.1808 ± 0.0106
MGCN 0.7352± 0.0066 0.1793 ± 0.0133 0.1596 ± 0.0033
FAENet 0.6603 ± 0.0218 0.2947 ± 0.0171 0.2214 ± 0.0160

Ours
SymGNN 0.7859 ± 0.0056 0.6084 ± 0.0167 0.5862 ± 0.0277
SymGNN w/o symmetrization 0.2669± 0.0371 0.2283 ± 0.0256 0.1135 ± 0.0129
Data Augmentation 0.6614 ± 0.0285 0.3304 ± 0.0201 0.2135 ± 0.0337

Table 4. Training time comparison for one epoch.

SymGNN SchNet Equiformer DimeNet

Time 3 secs 1 sec 82 mins -

Table 5. Inference time comparison on an MG with 3,000 atoms.

SymGNN ARTn MD local sampling

Time 0.26 seconds 41 days 150 mins

3,000 atoms, the computation will take 20×3000
60×24 ≈ 41 days.

Even for the much faster and less inaccurate local sampling
method, the inference time for this MG system can take 150
minutes. In contrast, SymGNN’s inference time on the test
graph is almost negligible.

6. Explanation and Analysis
We produce explanation using the method in Section 4.4.
We first provide visualizations to qualitatively show our
explanation, and then we do a quantitative evaluation by
connecting of our explanation to the MRO hypothesis and
the topological data analysis (TDA) to reveal more insights.

6.1. Explanation Visualization and MRO

We visualize our explanation for a randomly sampled node.
We provide both the global and the local version. All atoms
are plotted in their actual 3D coordinates. The global ver-
sion of the explanation is presented in Figure 4, where we
visualize the top 50 important edges. The local version is in

Figure 4. Global explanation visualization. We notice that many
of selected edges are of 2 hop neighborhood from the central node.

Appendix Figure 6, where we zoom in to the top 10 closet
nodes. From the visualizations, we see that edges close to
the central node or far away from the central node may both
be selected. Also, as we can see from the local version of
the explanation, few edges within the top 10 closet edges is
selected by our explanation.

Material scientists proposed an MRO hypothesis, which ba-
sically says the atoms that lie in a range of medium distance
(5 - 10 Å) from the central atom play a more important role
in determining its MG properties (Ma et al., 2009; Sheng
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Figure 5. (a) Distribution of distance to the prediction target (central node) of important atoms identified by our explanation vs. all atoms.
(b)Distribution of the number of cycles involved in important edges identified in our explanation vs. randomly selected edges.

et al., 2006; Nomoto et al., 2021; Egami et al., 2023). We
aggregate our selected edges to nodes (atoms) and plot the
atom importance against their distance to the central node in
Figure 5 (a). We see there are two modes of the important
atoms, one for the closest ones and one for the medium-
range ones, which matches the MRO hypothesis.

6.2. Edge Importance vs. TDA

We perform TDA to further understand our edge impor-
tance explanations and see if the results recover meaningful
topological structures.

Persistent Homology (PH) PH is a widely used TDA
method, a field of study that applies concepts from algebraic
topology to data analysis (Barannikov, 1994; Zomorodian
& Carlsson, 2004; Edelsbrunner et al., 2008). PH examines
how topological features such as connected components,
holes, or voids, emerge and disappear as one moves through
different scales in a dataset. The persistence of certain topo-
logical features across scales can reveal important insights
about the underlying structure of the data, making PH a pow-
erful tool for material science. This method has also been
applied to metallic glass to uncover important topological
structures (Sørensen et al., 2020). In PH, the concepts of
“birth” and “death” are the essential quantities we would like
to study, which visually represent the lifespan of topological
features in a dataset. “Birth” refers to the scale at which a
feature, like a connected component or a hole, first appears
during the filtration process, while “death” denotes the scale
at which this feature disappears or merges.

Explanation Results In our case, we apply PH to study
the emergence and death of 1D hole as we increase the
radius of a ball surrounding each atom. We perform the
inverse analysis to pair the hole with a representative optimal
cycle (Obayashi, 2018). In this way, each edge in the graph
can be associated with a sequence of births and deaths of
the cycles that it has participated in. We perform statistical
analysis to see if there is significant difference between

Table 6. Average number of optimal cycles participated by edges
with high, medium, and low importance according to the explana-
tion and randomly selected edges.

Edge Importance High Medium Low Random

Avg # Optimal Cycles 4.130 1.202 0.874 1.148

selected edges by our explanation and other edges. We plot
and compare the distribution of the number of optimal cycles
involved in the highest importance edges selected by our
explanation versus randomly selected edges over multiple
central nodes that are being explained in Figure 5 (b). We
found that on average the importance edges participates in
much more cycles compared to others, and there is a clear
trend in the decrease in cycle number as the importance of
edges decrease. The mean of the number of cycles involved
in by edges in the four different group can be found in
Table 6.

7. Conclusion
In this paper, we study the connection between the local
atomic structures of MGs and their EBs of the energy land-
scape. We formalize this problem as node regression on
graphs and propose SymGNN to solve the problem by effec-
tively capturing the invariance of orthogonal transformations
of the graph. We compare SymGNN with several baseline
models and demonstrate that SymGNN performs the best.
In addition, we extend the GNNExplainer to regression tasks
and generate explanations. We further investigate the expla-
nations with MRO and PH. We show a strong correlation
between the importance of edge and the number of optimal
cycles they involved in. Our work enables effective pre-
diction and interpretation of MG EBs, bolstering material
science research.
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Bronstein, M. A hitchhiker’s guide to geometric gnns
for 3d atomic systems. arXiv preprint arXiv:2312.07511,
2023a.

Duval, A. A., Schmidt, V., Hernández-Garcıa, A., Miret,
S., Malliaros, F. D., Bengio, Y., and Rolnick, D. Faenet:
Frame averaging equivariant gnn for materials modeling.
In International Conference on Machine Learning, pp.
9013–9033. PMLR, 2023b.

Edelsbrunner, H., Harer, J., et al. Persistent homology-a
survey. Contemporary mathematics, 453(26):257–282,
2008.

Egami, T., Dmowski, W., and Ryu, C. W. Medium-range
order resists deformation in metallic liquids and glasses.
Metals, 13(3):442, 2023.

10



Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks

Falk, M. L. and Langer, J. S. Deformation and failure
of amorphous, solidlike materials. Annu. Rev. Condens.
Matter Phys., 2(1):353–373, 2011.

Fan, Y., Iwashita, T., and Egami, T. How thermally activated
deformation starts in metallic glass. Nature communica-
tions, 5(1):5083, 2014.

Fan, Y., Iwashita, T., and Egami, T. Energy landscape-
driven non-equilibrium evolution of inherent structure in
disordered material. Nature communications, 8(1):15417,
2017.

Gasteiger, J., Giri, S., Margraf, J. T., and Günnemann,
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message passing for molecular graphs. arXiv preprint
arXiv:2003.03123, 2020b.

Hall, B. C. and Hall, B. C. Lie groups, Lie algebras, and
representations. Springer, 2013.

Hiraoka, Y., Nakamura, T., Hirata, A., Escolar, E. G., Mat-
sue, K., and Nishiura, Y. Hierarchical structures of amor-
phous solids characterized by persistent homology. Pro-
ceedings of the National Academy of Sciences, 113(26):
7035–7040, 2016.

Hoover, W. G. Canonical dynamics: Equilibrium phase-
space distributions. Physical review A, 31(3):1695, 1985.

Jay, A., Gunde, M., Salles, N., Poberžnik, M., Martin-
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A. Appendix
A.1. The EB Prediction Problem

In this section, we present a succinct high-level motivation for our work. Material scientists aim to use atomic structures of
materials to predict their properties, such as ductility. However, this direct prediction is a challenging task. An alternative
approach is to use an easier-to-predict intermediate quantity, e.g. the energy barriers, as a stepping stone. In other words,
there is a shift from the paradigm 1:

structures − predict → properties

to paradigm 2:
structures − predict → energy barriers − analyze → properties

The second paradigm has shown promising results, which is the focus of this work.

A.2. Proof of Lemma 4.1

In this section, we prove the non-rotation decomposition Lemma 4.1 stated in Section 4.1.

Proof. From Lemma 3.2, we know any non-rotation R̃ ∈ P · SO(3) has det R̃ = −1. By linearity of R̃ we know that

⟨−R̃(x1),−R̃(x2)⟩ = ⟨R̃(−x1), R̃(−x2)⟩ = ⟨−x1,−x2⟩ = ⟨x1,x2⟩

which shows hat −R̃ is also orthogonal according to Definition 3.1. As we know that −R̃ will have det−R̃ = (−1)3 ·−1 =
1, by Lemma 3.2 again we know that −R̃ is a rotation. By Euler Theorem 3.3, we know there exists [α, β, γ] ∈ [0, 2π]3

such that −R̃ = Ox1(α)Ox2(β)Ox3(γ), which implies that R̃ = −Ox1
(α)Ox2

(β)Ox3
(γ).

A.3. Proof of Theorem 4.3

In this section, we prove the invariance in expectation Theorem 4.3 stated in Section 4.2.

Theorem A.1. Assume T1, . . . , Tk are random transformations that follow a uniform distribution over all T ∈
O(3). Then, Sym is O(3)-invariant in expectation in the sense that ET1,...,Tk

[SymT1,...,Tk
(G,Z,X)] =

ET1,...,Tk
[SymT1,...,Tk

(G,Z, T0X)] for any T0 ∈ O(3).

Proof. From Lemma 4.2, we know that all T ∈ O(3) have the form of T = (−1)λOx1(α)Ox2(β)Ox3(γ) for λ ∈ {0, 1}
and [α, β, γ] ∈ [−π, π]3. A uniform distribution over all T ∈ O(3) implies λ ∼ Bern(0.5) and [α, β, γ] ∼ Unif([−π, π]3).

Now consider a specific orthogonal transformation T0 = (−1)λ0Ox1
(α0)Ox2

(β0)Ox3
(γ0). Then its composition with the

uniformed distributed T is

T ◦ T0 = (−1)λ+λ0Ox1
(α+ α0)Ox2

(β + β0)Ox3
(γ + γ0)

By the Bernoulli assumption, we get (−1)λ ∼ (−1)λ+λ0 as they both follow a discrete distribution on {−1, 1} with
probability 0.5 of each value. Moreover, α ∼ Unif[−π, π] implies α+α0 ∼ Unif[−π+α0, π+α0]. Since this only shifts
the interval that supports the uniform distribution, the joint distribution of (cos(α), sin(α)) ∼ (cos(α+ α0), sin(α+ α0))
due to periodicity, which further implies Ox1(α) ∼ Ox1(α + α0). Similarly for Ox2(β) and Ox3(γ). Given the random
variables (matrices) (−1)λ, Ox1(α), Ox2(β), and Ox3(γ) are independent, we concluded that T ∼ T ◦ T0.

Now consider SymT1,...,Tk
(G,Z,X) = 1

k

∑k
i=1 Enc(G,Z, Ti(X)). For each i, Ti ∼ Ti ◦ T0 implies Ti(X) ∼

Ti ◦ T0(X), and thus Enc(G,Z, Ti(X)) ∼ Enc(G,Z, Ti ◦ T0(X)) by transformation of random variables (Billingsley,
2017). Therefore, we also get ETi [Enc(G,Z, Ti(X))] = ETi [Enc(G,Z, Ti ◦T0(X))]. Finally, by linearity of expectation,
ET1,...,Tk

[SymT1,...,Tk
(G,Z,X)] = ET1,...,Tk

[SymT1,...,Tk
(G,Z, T0X)].

A.4. Analysis of expressiveness of SymGNN

In this section, we show by examples that SymGNN can capture more complex interactions between molecules compared to
SchNet like methods. Consider two three molecule systems that have the following configurations where the atom type for
node 2 is two whereas the atom type for node 1 and node 3 is one:
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(a) 1: (−2, 0, 0), 2: (0, 0, 0), 3:(2, 0, 0)

(b) 1: (−
√
2,
√
2, 0), 2: (0, 0, 0), 3:(

√
2,
√
2, 0)

Notice that the edge distance between node 2 to each of node 1 and node 3 are two in both of these configurations, so SchNet
cannot distinguish these two configurations based on the embedding of node 2, as it only takes into account the distance
information. However, we shall see that SymGNN can differentiate these configurations based on node 2’s embedding as
it considers also higher-order information. To ease the computation, we consider a minimal setting of SymGNN where
the encoder is the identity function, and each time two orthogonal transformations will be applied to the graph and then
aggregated. Finally, node 2’s embedding is calculated by simply summing up the message passed between node 2 and node
1 and between node 2 and node 3. Suppose the two orthogonal transformations sampled are a counterclockwise rotation in
xy-plane by 45 degrees and a reflection around y-axis. It can be calculated that SymGNN will give the embedding (0, 0, 0)
for node two in the first configuration, but the second configuration gives (2, 2 + 2

√
2, 0). Similar example can be given to

show that SymGNN can also detect configurations that have equivalent angle structure, and thus we know SymGNN truly
considers higher level information compared to those invariant methods that are based on scalerization.

A.5. A Detailed Dataset Construction Process

We employ molecular dynamics to simulate the behavior of a representative Cu64Zr36 metallic glass (MG) subjected
to shear deformation. The simulated MG system comprises 8000 atoms, generated through the conventional melting-
quenching procedure with varied cooling rates spanning from 1014 to 1010 K/s. To evaluate the influence of system size,
we also simulate small system (i.e., 3000 atoms). To initiate the simulation, the sample is initially melted at 2000K under
zero pressure for 1ns, facilitating the erasure of its initial configuration memory. Temperature and pressure control are
maintained through the isothermal-isobaric (NPT) ensemble, employing a Nosé-Hoover thermostat (Nosé, 1984; Hoover,
1985). Subsequently, the liquified state is rapidly quenched to 1K, with cooling rates ranging from 1014 to 1010 K/s. The
resulting glassy structure is further relaxed to its local energy minimum through energy minimization, utilizing the conjugate
gradient algorithm. The interatomic interactions within the system are described using the embedded-atom method (EAM)
potential (Mendelev et al., 2009). To ensure the statistical robustness of our findings, 9 independent metallic glass samples
are generated for each cooling rate. A timestep of 1fs is adopted for all simulations, and the entire set of simulations is
carried out using the LAMMPS package (Plimpton, 1995).

To obtain the energy barriers of atoms, we employ the activation-relaxation technique nouveau (ARTn) (Barkema &
Mousseau, 1996; Cances et al., 2009) to calculate the energy barriers within MGs. Specifically, starting from a local energy
minimum in the landscape, initial perturbations are introduced to a chosen atom and its nearest neighbors. This perturbation
allows exploration along a direction of negative curvature, increasing the likelihood of locating a saddle point in the energy
landscape. The Lanczos algorithm (Barkema & Mousseau, 1996) is then applied to guide the system to the saddle point
by following the direction of negative curvature. A force tolerance of 0.05eV/Å

−2
is chosen to ensure convergence of the

saddle points. In accordance with previous investigations (Fan et al., 2014; 2017; Xu et al., 2018), 20 searches for saddle
points are conducted for each atom. Consequently, the ARTn exploration focuses on determining the average energy barrier
associated with atoms. This parameter is recognized as a key factor influencing the propensity for plastic rearrangement
in disordered materials (Tang et al., 2020; 2021). The simulated raw dataset initially only contains nodes (atoms) along
with their types and 3D coordinates. We construct edges between two nodes if their Euclidean distance is smaller than a
threshold, which is chosen to be 5Å = 10−10m.

A.6. CuZr-Based MGs as Representative Examples

In this section, we discuss choice of focusing on Cu-Zr based MGs in our dataset. First, Cu-Zr-based metallic glass is one of
the most widely investigated MGs due to its outstanding mechanical properties and good glass-forming ability (Cheng & Ma,
2011). Many well-known studies on MGs, such as those focusing on mechanical properties and ductility (Liu et al., 2012;
Pauly et al., 2010), are centered on Cu-Zr. Additionally, Cu-Zr has been used as a standard MG example in ML research
to study β processes (Wang et al., 2020) and perform hierarchical structure analysis (Hiraoka et al., 2016). Cu64Zr36 is
known as the best glass former in this class of MGs and is commonly used as the archetype model in MD simulations (Wang
et al., 2020). While other MGs are not included in this study, some common dynamic behaviors (e.g., relaxation, dynamical
heterogeneity, shear band formation) are believed to be controlled by energy barriers, with structure-property relationships
transferable between different MGs.
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A.7. Abalation on Dataset Splits

To check our method’s robustness under different dataset configurations, we performed an ablation study with two more
random dataset splits. These splits use different sets of randomly sampled training graphs, one randomly sampled graph for
validation, and rest for testing. The result can be found on Table 7. We see that SymGNN consistently outperforms SchNet
in all the dataset splits we considered.

Model Train Test

Original SymGNN 0.8368 0.7859
SchNet 0.7858 0.7588

New Split 1 SymGNN 0.8600 0.7613
SchNet 0.7778 0.7583

New Split 2 SymGNN 0.8362 0.7645
SchNet 0.7070 0.6948

Table 7. Performance comparison across original and new dataset splits.

A.8. Ablation on Number of Orthogonal Transformations

In our experiments, we found that the model performance is relatively stable with respect to the number of transformations.
We performed an ablation study with different number of aggregated orthogonal transformations. We presented experiments
results with 2, 4, 6, and 12 transformations. Although using 12 transformations led to out-of-memory (OOM) issues, we
found that both 2 and 4 transformations yielded effective results, with the performance using 2 transformations even being
slightly better than our reported results. We hypothesize that as long as we are sampling various orthogonal transformations
from a reasonable distribution, the framework can benefit from the symmetrization module and achieve good results. The
number of transformations mostly influences the convergence time rather than the performance. For example, using 2
transformations required 3000 epochs for convergence, while 4 transformations required 2300 epochs. This observation
aligns with our expectations, as fewer transformations necessitate more iterations for the model to capture the necessary
information from the data. The results can be found in Table 8.

Number of Transformations 0 2 4 6 12

Train 0.8736 0.8302 0.8072 0.8368 OOM
Test 0.2669 0.7901 0.7778 0.7858 OOM

Table 8. Performance ablated on different number of orthogonal transformations

A.9. Comparison with Data Augmentation

Empirically, we find that our symmetrization module can learn a condensed subspace of the orthogonal transformations
corresponding to the task, which allows more effective aggregations. In this section, we provide an analysis with the
subspace learned by SymGNN. We report the mean and concentration for each distribution that controlled one Euler angle
after the training. For rotations, we have

(µi, κi) = (−0.3414, 0.2985), (0.7023, 0.9146), (−1.5622, 1.3543)

and
(µi, κi) = (−0.4102, 3.0350), (−0.4946, 3.0645), (−0.7043, 0.1533)

for the rest. We perform an estimation of how much volume we need in order to capture 80 percent of the whole
probability density. We notice that Von Mises distribution with a bigger κ is approximately a Gaussian distribu-
tion with variance 1

κ , and a Von Mises distribution with a smaller κ is approximately a uniform distribution. There-
fore, we approximate the estimation using a similar density-volume estimation with four Gaussian random variables
N (−1.5622, 1

1.3543 ),N (−0.4102, 1
3 ),N (−0.4946, 1

3 ),N (0.7023, 1
0.9146 ), and two uniform distributions between [−π, π].

15



Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks

We found that for these four Gaussian distributions, intervals of length 2.21, 3.37, 3.37, 4.01 around the mean can approxi-
mately yield 94.5 percent of density. Therefore, in total it will yield 0.9454 ≈ 0.8 of density. By picking all the uniform
distribution, we know that at least 80 percent of the density can be included by less than 7 percent of the density. This
analysis implies the effectiveness of the learning. We should note that this estimation is rough and an overestimation, since
in reality the distributions that are approximated as uniform are also more centered.

A.10. Explanation on SchNet

We compare explanations generated with different models to demonstrate the effectiveness of both our model and our
explanations. We ran GNNExplainer on our strongest baseline, SchNet, and found both similarities and differences in the
explanation outputs compared to ours. On one hand, the explanations are similar to the explanations generated with our
model, with the most important edges being of mid-range distance to the central node (as in Figure 3). On the other hand, the
comparison to TDA shows a clear difference. As we discussed in Section 6.1, we compare the edge importance identified by
ML explanations to the edges captured by the TDA optimal cycles. A comparison between our explanations and SchNet
explanations is shown in the table below. We observe that for SchNet explanations, there is no significant difference between
the number of optimal-cycle edges participated in by those high importance edges and low importance edges (high vs. low =
1.312 vs. 1.24), whereas ours is very significant (high vs. low = 4.13 vs. 0.874). We hypothesize that this difference is due
to the lack of expressivity in SchNet, as it utilizes only edge distance information and not any higher-order information,
such as angles. The result can be found in Table 9.

Ave Number of Cycles High Medium Low Random

SymGNN 4.130 1.202 0.874 1.148
SchNet 1.312 1.036 1.240 1.074

Table 9. Average number of cycles involved with high/medium/low impact edges in SchNet.

A.11. Explanation Visualization

In this section, we provide more visualizations of the explanation. First, we show the pairing local explanation result for the
node shown in Figure 4 in Figure 6. We note that none of the edges within the top 10 closest nodes are being selected as
important edges by our explanation. Visualizations of more nodes are shown in Figure 7. In the figures, the left column
presents the global version plot whereas the right column presents the local version.

Figure 6. Local and global explanation visualizations node 1501.
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Figure 7. Local and global explanation visualizations for more nodes.
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