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Abstract

In this paper, we propose an entity-based neu-001
ral local coherence model which is linguis-002
tically more sound than previously proposed003
neural coherence models. Recent neural co-004
herence models encode the input document005
using large-scale pretrained language models.006
Hence their basis for computing local coher-007
ence are words and even sub-words. The anal-008
ysis of their output shows that these models009
frequently compute coherence on the basis of010
connections between (sub-)words which, from011
a linguistic perspective, should not play a role.012
Still, these models achieve state-of-the-art per-013
formance in several end applications. In con-014
trast to these models, we compute coherence015
on the basis of entities by constraining the in-016
put to noun phrases and proper names. This017
provides us with an explicit representation of018
the most important items in sentences leading019
to the notion of focus. This brings our model020
linguistically in line with pre-neural models of021
computing coherence. It also gives us better022
insight into the behaviour of the model thus023
leading to better explainability. Our approach024
is also in accord with a recent study (O’Connor025
and Andreas, 2021), which shows that most026
usable information is captured by nouns and027
verbs in transformer-based language models.028
We evaluate our model on three downstream029
tasks showing that it is not only linguistically030
more sound than previous models but also that031
it outperforms them in end applications1.032

1 Introduction033

Coherence describes the semantic relation between034

elements of a text. It recognizes how well a text is035

organized to convey the information to the reader036

effectively. Modeling coherence can be beneficial037

to any system which needs to process a text.038

Recent neural coherence models (Mesgar and039

Strube, 2018; Moon et al., 2019) encode the input040

1Our implementation will be publicly available upon pub-
lication.

document using large-scale pretrained language 041

models (Peters et al., 2018). These neural models 042

compute local coherence, semantic relations be- 043

tween items in adjacent sentences, on the basis of 044

words and even sub-words. 045

However, it has been unclear on which basis 046

these models compute local coherence. Jeon and 047

Strube (2020) present a neural coherence model, 048

which allows to interpret focus information for the 049

first time. Their investigation reveals that neural 050

models, adopting large-scale pretrained language 051

models, frequently compute coherence on the basis 052

of connections between any (sub-)words or func- 053

tion words. In these cases, the model might capture 054

the focus based on spurious information. While 055

such a model might reach or set the state of the 056

art in some end applications, it will do so for the 057

wrong reasons from a linguistic perspective. 058

This problem did not appear with pre-neural 059

models of coherence, since they compute coher- 060

ence on the basis of entities. Early work about 061

pronoun and anaphora resolution by Sidner (1981, 062

1983) assumes that there is one single salient entity 063

in a sentence, its focus, which serves as a preferred 064

antecedent for anaphoric expressions. Centering 065

theory (Joshi and Weinstein, 1981; Grosz et al., 066

1995) builds on these insights and introduces an 067

algorithm for tracking changes in focus. Centering 068

theory serves as basis for many researchers to de- 069

velop systems computing local coherence based on 070

the approximations of entities (Barzilay and Lapata 071

2008; Feng and Hirst 2012; Guinaudeau and Strube 072

2013, inter alia). 073

In this paper, we propose a neural coherence 074

model which is linguistically more sound than pre- 075

viously proposed neural coherence models. We 076

compute coherence on the basis of entities by 077

constraining our model to capture focus on noun 078

phrases and proper names. This provides us with 079

an explicit representation of the most important 080

items in sentences, leading to the notion of focus. 081
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This brings our model linguistically in line with082

pre-neural models of coherence.083

Our approach is not only linguistically more084

sound but also is in accord with the recent empirical085

study by O’Connor and Andreas (2021) who inves-086

tigate what contextual information contributes to087

accurate predictions in transformer-based language088

models. Their experiments show that most usable089

information is captured by nouns and verbs. Their090

findings suggest that we can design better neural091

models by focusing on specific context words. Our092

work follows their findings by modeling entity-093

based coherence in an end-to-end framework to094

improve a neural coherence model.095

Our model integrates a local coherence module096

with a component which takes context into account.097

Our model first encodes a document using a pre-098

trained language model and identifies entities using099

an linguistic parser. The local coherence module100

captures the most related representations of entities101

between adjacent sentences, the local focus. Then102

it tracks the changes of local foci. The second com-103

ponent captures the context of a text by averaging104

sentence representations.105

We evaluate our model on three downstream106

tasks: automated essay scoring (AES), assessing107

writing quality (AWQ), and assessing discourse108

coherence (ADC). AES and AWQ determine text109

quality for a given text, aiming to replicate human110

scoring results. Since coherence is an essential fac-111

tor in assessing text quality, many previous coher-112

ence models are evaluated on AES and AWQ. ADC113

evaluates coherence models on informal texts such114

as emails and online reviews. In our evaluation, our115

model achieves state-of-the-art performance.116

We also perform a series of analyses to investi-117

gate how our model works. Our analyses show that118

capturing focus on entities gives us better insight119

into the behaviour of the model, leading to better120

explainability. Using this information, we exam-121

ine the statistical differences of texts assigned to122

different qualities. From the perspective of local123

coherence, we find that texts of higher quality are124

neither semantically too consistent nor too variant.125

Finally, we inspect error cases to investigate how126

the models achieve their performance differently.127

2 Related Work128

Entity-based modeling has been the prevailing ap-129

proach to model coherence in pre-neural models.130

The entity grid is its most well-known implementa-131

tion (Barzilay and Lapata, 2008). It represents enti- 132

ties in a two-dimensional array to track their tran- 133

sitions between sentences. Many variations have 134

been proposed to improve this model, e.g., pro- 135

jecting the grid into a graph representation (Guin- 136

audeau and Strube, 2013) or converting the grid to 137

a neural model (Tien Nguyen and Joty, 2017). 138

However, the neural version of the entity grid 139

(Tien Nguyen and Joty, 2017) has two limitations. 140

First, Lai and Tetreault (2018) state that entity grids 141

applied to downstream tasks are often extremely 142

sparse. In their evaluation, it is difficult to find 143

meaningful entity transitions between sentences in 144

the grids. Accordingly, this model performs worse 145

than other neural models. More importantly, this 146

neural model cannot provide any clues of how this 147

model works since Tien Nguyen and Joty (2017) 148

apply a convolutional layer on the entity grid. The 149

feature map of the convolutional layer is not inter- 150

pretable. They cannot examine which entity is as- 151

signed more importantly than others by their model. 152

In contrast, we constrain our model to capture fo- 153

cus on entities using noun phrases. Then our model 154

tracks the changes of focus. Hence, it provides us 155

with an interpretable focus (Section 5). 156

More recently, Moon et al. (2019) propose a neu- 157

ral coherence model to exploit both local and struc- 158

tural aspects. They evaluate their model on an arti- 159

ficial task only, the shuffle test, which determines 160

whether sentences in a document are shuffled or not. 161

However, recent studies (Pishdad et al., 2020) claim 162

that this artificial task is not suitable to evaluate co- 163

herence models. Lai and Tetreault (2018) show that 164

the neural coherence models, which achieve the 165

best performance on this task, do not outperform 166

non-neural models on downstream tasks. More 167

recently, Mohiuddin et al. (2021) find a weak corre- 168

lation between the model performance in artificial 169

tasks and downstream tasks. In our evaluation, we 170

compare Moon et al. (2019) with ours in an arti- 171

ficial task as well as in three downstream tasks. 172

Moon et al. (2019) perform the best in the artifi- 173

cial task, but do not outperform our model in three 174

downstream tasks (Section 4). 175

3 Our Model 176

Figure 1 presents an overview of our model archi- 177

tecture. We first introduce our entity representation 178

and sentence encoding using a pretrained language 179

model. Next, we describe a novel local coherence 180

model. We then combine the two representations of 181
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Figure 1: Our model architecture.

local coherence and the context vector, simply av-182

eraged sentence representations. Finally, we apply183

a feedforward network to produce a score label.184

3.1 Entity Identification185

Pretrained language models encode sequences as186

sub-words, but to our knowledge, there is no lin-187

guistic parser using sub-words as input. Hence, we188

use an linguistic parser to identify noun phrases in189

each sentence separately. Kitaev and Klein (2018)190

present a neural constituency parser which deter-191

mines the syntactic structure of a sentence. To192

identify noun phrases and proper names, we ap-193

ply this parser to the original sentences, then map194

parsed constituents to sub-word tokens.195

Since pretrained language models do not have196

the means to represent phrase meaning compo-197

sition, we average sub-word representations for198

phrases which consists of multiple sub-words.199

While this implementation does not capture the200

complicate meaning of phrases, Yu and Ettinger201

(2020) report that it shows higher correlation with202

human annotations than using the last word of203

phrases, assuming that the last word of a phrase is204

its head.205

3.2 Sentence Encoding206

We use a pretrained language model (Yang et al.,207

2019) to encode sentences. XLNet learns bidirec-208

tional contexts by maximizing expected likelihood209

using an autoregressive training objective, hence it210

has the advantage of capturing focus in sentences.211

XLNet outperforms other language models in tasks212

which require to process long texts.213

Recent work investigates that pretrained lan-214

guage models learn linguistic features that are help- 215

ful for language understanding (Tenney et al., 2019; 216

Warstadt et al., 2020). Inspired by this, we encode 217

two adjacent sentences at once to capture discourse 218

features, such as coreference relations. In this strat- 219

egy, items are encoded twice except the items in- 220

cluded in the first and the last sentence. We interpo- 221

late items encoded twice to consider context with 222

regard to the preceding and succeeding sentence. 223

We first encode an input document using XLNet 224

to obtain word representations. Sentence represen- 225

tations are means of all word representations in a 226

sentence. We then feed sentence representations 227

and the noun phrase representations into the coher- 228

ence modules. 229

3.3 Local Coherence Module 230

We compare the semantic representations of noun 231

phrases between adjacent sentences. The two most 232

similar representations of noun phrases are deter- 233

mined as local focus of the respective sentences. 234

These two representations are averaged to capture 235

the common context. We use cosine similarity to 236

measure semantic similarity. 237

We notice that some sentences do not include 238

noun phrases, approximately 3.5% in the three 239

datasets used in our evaluation. This mostly oc- 240

curs when some words are omitted as in cases of 241

ellipsis (Hardt and Romero, 2004). In such cases, 242

we maintain the focus of the previous sentence to 243

preserve the context. 244

A depthwise convolutional layer is applied to 245

the local focus to record its transitions. Unlike 246

a typical convolutional layer, the depthwise con- 247

volutional layer captures the patterns of semantic 248
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changes between different time-steps for the same249

spatial information (Chollet, 2017). Hence, this250

layer captures the semantic changes between local251

foci considering the context, but it does not hurt the252

explainability of our model. We use the lightweight253

depthwise convolutional layer (Wu et al., 2019).254

Then we update the representations of local foci255

to track the semantic changes between them. We256

use the Tree-Transformer which updates its hid-257

den representations by inducing a tree-structure258

from a document (Wang et al., 2019). It generates259

constituent priors by calculating neighboring atten-260

tion which represents the probability of whether261

adjacent items are in the same constituent. The262

constituent priors constrain the self-attention of the263

transformer to follow the induced structure.264

Finally, we apply document attention to produce265

the weighted sum of all the updated local focus266

representations. The document attention identifies267

relative weights of updated representations which268

enables our model to handle any document length.269

4 Experiments270

4.1 Implementation Details271

We implement our model using the PyTorch library272

and use the Stanford Stanza library2 for sentence273

tokenization. We employ XLNet for the pretrained274

language model. For the baselines which do not275

employ a pretrained language model (Dong et al.,276

2017; Mesgar and Strube, 2018), GloVe is em-277

ployed for word embeddings, trained on Google278

News (Pennington et al., 2014) (see Appendix A279

for more details).280

To compare baselines within the same frame-281

work, we re-implement all of them in PyTorch. We282

then use our re-implementation to report the per-283

formance of models with 10 runs with different284

random seeds. We verify statistical significance (p-285

value<0.01) with both a one-sample t-test, which286

verifies the reproducibility of the performance of287

each model, and a two-sample t-test, which verifies288

that the performance of our model is statistically289

significantly different from other models.290

Within same framework we compare the size of291

models used in our experiment. Our neural model292

uses a number of parameters comparable to the293

state of the art, the transformer-based model (Moon294

et al. (2019): 118M < Jeon and Strube (2020):295

136M < Our model: 137M).296

2https://stanfordnlp.github.io/stanza

4.2 Baselines: Neural Coherence Models 297

In all three downstream tasks, we compare our 298

model against recent neural coherence models. 299

First, Mesgar and Strube (2018) propose a neural 300

local coherence model, based on Centering theory. 301

This model connects the most related states of a 302

Recurrent Neural Network, then represents the co- 303

herence patterns using semantic distances between 304

the states. Second, Moon et al. (2019) propose 305

a unified neural coherence model to consider lo- 306

cal and structural aspects. This model consists of 307

two modules when they employ a pretrained lan- 308

guage model (Peters et al., 2018): a module of 309

inter-sentence relations using a bilinear layer and a 310

topic structure module applying a depth-wise con- 311

volutional layer to the sentence representations. To 312

ensure fair comparison, XLNet is employed for 313

this model as well, instead of ELMo (Peters et al., 314

2018). 315

Avg Accuracy
Moon et al. (2019)-1SentEnc 91.40
Our Model 86.45

Table 1: Shuffle Test: Mean (standard deviation) ac-
curacy performance of shuffling test on GCDC, aver-
aged on four domains. 1SentEnc indicates that each
sentence is encoded separately on the pretrained lan-
guage model.

4.3 Artificial Task: Shuffle Test 316

We first evaluate our model on the artificial setup, 317

the shuffle test, used in the earlier works. We fol- 318

low the setup used in Lai and Tetreault (2018). In 319

this setup, our model outperforms a simple neural 320

model relying on the pretrained language model. 321

Moon et al. (2019) evaluate their models only in 322

this setup. It achieves outstanding performance in 323

this setup. However, in the following sections, our 324

results show that this model does not outperform 325

our model in downstream tasks. 326

Our results are not surprising. There is a line 327

of recent work which shows that this setup is not 328

desirable to evaluate coherence from diverse per- 329

spectives. Laban et al. (2021) show that employ- 330

ing fine-tuned language models simply achieves 331

a near-perfect accuracy on this setup. O’Connor 332

and Andreas (2021) measure usable information by 333

selectively ablating lexical and structural informa- 334

tion in transformer-based language models. Their 335

findings show that prediction accuracy depends on 336

information about local word co-occurrence, but 337
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Model Prompt Avg Acc1 2 3 4 5 6 7 8
Dong et al. (2017) 69.30 66.47 65.84 66.38 68.89 64.20 67.11 65.73 66.74
Mesgar and Strube (2018) 56.25 55.94 55.20 57.20 56.57 55.10 56.97 58.39 56.45
Averaged-XLNet-1SentEnc 70.73 69.48 68.98 67.52 72.35 70.94 70.14 69.01 69.89
Moon et al. (2019)-1SentEnc 73.75 72.13 72.92 73.29 75.12 74.69 72.89 72.09 73.36
Jeon and Strube (2020)-1SentEnc 75.10 73.35 74.75 74.18 76.38 74.30 73.61 73.44 74.39
Jeon and Strube (2020)-2SentsEnc 76.35 75.40 75.00 74.85 77.63 74.06 73.71 74.00 75.12
Our Model 78.38 75.70 76.58 76.56 79.10 76.41 75.03 74.57 76.54

Table 2: AES: TOEFL Accuracy performance comparison on the test sets, where 1SentEnc indicates that sentences
are encoded individually and 2SentsEnc indicates that two adjacent sentences are encoded at once on the pretrained
language model (see Appendix C for more details).

not word order or global position. We suspect that338

exploiting all information of a sentence is more339

beneficial to shuffle tests than entity-based mod-340

eling. Based on these findings, we evaluate our341

model on three downstream tasks used for evalu-342

ating coherence models, automated essay scoring,343

assessing writing quality, and assessing discourse344

coherence. We encourage future work not to evalu-345

ate coherence models on the artificial setup solely.346

4.4 Automated Essay Scoring (AES)347

Dataset. To evaluate the coherence models on348

AES, we evaluate them on the Test of English as349

a Foreign Language (TOEFL) dataset (Blanchard350

et al., 2013). While the Automated Student As-351

sessment Prize (ASAP) dataset3 is commonly used352

for AES, TOEFL has generally higher quality of353

essays compared to essays in ASAP. The prompts354

in ASAP are written by students in grade levels 7355

to 10 of US middle schools. Many essays in ASAP356

consist of only a few sentences. In contrast, the357

prompts in TOEFL are submitted for the standard358

English test for the entrance to universities by non-359

native students. The prompts in TOEFL do not vary360

so much, the student population is more controlled,361

and essays have a similar length (see Appendix A362

for more details).363

Evaluation Setup. We follow the evaluation setup364

of previous work on AES (Taghipour and Ng,365

2016). For TOEFL, we evaluate performance with366

accuracy for the 3-class classification problem with367

5-fold cross-validation. We use the same split368

for the cross-validation, used by Jeon and Strube369

(2020). The cross-entropy loss is deployed for train-370

ing. The ADAM optimizer is used for our model371

with a learning rate of 0.003. We evaluate perfor-372

mance for 25 epochs on the validation set with a373

mini-batch size of 32. The model which reaches the374

3https://kaggle.com/c/asap-aes

best accuracy on the validation set is then applied 375

to the test set. 376

Baselines. We compare against Dong et al. (2017), 377

a neural model proposed for AES. They present a 378

model which consists of a convolutional layer, fol- 379

lowed by a recurrent layer, and an attention layer 380

(Bahdanau et al., 2015) between the adjacent to- 381

kens. 382

Results. Table 2 reports the performance on 383

TOEFL. Dong et al. (2017) report better perfor- 384

mance than the more recent neural model based 385

on Centering theory (Mesgar and Strube, 2018). A 386

simple model relying on the pretrained language 387

model outperforms this model, which averages all 388

sentences to a vector representation (henceforth, 389

Avg-XLNet). Moon et al. (2019) show that their 390

unified model outperforms previous models on the 391

artificial task, the shuffle test. However, it does 392

not outperform the previous models on the AES 393

task. Jeon and Strube (2020) outperform previous 394

models. Finally, our model, which integrates lo- 395

cal and structural aspects, achieves state-of-the-art 396

performance. We perform an ablation study to in- 397

vestigate the contribution of individual components. 398

We compare with Jeon and Strube (2020) who en- 399

code two adjacent sentences using the pretrained 400

language model (2SentsEnc). Our results verify 401

that this encoding improves performance, but our 402

model benefits from the novel local coherence mod- 403

ule even more. 404

4.5 Assessing Writing Quality (AWQ) 405

Dataset. Louis and Nenkova (2013) create a 406

dataset of scientific articles from the New York 407

Times (NYT) for assessing writing quality. They 408

assign each article to one of two classes by a semi- 409

supervised approach: typical or good. Though 410

articles included in both classes are of good quality 411

overall, Louis and Nenkova (2013) show that lin- 412

guistic features contribute to distinguish different 413
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Model Yahoo Clinton Enron Yelp Avg Acc
∗Li and Jurafsky (2017) 53.5 61.0 54.4 49.1 51.7
Mesgar and Strube (2018) 47.3 (1.8) 57.7 (0.6) 50.6 (1.2) 54.6 (0.3) 52.6
∗Lai and Tetreault (2018) 54.9 60.2 53.2 54.4 55.7
Avg-XLNet-1Sent 58.0 (3.9) 57.6 (0.3) 54.3 (0.8) 55.9 (0.4) 56.4
Moon et al. (2019)-1SentEnc 56.2 (0.5) 61.0 (0.4) 53.6 (0.5) 56.6 (0.4) 56.9
Jeon and Strube (2020)-1SentEnc 56.4 (0.6) 62.5 (0.9) 54.5 (0.4) 56.9 (0.3) 57.6
Jeon and Strube (2020)-2SentsEnc 57.2 (0.5) 63.0 (0.4) 54.4 (0.4) 56.9 (0.2) 57.9
Our Model 58.4 (0.2) 64.2 (0.4) 55.3 (0.3) 57.3 (0.2) 58.9

Table 3: ADC: Mean (standard deviation) accuracy performance on the test sets in GCDC (∗: reported performance
in Lai and Tetreault (2018)).

classes of writing quality.414

Evaluation Setup. For NYT, we follow the setup415

used in previous work. Louis and Nenkova (2013)416

and Ferracane et al. (2019) undersample the dataset417

to mitigate the bias of the uneven label distribution.418

Following Ferracane et al. (2019), Jeon and Strube419

(2020) partition the dataset into 80% training, 10%420

validation, and 10% test set, respectively. We use421

the ADAM optimizer with a learning rate of 0.001422

and a mini-batch size of 32. We evaluate perfor-423

mance for 25 epochs.424

Baselines. Liu and Lapata (2018) propose a neural425

model which induces structural information with-426

out a labeled resource. It induces the non-projective427

dependency structure by structured attention.428

NYT
Liu and Lapata (2018)-reimplemented 54.35 (1.00)
Averaged-XLNet-1SentEnc 67.53 (3.48)
Moon et al. (2019)-1SentEnc 74.75 (1.27)
Jeon and Strube (2020)-1SentEnc 75.12 (1.10)
Jeon and Strube (2020)-2SentsEnc 76.43 (0.88)
Our Model 77.52 (0.42)

Table 4: AWQ: Mean (standard deviation) accuracy
performance of assessing writing quality on the test sets
in NYT.

Results. Table 4 shows the performance on NYT.429

Ferracane et al. (2019) reported the best perfor-430

mance of the latent learning model for discourse431

structure (Liu and Lapata, 2018) on NYT. However,432

Jeon and Strube (2020) show that the good results433

are due to the embeddings trained from the target434

dataset. They also report that Avg-XLNet outper-435

forms this model which employs Glove embed-436

dings. Moon et al. (2019) show better performance437

than this simple model, but it does not outperform438

Jeon and Strube (2020). Our model achieves state-439

of-the-art performance. An ablation study of the440

joint sentence encoding verifies that our model441

gains improvement not only from this encoding442

but also from our local coherence module.443

4.6 Assessing Discourse Coherence (ADC) 444

Dataset. While previous work evaluates coherence 445

models on formally written texts (Barzilay and La- 446

pata, 2008), GCDC (Lai and Tetreault, 2018) is 447

designed to evaluate coherence models on infor- 448

mal texts, such as emails or online reviews. The 449

dataset contains four domains: Clinton and Enron 450

for emails, Yahoo for questions and answers in an 451

online forum, and Yelp for online reviews of busi- 452

nesses. The quality of the dataset is controlled to 453

have evenly-distributed scores and a low correla- 454

tion between discourse length and scores4. 455

Evaluation Setup. For GCDC, we perform the 456

experiments following previous work (Lai and 457

Tetreault, 2018). We perform 10-fold cross- 458

validation, use accuracy as evaluation measure on 459

the 3-class classification, and use the cross-entropy 460

loss function. 461

Baselines. Li and Jurafsky (2017) propose a neu- 462

ral model based on cliques, that are sets of adja- 463

cent sentences. This model uses the cliques taken 464

from the original article as a positive label and uses 465

cliques with randomly permutated ones as a neg- 466

ative label. Lai and Tetreault (2018) show that a 467

simple neural model which uses paragraph infor- 468

mation outperforms previous models on GCDC. 469

Results. Table 3 summarizes the performance on 470

GCDC. While Avg-XLNet outperforms previous 471

baselines, other advanced neural models show sim- 472

ilar performance. Our model performs slightly 473

better than Jeon and Strube (2020) with two sen- 474

tences encoding. This shows that the gains mainly 475

benefit from this encoding strategy. We suspect 476

that Jeon and Strube (2020) do not benefit from 477

structural information since texts on GCDC are not 478

well-organized. The texts mostly consist of a few 479

sentences, and they express the writers’ emotion. 480

Based on this, Lai and Tetreault (2018) state that 481

4The Pearson correlation between text length and scores is
lower than 0.12 in all domains.
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TOEFL-P1 (%) TOEFL-P1-NP (%) NYT-1516415 (%) NYT-1516415-NP (%)
_broad (3.63) i (5.45) _theory (4.03) it (4.96)
_many (1.79) you (2.74) _universe (3.22) we (4.13)

_special (1.50) broad knowledge (2.64) _said the universe (2.48)
i (1.47) it (2.38) stan (2.42) he (2.48)

_specialize (1.46) we (1.74) ein (2.42) physics (1.65)
_know (1.05) knowledge (1.34) dr (2.42) space (1.65)

_specialized (0.99) he (1.30) _do (2.42) string theory (1.65)
_knowledge (0.90) people (1.20) _can (1.61) life (1.65)

_academic (0.90) they (1.17) _extra (1.61) i (1.65)
_major (0.65) many academic subjects (0.95) _co (1.61) dimensions (1.65)

Table 5: ADC: Comparison of focus on any items and noun phrases on top-10 most preferred centers (proportions)
of essays submitted to prompt 1 in TOEFL and a NYT article ID 1516415 (see Appendix D for more details).
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(a) TOEFL: P1, low score, id: 10226

0 5 10 15 20
N-th pair of local focus

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00
Co

sin
e 
sim

ila
rit
y 
be
tw
ee
n 
th
e 
fo
cu
s i
n 
ad
ja
ce
nt
 se

nt
en
ce
s

(b) TOEFL: P1, high score, id: 63719
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(c) TOEFL: P1, low score, id: 598381

Figure 2: Semantic consistency on TOEFL. The green horizontal line indicates the average of semantic similarities
between local foci. The blue line indicates the semantic similarities between adjacent local foci. A semantic
transition occurs when the semantic similarity between the local foci is lower than the green line. Texts of lower
quality are mostly semantically too consistent (id:10226) or too variant (id:598381).

texts of lower quality have sudden topic changes.482

We also suspect that human annotators recognize483

important entities in the texts, such as the name of484

a person in the US government.485

5 Analysis486

5.1 Capturing Focus Using Entities487

In Centering theory, the focus is described as the488

most important item in a sentence. Jeon and Strube489

(2020) capture the focus using attention weight490

scores and analyze texts assigned to different quali-491

ties using this focus. They state that the focus is dif-492

ficult to interpret when it is composed of sub-words.493

To investigate this further, we compare the focus494

captured on (sub-)words and the focus constrained495

to entities. Table 5 indicates that constraining focus496

to entities leads to better explainability, in partic-497

ular on NYT (see Table 11 in the Appendix D for498

more details). For example, in the NYT-1516415499

news article about the String theory, a subword of500

“ein” is not interpretable focus while it may repre-501

sent a useful representation in the vector space for a502

neural model. In contrast, our entity-based model-503

ing leads our model to better explainability. Instead504

of “ein”, it provides more interpretable focus, “Ein- 505

stein”, a theoretical physicist. In TOEFL, “many 506

academic subjects” is more interpretable focus than 507

focus consists of a single subword token either 508

“many” or “subjects”. Table 5 also shows that our 509

model mainly uses pronouns, and noun phrases are 510

playing an important role in the text to represent fo- 511

cus. Our findings suggest that further investigation 512

is needed to understand how pretrained language 513

models work on pronouns to process a long text. 514

5.2 Local Coherence Patterns 515

Using interpretable focus information, we inves- 516

tigate differences in focus transitions of texts as- 517

signed to different scores. Motivated by the def- 518

inition of the continue and the shift transition in 519

Centering theory, we define semantic consistency 520

which represents the degree of semantic changes 521

between local foci. Two adjacent sentences are se- 522

mantically consistent when the semantic similarity 523

(simi) between the local foci (lf ) is higher than 524

a semantic threshold (θsem;score). This threshold 525

is determined as the average of semantic similar- 526

ities between local foci of adjacent sentences in 527

the texts assigned the same score. Otherwise, a 528
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semantic transition (st) occurs between the local529

foci: sti = 1 if simi < θsem;score. Finally the530

semantic consistency (SC) is defined as follows:531

SC = 1− (count(sti)/|lf |).532

Figure 2 illustrates the semantic consistency on533

TOEFL, and Table 6 shows the statistics of the se-534

mantic consistency on texts assigned to different535

scores. Texts assigned a high score show lower536

semantic consistency on average. This indicates537

that texts of higher quality are overall more se-538

mantically variant than texts of lower quality. Ad-539

ditionally, we observe that texts assigned a low540

score show significantly larger proportions of an541

extreme level of semantic consistency. We define542

the extreme level as either texts whose semantic543

consistency is lower than 5%, indicating texts are544

highly variant, or texts whose semantic consistency545

is higher than 75%, indicating texts are highly con-546

sistent. Hence, these findings indicate that texts of547

lower quality are semantically too variant or too548

consistent. Texts of higher quality are are neither549

too variant nor too consistent.550

We next inspect the focus of texts assigned to551

different scores (see Table 12,13, and 14 in the Ap-552

pendix D for more details). It shows that the propor-553

tion of pronouns is higher in the local focus com-554

pared with their proportion in the focus captured555

on a sentence solely. The essays in TOEFL are556

argumentative essays, and good essays should use557

facts and evidence to support their claim (Wingate,558

2012). We observe that texts assigned a low score559

frequently include claims without convincing evi-560

dence. This causes our model to capture focus on561

pronouns more frequently in these texts. In con-562

trast, texts assigned a high score include convincing563

evidence to support claims, and this lets our model564

capture different types of foci in these texts.565

5.3 Error Analysis566

Finally, we conduct an error analysis to investigate567

how our model works differently compared to pre-568

vious coherence models on TOEFL. We first com-569

pare the predicted scores with Moon et al. (2019)570

and a simple model which only considers context,571

averaged-XLNet. These two baselines show biased572

predictions on the middle score. We suspect that573

this is caused by the label bias in TOEFL (Blan-574

chard et al., 2013). Biased label distributions cause575

biased predictions, and they benefit from these bi-576

ased predictions. In contrast, our model benefits577

more from predicting high scores correctly as well578

SLow SMid SHigh

Avg SC 55.87 54.45 54.05
(std) (24.53) (21.38) (19.70)
Prop of Ext level 17.63 11.54 8.59

Table 6: Semantic consistency statistics (%) for the
texts assigned to different scores (S). An extreme level
(Ext) is defined as either semantic consistency to be
lower than 5% (semantically too variant) or higher than
75% (semantically too consistent).

as other scores, indicating our coherence model 579

assess text quality better. 580

We then compare with the previous state of the 581

art (Jeon and Strube, 2020). This baseline induces 582

discourse structure to model structural coherence. 583

It captures semantic relations between discourse 584

segments, not just between adjacent sentences. We 585

observe two error cases when this baseline strug- 586

gles to predict correctly. It predicts scores lower 587

than the ground-truth score for texts which lack 588

support and evidence for claims. However, these 589

texts have a well-organized paragraph for one or 590

two claims. We suspect that this leads human an- 591

notators to assign a mid or a high score though 592

the text is not well-organized overall. In contrast, 593

it predicts scores higher than ground-truth scores 594

when unrelated claims are listed or claims are listed 595

without evidence. Our model, which captures lo- 596

cal coherence between adjacent sentences, deals 597

with these cases better (see Table 15 and 16 in the 598

Appendix D for more details). 599

6 Conclusions 600

We propose a neural coherence model based on 601

entities by constraining the input to noun phrases. 602

It leads our model to better explainability and to 603

set a new state of the art in end applications. It also 604

allows us to reveal that texts of higher qualities are 605

neither semantically too consistent nor too variant. 606

Our findings suggest a few interesting directions 607

for future work. As our model sets a new state of 608

the art by constraining models to focus on entities, 609

we could design more efficient modeling instead 610

of considering all information on other tasks as 611

well. Our analysis shows that pretrained language 612

models frequently exploit coreference relations to 613

capture semantic relations. We could design an ad- 614

vanced neural model which exploits these relations 615

explicitly, which could lead to better explainability 616

and better understanding of how transformer-based 617

models work. 618
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A Training and Parameters816

For the three datasets, we use a mini-batch size817

of 32 with random-shuffle. The ADAM optimizer818

is used to train our models with a learning rate819

of 0.001 and epsilon of 1e-4. We evaluate perfor-820

mance for 25 epochs. For the baseline models821

which do not use a pretrained language model,822

we use Glove pretrained embeddings with 100-823

dimensional for TOEFL and with 50-dimensional824

for NYT. We clip gradients by 1.0. To update sen-825

tence representations obtained by a pretrained lan-826

guage model, we use the same dimension of the827

pretrained language model on a tree-transformer.828

We manually tune hyperparameters.829

We encode adjacent two sentences at once us-830

ing XLNet instead of the whole document at once.831

Our dataset consists of long documents i.e., journal832

articles with more than 3,000 tokens. For employ-833

ing the pretrained model, it is practically infeasible834

to encode all words in a document at once due to835

memory limitations. We use 23GB GPU memory836

a NVidia P40 on ADC and AES and 46GB GPU837

memory of two NVidia P40s for each run on AWQ.838

For training our model, it takes approximately 0.8839

days on TOEFL, 6.5 days on NYT, and 0.6 days on840

GCDC.841

B Data Description Details842

Table 7 describes statistics on two datasets,843

TOEFL5 and NYT6. We split a text at the sentence844

level by Stanford Stanza library, and tokenize them845

by the XLNet tokenizer. Table 8 describes the topic846

of each prompt in TOEFL. They are all open-ended847

tasks, that do not have given context but require848

students to submit their opinion.849

C Evaluation: Shuffle Test850

The shuffle test is introduced to evaluate coherence851

models with other tests in the previous work (Barzi-852

lay and Lapata, 2008).853

Barzilay and Lapata (2008) introduce the shuffle854

test to evaluate coherence models with other tests.855

D Evaluations Details856

E Analysis Details857

5https://catalog.ldc.upenn.edu/LDC2014T06
6https://catalog.ldc.upenn.edu/LDC2008T19

Dataset #Texts Avg len (Std) Max # tokens Scores
G-Y 1,200 173 (48) 378 1-3
G-C 1,200 200 (65) 385 1-3
G-E 1,200 203 (67) 388 1-3
G-P 1,200 198 (58) 374 1-3
T-P1 1,656 401 (97) 902 1-3
T-P2 1,562 423 (97) 902 1-3
T-P3 1,396 407 (102) 837 1-3
T-P4 1,509 405 (99) 852 1-3
T-P5 1,648 424 (101) 993 1-3
T-P6 960 425 (101) 925 1-3
T-P7 1,686 396 (87) 755 1-3
T-P8 1,683 407 (92) 795 1-3
NYT 8,512 1,841 (1,221) 18,728 1-2

Table 7: Three Datasets statistics on tokenization: i)
four domains in GCDC, Yahoo (G-Y), Clinton (G-C),
Enron (G-E), Yelp (G-P), ii) each TOEFL prompt (T-P),
and iii) NYT.

Prompt 1 Agree or Disagree: It is better to
have broad knowledge of many
academic subjects than to special-
ize in one specific subject.

Prompt 2 Agree or Disagree: Young people
enjoy life more than older people
do.

Prompt 3 Agree or Disagree: Young people
nowadays do not give enough time
to helping their communities.

Prompt 4 Agree or Disagree: Most advertise-
ments make products seem much
better than they really are.

Prompt 5 Agree or Disagree: In twenty
years, there will be fewer cars in
use than there are today.

Prompt 6 Agree or Disagree: The best way
to travel is in a group led by a tour
guide.

Prompt 7 Agree or Disagree: It is more im-
portant for students to understand
ideas and concepts than it is for
them to learn facts.

Prompt 8 Agree or Disagree: Successful peo-
ple try new things and take risks
rather than only doing what they
already know how to do well.

Table 8: Topic description: TOEFL.
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Model Prompt Avg Acc1 2 3 4 5 6 7 8
Dong et al. (2017) 69.30 66.47 65.84 66.38 68.89 64.20 67.11 65.73 66.74

(0.41) (0.58) (0.56) (0.56) (0.38) (0.64) (0.59) (0.31)
Mesgar and Strube (2018) 56.25 55.94 55.20 57.20 56.57 55.10 56.97 58.39 56.45

(0.72) (0.44) (0.75) (0.16) (0.49) (0.39) (0.56) (0.29)
Averaged-XLNet-1SentEnc 70.73 69.48 68.98 67.52 72.35 70.94 70.14 69.01 69.89

(0.73) (0.53) (1.12) (0.51) (0.46) (0.82) (0.42) (0.56)
Moon et al. (2019)-1SentEnc 73.75 72.13 72.92 73.29 75.12 74.69 72.89 72.09 73.36

(0.67) (0.58) (0.54) (0.35) (0.50) (0.57) (0.35) (0.35)
Jeon and Strube (2020)-1SentEnc 75.10 73.35 74.75 74.18 76.38 74.30 73.61 73.44 74.39

(0.74) (0.92) (0.61) (1.07) (0.91) (1.13) (0.72) (1.15)
Jeon and Strube (2020)-2SentsEnc 76.35 75.40 75.00 74.85 77.63 74.06 73.71 74.00 75.12

(0.44) (0.75) (0.34) (0.50) (0.40) (0.37) (0.25) (0.63)
Our Model 78.38 75.70 76.58 76.56 79.10 76.41 75.03 74.57 76.54

(0.42) (0.60) (0.46) (0.37) (0.35) (0.20) (0.32) (0.38)
Our Model+Coref 75.70 75.36 75.04 74.92 76.97 74.43 73.53 72.81 74.84

(0.60) (0.63) (0.37) (0.60) (0.51) (0.72) (0.69) (0.38)

Table 9: TOEFL Accuracy performance comparison on the test sets (std), where 1SentEnc indicates that sentences
are encoded individually and 2SentsEnc indicates that adjacent sentences are encoded at once on the pretrained
language model.

Model Prompt Avg Acc1 2 3 4 5 6 7 8
Averaged-XLNet-1SentEnc 71.06 70.56 67.17 67.02 71.42 69.76 68.54 68.72 69.28

(0.43) (0.50) (0.99) (0.98) (0.31) (0.77) (0.73) (0.51)
Moon et al. (2019)-1SentEnc 74.31 71.15 72.83 73.71 74.94 73.89 72.18 72.04 73.13

(0.67) (0.12) (0.96) (0.80) (0.53) (1.00) (0.76) (0.73)
Jeon and Strube (2020)-1SentEnc 73.76 71.09 72.57 71.86 73.87 71.08 71.49 71.46 72.15

(0.74) (0.92) (0.61) (1.07) (0.91) (1.13) (0.72) (1.15)
Jeon and Strube (2020)-2SentsEnc 76.66 75.48 74.46 74.72 76.24 75.26 73.82 73.19 74.98

(0.50) (0.68) (0.74) (0.36) (0.50) (0.53) (0.43) (0.67)
Our Model 77.44 75.48 76.72 76.57 79.22 75.89 75.66 74.33 76.41

(0.59) (0.74) (0.72) (0.46) (0.61) (0.85) (0.77) (0.74)

Table 10: TOEFL Accuracy performance comparison on the validation sets (std), where 1SentEnc indicates that
sentences are encoded individually and 2SentsEnc indicates that adjacent sentences are encoded at once on the
pretrained language model.
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TOEFL-P1-NP (%) TOEFL-P2-NP (%) TOEFL-P3-NP (%) TOEFL-P4-NP (%)
i (5.45) young people (5.57) young people (5.26) i (4.67)

you (2.74) they (5.21) i (4.71) it (3.83)
broad knowledge (5.64) i (4.42) they (3.70) they (3.61)

it (2.38) life (4.12) time (1.64) advertisements (2.03)
we (1.74) older people (2.70) enough time (1.52) products (1.96)

knowledge (1.34) it (1.50) it (1.46) you (1.82)
he (1.30) you (1.40) their communities (1.23) we (1.59)

people (1.20) we (1.05) people (1.19) people (1.49)
they (1.17) old people (1.02) we (1.10) most advertisements (1.10)

many academic subjects (0.95) people (0.95) them (0.92) the product (0.96)
TOEFL-P5-NP (%) TOEFL-P6-NP (%) TOEFL-P7-NP (%) TOEFL-P8-NP (%)

cars (4.54) i (7.73) i (5.16) i (4.90)
i (4.25) you (4.16) ideas and concepts (3.74) they (3.51)

twenty years (3.26) a group (3.96) facts (3.73) you (2.70)
people (2.07) a tour guide (3.49) students (3.05) he (2.24)

it (1.81) we (2.36) it (2.82) it (2.22)
we (1.71) it (2.20) they (2.61) successful people (2.13)

they (1.50) they (1.45) you (1.89) people (2.01)
use (1.49) people (1.39) we (1.87) risks (1.85)

today (1.13) the best way (0.92) them (1.10) new things (1.76)
a car (0.75) the tour guide (0.85) the facts (1.09) success (1.57)

NYT-1458761-NP (%) NYT-1516415-NP (%) NYT-1705265-NP (%) NYT-1254567-NP (%)
i (3.82) it (4.96) i (4.79) he (4.22)

colorado (3.82) we (4.13) he (4.79) it (3.52)
2001 (2.29) the universe (2.48) they (3.42) einstein (3.52)

montana (2.29) he (2.48) diet (2.74) schrodinger’s (2.82)
colorado springs 2004 (1.53) physics (1.65) cancer (2.74) they (2.11)

denver (1.53) space (1.65) it (2.05) itself (2.11)
qwest (1.53) string theory (1.65) breast cancer (2.05) bohr (2.11)

we (1.53) life (1.65) people (2.05) a physicist (1.41)
the state (1.53) i (1.65) those (2.05) berlin (1.41)

jobs (1.53) dimensions (1.65) prostate cancer (1.37) light (1.41)

Table 11: Top-10 most frequent focus (proportions) of essays submitted to the same prompt in TOEFL (see Ap-
pendix. A for given topics) and four articles in NYT whose id is 1458761, 1516415, 1705265, and 1254567,
respectively. The title of NYT articles are as follows, 1458761: “Among 4 States, a Great Divide in Fortunes”,
1516415: “One Cosmic Question, Too Many Answers”, 1705265: “Which of These Foods Will Stop Cancer?”,
and 1254567: “Quantum Theory Tugged, And All of Physics Unraveled”.
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T-P1-Local-Low (%) T-P1-Single-Low (%) T-P1-Local-High (%) T-P1-Single-High (%)
i (8.77) i (6.44) i (5.98) i (5.05)

you (3.51) broad knowledge (3.43) you (3.23) you (2.29)
it (3.42) we (2.19) it (2.70) it (2.21)

one specific subject (2.58) you (2.19) one specific subject (1.73) broad knowledge (1.84)
we (2.48) it (2.13) we (1.37) we (1.65)

broad knowledge (1.78) many academic subjects (1.42) a broad knowledge (1.27) knowledge (1.56)
many academic subjects (1.67) he (1.42) one (1.22) he (1.22)

he (1.19) they (1.24) he (1.20) they (1.11)
they (1.04) knowledge (1.05) this (1.17) a broad knowledge (1.09)
that (0.08) that (0.95) many academic subject (1.16) specialization (1.09)

T-P3-Local-Low (%) T-P3-Single-Low (%) T-P3-Local-High (%) T-P3-Single-High (%)
i (8.97) i (5.57) young people (6.33) young people (4.79)

young people (6.65) young people (4.77) i (5.91) i (4.48)
they (5.53) they (4.63) they (4.35) they (3.42)

the young people (2.72) it (1.94) it (1.98) time (1.69)
it (2.44) their communities (1.79) the young people (1.91) it (1.43)

enough time (1.96) time (1.79) the community (1.74) enough time (1.24)
them (1.80) enough time (1.65) their communities (1.70) their communities (1.18)

their communities (1.76) we (1.18) this (1.60) people (1.18)
we (1.64) them (1.13) them (1.50) we (1.05)

there (1.24) the young people (1.04) people (1.36) them (0.89)
T-P7-Local-Low (%) T-P7-Single-Low (%) T-P7-Local-High (%) T-P7-Single-High (%)

i (9.08) i (5.95) i (6.81) i (5.29)
it (4.11) ideas and concepts (3.70) it (3.78) ideas and concepts (4.16)

they (3.29) facts (3.56) facts (3.48) facts (3.86)
we (3.09) students (3.23) ideas and concepts (3.23) students (2.97)

facts (2.90) they (3.14) you (2.59) it (2.90)
ideas and concepts (2.57) it (1.95) they (2.08) they (2.36)

you (2.23) we (2.34) the facts (2.05) you (2.13)
students (2.15) ideas (1.69) students (1.91) we (1.60)

the students (1.68) you (1.45) a student (1.58) them (1.25)
the facts (1.41) them (1.26) we (1.45) ideas (1.06)

T-P8-Local-Low (%) T-P8-Single-Low (%) T-P8-Local-High (%) T-P8-Single-High (%)
i (8.07) i (5.45) i (9.90) i (4.56)

they (4.83) they (4.73) you (6.55) they (2.88)
new things (3.91) he (3.10) they (5.16) you (2.64)

you (2.75) successful people (2.85) new things (2.65) it (2.09)
it (2.64) new things (2.43) it (2.30) he (2.02)

he (2.64) people (2.01) he (1.90) risks (1.94)
successful people (1.80) you (1.88) people (1.52) success (1.78)

people (2.04) it (1.59) risks (1.49) successful people (1.77)
we (1.45) success (1.55) successful people (1.44) people (1.64)

success (0.74) we (1.26) we (1.44) new things (1.47)

Table 12: Comparison of the top-10 the most frequent local focus, captured on the two adjacent sentences, (propor-
tions) and single focus, captured on a sentence solely, of essays submitted to each prompt in TOEFL for the low
and the high score (see Appendix. B for given topics).
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# Example text of low quality
1 I1 absolutely agree about the many academic sub-

jects are beneficial for knowledge, because it pro-
vide lots of opportunities1,2, I mean it’s good for
our future.

2 In my experience, when I3 was second grade in
middle school, a teacher gave a homework2 to us
which was to find our talant.

3 I3,4 tried to think what am I good at and what do I
like.

4 However, I4 couldn’t, because I couldn’t find my
talants5.

5 after my highschool finally, I found my talants5.
6 My talant6 is to study a law.
7 When I6 was first grade in the highschool, I7 had a

friend who called Che-Jea-Heong.
8 He was very special friend7,8.
9 He always tried to think strange way8,9.

10 At first, I9 didn’t want to talk with him, but when
we10 talked about the talant, we became a friend.

11 Actually, his father10,11 is police.
12 And his family11 is very poor.
13 So, first we12 started to talk his father.
14 why he12,13 is poor.
15 After that we13,14 began to think law.
16 Then we14 found our talant15.
17 Actually, this16 I found this talant15 from the

school project.
18 When I16,17 was 3grade in middle school, I took

a class which was Korean language class, in the
class, we had a special study which was law.

19 Because, my teacher17,18 thought law is beneficial
for stundent.

20 So we18 tried to study the law19 just one semester
with a game.

21 However, my friends are really bored about this,
but me20 I really enjoyed that law class19.

22 So after that semester, I20,21 asked the teacher to
study more laws, but she couldn’t, because lots of
people didn’t like that.

23 Anyway, I21,22 really like the law, also I’ll study
law in the university.

24 From this semester, I22,23 can think many way to
find my talant from the school subjects.

25 I23,24 can think math, science, music or art.
26 So we24,25 can have our opportunities.
27 Now days, many students cannot understand the

school about the acadmic subjects that why they
have to learn too much subject25,26.

28 I26 was too, but now I understand the school. And
I really thanks from the school.

Table 13: Local focus on an example text assigned to
the low score. The example is rewritten by us following
the texts in TOEFL due to the non-public license. Bold
style indicates local focus identified in our sentence en-
coding strategy, which encodes adjacent sentences at
once. Superscripts indicate the order of this encoding.

# Example text of high quality
1 Getting more knowledge1,2 could expand ones

boundary; serve as a parth to discover ones true
passion; allow us to talk to other people and be
capable of understanding the world around us.

2 Firstly, getting more knowing2 of many academic
subject areas could expand our boundaries because
we know different subjects in different fields3.

3 Each subject has its own uniquness, therefore it4

would be beneficial to know a bit about each ar-
eas3.

4 Secondly, exploring more knowledge4,5 could
serve as a path for people to discover their true
passion.

5 Sometimes if we stay ’inside the box’, it would
be difficult for us to find other ways and have the
oppurtunity5,6 to think whether it was truly their
passion or not.

6 When I6 was in Grade 11, I7 took courses in differ-
ent areas, such as Chemistry, Accounting, Physical
Education, Business, History etc.

7 I7 wans’t sure of what I wanted to study in uni-
versity, and I don’t want to limit my area of study,
therefore I8 decided to broaden my knowledg by
taking many acdemic subjects.

8 However my friend, who seriously wanted to be-
come a doctor, took all science courses8,9, because
she wanted to explore her passion.

9 As a result, I believe it would be better to have
a broad knowledge of many subjects9,10 before
specializing one, unless you have found something
that you really want to pursue.

10 Moreover, by studying more subjects10, it11

makes people easy to dive in conversations with
new people.

11 Everyone have different backgrounds, therefore if
you have knowledge from different areas12, it11

could be easier to socialize with people whom have
different fields from we have.

12 A way of knowing more subjects12,13 can be
to read every section of the newspaper such as
Businss, World, Entertainment etc.

13 This could help us to know more knowledge13 and
therefore we can be more talkative meeting new
people14.

14 Since the world15 changes everyday, everyday
something new 14will happen.

15 If we don’t have the basic background of a certain
subject15,16, we cannot understand others.

16 Moreover, a lot of subjects are tied on each other,
therefore you will need knowledge from other ar-
eas16,17 to understand the material better.

17 For example, business ties with politics, politi-
cal changes could affect the business environment,
henceforth it is mandatory for us to have a sim-
ple background17,18 of politics to understand the
changes of business around the world.

18 In conclusion, with all the reasons discussed so far,
I believe that it is better to have broad knowledge
of many acadmic subjects18 than specializing in
one specific subjects.

Table 14: Local focus on an example text of high qual-
ity. The examples is rewritten by us following the texts
in TOEFL due to a non-public license. Bold style in-
dicates local focus identified in the sentence encoding,
which encodes two sentences at once. Superscripts in-
dicate the order of this encoding.
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Error Type Example Essay
C1 In my opinion is better to have a knowledge specialize in one particular subject since

this is better to know a thing as well as you can. This is true in all the experiences of
the life: refered to the university, e.g., the italian university, we can take the example
of the of the two years of specialization. An other example we can see in a top-tier
company, in fact each people that there are in this have a specific work to do and
this bring to an excellent final operation. A person that are magnifically prepared
on one thing will arrive at a sicure result because that ""is your bred""; we can also
observe that the most good professors, scientists, sport players are all specialize on
that they work and do not specialize on many works. We can also observe that the
colloboration of great brains, each of them specialized on a thing, is important in
many ways of the our life.

C2 I strongly agree with the statement that knowing several subjects and being polyva-
lent in various fields is much more important that specializing in one area.
These days, things are changing so fast that the moment you start a career or a
specialization, the minute the facts and figures of the subject have changed. This
essence of broad knowledge is what makes people succeed in the world. Unless
you are 100% sure that you vocationally desire to specialize in a subject, the risk of
not finding a suitable job because of the deviation of job offering is too high. Both
with respect to time and money. For example, imagine that you decide to study IT
sometime around the Internet boom. After you finish the 5 years of studying, you
get out to society with high hopes and great expectations and suddenly you realize
that the world does not need for IT people anymore because the market crashed
down! Then you would most probably regret not to have chosen a more general
Engineering degree such as an Electronical Engineering degree. Take the example
of a devoted music students that really loves to play music to the point that they drop
classes so they can go and play their music. Perhaps, they will become a succesful
singer or solo player, but the chances that they fail are there and when that really
comes true, they will not be able to attend university classes because they didn’t
passed high-school. Good and innovative ideas often are the result of composing
other ideas. If on one side, you know how pollution of carbon dioxide is chemically
produced and on the other, you are an expert on plant species, perhaps you can find
a way to create a system to purify the air in the world. And moreover, if you have
skills of marchandising and marketing, you can probably be in the Forbes’ next
month main page.
Think that you can always specialize in the future. Going from the trunck of a tree
to the tip of a branch is easy, but getting from one tip to another tip is, literally, as
going back in time.

Table 15: Example Essays for Error Cases (C1, C2) on TOEFL (the examples are rewritten by us following the
texts in TOEFL due to the non-public license). For texts corresponding to the C1, Jeon and Strube (2020) predicts
a low score and our model predicts a mid score (C1 : SJS = L, SO =M ). For texts corresponding to the C2, Jeon
and Strube (2020) predicts a mid score and our model predicts a high score (C2 : SJS =M,SO = H).
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Error Type Example Essay
C3 It seems difficult to choose one direction, becuse they are also have colorful life

between the young people and the older people, but it does not mean, they are
similar to me. I would like to agree with the young people enjoy life more than older
people do, if a personal quality can be considerated as criterion to choose things.
First of all, nowadays, era of information, many young people enjoy their life via the
internet, even everything is possible in the digital industy. For instance, if a grandson
of the older people live abroad, and the communication between the grandson and
the grandfather is only via the telephone instead the internet online chatting what is
cheaper than the international telephone call, but the older people can not use the
internet, even they can not use a computer.
On the other hand, the young people can adapt an environment quickly, so that they
can migrate to another city for the different experience. most of older persons can
not accept the different enviroment and what they will eat in the different areas, if
the older person migrate to other citys or countries, they will be illness easier.
The important things determining the young people enjoy life better is that they are
educated in the signifcant era of information, so they are developed with the world
development.
For all mentioned above is why I agree with the statement that young people enjoy
life more than older people do. Now, I do strongly agree with the statement.

C4 Yes, it is better to have a broad knowledge of many academic subjects than special-
isze in one specific area because of various reasons.
If people have knowledge about a particular subject,it is good. But if they want
to refrain themselves from foraying from other subjects they should make sure
that they are very thorough with that subject.Because finally they should find a job
on that basis only and more ver all the academic topics are interconnected so, it
imperative to have knowledgein various fields.
The above option would be good only if they find a job. They should always keep in
mind the different possibilities in their carreer. They should ask themselves ""what
if i dont get a job in my desired field of study?""
For instance I am a mechanical engineering student. as every one knows there is a
difficult of getting jobs for mechanical engineers.if i continue with the same field
would be left unemployed.Here I need to have an alternate option.I have my alternate
option as computer sciences .I started learning some computer subjects.Now even
if i do not get a job in my field of study, i may have a chance of getting it in field
of computers.This would not leave me unemployed.I personally feel that being
employed is better than being unemployed.
This criteria not only works for two fields of same backround, it also works for a
technical background and an arts background. For example, an electrical engineer
who does not have a job and whose hobby is singing , can survive by giving some
stage shows . Which would also be considered as an employment.
Additionally, broader knowlege would not leave you speechless when you are in a
group. Because when a group is discussing a topic and if you are silent , you may
feel embarassing with that. But if you are familiar with the topic you can also give
your opinion on the topic. this is possible only if you do not confine yourself to a
particular field.
Therefore, I conclude that having a broad knowledge is better than to specialize in
one subject.

Table 16: Example Essays for Error Cases (C3, C4) on TOEFL (the examples are rewritten by us following the
texts in TOEFL due to the non-public license). For texts corresponding to the C3, Jeon and Strube (2020) predicts
a mid score and our model predicts a low score (C3 : SJS =M,SO = L). For texts corresponding to the C4, Jeon
and Strube (2020) predicts a high score and our model predicts a mid score (C4 : SJS = H,SO =M ).
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