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Abstract
Extreme pose variation is one of the key obstacles to accurate face recognition in practice. Compared with current techniques
for pose-invariant face recognition,which either expect pose invariance fromhand-crafted features or data-driven deep learning
solutions, or first normalize profile face images to frontal pose before feature extraction, we argue that it is more desirable to
perform both tasks jointly to allow them to benefit from each other. To this end, we propose a Pose-Invariant Model (PIM)
for face recognition in the wild, with three distinct novelties. First, PIM is a novel and unified deep architecture, containing
a Face Frontalization sub-Net (FFN) and a Discriminative Learning sub-Net (DLN), which are jointly learned from end
to end. Second, FFN is a well-designed dual-path Generative Adversarial Network which simultaneously perceives global
structures and local details, incorporating an unsupervised cross-domain adversarial training and a meta-learning (“learning
to learn”) strategy using siamese discriminator with dynamic convolution for high-fidelity and identity-preserving frontal
view synthesis. Third, DLN is a generic Convolutional Neural Network (CNN) for face recognition with our enforced cross-
entropy optimization strategy for learning discriminative yet generalized feature representations with large intra-class affinity
and inter-class separability. Qualitative and quantitative experiments on both controlled and in-the-wild benchmark datasets
demonstrate the superiority of the proposed model over the state-of-the-arts.

Keywords Pose-invariant face recognition · Face frontalization · Cross-domain adversarial learning · Meta-learning ·
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1 Introduction

Face recognition has been a key problem in computer vision.
Even though (near-) frontal1 face recognition seems to be
solved under constrained conditions, the more general prob-
lem of face recognition in the wild still needs more studies,
desiderated by many practical applications. For example,
in surveillance scenarios, free-walking people would not
always keep their faces frontal to the cameras. Most face
images captured in the wild are contaminated by uncon-
strained factors like extreme pose, bad illumination, large
expression, etc (Wang et al. 2018a, b; Hao et al. 2017; Zhao
et al. 2019). Among them, the one that harms face recog-
nition performance arguably the most is pose variation. In
fact, as demonstrated in Sengupta et al. (2016), the perfor-
manceofmost face recognitionmodels degrades byover 10%
from frontal-frontal to frontal-profile verification because
discriminative descriptors suffer from misallignment issues.
In contrast, humans can recognize faces in presence of large

1 “Near frontal” faces are almost equally visible for both sides and
their yaw angles are within 10◦ from the frontal view.
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pose variancewithout significant accuracy drop. In thiswork,
we aim to mitigate such a gap between human performance
and automatic models for recognizing unconstrained faces
with large pose variations.

Some research efforts have been made to address the pose
variation challenge, which can be roughly classified into two
categories, i.e., the discriminativemethods and the generative
ones. The discriminative category tries to adopt hand-crafted
pose-invariant features (Chen et al. 2013; Kang and Kim
2013) or data-driven deep learning solutions from ample face
data (Schroff et al. 2015; Masi et al. 2016), while the other
category resorts to generative techniques to recover a frontal
view from a profile face image and then use the recovered
face images for face recognition (Zhu et al. 2013, 2014).

For the first category, conventional approaches often lever-
age robust local descriptors such as Gabor (Daugman 1985),
LocalBinaryPattern (LBP) (Ahonen et al. 2006),Histograms
of Oriented Gradient (HOG) (Dalal and Triggs 2005) to
tackle local distortions and then resort to metric learning
algorithms (Chen et al. 2013; Weinberger and Saul 2009)
to achieve pose invariance. However, due to the tradeoff
between invariance and discriminability, hand-crafted fea-
tures usually cost huge human-engineering effort and fail to
deal with extreme pose cases effectively. In contrast, deep
learning methods often handle pose variability issues with a
single pose-agnostic model or several pose-specific models
with pooling operation and employ ranking loss (Chen et al.
2009) or center loss (Wen et al. 2016) for optimization to
ensure large intra-class affinity and inter-class separability.
However, such data-driven methods are too computation-
ally complex for practical application. Moreover, massive
labelled training data covering all underlying variations are
usually expensive and unavailable.

For the second category, previous efforts often utilize
3D geometrical transformations to render a frontal view by
first aligning the 2D face image with either a general or an
identity-specific 3D Morphable Model (3D MM) (Hassner
et al. 2015; Zhu et al. 2015). These methods are promi-
nent at normalizing frontal or near-frontal faces, but their
performance decreases for profile or near-profile2 faces due
to severe texture loss and involved artifacts. Recently, deep
learning based methods (Zhao et al. 2018; Cao et al. 2018;
Hu et al. 2018; Xiao et al. 2016a, b; Yim et al. 2015; Zhu
et al. 2014; Zhao et al. 2019) are proposed for face frontal-
ization. For instance, (Zhu et al. 2014) propose a Multi-View
Perceptron (MVP) model, which can untangle the identity
and view features, and meanwhile infer a full spectrum of
multi-view images, given a single 2D face image. Although
their results are encouraging, the synthesized images some-

2 We define a “near profile” pose as one that obscures many features,
specifically the second eye. This roughly corresponds to the yaw angle
greater than 60 degrees.

times lack fine details and tend to be blurry and unreal under a
large pose. Thus, they only leverage the intermediate features
for face recognition. Among current generative methods, the
quality of synthesized images is still far from satisfactory for
performing practical facial analysis tasks, such as face verifi-
cation (i.e., 1:1 compare) and identification (i.e., 1:N search).

Research (Freiwald and Tsao 2010; Ohayon et al. 2012)
has shown that the human brain has a face-processing neural
system consisting of several connected regions. The neurons
in someof these regions perform face normalization (i.e., pro-
file to frontal) and others are tuned to identify the synthesized
frontal faces, making face recognition robust to pose varia-
tion. This intriguing function of the primate brain inspires
us to develop a novel and unified deep neural network,
which we call Pose-Invariant Model (PIM). The PIM jointly
learns face frontalization and discriminative representations
end-to-end that mutually boost each other to achieve pose-
invariant face recognition. It takes as input the face images
with arbitrary poses and other potential distracting factors
(e.g., bad illumination or different expressions), and outputs
facial representations that are invariant to pose variation and
meanwhile preserve discriminativeness across different iden-
tities. As shown in Fig. 1, the PIM can learn pose-invariant
representations and effectively recover frontal faces.

In particular, PIM includes a face frontalization sub-
Net (FFN) to normalize the profile faces and a Discrim-
inative Learning sub-Net (DLN) to learn the representa-
tions. The FFN contains a carefully designed dual-path
Generative Adversarial Network (GAN) that simultane-
ously recovers global facial structures and local details.
Besides, FFN adopts the unsupervised cross-domain adver-
sarial training and a meta-learning (“learning to learn”)

Fig. 1 Pose-invariant face recognition in the wild. Col. 1 and 6: dis-
tinct identities under different poses with other unconstrained factors
(different expressions and lighting conditions); Col. 2 and 5: recovered
frontal faces with our proposed Pose Invariant Model (PIM); Col. 3 and
4: learned facial representations with our proposed PIM. PIM can learn
pose-invariant representations and recover photorealistic frontal faces
effectively. The representations are extracted from the penultimate layer
(deep level) of PIM
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strategy using siamese discriminator with dynamic convolu-
tion for achieving stronger generalizability and high-fidelity,
identity-preserving frontal face generation. Cross-domain
adversarial training is inspired by the theory of domain adap-
tion, and it is applied during training the generator to promote
features that are indistinguishable w.r.t. the shift between
source (training) and target (test) domains. In this way, the
generalizability of FFN can be significantly improved even
in case of only a few training samples from target domains.
The discriminator in FFN introduces dynamic convolution
to implement meta-learning (“learning to learn”) for more
efficient adaption and a siamese architecture featuring a pair-
wise training scheme to encourage the generator to produce
photorealistic frontal faces without identify information loss.
We use the other branch in the discriminator as the “learner”,
which predicts the dynamic convolutional parameters of the
first branch from a single sample. DLN is a generic Convolu-
tional Neural Network (CNN) for face recognition with our
proposed enforced cross-entropy optimization strategy. Such
a strategy reduces the intra-class distance while increasing
the inter-class distance, so that the learned facial representa-
tions are discriminative yet generalizable.

We conduct extensive qualitative and quantitative experi-
ments on various benchmarks, including both controlled and
in-the-wild datasets. The results demonstrate the effective-
ness of PIM on recognizing faces with extreme poses and
the superiority over the state-of-the-arts consistently on all
the benchmarks.

A preliminary version of this work was accepted in IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR) 2018 (Zhao et al. 2018). We extend it in numer-
ous ways:(1) We visually analyze the dynamic convolution
kernels predicted by learner branch of the discriminator and
corresponding feature maps from main branch of the dis-
criminator to explain the effectiveness of the “learning to
learning” strategy in a more transparent way. (2) We add
many details on gradient update with cross-domain adver-
sarial learning, discuss differences between our proposed
PIM and multi-task learning as well as multi-stage learn-
ing, including parameter setting, network architecture and
training procedure. (3) We visualize detailed pose-invariant
face recognition results by our proposed PIM across a wide
range of poseswith other unconstrained factors (e.g., bad illu-
mination, large expression, etc.) on Multi-PIE (Gross et al.
2010), CFP (Sengupta et al. 2016), IJB-A (Klare et al. 2015)
and LFW (Huang et al. 2007) to show the effectiveness and
potential of our approach for real-world application. (4) We
perform feature space analysis to gain an insight into the
superiority of the proposed joint face frontalization and dis-
criminative representation learning scheme of our PIM over
existing discriminative solutions. (5)We replenish the perfor-
mance curve comparison between PIM and baseline method
under CFP to facilitate evaluation analysis across different

settings. (6)We supplement an additional experiment on IJB-
A to further verify the effectiveness and generalizability of
PIM for pose-invariant face recognition in the wild. (7) We
study and discuss the failure cases of PIM to analyze its cur-
rent limitation and possible future work on improvement.

Our contributions are summarized as follows.

– We propose a Pose-InvariantModel (PIM) for face recog-
nition in the wild. PIM is a novel and unified deep neural
network containing a Face Frontalization sub-Net (FFN)
and aDiscriminativeLearning sub-Net (DLN) that jointly
learn in an end-to-end way to allow them to mutually
boost each other.

– FFN is a carefully designeddual-path (i.e., simutaneously
perceving global structures and local details) Generative
Adversarial Network (GAN) incorporating unsupervised
cross-domain adversarial training and a meta-learning
(“learning to learn”) strategy using siamese discriminator
with dynamic convolution for high-fidelity and identity-
preserving frontal view synthesis.

– DLN is a generic Convolutional Neural Network (CNN)
for face recognition with our proposed enforced cross-
entropy optimization strategy for learning discriminative
yet generalized feature representations with large intra-
class affinity and inter-class separability.

– We develop effective and novel training strategies for
FFN, DLN and the whole deep architecture, which gen-
erate powerful face representations.

– As a by-product, the recovered frontal face images by
PIM can also be utilized by conventional descriptors and
learning algorithms so as to eliminate the negative effects
from unconstrained conditions.

Based on the above model innovations and technical con-
tributions,wepresent a high-performancepose-invariant face
recognition system. It achieves state-of-the-art performance
onMulti-PIE, CFP, IJB-A andLFWbenchmark datasets. The
source code, trained models and online demo of our deep
architecture will be made available to the community.

2 RelatedWork

We review some recent studies which are most related to this
work. For a thorough review on face recognition, please refer
to the good surveys in this field (Zhao et al. 2003; Bowyer
et al. 2006; Dave et al. 2018).

2.1 Generative Adversarial Networks

As one of the most significant advancements in the research
of deep generative models (Kingma and Welling 2013;
Rezende et al. 2014), GAN has drawn substantial attention
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from the deep learning and computer vision community ever
since it was first introduced by Goodfellow et al. (2014). The
GAN framework learns a generator network and a discrimi-
nator networkwith competing loss. Thismin-max two-player
game provides a simple yet powerful way to estimate target
distribution and to generate novel image samples. Mirza and
Osindero (2014) introduce the conditional version of GAN,
conditionedonboth the generator anddiscriminator for effec-
tive image tagging. Berthelot et al. (2017) propose a new
Boundary Equilibrium GAN (BE-GAN) framework paired
with a loss derived from the Wasserstein distance for train-
ing GAN, making the trade-off controllable between image
diversity and visual quality. These successful applications of
GAN motivate us to develop FFN based on GAN.

2.2 Face Frontalization

Face frontalization or normalization is a challenging task
due to its ill-posed nature. Traditional methods address this
problem through 2D/3D local texture warping (Hassner et al.
2015; Zhu et al. 2015), statistical modelling (Sagonas et al.
2015), and deep learning based methods (Zhao et al. 2018;
Cao et al. 2018; Hu et al. 2018; Kan et al. 2014; Yim et al.
2015; Zhao et al. 2019). For instance, (Hassner et al. 2015)
use a single and unmodified 3D surface to approximate the
shape of all input faces, which is shown effective for face
frontalization but suffers big performance drop for profile
and near-profile faces due to severe texture loss and arti-
facts. Sagonas et al. (2015) propose to perform joint frontal
view reconstruction and landmark detection by solving a con-
strained low-rank minimization problem. Kan et al. (2014)
use Stacked Progressive Auto-Encoders (SPAE) to rotate a
profile face to frontal. Zhu et al. (2014) propose aMulti-View
Perceptron (MVP) model, which is able to untangle the iden-
tity and view features and meanwhile infer a full spectrum
of multi-view images, given a single 2D face image. Despite
its encouraging results, the synthesized faces lack fine details
and tend to be blurry and unreal under a large pose. Thus, they
only leverage the intermediate features for face recognition.
Among current generative methods, the quality of synthe-
sized images is still far from satisfactory for practical facial
analysis like face verification and identification.

2.3 Pose-Invariant Representation Learning

Conventional approaches often leverage robust local descrip-
tors such as Gabor (Daugman 1985), LBP (Ahonen et al.
2006), HOG (Dalal and Triggs 2005) to address local distor-
tions and then resort to metric learning algorithms (Chen
et al. 2013; Weinberger and Saul 2009) to achieve pose

invariance. However, due to the tradeoff between invari-
ance and discriminability, hand-crafted features usually cost
huge human-engineering effort and fail to deal with extreme
pose cases effectively. In contrast, deep learning methods
often handle pose variance through a single pose-agnostic
model or several pose-specific models with pooling oper-
ation and specific loss functions (Chen et al. 2009; Wen
et al. 2016). For instance, the VGG-Face model (Parkhi
et al. 2015) adopts the VGG architecture (Simonyan and Zis-
serman 2014). The DeepFace (Taigman et al. 2014, 2015)
model uses a deep CNN coupled with 3D alignment. FaceN-
et (Schroff et al. 2015) utilizes the inception architecture. The
DeepID2+ (Sun et al. 2015a) andDeepID3 (Sun et al. 2015b)
extend the FaceNet (Schroff et al. 2015) model by includ-
ing joint Bayesian metric learning and multi-task learning.
However, such data-driven methods are too computation-
ally complex for practical usage. Moreover, massive labelled
training data covering all underlying variations are expensive
and unavailable.

Our proposed PIM presents a similar idea with Two-
Pathway GAN (TP-GAN) (Huang et al. 2017) and Dis-
entangled Represen-tation learning GAN (DR-GAN) (Tran
et al. 2017). TP-GAN considers photorealistic and identity-
preserving frontal view synthesis and DR-GAN considers
both face frontalization and representation learning in a
unified network. Our proposed model differs from them
in following aspects: (1) PIM aims to jointly learn face
frontalization and pose-invariant representations end-to-end
to allow them to mutually boost each other for addressing
large pose variance issue in unconstrained face recogni-
tion, whereas TP-GAN only tries to recover a frontal view
from profile face images. (2) TP-GAN and DR-GAN suffer
from poor generalizability and great optimization difficulties
which limit their effectiveness in unconstrained face recog-
nition, while our PIM architecture effectively overcomes
these issues by using unsupervised cross-domain adversarial
training, a meta-learning (“learning to learn”) strategy using
the siamese discriminator with dynamic convolution and
an enforced cross-entropy optimization strategy. Detailed
experimental comparisons between PIM, TP-GAN and DR-
GAN are provided in Sect. 4.

3 Pose-Invariant Model

As shown in Fig. 2a, the proposed Pose Invariant Model
(PIM) consists of a Face Frontalization sub-Net (FFN) and
a Discriminative Learning sub-Net (DLN) that jointly nor-
malize faces and learn facial representations end-to-end. We
now present each component in details.
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(a)

(b)

Fig. 2 Pose-Invariant Model (PIM) for face recognition in the wild.
The PIM contains a Face Frontalization sub-Net (FFN) and a Discrim-
inative Learning sub-Net (DLN) that jointly learn end-to-end. FFN is
a dual-path (i.e., simultaneously perceiving global structures and local
details)GANaugmented by (1) unsupervised cross-domain (i.e., Itr and
Ite) adversarial training and (2) a siamese discriminator with a meta-

learning (“learning to learn”) strategy— convolutional parameters (i.e.,
Wd ) dynamically predicted by the “learner” DL of the discriminator and
transferred to DM . DLN is a generic CNN for face recognition opti-
mized by the proposed enforced cross-entropy optimization. It takes in
the frontalized face images fromFFNandoutputs learnedpose-invariant
facial representations. Best viewed in color

3.1 Face Frontalization Sub-Net

3.1.1 Domain Invariant Dual-Path Generator

A photorealistic frontal face image is important for repre-
senting a face identity. A natural scheme is thus to generate
this reference face from face images of arbitrary poses. Since
the convolutional filters are usually shared across all the spa-
tial locations, merely using a single-path generator cannot
learn filters that are powerful enough for both sketching a
rotated face structure and precisely recovering local textures.
To address this issue, we propose a dual-path generator, as

inspired by Huang et al. (2017) and Zhu et al. (2015), where
one path aims to infer the global sketch and the other to attend
to local facial details, as shown in Fig. 2b.

In particular, the global path generator Gθg (with learn-
able parameters θ g) consists of a transition-down encoder
Gθ

g
E
and a transition-up decoder Gθ

g
D
. The local path genera-

torGθ l also has an auto-encoder architecture, which contains
four identical sub-networks that learn separately to frontal-
ize the following four center-cropped local patches: left eye,
right eye, nose and mouth. These patches are acquired by an
off-the-shelf landmark detection model (Simon et al. 2017).
Given an input face image I , to effectively integrate informa-
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tion from the global and local paths, we first align the feature
maps f l predicted by Gθ l to a single feature map according
to a pre-estimated landmark location template, which is fur-
ther concatenated with the feature map f g from the global
path and then fed to following convolution layers to generate
the final frontalized face image I ′.

Face frontalization is indeed a one-to-many mapping
problem. We also concatenate a Gaussian random noise z
at the bottleneck layer of the dual-path generator to model
variations of other factors besides pose, which may also
help recover invisible details. Thus, there may exist slight
intra-class variance of the frontalized faces during inference.
To facilitate face frontalization with well-preserved identity
information, we have carefully designed the network with
an enforced cross-entropy loss to achieve discriminative and
compact representations with a large intra-class affinity and
inter-class separability.

Formally, let the input profile face image with four
landmark patches be collectively denoted as Itr . Then the
predicted face is I ′ = Gθ (Itr ). The key requirements for
the FFN include two aspects. 1) The recovered frontal face
image I ′ should visually resemble a real one and preserve
the identity information as well as local textures. 2) It should
be hardly possible for an algorithm to identify the domain
of origin of the observation I

′
regardless of the underlying

gap between source domain (with ample annotated data) and
target domain (with rare annotated data).

To this end, we propose to learn the parameters {θ g, θ li }
(here i=1, . . ., 4 index the four local path models) by mini-
mizing the following composite losses:

LGθ = − Ladv + λ0Lece − λ1Ldomain + λ2Lpixel

+ λ3Lsym + λ4LTV , (1)

where Ladv is the adversarial loss for adding realism to the
synthetic images and alleviating artifacts,Lece is the enforced
cross-entropy loss for preserving the identity information,
Ldomain is the cross-domain adversarial loss for domain adap-
tion and generalization capacity enhancement, Lpixel is the
pixel-wise �1 loss for encouraging multi-scale image content
consistency, Lsym is the symmetry loss for alleviating self-
occlusion issue, LTV is the total variation loss for reducing
spiky artifacts, and {λk}k=4

0
are weighting parameters among

different losses.
In order to enhance generalizability of the FFN and reduce

over-fitting that hinders the practical application of most pre-
vious GAN based models (Huang et al. 2017; Tran et al.
2017), we adopt Ldomain to promote the emergence of fea-
tures encoded byGθg andGθ li

that are indistinguishablew.r.t.
the shift between the source (training, Itr ) and target (test-
ing, Ite) domain. Let Ii denotes the images from both source
and target domains, yi ∈ {0, 1} indicates which domain Ii

is from, and ri = GθE (Ii ) denotes the representations. The
cross-domain adversarial loss is defined as follows:

Ldomain = 1

N

∑

i

−yi log[Cφ(ri )]−(1−yi ) log[1−Cφ(ri )],

(2)

where φ denotes the learnable parameters for the domain
classifier. Minimizing Ldomain can reduce the domain dis-
crepancy and help the generator achieve similar face frontal-
ization performance across different domains, even when
training samples from the target domain are limited. Such
adapted representations are provided by augmenting the
encoders of Gθg and Gθ li

with a few standard layers as the
domain classifier Cφ , and a new gradient reversal layer to
reverse the gradient during optimizing the encoders (i.e., gra-
dient update as in Fig. 2b), as inspired by Ganin et al. (2016).

Lpixel is introduced to enforce themulti-scale content con-
sistency between the final frontalized face and corresponding
ground truths, defined as Lpixel = ‖I ′ − IGT ‖/|IGT | where
|IGT | is the size of IGT .

Since symmetry is an inherent feature of human faces,
Lsym is introduced within the Laplacian space to exploit such
prior information and impose the symmetry constraint on the
recovered frontal view for alleviating self-occlusion issue:

Lsym = 1

W/2 × H

W/2∑

i

H∑

j

|I ′
i, j − I ′

W−(i−1), j |, (3)

where W , H denote the width and height of the final recov-
ered frontal face image I ′, respectively.

The standard LTV is introduced as a regularization term
on the synthesized results to reduce spiky artifacts:

LTV =
W∑

i

H∑

j

√
(I ′

i, j+1 − I ′
i, j )

2 + (I ′
i+1, j − I ′

i, j )
2. (4)

Gradient Update with Cross-Domain Adversarial Training

For completeness, we further analyze the gradient update
with cross-domain adversarial training. To make the presen-
tation succinct, we use a notation that is slightly different
from the context. LetGE (·; θE ) be the encoder of the global-
and local-path generator to transform the input from RGB
space to feature space, with parameters θE ; let GD(·; θD) be
the decoder of the global- and local-path generator for frontal
view recovery, with parameters θD; let GC (·; θC ) be the
domain classifier of the global- and local-path generator for
computation of the domain prediction, with parameters θC .
Thus, the loss functions for the dual-path generator and cross-
domain adversarial training can be respectively expressed by
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{
Li
E (θE , θD) = LE (GD(GE (xi ; θE ), θD), yi ),

Li
C (θE , θC ) = LC (GC (GE (xi ; θE ), θC ), di ),

(5)

where yi denotes the ground truths for the dual-path generator
and di denotes the binary domain indicator.

Essentially, cross-domain adversarial training needs to
optimize

E(θE , θD, θC ) =1

n
Σn

i=1Li
E (θE , θD) − λ

(
1

n
Σn

i=1Li
C (θE , θC )

+ 1

m
Σm

j=1L j
C (θE , θC )

)
, (6)

where n denotes the number of samples from the source
(training) domain, and m denotes that from the target (test-
ing) domain, by finding the saddle points θ̂E , θ̂D , θ̂C such
that

{
(θ̂E , θ̂D) = argminθE ,θD

E(θE , θD, θ̂C ),

θ̂C = argminθC
E(θ̂E , θ̂D, θC ).

(7)

The saddle points defined by Eqn. (7) are the stationary
points found via the following gradient updates:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θE ← θE − μ

(
∂Li

D
∂θE

− λ
∂Li

C
∂θE

)
,

θD ← θD − μ
∂Li

D
∂θD

,

θC ← θC − μλ
∂Li

C
∂θC

,

(8)

where μ denotes the learning rate. Clearly, the parameters
of the dual-path generator with cross-domain adversarial
training can be updated with BackPropogation (BP) and
Stochastic Gradient Descent (SGD) algorithm.

3.1.2 Dynamic Convolutional Discriminator

To increase realism of the synthesized images to benefit face
recognition, we need to narrow the gap between the distribu-
tions of the synthetic and real images. Ideally, the generator
should be able to generate images indistinguishable from
real ones for a sufficiently powerful discriminator. Mean-
while, since the training sample size in this scenario is usually
small, we need to develop a sample-efficient discriminator.
To this end, we propose a meta-learning (“learning to learn”)
strategy using a siamese adversarial pixel-wise discriminator
with dynamic convolution, as shown in Fig. 2a. This siamese
architecture implements a pair-wise training scheme where
each sample from the generator consists of two frontalized
faces with the same identity and the corresponding real sam-
ple consists of two distinct frontal faces of the same person.

Different from conventional CNN based discriminators,
we construct the second branch of the discriminator as the

“learner” DL that dynamically predicts the suitable convolu-
tional parameters of thefirst branch DM froma single sample.
Formally, consider a particular convolutional layer in DM .
Given an input tensor (i.e., feature maps from the previous
layer) xin ∈ R

w×h×cin and kernelweightsW ∈ R
k×k×cin×cout

where k is the kernel size, the output xout ∈ R
w′×h′×cout of

the convolutional layer can be computed as xout = W ∗ xin,
where ∗ denotes the convolution operation.

Inspired by Bertinetto et al. (2016), we perform the fol-
lowing factorization, which is analogous to Singular Value
Decomposition (SVD):

xout = U ′ ∗ (Wd) ∗cin U ∗ xin, (9)

where U ∈ R
1×1×cin×cin , U ′ ∈ R

1×1×cin×cout , Wd ∈
R
k×k×cin is the dynamic convolution kernel predicted by DL

and ∗cin denotes independent filtering of cin channels. Under
the factorization of Eqn. (9), the number of parameters to
learn by DL is significantly decreased from k×k×cin ×cout
to k × k × cin, allowing it to grow only linearly with the
number of input feature map channels.

Analyses of the Learned Dynamic Convolution Kernels

We visualize the dynamic convolution kernels predicted by
DL and corresponding feature maps of DM in Fig. 3. Dif-
ferent input (examples) of DL defines different convolution
kernel Wd . Applying such a dynamic convolution kernel to
the same input of DM yields different responses. In this
manner, the discriminator is enhanced with more captured
information for pushing the recovered frontal view face
images to reside in the manifold of real images and produce
visually pleasing results.

We leverage the same architecture of global-path encoder
as DM and DL , learned separately without weight sharing,
while two generator blocks in Fig. 2a with their weights
shared. The feature maps from DM and DL are further con-
catenated and fed into a fully connected bottleneck layer to
compute Ladv, which serves as a supervision to push the
synthesized image to reside in the manifold ofphotorealistic

Fig. 3 Visualization of the dynamic convolution kernels predicted by
DL and corresponding feature maps of DM . For better illustration, we
vary the examples to DL across the four rows while keeping the input
of DM unchanged. Best viewed in color
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Algorithm 1 Joint learning algorithm of Pose InvariantModel (PIM).

Input: Pairs of face images under arbitrary poses from the source (train-
ing) domain Itr , the corresponding frontal view ground truth IGT ,
and the associated identity labels li , pairs of real frontal face images
Ireal , pairs of face images under arbitrary poses from the target (test-
ing) domain Ite, pairs of Gaussian random noise z, max number of
epoches (nb_e), batch size (b), number of network updates per step
(nb_s), input size, landmark location template, weight decay, learn-
ing rate (lr), optimizer, keep probability of dropout, α, λ0, λ1, λ2,
λ3, λ4;

Output: PIM FFN generator Gθ , domain classifier Cφ , discriminator
Dϕ , and DLN Mψ ;

1: for e=1, · · · , nb_e do
2: for s=1, · · · , nb_s do
3: 1. Optimize FFN Dϕ ;
4: 2. Optimize FFN Gθ ;
5: 3. Optimize FFN Cφ ;
6: 4. Optimize DLN Mψ ;
7: 5. Update τt ;
8: 6. Measure network convergence;
9: 7. Visualize intermediate results I ′, f ;
10: end for
11: Archive Gθ , Cφ , Dϕ , and Mψ models for each training epoch;
12: end for

frontal view images, prevent blur effect, and produce visually
pleasing results. In particular, Ladv is defined as

Ladv = 1

N

∑

i

−yi log[DM←L(IM , IL)]

− (1 − yi ) log[1 − DM←L(IM, IL)], (10)

whereDM←L denotes the siamesediscriminatorwith dynamic
convolution, (IM , IL) denotes the pair of face images fed to
DM←L and y is the binary label indicating whether the pair
is synthesized or real.

3.2 Discriminative Learning Sub-Net

The DLN is a generic3 CNN for face recognition trained by
our proposed enforced cross-entropy optimization strategy
for learning discriminative yet generalizable facial repre-
sentations. This strategy reduces the intra-class distance
while increasing the inter-class distance. Moreover, it helps
improve the robustness of the learned representations and
address the potential over-fitting issue.

DLN takes the frontalized face images I ′ from the FFN
as input, and outputs the learned pose-invariant facial repre-
sentations f = Mψ(I ′), which are further utilized for face
verification and identification. Here Mψ denotes the DLN
model parameterized by ψ . We define every column vector
of the weights of the last fully connected layer of DLN as
an anchor vector a which represents the center of each iden-

3 The DLN is not restricted to a certain network architecture. Advanced
networks can be deployed for high performance.

tity in the feature space. Thus, the decision boundary can
be derived when the feature vector has the same distance
(cosine metric) to several anchor vectors (cluster centers),
i.e., a�

i f = a�
j f .

However, in such cases, the samples close to the decision
boundary may be wrongly classified with a high confidence.
A simple yet effective solution is to reduce the intra-class dis-
tance while increasing the inter-class distance of the feature
vectors, through which the hard samples will be adjusted and
re-allocated in the correct and safe decision area. To achieve
this goal, we propose to impose a selective attenuation factor
as a regularization term to the confidence scores (predictions)
of the genuine samples:

pi = exp[τt · (a�
i f )]

∑
j exp[τt · (a�

j f )] , (11)

where pi denotes the predicted confidence score w.r.t. the i th

identity, τt denotes the selective attenuation factor, and a, f
are �2 normalized to achieve boundary equilibrium during
network training. In particular, τt in Eqn. (11) is updated by
τt+1 = τt

(
1 − n

B

)α , where n denotes the batch index, B
denotes the total batch number and α is the diversity ratio.

Selective attenuation on the confidence scores of genuine
samples in turn increases the corresponding classification
losses for hard samples, narrows the decision boundary,
controls the intra-class affinity and inter-class distance, and
enforces the learned model to classify them better. The angu-
lar loss in SphereFace Liu et al. (2017) shares a similar goal
but defines a margin based on angular distance.

We conduct a toy experiment on MNIST (LeCun 1997)
and use t-SNE (Maaten and Hinton 2008) to visualize the
learned representations in a two-dimensional space in Fig. 4.
Compared with the representations learned by the standard
cross-entropy with τt=1.0, our proposed enforced cross-
entropy optimization strategy adaptively adjusts the selective
attenuation factor τt , narrows the decision boundaries and
achieves discriminative and compact representations with a
large intra-class affinity and inter-class separability.

The predictions ofEqn. (11) are used to compute themulti-
class cross-entropy objective function for updating network
parameters (i.e., gradient update as in Fig. 2a), which is an
enforced optimization scheme. The detailed joint training
procedures of our PIM are summarized in Algorithm 1.

3.3 Discussions

The paradigm of the proposed Pose Invariant Model (PIM)
learning is different from those ofmulti-task learning (Ranjan
et al. 2016; Yin and Liu 2017) and multi-stage learning (Kan
et al. 2014; Huang et al. 2017; Zhao et al. 2017, 2018) for
pose-invariant face recognition.
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Fig. 4 Visualized comparison of the learned representations with the
proposed enforced cross-entropy optimization scheme using varying
selective attenuation factor τt on MNIST (LeCun 1997). The stan-
dard cross-entropy with τt = 1.0 (left) leads to sparser representations
with small intra-class affinity and inter-class separability comparedwith

those with τt = 0.9 (middle) and τt = 0.7 (right). With the adaptive
decrease of the attenuation factor, the representations becomemore dis-
criminative and compact with a large intra-class affinity and inter-class
separability. Best viewed in color
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Fig. 5 Differences between the paradigms of multi-task learning (a),
multi-stage learning (b) and the proposed Pose Invariant Model (PIM)
learning (c). (a) treats face frontalization and discriminative represen-
tation learning as different tasks and the network is optimized with
multiple losses. However, different losses target at different objectives,
through which the mutual enhancing effect is not necessary promised.
Whether local optimum can be achieved depends largely on the ini-
tialization of the network. Moreover, it encourters problems when the
training data of different tasks are unbalanced. (b) treats face frontaliza-
tion and discriminative representation learning as different and separate
stages, where the outputs of early stages may serve as inputs to later

stages. The network of each stage is solely optimized by the specic
stage-wise loss. It is easily strucked at local optimum and constrained to
sub-optimal solutions, since the solutions of earlier stages are fixed and
unchanged anymore during the learning (optimization) of later stages.
(c) is an implicit combination of (a) and (b), jointly learning face frontal-
ization and pose-invariant facial representations in an end-to-endway to
allow them to benefit each other (the solutions of earlier stages are fine-
tuned during the learning of later stages in the collaborative optimization
by different losses at different stages). In comparison, multi-task and
multi-stage training are more difficult since different tasks and stages
may have different convergence rates

As illustrated in Fig. 5a, the paradigm of multi-task
learning treats face frontalization and discriminative rep-
resentation learning as different tasks and the network is
optimized with multiple losses. However, different losses
target at different objectives, through which the mutual
enhancing effect is not necessary promised. Whether local
optimum can be achieved depends largely on the initializa-
tion of the network. Moreover, it encourters problems when
the training data of different tasks are unbalanced.

As illustrated in Fig. 5b, the paradigm of multi-stage
learning treats face frontalization and discriminative repre-
sentation learning as different and separate stages, where the
outputs of early stages may serve as inputs to later stages.
The network of each stage is solely optimized by the specic
stage-wise loss. It is easily strucked at local optimum and
constrained to sub-optimal solutions, since the solutions of
earlier stages are fixed and unchanged anymore during the
learning (optimization) of later stages.
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Comparatively, as illustrated in Fig. 5c, our approach is an
implicit combination of paradigm (a) and (b), jointly learning
face frontalization and pose-invariant facial representations
in an end-to-end way to allow them to benefit each other (the
solutions of earlier stages are fine-tuned during the learning
of later stages in the collaborative optimization by differ-
ent losses at different stages). In comparison, multi-task and
multi-stage training are more difcult since different tasks and
stages may have different convergence rates.

4 Experiments

We evaluate PIM qualitatively and quantitatively under both
controlled and in-the-wild settings for pose-invariant face
recognition. For qualitative evaluation, we show visualized
results of face frontalization onMulti-PIE (Gross et al. 2010),
CFP (Sengupta et al. 2016), IJB-A (Klare et al. 2015) and
LFW (Huang et al. 2007) benchmark datasets. For quanti-
tative evaluation, we evaluate face recognition performance
using the learned facial representationswith a cosine distance
metric on Multi-PIE, CFP and IJB-A datasets.

4.1 Implementation Details

Throughout the experiments, the size of the RGB face
images from training domain (Itr ), testing domain (Ite) and
the FFN prediction (I ′) is fixed as 128×128; the sizes of
the four RGB local patches (i.e., left/right eye, nose and
mouth) are fixed as 40×40, 40×40, 32×40 and 48×32,
respectively; the dimensionality of the Gaussian random
noise z is fixed as 100; the diversity ratio α and the con-
straint factors λi , i ∈ {0, 14, 2, 3, 4} are empirically fixed as
0.9, 5×10−3, 0.1, 0.3, 5×10−2 and 5×10−4, respectively;
the dropout ratio is fixed as 0.7; the weight decay, batch size
and learning rate are fixed as 5 × 10−4, 10 and 2 × 10−4,
respectively. We use off-the-shelf OpenPose (Simon et al.
2017) for landmark detection5. We initialize the DLN with
the Light CNN-29 (Wu et al. 2015) architecture as our base-
line, which is pre-trained onMS-Celeb-1M (Guo et al. 2016)
and fine-tuned on the target dataset. We initialize DM and
DL with the same architecture as the global-path encoder
and pre-train DL on MS-Celeb-1M. The proposed network
is implemented based on the publicly available Tensor-
Flow [63] platform, which is trained using Adam (β1 = 0.5)
on three NVIDIA GeForce GTX TITAN X GPUs with 12G
memory.

4 Cross-domain adversarial training is optional; if there is no need to
do domain adaptation, simply set λ1=0.
5 For profile face images with large yaw angles, OpenPose may fail
to locate both eyes. In such cases, we use the detected eye after center
cropping as the input left/right eye patch.

Table 1 Network architecture of the global-path generator with domain
classifier

Layer Input Filter/Stride Output Size

conv0 I 7 × 7/1 128 × 128 × 64

conv1 conv0 5 × 5/2 64 × 64 × 64

conv2 conv1 3 × 3/2 32 × 32 × 128

conv3 conv2 3 × 3/2 16 × 16 × 256

conv4 conv3 3 × 3/2 8 × 8 × 512

[flatten, fc0] conv4 – 512

fc1 fc0 – 256

gr0 fc1 – 256

fc2 fc1 – 256

fc3 fc2 – 2

[fc4, reshape] fc1, z - 8 × 8 × 128

deconv0 fc4 3 × 3/2 16 × 16 × 64

deconv1 deconv0 3 × 3/2 32 × 32 × 32

deconv2 deconv1 3 × 3/2 64 × 64 × 16

deconv3 fc4 3 × 3/2 16 × 16 × 512

deconv4 deconv3, deconv0 3 × 3/2 32 × 32 × 256

deconv5 deconv4, deconv1 3 × 3/2 64 × 64 × 128

deconv6 deconv5, deconv2 3 × 3/2 128 × 128 × 64

conv6 deconv6, f l 5 × 5/1 128 × 128 × 64

conv7 conv6 5 × 5/1 128 × 128 × 32

conv8 conv7 5 × 5/1 128 × 128 × 3

The network architectures of the global- and local-path
generators with corresponding domain classifiers are pro-
vided in Table 1 and Table 2, respectively, where the top,
middle and bottom panels show the structures of encoder,
domain classifier and decoder, gr denotes the gradient rever-
sal layerwith identical forward output and reversed backward
gradient for cross-domain adversarial training, f l denotes the
featuremaps from local-path generator after patch alignment,
andmultiple input items at [fc4, reshape], deconv4, deconv5,
deconv6 and conv6 indicate concatenation of tensors.

The network architecture of the siamese discriminator
with dynamic convolution (DM and DL ) is provided in
Table 3, where the top, middle and bottom panels show the
structures of DM , DL and the real versus fake classifier,
respectively,Wd is the dynamic convolution kernel predicted
by DL and transfered to DM , and multiple input items at fc0
indicate concatenation of tensors.

Discussion on Choice on Trade-Off Hyperparmeter λLadv

serves as a regularization term that penalizes higher-order
inconsistencies between the synthetic images and corre-
sponding ground truth for adding realism and alleviating arti-
facts. Lece serves as an enforced cross-entropy supervision
for achieving discriminative and compact representations
with a large intra-class afnity and inter-class separability.
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Table 2 Network architecture of the local-path generator with domain
classifier

Layer Input Filter/Stride Output Size

conv0 I 3 × 3/1 w × h × 64

conv1 conv0 3 × 3/2 w/2 × h/2 × 128

conv2 conv1 3 × 3/2 w/4 × h/4 × 256

conv3 conv2 3 × 3/2 w/8 × h/8 × 512

[flatten, fc0] conv3 – 512

fc1 fc0 – 256

gr0 fc1 – 256

fc2 fc1 – 256

fc3 fc2 – 2

[fc4, reshape] fc1, z – w/8 × h/8 × 256

deconv0 fc4 3 × 3/2 w/4 × h/4 × 256

deconv1 deconv0 3 × 3/2 w/2 × h/2 × 128

deconv2 deconv1 3 × 3/2 w × h × 64

conv4 deconv2 3 × 3/1 w × h × 64

conv5 conv4 3 × 3/1 w × h × 3

Ldomain serves as a regularization term that reduces the
domain discrepancy and helps the generator achieve simi-
lar face frontalization performance across different domains.
Lpixel serves as a deep supervision for enforcing the multi-
scale content consistency between the nal frontalized face
and corresponding ground truths. Lsym serves as a regu-
larization term within the Laplacian space to exploit facial
symmetry prior information for alleviating self-occlusion
issue.LTV serves as a standard regularization termon the syn-
thesized results for reducing spiky artifacts. We choose the
trade-off hyperparameters λi , i ∈ {0, 1, 2, 3, 4} based on the
above intuition to balance the effects of different losses, such
that the magnitudes of different losses are within the same
range during the training process. As a common practice in
tuning neural network parameters, these hyperparameters are
first estimated in the range by calculating the magnitudes of
the 6 terms during the training stage. Then they shifted to
some neighboring values to check if the performance can be
improved. We cannot assure the adopted parameter values
obtains the best performance, though the produced results
are already very competitive. A sensitivity analysis is per-
formed in Sect. 4.2.1 to gain an insight into the respective
influence of different choices of λ on the final performance.

4.2 Ablation Studies andModel Analyses

First we perform ablation studies and model analysis on
the CMU Multi-PIE (Gross et al. 2010) benchmark dataset,
which is the largest multi-view face recognition benchmark
and contains 754,204 images of 337 identities from 15 view
points and 20 illumination conditions. We conduct experi-

Table 3 Network architecture of the siamese discriminator with
dynamic convolution (DM and DL )

Layer Input Filter/Stride Output Size

conv0 I
′
M or IM 7 × 7/1 128 × 128 × 64

conv1 conv0 5 × 5/2 64 × 64 × 64

conv2 conv1 3 × 3/2 32 × 32 × 128

conv3 conv2 3 × 3/2 16 × 16 × 256

conv4 conv3 1 × 1/1 16 × 16 × 256

conv5 conv4, max
pool0 (Wd )

4 × 4/2 8 × 8 × 512

conv6 conv5 1 × 1/1 8 × 8 × 512

conv0_1 I
′
L or IL 7 × 7/1 128 × 128 × 64

conv1_1 conv0_1 5 × 5/2 64 × 64 × 64

conv2_1 conv1_1 3 × 3/2 32 × 32 × 128

conv3_1 conv2_1 3 × 3/2 16 × 16 × 256

conv4_1 conv3_1 3 × 3/2 8 × 8 × 512

max pool0 (Wd ) conv4_1 3 × 3/2 4 × 4 × 512

[flatten, fc0] conv6, conv4_1 – 256

fc1 fc0 – 2

ments under two settings: Setting-1 concentrates on pose,
illumination and minor expression variations. It only uses
the images in session one, which contains 250 identities. The
images with 11 poses within±90◦ and 20 illumination levels
of the first 150 identities are used for training. For testing, one
frontal view with neutral expression and illumination (i.e.,
ID07) is used as the gallery image for each of the remaining
100 identities and other images are used as probes. Setting-2
concentrates on pose, illumination and session variations. It
uses the images with neutral expression from all four ses-
sions, which contains 337 identities. The images with 11
poses within ±90◦ and 20 illumination levels of the first 200
identities are used for training. For testing, one frontal view
with neural illumination is used as the gallery image for each
of the remaining 137 identities and other images are used as
probes.

4.2.1 Component Level Model Evaluations

We first investigate different architectures and loss function
combinations of PIM to gain an insight into their respec-
tive roles in pose-invariant face recognition. We compare
seven variants of PIM, including baseline6 (b: Light CNN-
29 Wu et al. 2015), w/o Lpixel, w/o local-path generator
Gθ li

, w/o siamese discriminator Dϕ (DL is removed), w/o
dynamic convolution (siamese discriminator without shar-
ing weights), w/o cross-domain adversarial training Ldomain

and w/o Lsym, in each case.

6 The results on the profile (original) images serve as our baseline.

123

Author's personal copy



International Journal of Computer Vision

Table 4 Component analysis: rank-1 recognition rates (%)underMulti-
PIE Setting-1

Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

b 33.00 76.10 95.20 97.90 99.20 99.80

w/o Lpixel 60.60 82.30 89.60 93.70 98.50 98.60

w/o Gθ li
66.80 89.30 95.60 98.20 99.30 99.80

w/o Dϕ 66.90 90.00 96.50 98.00 99.20 99.80

w/o dyn conv 69.80 90.70 96.80 98.10 99.40 99.80

w/o Ldomain 71.10 90.80 97.10 98.30 99.30 99.80

w/o Lsym 72.30 90.40 96.80 98.20 99.30 99.80

λ3=0.000 72.30 90.40 96.80 98.20 99.30 99.80

λ3=0.025 74.50 91.00 97.50 98.30 99.40 99.80

λ3=0.050 75.00 91.20 97.70 98.30 99.40 99.80

λ3=0.075 75.10 91.40 97.80 98.30 99.40 99.80

λ3=0.100 72.90 90.70 97.00 98.10 99.30 99.80

PIM 75.00 91.20 97.70 98.30 99.40 99.80

The best results are highlighted in bold

Averaged rank-1 recognition rates are compared under
Setting-1 in Table 4. By comparing the results from the
top and bottom panels, we observe that an improvement
of 42.00% under ±90◦ can be achieved with our joint
face frontalization and discriminative representation learning
fra-mework.Thepixel loss, dual-path generator and themeta-
learning (“learning to learn”) strategy using the siamese dis-
criminator with dynamic convolution of the FFN contribute
the most to improving the face recognition performance,
especially for large pose cases. Although not apparent, the
cross-domain adversarial training and symmetry loss also
help improve the recognition performance. Cross-domain
adversarial training is crucial for enhancing the generaliza-
tion capacity of PIMonMulti-PIE aswell as other benchmark
datasets. Fig. 6 illustrates the perceptual performance of these
variants. As expected, the inference result without pixel loss,
local-path generator or meta-learning (“learning to learn”)
strategy using the siamese discriminator with dynamic con-
volution deviates from the true appearance seriously. The
synthesis without cross-domain adversarial training tends to
present inferior generalizability while that without symmetry
loss sometimes shows factitious asymmetrical effect.

Sensitivity Analyses on Choice on Trade-Off Hyperparmeter
λ We then perform a sensitivity analysis to gain an insight
into the respective influence of different choices of λ on the
final performance. Since the searching space is extremely
large if we vary the values of λi , i ∈ {0, 1, 2, 3, 4} indi-
vidually and perform corresponding ablation study one by
one, due to the limitation on computing resource, here we
choose λ3 of Lsym as an example, and evaluate its influence
on the final performance by adjusting its value 5 times with a
stride of 0.025, i.e., {0.000, 0.025, 0.050, 0.075, 0.100}. The

Fig. 6 Component analysis. Synthesized results of PIM and its variants

results are reported in the last-but-one panel of Table 4. By
comparing the results of λ3=0.000 and those of λ3 >0.000,
we observe that Lsym benefits the recognition performance
by relieving self-occlusion for extreme poses. By compar-
ing the results of λ3 ∈ {0.025, 0.050, 0.075}, we find that
our choice on the trade-off hyperparameter λ3 is quite robust
within a small range of perturbation, since the three groups
of results are comparable even under large poses. The results
of λ3 = 0.010 drop significantly due to over-relying onLsym

and other components contributing less. Moreover, we also
observe that our hyperparameter setting may not be optimal
since the results of λ3 = 0.075 are slightly improved under
the poses larger than 60◦ comparedwith those ofλ3 = 0.050.
We plan to solve the optimal hyperparameter searching in our
future work.

Complexity The proposed PIM needs 35.1 GFLOPs given
the input RGB image of 128 × 128 pixels and has 64.07M
parameters. The training process of PIM takes about 16 hours
on three NVIDIA GeForce GTX TITAN X GPUs with 12G
memory. The inference time (NVIDIAGeForceGTXTITAN
X GPU, Intel Core i7-4930K CPU@3.40GHZ) of PIM is
about 72ms (60ms for FFN and 12ms for DLN, respectively)
per input, which is applicable to real scenarios.

4.2.2 Intermediate Results Visualizations

Most previous works on face frontalization and pose-
invariant representation learning address problems within a
pose range of ±60◦, since it is commonly believed with a
pose larger than 60◦, it is difficult for a model to generate
faithful frontal images or learn discriminative yet generative
facial representations. However, with enough training data
and proper architecture and objective function design of the
proposed PIM, it is in fact feasible to recover high-fidelity
and identity-preserving frontal faces under very large poses
and learn pose-invariant representations for face recognition
in the wild.
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Fig. 7 Pose-invariant face recognition in the wild. Each row shows a
distinct identity under different poses along with other unconstrained
factors (like expression, illumination, etc.), recovered frontal faces and
learned facial representations (smoothed for better visualization, with
blue indicting zero values) with our proposed PIM. The representa-

tions are extracted from the penultimate layer (deep level) of PIM. The
ground truth frontal face images are provided in the right-most column.
These examples indicate that the facial representations learned by PIM
are robust to pose variance, and the recovered frontal face images retain
the intrinsic global structures and local details. Best viewed in color

The intermediate results of recovered face images in the
frontal view and learned facial representations are visual-
ized in Fig. 1. We observe that the frontalized faces present
compelling perceptual quality across poses larger than 60◦,
and the learned representations are discriminative and pose-
invariant.

The detailed results across a wide range of poses from
15◦ to 90◦ are visualized in Fig. 7. Here, we show qualita-
tive results of PIM under large pose variations as it is the
main target, but PIM also handles large variations in expres-
sion, self-/non-self occlusion and illumination, as illustrated
in Fig. 11 left-top. Our proposed PIM consistently provides
faithfully high-fidelity recovered frontal view face images,
and discriminative and pose-invariant representations7 for
all cases. This well verifies that the joint learning scheme
of face frontalization and pose-invariant representations is
effective, and both intermediate results of frontalized face
images and learned facial representations are beneficial to
face recognition in the wild.

We further use t-SNE (Maaten and Hinton 2008) to visu-
alize the facial representations in a two-dimensional space in
Fig. 8. The left-half illustrates the deep features of the origi-
nal profile face images extracted by DLN and the right-half
illustrates the facial representations learned byPIM. It is clear
that face images with a large pose are not separable in the
deep feature space spanned by the DLN, revealing that even
though the DLN is pre-trained on millions of images, large
pose variation is still the main obstacle to pose-invariant face
recognition. However, with the proposed joint face frontal-

7 Each pixel in the feature map has a very large receptive field, with-
out one-to-one correspondence with the input RGB face image nor the
recovered frontal-view face image. The backbone of DLN is initialized
with Light CNN-29 (Wu et al. 2015) and pre-trained on MS-Celeb-
1M (Guo et al. 2016) (large-scale dataset for face recognition) and
finetuned on the target dataset. Thus, the network has achieved suffi-
cient robustness against background variance, which will focus on the
facial region during recognition.

Fig. 8 Visualized comparison between the facial representations of
the real profile faces (left) and the facial representations learned by
PIM (right). Each visually colored cluster shows a distinct identity.
Each shape represents a pose. One sampled face (left: real profile face;
right: recovered frontal face) within each class is visualized for better
illustration. Best viewed in color

ization and discriminative representaiton learning scheme of
our PIM, the facial representations of different identities can
be easily separated into corresponding clusters.

4.3 Comparisons with the State-of-the-Arts

4.3.1 Evaluations on the Multi-PIE Benchmark

Table 5 shows the face recognition performance comparison
of our PIMwith the baseline and other state-of-the-arts under
Setting-1. PIM consistently achieves the best performance
across all poses (except comparable with TP-GAN (Huang
et al. 2017) under ±45◦ and ±30◦), especially for large yaw
angles. In particular, PIM outperforms TP-GAN and c-CNN
Forest (Xiong et al. 2015) by 10.97% and 27.74% under
±90◦, respectively. Note that TP-GAN adopts Light CNN-
29 (Wuet al. 2015) as the feature extractorwhichhas the same
architecture as our DLN and c-CNN Forest is an ensemble
of three models, while our PIM has a more effective and
efficient joint training scheme and a much simpler network
architecture.

Table 6 shows the face recognition comparison of our PIM
with the baseline and other state-of-the-arts under Setting-2.
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Table 5 Rank-1 recognition
rates (%) across views, minor
expressions and illuminations
under Multi-PIE Setting-1. “-”
means the result is not reported

Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

b 33.00 76.10 95.20 97.90 99.20 99.80

CPF (Yim et al. 2015) – – – 71.65 81.05 89.45

Hassner (Hassner et al. 2015) – – 44.81 74.68 89.59 96.78

FV (Simonyan et al. 2013) 24.53 45.51 68.71 80.33 87.21 93.30

HPN (Ding and Tao 2017) 29.82 47.57 61.24 72.77 78.26 84.23

FIP_40 (Zhu et al. 2013) 31.37 49.10 69.75 85.54 92.98 96.30

c-CNN (Xiong et al. 2015) 47.26 60.66 74.38 89.02 94.05 96.97

TP-GAN (Huang et al. 2017) 64.03 84.10 92.93 98.58 99.85 99.78

PIM 75.00 91.20 97.70 98.30 99.40 99.80

The best results are highlighted in bold

Table 6 Rank-1 recognition
rates (%) across views,
illumination and sessions under
Multi-PIE Setting-2

Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

b 27.10 68.70 91.40 97.70 98.60 99.10

FIP (Zhu et al. 2013) – – 45.90 64.10 80.70 90.70

MVP (Zhu et al. 2014) – – 60.10 72.90 83.70 92.80

CPF (Yim et al. 2015) – – 61.90 79.90 88.50 95.00

DR-GAN (Tran et al. 2017) – – 83.20 86.20 90.10 94.00

TP-GAN (Huang et al. 2017) 64.64 77.43 87.72 95.38 98.06 98.68

PIM 86.50 95.00 98.10 98.50 99.00 99.30

The best results are highlighted in bold
“–” means the result is not reported

Similar to the observation under Setting-1, PIM consistently
achieves the best performance across all poses. In particu-
lar, PIM outperforms TP-GAN by 21.86% under ±90◦, and
outperforms TP-GAN and DR-GAN (Tran et al. 2017) by
10.38% and 14.90% under±60◦, respectively. This well ver-
ifies the superiority of our proposed cross-domain adversarial
training, the meta-learning (“learning to learn”) strategy
using the siamese discriminator with dynamic convolu-
tion and the enforced cross-entropy optimization strategy in
improving the overall recognition performance.

4.3.2 Evaluations on the CFP Benchmark

The CFP (Sengupta et al. 2016) dataset is aimed at evaluat-
ing the strength of face verification approaches across poses,
more specifically, between frontal view (yaw angle< 10◦)
and profile view (yaw angle> 60◦). Sample face pairs are
shown in Fig. 9. CFP contains 7,000 images of 500 subjects,
where each subject has 10 frontal and 4 profile face images.
The data are randomly organized into 10 splits, each con-
taining an equal number of frontal-frontal and frontal-profile
pairs, with 350 genuine and 350 imposter ones, respectively.
Evaluation systems report the mean and standard deviation
of accuracy, Equal Error Rate (EER) and Area Under Curve
(AUC) over the 10 splits for both frontal-frontal and frontal-
profile face verification settings.

Fig. 9 Sample frontal-profile and frontal-frontal face pairs ofCFP (Sen-
gupta et al. 2016)

Table 7 compares the face recognition performance of
our PIM with other state-of-the-arts on the CFP bench-
mark dataset. The results on the original images serve as
our baseline. The corresponding ROC curves are provided
in Fig. 10a and (b). PIM achieves comparable performance
as the human under frontal-profile setting and outperforms
human performance under frontal-frontal setting. In par-
ticular, for frontal-frontal cases, PIM gives stably similar
saturated performance with the baseline b (Light CNN-
29 Wu et al. 2015), both of which reduce the EER of human
performance by around 5.00%. Formore challenging frontal-
profile cases, PIM consistently outperforms the baseline and
other state-of-the-arts. In particular, PIM reduces the EER by
1.02%comparedwith the baseline and improves the accuracy
by 1.13% over the 2nd-best. This shows that the facial rep-
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Table 7 Face recognition performance (%) comparison on CFP (Sengupta et al. 2016)

Method Frontal-Profile Frontal-Frontal

Acc EER AUC Acc EER AUC

FV+DML (Sengupta et al. 2016) 58.47 ± 3.51 38.54 ± 1.59 65.74 ± 2.02 91.18 ± 1.34 8.62 ± 1.19 97.25 ± 0.60

LBP+Sub-SML (Sengupta et al. 2016) 70.02 ± 2.14 29.60 ± 2.11 77.98 ± 1.86 83.54 ± 2.40 16.00 ± 1.74 91.70 ± 1.55

HoG+Sub-SML (Sengupta et al. 2016) 77.31 ± 1.61 22.20 ± 1.18 85.97 ± 1.03 88.34 ± 1.33 11.45 ± 1.35 94.83 ± 0.80

FV+Sub-SML (Sengupta et al. 2016) 80.63 ± 2.12 19.28 ± 1.60 88.53 ± 1.58 91.30 ± 0.85 8.85 ± 0.74 96.87 ± 0.39

Deep Features (Sengupta et al. 2016) 84.91 ± 1.82 14.97 ± 1.98 93.00 ± 1.55 96.40 ± 0.69 3.48 ± 0.67 99.43 ± 0.31

Triplet Embedding (Sankaranarayanan et al. 2016) 89.17 ± 2.35 8.85 ± 0.99 97.00 ± 0.53 96.93 ± 0.61 2.51 ± 0.81 99.68 ± 0.16

Chen et al. (2016) 91.97 ± 1.70 8.00 ± 1.68 97.70 ± 0.82 98.41 ± 0.45 1.54 ± 0.43 99.89 ± 0.06

b 92.47 ± 1.44 8.71 ± 1.80 97.77±0.76 99.64±0.32 0.57 ± 0.40 99.92 ± 0.15

PIM 93.10±1.01 7.69 ± 1.29 97.65 ± 0.62 99.44 ± 0.36 0.86 ± 0.49 99.92 ± 0.10

Human 94.57 ± 1.10 5.02 ± 1.07 98.92 ± 0.46 96.24 ± 0.67 5.34 ± 1.79 98.19 ± 1.13

The best results are highlighted in bold
The results are averaged over 10 testing splits

Fig. 10 Performance curve comparison between PIM and the baseline
b on CFP (Sengupta et al. 2016) and IJB-A (Klare et al. 2015). a ROC
curve for frontal-profile on CFP (Sengupta et al. 2016); b ROC curve

for frontal-frontal on CFP (Sengupta et al. 2016); c ROC curve for ver-
ification on IJB-A (Klare et al. 2015); d CMC curve for identification
on IJB-A (Klare et al. 2015). Best viewed in color

Fig. 11 Comparison of face frontalization results

resentations learned by PIM are discriminative and robust
even at extreme pose variations. Visualized comparison of
face frontalization results between PIM and DR-GAN (Tran
et al. 2017) and TP-GAN (Huang et al. 2017) is provided in
Fig. 11 right-top to further perceptually verify the superiority
of our method.

4.3.3 Evaluations on the IJB-A Benchmark

IJB-A (Klare et al. 2015) contains 5397 images and 2042
videos from 500 subjects, which are split into 20,412 frames,
11.4 images and 4.2 videos per subject, captured from in-the-
wild environments to avoid the near frontal bias, along with
protocols for evaluation of both verification and identifica-
tion. For training and testing, 10 random splits are provided
by each protocol, respectively. The verification task requires
the evaluation system to determine whether two input face
sets are of the same subject. At a given threshold, the eval-
uation system measures the True Accept Rate (TAR), which
is the fraction of genuine comparisons that correctly exceed
the threshold, and the False Accept Rate (FAR), which is
the fraction of impostor comparisons that incorrectly exceed
the threshold. For identification, the evaluation system needs
to determine the subject matching a probe identity from a
closed set or an open set. For a closed set, the evaluation
system measures the percentage of probe searches returning
probe gallery mates within a given rank. For an open set, at
a given threshold, the evaluation system measures the False
Positive Identification Rate (FPIR), which is the fraction of
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comparisons between probe sets and non-mate gallery sets
that corresponds to a match score exceeding the threshold,
and the False Negative Identification Rate (FNIR), which
is the fraction of probe searches that fail to match a mated
gallery set above a score of the threshold.

The performance comparison of PIM with the baseline b
(Light CNN-29 Wu et al. 2015) and other state-of-the-arts
on IJB-A (Klare et al. 2015) unconstrained face verification
and identification protocols are given in Table 8. The corre-
sponding ROC and CMC curves are provided in Fig. 10c,d.
With the joint learning of face frontalization and discrimi-
native representations, our method outperforms the baseline
by 3.20% for TAR@FAR=0.001 of verification and 3.10%
for FNIR@FPIR=0.01, 1.40% for rank-1 of identification.
It also outperforms the 2nd -best method All-In-One (Ranjan
et al. 2016) by 5.20% for TAR@FAR=0.001 of verification
and 2.30% for FNIR@FPIR=0.01 of identification. This well
shows the promising potential of recovered frontal view face
images and pose-invariant representations learned by PIMon
large-scale and challenging unconstrained face recognition.
Visualized comparison of face frontalization results between
PIM and DR-GAN (Tran et al. 2017) and TP-GAN (Huang
et al. 2017) is provided in Fig. 11 left-bottom to further per-
ceptually verify the superiority of our method.

4.3.4 Evaluations on the LFW Benchmark

LFW (Huang et al. 2007) contains 13,233 face images of
5749 identities obtained by trawling the Internet followed
by face centering, scaling and cropping based on bounding
boxes provided by an automatic face locator. The LFW data
have large in-the-wild variabilities, e.g., in-plane rotations,
non-frontal poses, low resolution, non-frontal illumination,
varying expressions and imperfect localization.

As a demonstration of our model’s superior generalizabil-
ity to in-the-wild face images, we qualitatively compare the
intermediate face frontalization results of our PIM with TP-
GAN (Huang et al. 2017) and DR-GAN (Tran et al. 2017),
which are the state-of-the-arts aiming to generate photoreal-
istic and identity-preserving frontal view from profiles. As
in Fig. 11 right-bottom, the predictions of TP-GAN suffer
severe texture loss and involved artifacts, and the predictions
ofDR-GANdeviate from true appearance seriously.Compar-
atively, PIM can faithfully recover high-fidelity frontal view
face images with finer local details and global face shapes.
This well verifies that the unsupervised cross-domain adver-
sarial training can effectively advance generalizability and
reduce over-fitting, and that the meta-learning (“learning to
learn”) strategy using a siamese discriminator with dynamic
convolution contributes to the synthesized perceptually nat-
ural and photorealistic results. Moreover, the joint learning
scheme of face frontalization and discriminative representa-
tions also helps, since the two sub-nets leverage each other

Fig. 12 Failure cases of face frontalization results by PIM

during end-to-end training to achieve a final win-win out-
come.

4.4 Failure Case Study and Discussion

As shown in Fig. 12, we observe failure cases of face frontal-
ization by PIM when input profile faces present extremely
low resolution (e.g., 1st -panel col. 2, 3, 5, 6, 2nd -panel col.
1, 2, 3, 4, 6), heavy occlusion (e.g., 1st -panel col. 2, 4, 2nd -
panel col. 7), atrocious illumination (e.g., 2nd -panel col. 3,
4), large expressions (e.g., 1st -panel col. 7, 2nd -panel col.
6, 7) and even fragmentary elements (e.g., 1st -panel col. 1,
2nd -panel col. 5). Such extreme scenarios can fail landmark
detection. We plan to solve it in future.

5 Conclusion

We proposed a novel Pose InvariantModel (PIM) to address
the challenging face recognition with large pose variations.
PIM unifies a Face Frontalization sub-Net (FFN) and a
Discriminative Learning sub-Net (DLN) for pose-invariant
recognition in an end-to-end deep architecture. The FFN
adopts unsupervised cross-domain adversarial training and a
meta-learning (“learning to learn”) strategy to provide high-
fidelity and identity-preserving frontal reference face images
for effectively learning face representations fromDLN.Com-
prehensive experiments demonstrate the superiority of PIM
over the state-of-the-arts. We plan to apply PIM to other
domain adaption and transfer learning applications in the
future.
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