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Abstract. Reliable and stable performance is crucial for the application
of computer-aided medical image systems in clinical settings. However,
approaches based on deep learning often fail to generalize well under
distribution shifts. In medical imaging, such distribution shifts can, for
example, be introduced by changes in scanner types or imaging protocols.
To counter this, test-time generalization aims to optimize a model that
has been trained on single or multiple source domains to an unseen target
domain. Common test-time adaptation methods fine-tune model weights
utilizing losses with gradient-based optimization, a time-consuming and
computationally demanding procedure. In contrast, our approach adopts
a non-parametric method that is entirely feedforward and utilizes informa-
tion from target samples to extract neighborhood information. By doing
so, we avoid any fine-tuning or optimization procedures, which enables
our method to be more efficient and achieve stable adaptation. We demon-
strate the effectiveness of our approach by benchmarking it against differ-
ent state-of-the-art methods with three backbones on two publicly avail-
able datasets, consisting of fetal ultrasound and retinal images. Our code
is publicly available at: https://anonymous.4open.science/r/snviemroyxqz

Keywords: domain adaptation, generalization, unsupervised learning,
parameter-free optimization

1 Introduction

Computer-aided medical imaging systems have achieved significant progress
in recent years, with a substantial part of this progress made possible by the
advancements of deep learning models [18,7,19,5]. However, a major limitation for
their adoption in clinical environments is given by their restricted generalization
capacity across unseen data distributions [29]. The reason for this is distribution
shifts that can, for example, be caused by variations in scanner types or imaging
protocols [20]. To address this, test-time adaptation and generalization arose as
methods to optimize a trained source model on new incoming target data. Unlike
domain adaptation and generalization techniques, test-time generalization can
consecutively optimize the model on unlabelled data during the test phase without
the requirement to access source data, fostering privacy-preserving adaptation to

https://anonymous.4open.science/r/snviemroyxqz/README.md
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the target domain. Additionally, it allows the model to be optimized continuously
without interrupting the inference process, proving especially beneficial in time-
sensitive applications where maintaining a flow of real-time decision-making is
imperative. Furthermore, the capability of test-time generalization to process data
in batches is reflective of real-world scenarios where medical data is also available
serially. This aspect enhances its applicability in dynamic clinical workflows.

As shown in Figure 1(a), test-time generalization [24,21,15,14,17,8] methods
focus on fine-tuning of the source model based on source model predictions, surro-
gate models or task predictions. This optimization often involves computation of
gradients with norm-based losses followed by finetuning of batch norm layers [23],
the whole model [14] or a linear classification layer [23]. A more recent approach
[10] utilizes parameterized ensembles to optimize the last layers of the source
model. Even though it is possible to only fine-tune the batch norm parameters
[23], gradient-based fine-tuning of model weights, in general, is resource and
time-intensive. This increases computational costs and leads to slower adapta-
tion processes, making such methods less practical for real-time applications
such as dynamic contrast-enhanced imaging, real-time tumor classification, and
rapid stroke identification. Gradient-based finetuning [23,17,10,14] often relies
on maximum a posteriori estimation to obtain the target model, which can lead
to overfitting when adapting to target data that involves multiple distribution
shifts. This reduces the model’s generalizability, making it less robust to diverse
shifts. Moreover, the potential to converge to local minima and a susceptibility
to hyperparameter selections limits these methods efficacy.

By the nature of their feedforward design, non-parametric methods bypass
overfitting and negate the need for loss-based gradient finetuning, therefore
offering clear advantages, Fig. 1(b). T3A [9] computes class representations or
prototypes based on the source model’s weights and adjusts the classifier utilizing
an entropy threshold. However, by relying only on the entropy of samples,
information from the target domain is not fully utilized in the method. A more
nuanced approach would be given by application of the source model to directly
identify target samples with analogous characteristics to the source features. Such
a method has the power to increase the utilization of target information and to
align closely with the intrinsic data distribution.

Building on these insights, our work introduces a novel, non-parametric
method coined Test-time Non-parametric Neighbors (TNN). We leverage neigh-
borhood information without the need for finetuning. In summary, our contribu-
tions are:

• We propose utilizing target neighborhood information with dynamic voting
to adjust source-trained classifiers in a non-parametric manner for test-time
generalization.

• Our proposed method (TNN) is simple and does not modify the source
training process. Yet, it is effective across datasets and requires minimal
computation at test time due to its feedforward nature.

• We adopt several state-of-the-art test-time generalization techniques for
medical imaging and perform exhaustive comparisons to our approach.
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Fig. 1: Data and model interaction scheme. (a) Common test-time general-
ization techniques utilize norm-based losses for gradient-based finetuning of batch
norm layers (βt and γt), full model (θt), or linear layers (Φt) to obtain target
predictions yt. These methods feature memory and compute constraints and
require precise hyperparameter selection with several rounds of backpropagation.
(b) Non-parametric approaches obtain yt via techniques that operate on frozen
source model predictions x̄t in a feed-forward manner. This neglects the need for
additional computational resources and simplifies the generalization process.

Through comprehensive experiments and ablation studies, we demonstrate the
efficacy and potential of TNN in medical imaging contexts, an area where such
non-parametric approaches have been underexplored.

2 Background

Test-time domain generalization aims to generalize a model θs trained on the
source domains S to a unseen target domain T , with S usually consisting of
several source domains {Ds}Ss=1. T may also consist of several target domains
{Dt}Tt=1. Here, (xs,ys) and (xt,yt) denote the image and corresponding label
pairs on the source {Ds}Ss=1 and target domain {Dt}1t=1, respectively. The ob-
jective of test-time domain generalization is to maximize the log-likelihood of
the source model on the target data p(Dt|θs), i.e., p(yt|xt,θs).

Formulation of parametric methods. Due to distribution shifts between
source and target domains, the source-trained model θs is highly likely to fail
on unseen target domains Dt, causing unreliable predictions with high confi-
dence [1,27]. To prevent this, the source model must be generalized to the target
domain at test time by transforming θs to θt. Most common parametric methods
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Fig. 2: TNN at test-time. We do not change the source training setup. In the
embedding space, TNN performs neighborhood search h(x̄t) in a non-parametric
manner after computing the prototypes p(x̄t) from the frozen source model.
Followed by obtaining the classification label yt.

employ fine-tuning based on norm-based losses [10,14,23]. The log-likelihood of
the target data is given by:

p(yt|xt,θs) =

∫
p(yt|xt,θt)p(θt|xt,θs)dθt

≈ p(yt|xt,θ
∗
t ),

(1)

with the integration of the distribution p(θt) usually approximated by the max-
imum a posteriori (MAP) estimation. The final generalized MAP model θ∗

t

is obtained by fine-tuning of the parameters with one or multiple rounds of
backpropagation using a norm-based unsupervised loss function, like entropy
minimization [23], pseudo labeling [14] or task-specific losses [15,21]. However,
fine-tuning the model parameters through gradient optimization makes para-
metric methods time-consuming and computationally expensive while also being
sensitive to hyperparameter settings.

Non-parametric methods. To counter the above limitations, recent non-
parametric methods such as [9] obtain class representations as prototypes, utilizing
the weights of the source-trained linear classifier, i.e., without the need for MAP
approximation or gradient-based optimization. Next, they obtain pseudo labels for
the incoming target data based on the distance to those prototypes by applying
entropy thresholds. After each incoming batch of target data, significant samples
are selected, employing a threshold, and used to update the prototypes via simple
adjustments to the classifier.

3 Method

Source training. Recent studies have shown that utilization of empirical risk
minimization (ERM) [22,6] during source training enables models to generalize
well under distribution shifts. Other methods, such as [26,28,1,25], included
additional objectives to be minimized during source training. However, the re-
quirement to interfere in the training procedure limits the applicability of such
approaches. Therefore, we aim to develop a method that does not modify the
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source training procedure, making it applicable to any pretrained model without
any additional requirements. Specifically, as in [22,6], on multiple source do-
mains {Ds}Ss=1, given a source model θs, such as ResNet-18, and a loss function
L, such as cross-entropy, the total risk is minimized via E(xs,ys)∼Ds

[L(θs(xs), ys)].

Test-time generalization via nearest neighbors. Our approach can be sum-
marized by: at test-time, in a non-parametric way, we initially compute the source
prototypes following [9]. Next, given a batch of target data, we obtain the near-
est neighbors for classification and adjust the classifier weights as described below.

Existence of nearest neighbors. We propose that for a sufficiently trained
model able to separate classes reasonably well in the source domain, cases that
are similar in the higher dimensional image domain will lie close to each other in
the source learned lower dimensional embedding space. This is ensured by the
Johnson-Lindenstrauss (JL) [11] lemma as stated below:

Given a set of points {xi : i = 1, ...,M} in Rm, the JL lemma states that if
n ≥ cϵ2 logM , with 0 < ϵ < 1, then there exists a linear map A : Rm → Rn such
that for all i ̸= j:

1− ϵ ≤ ∥A(xi)−A(xj)∥
∥xi − xj∥

≤ 1 + ϵ.

At test-time, utilizing the above lemma, our approach first computes the source
model prototypes for each class in lower-dimensional space. To do so, as in [9], we
initialize the class-specific prototypes by aggregating the weights of the source-
trained linear classifier layer. When receiving new test-time data xt, we project
it into lower-dimensional space using the source-trained model that preserves
distances in the embedding space, as ensured by the JL lemma. In this embedding
space, we assign xt the label of its nearest class prototypes based on a distance
measure (see below). Finally, we update the class-specific prototypes with the
new sample to reflect new target characteristics. This allows us to classify new
samples without the need for extensive computation or any optimization schemes
to find the nearest points to the prototypes.

Selecting neighbors with dynamic voting. Since not all of the neighbors
provide accurate information about the target data, i.e., some of them are noisy [4],
we calculate the distance between the initial prototypes and new classifier weights
obtained from incoming neighbor samples at test time for the selection of valid
neighbors. We utilized the cosine distance here, while in principle every other
distance metric can be use. Next, we use dynamic voting to obtain the most
useful neighbors, i.e. we aggregate each neighbor’s prediction and calculate the
mean of the obtained new weights to determine the final weights of the classifier.
When a new batch of samples arrives, the pseudo labels are predicted based on
these classifier weights. This process is repeated iteratively for each new incoming
batch of data.
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4 Experiments

4.1 Datasets and implementation details

Datasets. We validate the effectiveness of TNN on two publicly available datasets.
Messidor [3] depicts a retinal image database collected from three independent
medical centers, containing 1200 images of diabetic retinopathy, each labeled
with a severity score ranging from 0 to 3. Therefore, it consists of 3 domains,
4 classes, and 1200 images in total. Fetal-8 [2] is a maternal-fetal ultrasound
dataset that consists of eight classes representing different anatomical planes
collected from imaging scanners of two different vendors. Hence, it consists of
2 domains, 8 classes and 12,058 images in total. We consider the problem as a
test-time generalization setting, not domain adaptation. Therefore, we train our
model on multiple source domains of the Messidor dataset instead of only one.
Furthermore, we follow the leave-one out evaluation standard from [9,13] and
obtain the best source model following the training-domain validation split of
[9]. For all the experiments, performance is reported on the target dataset with
test-time adaptation [1,9,23] by utilizing accuracy as a metric.

Implementational details. On both datasets, Messidor and Fetal-8, we evaluate
the performance of our approach based on three backbones, DenseNet-121, ResNet-
18 and ResNet-50. Further in-depth ablation experiments are then performed
with the ResNet-18 model. As in common test-time methods [9,6], the backbones
are pretrained on Imagenet. Baseline and state-of-the-art methods are also
implemented for the two datasets and for all of the three backbones, utilizing
the Domainbed library [6] with all hyperparameters set to default. The training-
validation split strategy of [9,6] is used for selection of the best source model. At
test-time, we perform just forward passes to perform the classification on the
online target data. We evaluate the performance of methods following standard
test-time generalization evaluation [9]. We utilize a small batch size of 32 for
test-time generalization, reflecting real-world practical scenarios.

4.2 Comparisons

We evaluate the performance of our model in reference to different state-of-the-art
(SOTA) approaches and a source training strategy employing ERM minimization
without adaption to the target domain as the baseline.

State-of-the-art comparisons. We compare our approach to existing para-
metric and non-parametric state-of-the-art methods by re-implementing them
on the two datasets for all three backbones. Parametric methods, as shown in
Figure 1, refer to techniques that finetune weights of the source-trained model,
utilizing gradient optimization. Non-parametric methods refer to techniques that
perform feedforward computation at test-time without any kind of finetuning,
optimization, or usage of any external memory bank or an additional model.
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Table 1 shows the performance comparisons. TNN achieves the best results
on both datasets. Parametric methods achieve comparatively lower performance
than the ERM baseline in many cases. One reason for this can be given by the fact
that the medical imaging datasets at hand only contain a fraction of the number
of samples the parametric methods were designed for. Furthermore, differences
between images of distinct classes in the medical domain are way more subtle
than in the computer vision domain, with different classes in the retinopathy
images of Messidor even depicting a severity score that changes only gradually.
Therefore, it is likely that non-parametric methods achieve better performance
due to the fact that they do not fine-tune the complete source model weights
but rather act upon the source-trained embedding space that should be able
to separate classes reasonably well. T3A [9] utilizes the entropy of the samples
as a threshold to classify new cases. In contrast, we use detailed neighborhood
information for classification. For the Fetal-8 dataset, utilizing the ResNet-18
backbone, the performance of all the generalization methods decreases with
reference to the ERM baseline. Reason for this is most likely overfitting due to
the small size of the model, but also the small dataset size at test-time. For all
the remaining settings, TNN performs better than the other approaches.

Table 1: State-of-the-art comparisons using DenseNet-121, ResNet-18, and
ResNet-50 as backbones. We re-implement the methods on the datasets and
report the mean accuracy across all the domains. The best results are in bold.
Our results are averaged over five runs. Our method performs the best consistently
with the highest performance improvement.

Messidor Fetal-8

Methods DenseNet-121 ResNet-18 ResNet-50 DenseNet-121 ResNet-18 ResNet-50

ERM 52.2 53.1 52.1 81.6 84.3 83.6

Parametric
Tent [23] 44.7 43.9 40.0 73.0 70.3 80.1
SHOT [14] 47.4 51.6 51.9 69.8 70.1 72.4
ShotIM [14] 47.5 51.8 46.0 68.9 69.9 72.0

Non-Parametric
T3A [9] 51.6 51.8 51.6 82.4 71.8 85.6

TNN (Ours) 53.1 ±0.2 53.8 ±0.2 53.9 ±0.2 83.3 ±0.2 72.7 ±0.2 86.1 ±0.2

4.3 Additional Experiments

Addressing uncertain scenarios. Ensuring alignment between model output
probabilities and the actual likelihood of events is crucial in uncertain scenar-
ios [12]. To quantify this alignment, Table 2 presents the expected calibration
error [16] (lower values indicate better calibration) for our approach compared to
the Tent model [23], utilizing a ResNet-18 backbone. Consistently, TNN demon-
strates considerably better calibration scores across all domains on the Messidor
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dataset. Therefore, leveraging its entirely feedforward nature for classifier adjust-
ments, TNN achieves a better-calibrated model.

Computational cost. In Table 3, we compare the number of parameters re-
quired to be trained at test-time and the number of floating point operations per
second (FLOPS) consumed by the GPU for Tent [23], T3A [9] and TNN. All of
the methods, ours included, feature the same memory requirements of 1.4GB for
the ResNet-18 model. However, as Tent optimizes the batch normalization layers
of the target model at test time and, therefore, it requires more parameters to be
trained than our approach. TNN and T3A are both non-parametric. Thus, they
only perform a very limited amount of computational operations but do not need
any additional computations to calculate the gradients on the GPU. Therefore,
the measurement of TFlops is negligible in this case, considering the vast amount
of computations required for weight optimization of parametric approaches. This
is especially useful in limited resource settings.

Table 2: Addressing uncertain sce-
narios. ECE error on the three do-
mains (0-2) of the Messidor dataset.
The proposed method consistently re-
duces the ECE error across all the do-
mains.

ECE Error ↓

0 1 2 Mean ↓

Tent 0.101 0.336 0.130 0.189
TNN (Ours) 0.001 0.005 0.003 0.003

Table 3: Computational cost. The
number of new parameters to be
trained at test-time alongside the Ter-
aFlops consumed on the GPU. TNN
and T3A both consume fewer resources
and are thus useful for practical scenar-
ios.

Parameters ↓ Model TFlops ↓

Tent 600000 212992
T3A 0 -

TNN (Ours) 0 -

5 Conclusion

We propose the usage of a non-parametric-based neighborhood classification
method for medical imaging tasks that involve distribution shifts as a novel
test-time generalization method. By utilizing target information and neighbors in
the embedding space we sequentially adjust the weights of the classifier, providing
an efficient yet powerful generalization technique. As with common methods, our
method requires a shared label space between domains for adaptation. We aim to
address this limitation in future work by enabling the generation of classifiers for
new categories at test-time, alongside existing classifier adjustments. Furthermore,
we also provide additional experiments to demonstrate the utility of the method
in uncertain scenarios and settings that require limited computational resources.
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