Storing Encoded Episodes as Concepts for Continual Learning

Ali Ayub! Alan R. Wagner >

Abstract

The two main challenges faced by continual learn-
ing approaches are catastrophic forgetting and
memory limitations on the storage of data. To
cope with these challenges, we propose a novel,
cognitively-inspired approach which trains au-
toencoders with Neural Style Transfer to encode
and store images. Reconstructed images from en-
coded episodes are replayed when training the
classifier model on a new task to avoid catas-
trophic forgetting. The loss function for the re-
constructed images is weighted to reduce its ef-
fect during classifier training to cope with image
degradation. When the system runs out of mem-
ory the encoded episodes are converted into cen-
troids and covariance matrices, which are used to
generate pseudo-images during classifier training,
keeping classifier performance stable with less
memory. Our approach increases classification ac-
curacy by 13-17% over state-of-the-art methods
on benchmark datasets, while requiring 78 % less
storage space.

1. Introduction

Humans continue to learn new concepts over their lifetime
without the need to relearn most previous concepts. Modern
machine learning systems, however, require the complete
training data to be available at one time (batch learning)
(Girshick, 2015). In this paper, we consider the problem
of continual learning from the class-incremental perspec-
tive. Class-incremental systems are required to learn from a
stream of data belonging to different classes and are evalu-
ated in a single-headed evaluation (Chaudhry et al., 2018).
In single-headed evaluation, the model is evaluated on all
classes observed so far without any information indicating

"Department of Electrical Engineering, The Pennsylvania
State University, State College, PA 16802, USA *Department
of Aerospace Engineering, The Pennsylvania State University,
State College, PA 16802, USA. Correspondence to: Ali Ayub
<aja5755@psu.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

which class is being observed.

One of the main problems faced by class-incremental learn-
ing approaches is catastrophic forgetting (French, 2019;
Kirkpatrick et al., 2017), in which the model forgets the
previously learned classes when learning new classes and
the overall classification accuracy decreases. Most exist-
ing class-incremental learning methods avoid this problem
by storing a portion of the training samples from previous
classes and retraining the model (often a neural network)
on a mixture of the stored data and new data (Rebuffi et al.,
2017; Castro et al., 2018). Storing real samples of the pre-
vious classes, however, leads to several issues. First, as
pointed out by (Wu et al., 2018b), storing real samples
quickly exhausts memory capacity and limits performance
for real-world applications. Second, storing real samples
introduces privacy and security issues (Wu et al., 2018b).
Third, storing real samples is not biologically inspired, i.e.
humans do not need to relearn previously known classes.

In this paper we explore the “strict” class-incremental learn-
ing problem in which the model is not allowed to store any
real samples of the previously learned classes. This prob-
lem has been previously addressed using generative models
such as autoencoders or GANs (Generative Adversarial Net-
works) (Seff et al., 2017; Ostapenko et al., 2019; Kemker &
Kanan, 2018). Most approaches for strict class-incremental
learning use GANSs to generate samples reflecting old class
data (Seff et al., 2017; Wu et al., 2018a; Ostapenko et al.,
2019), because GANs generate sharp, fine-grained images.
The downside of GANSs, however, is that they tend to gener-
ate images which do not belong to any of the learned classes,
hurting classification performance. Autoencoders, on the
other hand, always generate images that relate to the learned
classes, but tend to produce blurry images that are also not
good for classification.

To cope with these issues, we propose a novel, cognitively-
inspired approach termed Encoding Episodes as Concepts
(EEC) for continual learning, which utilizes convolutional
autoencoders to generate previously learned class data. In-
spired by models of the hippocampus (Renoult et al., 2015),
we use autoencoders to create compressed embeddings (en-
coded episodes) of real images and store them in memory.
To avoid the generation of blurry images, we borrow ideas
from the Neural Style Transfer (NST) algorithm (Gatys

Storing Encoded Episodes as Concepts for Continual Learning

et al., 2016) to train the autoencoders. For efficient mem-
ory management, we use the notion of memory integration,
from hippocampal and neocortical concept learning (Mack
et al., 2018; Moscovitch et al., 2016), to combine similar
episodes into centroids and covariance matrices eliminating
the need to store real data.

This paper contributes: 1) an autoencoder based approach
to strict class-incremental learning which uses Neural Style
Transfer to produce quality samples reflecting old class
data (Sec. 2.1); 2) a cognitively-inspired memory man-
agement technique that combines similar samples into a
centroid/covariance representation, drastically reducing the
memory required (Sec. 2.2); 3) a data filtering and a loss
weighting technique to manage image degradation of old
classes during classifier training (Sec. 2.3).

2. Encoding Episodes as Concepts (EEC)

Following the notation of (Chaudhry et al., 2018) and
(Ostapenko et al., 2019), we consider S, = {(xf,y!)}™, to
be the set of samples x; € X and their ground truth labels
y! belonging to task ¢. In a class-incremental setup, data for
different tasks is available to the model in smaller groups,
hence S} can be composed of data belonging to one or mul-
tiple classes. In each increment the model is evaluated on
all the labels (classes) seen so far.

Formally, we follow the continual learning setup in
(Ostapenko et al., 2019), where a task solver model (clas-
sifier for class-incremental learning) D has to update its
parameters p on the data of task ¢ in an increment such
that it performs equally well on all the ¢ — 1 previous tasks
seen so far. Data for the ¢ — 1 tasks is not available when
the model is learning task ¢. The main components of our
approach to solve the class-incremental learning problem
are mentioned below.

2.1. Autoencoder Training with Neural Style Transfer

An autoencoder is a neural network that is trained to com-
press and then reconstruct the input (Goodfellow et al.,
2016), formally f,. : X — X. The network consists of
an encoder responsible for compressing the input to a lower
dimensional feature embedding (termed encoded episode in
this paper) and a decoder that reconstructs the input from the
feature embedding. The parameters 6,. of the network are
usually optimized using an [loss (£,.) between the inputs
and the reconstructions:

Ly = o= fr()]]2 (D

Although autoencoders are suitable for dimensionality re-
duction for complex, high-dimensional data like RGB im-
ages, the reconstructed images lose the high frequency com-

L Convolutional Real
Features
>

>

Encoder Decoder

Classifier cent

g

Reconstructed

Real Image ===

Reconstruction

Memory
Integration

Encoded Episodes

Centroids and Covariances

Figure 1. For each new task, convolutional autoencoder takes real
images as input and trained on a combination of reconstruction
loss £, and content loss L.on¢t. The encoded episodes are stored
in memory and converted into centroids and covariance matrices
when the system runs out of memory.

ponents necessary for correct classification. To tackle this
problem, we utilize some of the ideas that underline Neural
Style Transfer (NST) (Gatys et al., 2016), when training our
autoencoders. NST uses a pre-trained CNN to transfer the
style of one image to another. The process takes three im-
ages, an input image, a content image and a style image and
alters the input image such that it has the content image’s
content and the artistic style of the style image. The three
images are passed through the pre-trained CNN generating
convolutional feature maps (usually from the last convolu-
tional layer) and [y distances between the feature maps of
the input image and content image (content loss) and style
image (style loss) are calculated. These losses are then used
to update the input image.

We only utilize the idea of content transfer from the full
NST algorithm, where the input image is the image recon-
structed by the autoencoder and content image is the real
image corresponding to the reconstructed image. The classi-
fier, D, is used as the pre-trained network to generate feature
maps for the NST. This model has already been trained on
real data for the classes in the increment ¢. In contrast to the
traditional NST algorithm, we use the content 10ss (Lcon¢)
to train the autoencoder, rather than updating the input im-
age directly. Formally, let f. : X — F_ be the classifier
D pipeline that converts input images into convolutional
features. For an input image x! belonging to task ¢, the
content loss is:

Leont = ||fc($§) - fc(fr(mﬁ))lb 2

The autoencoder parameters are optimized using a combina-
tion of reconstruction and content losses:

L=(1=NL+ A;ont 3)

where, A is a hyperparamter that controls the contribution
of each loss term towards the complete loss. During autoen-
coder training, classifier D acts as a fixed feature extractor

Storing Encoded Episodes as Concepts for Continual Learning

and its parameters are not updated. The complete procedure
is depicted in Figure 1.

We train a separate autoencoder for each new task in an
increment versus training a single autoencoder on the re-
constructed images for all of the previous tasks. We utilize
shallow convolutional autoencoders which require a frac-
tion of the memory of the classifier D (~0.4%), hence
the memory footprint does not grow drastically with each
new increment. Still, if the system runs out of memory, a
previous autoencoder can be re-utilized by training it on a
combination of new task images and reconstructed images
of the older tasks. In section 3 we present results using a
single and multiple autoencoders.

2.2. Memory Integration

For each new task ¢, the data is encoded and stored in mem-
ory. Even though the encoded episodes require less memory
than the real images, the system can still run out of mem-
ory when managing a continuous stream of incoming tasks.
To cope with this issue, we propose a process inspired by
memory integration in the hippocampus and the neocortex
(Mack et al., 2018; Renoult et al., 2015; Moscovitch et al.,
2016). Memory integration combines a new episode with a
previously learned episode summarizing the information in
both episodes in a single representation.

Consider a system that can store a total of K encoded
episodes based on its available memory. Assume that at
increment ¢ — 1, the system has a total of K;_; encoded
episodes stored. It is now required to store K; more episodes
in increment ¢. The system runs out of memory because
K; + K;_1 > K. Therefore, it must reduce the number of
episodes to K, = K;_; + K; — K. Because each task is
composed of a set of classes at each increment, we reduce
the total encoded episodes belonging to different classes
based upon their previous number of encoded episodes. For-
mally, the reduction in the number of encoded episodes N,
for a class y is calculated as (whole number):

K,
Ki 1

Ny(new) = Ny (1 -) @)

To reduce the encoded episodes to N, (new) for class y,
inspired by the memory integration process, we use an in-
cremental clustering process similar to Agg-Var clustering
proposed in (Ayub & Wagner, 2019; 2020). The incremental
clustering process combines the closest encoded episodes to
produce centroids and covariance matrices. These centroids
and covariance matrices (only diagonal entries) are of the
same size as the encoded episodes and they notionally rep-
resent the summarized information of the clustered encoded
episodes. The distance between episodes is calculated using
Euclidean distance, and the centroids are calculated using

the weighted mean of the episodes. The online clustering
process is repeated until the sum of the total number of
centroids, covariance matrices and the encoded episodes for
class y equal Ny (new). The original episodes are removed
and only the centroid and the covariance matrix are kept.
Thus, our system keeps the memory used from growing
while maintaining a stable level of performance.

2.3. Rehearsal, Pseudorehearsal and Classifier
Training

The classifier is trained on data from three sources: 1) the
real data for task ¢, 2) reconstructed images generated from
the autoencoder’s decoder, and 3) pseudo-images generated
from centroids and covariance matrices. Source (2) uses the
encodings from the previous tasks to generate a set of recon-
structed images by passing them through the autoencoder’s
decoder. This process is referred to as rehearsal (Robins,
1995).

If the system also has old class data stored as cen-
troids/covariance matrix pairs, pseudorehearsal is employed
(Robins, 1995). For each centroid/covariance matrix pair of
a task we sample a multivariate Gaussian distribution with
mean as the centroid and the corariance matrix to generate
a large set of pseudo-encoded episodes. The episodes are
then passed through the autoencoder’s decoder to generate
pseudo-images for the previous classes. Many of the pseudo-
images are noisy. To filter the noisy pseudo-images, we pass
them through the model D, which has already been trained
on the prior classes, to get predicted labels for each psuedo-
image. We only keep those pseudo-images that have the
same predicted label as the label of the centroid they orig-
inated from. We keep the same number of pseudo-images
as the total number of encoded episodes represented by the
centroid/covariance matrix pair.

The generated pseudo-images can still be quite different
from the original image, hurting classifier performance. We
therefore weigh the cross entropy loss term for the recon-
structed stream and pseudo-images stream when training
the classifier model D. For a previous task ¢t — 1, the weight
T';—1 (the sample decay weight) of the loss term L£;_; is
defined as:

Lyg=e 7 4)

where, a1 represents the number of times an autoencoder
has been trained on the pseudo-images or reconstructed
images of task t — 1 and ~y (the sample decay coefficient)
is a constant hyperparameter with value between 0 and 1
that controls the decay weight. The sample decay weight
was calculated independently for each stream. Thus for
a new increment, the total loss Lp for training D on the
reconstructed and pseudo-images of the old tasks and real

Storing Encoded Episodes as Concepts for Continual Learning

images of the new task ¢ is defined as:

t—1
Lp=Li+) (TiL]+T7LY) ©6)

i=1

where I'Y_, and (L£}_,) are the sample decay weight and
loss function for the pseudo-image stream and I'}_; and
(L£i_,) are the sample decay weight and loss function for
the reconstructed images. Thus, the loss value for the re-
constructed and pseudo-images contribute less than the real
images while training the classifier D, keeping performing
competitively on all tasks.

3. Experiments

We perform experiments on two benchmark datasets:
MNIST (LeChun, 1998) and ImageNet-50 (Russakovsky
et al., 2015) and compare our approach to state-of-the-art
(SOTA) approaches.

3.1. Datasets

MNIST dataset comprises of grey-scale images of hand-
written digits between 0 to 9, with 50,000 training im-
ages, 10,000 validation images and 10,000 test imgages.
ImageNet-50 is a smaller subset of iLSVRC-2012 dataset
containing 50 classes with 1300 training images and 50 val-
idation images per class. All of the datasets’ images are
resized to 3232, similar to (Ostapenko et al., 2019).

3.2. Implementaion Details

We use the Pytorch deep learning framework (Paszke et al.,
2019) for implementation and training of all neural network
models. For MNIST dataset we use a 4-layer shallow convo-
lutional autoencoder and for ImageNet-50 we use a 3-layer
shallow convolutional autoencoder. Both autoencoders take
about 0.2MB disk space for storage. For classification, for
MNIST dataset we use same architecture as the discrimi-
nator of the 3-layer DCGAN (Radford et al., 2015) and for
ImageNet-50 we use ResNet-18 (He et al., 2016).

Similar to DGMw (Ostapenko et al., 2019), we report top-1
average incremental accuracy on 5 and 10 classes (A5 and
Aqp) for the MNIST dataset trained in an incremental fash-
ion with one class per increment while for ImageNet-50
we report top-1 average incremental accuracy on 3 and 5
tasks/increments (As and As) with 10 classes in each incre-
ment. For a fair comparison, we mainly compare against ap-
proaches with a generative memory replay component eval-
uated in a single-headed fashion. Among such approaches,
to the best of our knowledge, DGMw (Ostapenko et al.,
2019) represents the state-of-the-art benchmark on these
datasets which is followed by MeRGAN (Wu et al., 2018a),

MNIST ImageNet-50
Methods As(%) A10(%) As(%) As(%)
JT 99.87 99.24 57.35 49.88
iCaRL-S (Rebuffi et al., 84.61 55.8 29.38 28.98
2017)
EWC-S (Kirkpatrick et al., - 79.7 - -
2017)
RWalk-S (Chaudhry et al., - 82.5 - -
2018)
EEIL-S (Castro et al., - - 27.87 11.80
2018)
EWC-M (Seffetal., 2017) 70.62 77.03 - -
DGR (Shin et al., 2017) 90.39 8540 - -
MeRGAN (Wu et al, 99.15 9683 - -
2018a)
DGMw (Ostapenko et al., 98.75 96.46 32.14 17.82
2019)
EEC (Ours) 99.20 97.83 4539 35.24
Difference +0.05 +1.00 +13.2 +174
EECS (Ours) 98.00 96.26 41.13 30.89

Table 1. Comparison of EEC and EECs against two different types
of benchmarks: those that use episodic memory (real examples)
and those that use generative memory (S denotes episodic memory
approaches), for a class-incremental learning task on MNIST and
ImageNet-50 datasets. The difference between EEC and the best
SOTA approach is also shown.

DGR (Shin et al., 2017) and EWC-M (Seff et al., 2017).
Joint training (JT) is used as an upperbound for both of
the datasets. We compare all of these methods with two
variants of our approach: EEC in which we use separate
autoencoders for images available in different increments
and EECs in which we use a single autoencoder and keep
retraining it on the reconstructed images of the old classes
images when new class data is available. For both of our
models (EEC and EECs) we report results when all the
encoded episodes of the previous classes are stored.

Hyperparameters A, " (for reconstructed images) and 7
(for psuedo-images) were chosen using cross-validation. We
performed each experiment a total of 10 times with different
random seeds and report average accuracy over all the runs.

3.3. Comparison with SOTA methods

Table 1 compares the two variants of our method against
state-of-the-art (SOTA) approaches on the MNIST and
ImageNet-50 datasets. We compare against two different
types of approaches, those that use real images (“episodic
memory”’) of the old class data when learning new classes
and others that use generative memory to generate previous
class data when learning new classes. Our methods (EEC
and EECS) outperform the SOTA methods EWC-M and
DGR by significant margins on the MNIST dataset for the
5 and 10 task (A5 and A;g) experiments. MeRGAN and
DGMw perform similarly to our methods on the A5 and
Aq experiments. MeRGAN and EEC approach the JT up-

Storing Encoded Episodes as Concepts for Continual Learning

Figure 2. Images reconstructed by EEC for MNIST (top) and
ImageNet-50 (bottom) after all tasks.

perbound on A suggesting that this number of increments
results in minimal catastrophic forgetting. Further, the accu-
racy for MeRGAN, DGMw and our method changes only
slightly between A5 and A, suggesting that MNIST is, per-
haps, too simple of a dataset for testing continual learning
using generative replay.

We now consider the more complex ImageNet-50 dataset.
Only DGMw (Ostapenko et al., 2019) reported results for
this dataset. On ImageNet-50, both EEC and EECS outper-
form DGMw on A3 and Aj by significant margins (13.29 %
and 17.42%, respectively). The accuracy achieved by EEC
on Aj is even higher than DGMw’s accuracy on As. Further,
EEC also beats iCaRL (episodic memory SOTA method)
with margins of 16.01% and 6.26% on A3 and As, respec-
tively, even though iCaRL has an unfair advantage of using
stored real images.

It is worth noting that our method performed reasonably con-
sistently across both datasets. In contrast, DGMw (the best
current method) shows significantly different results across
both datasets. The results suggest that the current genera-
tive memory based SOTA approaches are unable to mitigate
catastrophic forgetting on more complex RGB datasets. This
could be because GANs tend to generate images that do not
belong to any of learned classes, which can drastically re-
duce classifier performance. Our approach copes with these
issues by training autoencoders with the ideas from the NST
algorithm and retraining of the classifier with sample decay
weights. Images reconstructed by EEC for MNIST after 10
tasks and ImageNet-50 after 5 tasks are shown in Figure 2.

Memory Usage Analysis. Similar to (Ostapenko et al.,
2019), we analyze the disc space required by our model
for the ImageNet-50 dataset. For EEC, the autoencoders
use a total disc space of 1 MB, ResNet-18 uses about 44
MB, while the encoded episodes use a total of about 66.56
MB. Hence, the total disc space required by EEC is about
111.56 MB. DGMw’s generator (with corresponding weight
masks), however, uses 228MB of disc space and storing
pre-processed real images of ImageNet-50 requires disc
space of 315MB. Hence, our model requires 51.07 % ((228-
111.56)/228 = 0.5107) less space than DGMw and 64.58 %

less space than the real images for ImageNet-50 dataset.

To evaluate the effect of cognitively inspired memory man-
agement technique, we tested EEC with a memory budget
of K=5000, where K is the sum of the total number of en-
coded episodes, centroids and covariance matrices (diagonal
entries) stored by the system. For K=5000, on A3 and A5,
EEC achieves 42.29% and 31.51% accuracies, respectively,
which are only 3.1% and 3.73% lower than the accuracy
of EEC with unlimited memory. Further, even for K=5000,
EEC beats DGMw (current SOTA on ImageNet-50) by mar-
gins of 10.17% and 13.73% on A3z and As;, respectively.
The total disc space required for K=5000 is only 5.12 MB
and the total disc space for the complete system is 50.12 MB
(44 MB for ResNet-18 and 1 MB for autoencoders), which
is 78.01% less than DGMw’s required disc space (228 MB).
These results clearly depict that our approach produces best
results even with extremely limited memory, a trait that is
not shared by other SOTA approaches. Moreover, the results
also show that our approach is capable of dealing with the
two main challenges of continual learning mentioned earlier:
catastrophic forgetting and memory management.

4. Conclusion

This paper has explored a new and potentially powerful ap-
proach to strict class-incremental learning we call Encoding
Episodes as Concepts (EEC). Our paper demonstrates that
the generation of high quality reconstructed data can serve
as the basis for improved classification during continual
learning. We further demonstrate techniques for dealing
with image degradation during classifier training on new
tasks. We have also demonstrated that a clustering approach
can be used to manage the memory used by our system.
Together, our experimental results demonstrate that these
techniques mitigate the effects of catastrophic forgetting,
especially on complex RGB datasets, while also using less
memory that other SOTA approaches. As such, this work
may offer a variety of potential avenues for future research,
such as further improving data recreation accuracy or apply-
ing this approach to diverse, interesting problems. Future
continual learning approaches can incorporate different com-
ponents of our approach such as the NST based autoencoder,
psuedo-rehearsal and sample decay weights for improved
performance.

Acknowledgments

This work was supported by Air Force Office of Scientific
Research contract FA9550-17-1-0017.

Storing Encoded Episodes as Concepts for Continual Learning

References

Ayub, A. and Wagner, A. CBCL: Brain inspired model for
RGB-D indoor scene classification. arXiv:1911.00155,
2019.

Ayub, A. and Wagner, A. R. Cognitively-inspired model
for incremental learning using a few examples. In The
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2020.

Castro, F. M., Marin-Jimenez, M. J., Guil, N., Schmid, C.,
and Alahari, K. End-to-end incremental learning. In The

European Conference on Computer Vision (ECCV), pp.
233-248, September 2018.

Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P.
H. S. Riemannian walk for incremental learning: Under-
standing forgetting and intransigence. In The European
Conference on Computer Vision (ECCV), pp. 532-547,
September 2018.

French, R. M. Dynamically constraining connectionist net-
works to produce distributed, orthogonal representations
to reduce catastrophic interference. Proceedings of the
Sixteenth Annual Conference of the Cognitive Science

Society, pp. 335-340, 2019.

Gatys, L. A., Ecker, A. S., and Bethge, M. Image style trans-
fer using convolutional neural networks. In The IEEE

Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2414-2423, June 2016.

Girshick, R. Fast R-CNN. In The IEEE International
Conference on Computer Vision (ICCV), pp. 1440-1448,
December 2015.

Goodfellow, L., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770-778, June 2016.

Kemker, R. and Kanan, C. Fearnet: Brain-inspired model
for incremental learning. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=SJ1Xmf—-Rb.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N. C., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ra-
malho, T., Grabska-Barwinska, A., Hassabis, D., Clopath,
C., Kumaran, D., and Hadsell, R. Overcoming catas-
trophic forgetting in neural networks. Proceedings of
the National Academy of Sciences of the United States of
America, 114(13):3521-3526, 2017.

LeChun, Y. The mnist database of handwritten digits, 1998.
URL http://yann.lecun.com/exdb/mnist/.

Mack, M. L., Love, B. C., and Preston, A. R. Building
concepts one episode at a time: The hippocampus and
concept formation. Neuroscience Letters, 680:31-38,
2018.

Moscovitch, M., Cabeza, R., Winocur, G., and Nadel, L.
Episodic memory and beyond: The hippocampus and neo-
cortex in transformation. Annual Review of Psychology,
67(1):105-134, Apr 2016.

Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., and
Nabi, M. Learning to remember: A synaptic plasticity
driven framework for continual learning. In The IEEE

Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1132111329, June 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024—
8035. Curran Associates, Inc., 2019.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. CoRR, abs/1511.06434, 2015.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
iCaRL: Incremental classifier and representation learning.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2001-2010, July 2017.

Renoult, L., Davidson, P. S. R., Schmitz, E., Park, L., Camp-
bell, K., Moscovitch, M., and Levine, B. Autobiographi-
cally significant concepts: More episodic than semantic in
nature? an electrophysiological investigation of overlap-
ping types of memory. Journal of Cognitive Neuroscience,
27(1):57-72, 2015.

Robins, A. Catastrophic forgetting, rehearsal and pseudore-
hearsal. Connection Science, 7(2):123-146, 1995.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. Imagenet large scale
visual recognition challenge. Int. J. Comput. Vision, 115
(3):211-252, December 2015. ISSN 0920-5691.

Seff, A., Beatson, A., Suo, D., and Liu, H. Continual learn-
ing in generative adversarial nets. ArXiv, abs/1705.08395,
2017.

https://openreview.net/forum?id=SJ1Xmf-Rb
https://openreview.net/forum?id=SJ1Xmf-Rb
http://yann. lecun. com/exdb/mnist/

Storing Encoded Episodes as Concepts for Continual Learning

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. In Advances in Neural Infor-
mation Processing Systems 30, pp. 2990-2999, 2017.

Wu, C., Herranz, L., Liu, X., wang, y., van de Weijer, J.,
and Raducanu, B. Memory replay gans: Learning to
generate new categories without forgetting. In Advances
in Neural Information Processing Systems 31, pp. 5962—
5972, 2018a.

Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Zhang,
Z., and Fu, Y. Incremental classifier learning with genera-
tive adversarial networks. CoRR, abs/1802.00853, 2018b.

