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Abstract
The coverage and composition of the pretrain-
ing data significantly impacts the generalization
ability of Large Language Models (LLMs). De-
spite its importance, recent LLMs still rely on
heuristics and trial and error to increase or re-
duce the influence of data-domains. We pro-
pose DOmain reweighting with Generalization
Estimation (DOGE), which optimizes the prob-
ability of sampling from each domain (domain
weights) in a principled way. Our approach is
a two-stage process consisting of (i) training
a proxy model to obtain domain weights using
a bi-level optimization algorithm; (ii) training
a larger base model by sampling training do-
mains according to the learned domain weights.
In our experiments, we extensively show how
DOGE improves the generalization of the base
model to any target data mixture. On the SlimPa-
jama dataset, our base model gets better per-
plexity and few-shot reasoning accuracies across
6 tasks compared to baseline methods. More-
over, aiming to generalize to out-of-domain tar-
get tasks, which is unseen in the pretraining
corpus (OOD domain), DOGE can effectively
identify inter-domain dependencies, and consis-
tently achieves better test perplexity on the target
domain. We provide the codebase at https:
//github.com/Olivia-fsm/doge.

1. Introduction
Pretrained Large Language Models (LLMs) demonstrate im-
pressive generalization abilities, making them the workhorse
of today’s NLP research and many practical use cases (De-
vlin et al., 2019; Brown et al., 2020; Chowdhery et al., 2022;
Touvron et al., 2023a;b). They are trained on very large text
corpora collected from various source domains to obtain a
generalization ability, which enables an efficient adaptation
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to specific downstream tasks by fine-tuning. The composi-
tion of the pretraining corpus often depend on the accessi-
bility of each data sources. For example, 72.6% of RedPa-
jama (Together Computer, 2023) are sampled from Com-
monCrawl, while only 1.7% from Stackexchange. While
recent research has demonstrated the significance of the
quantity and quality of the pretraining corpus (Kaplan et al.,
2020; Hoffmann et al., 2022; Longpre et al., 2023), there
are few explorations into how its composition from vari-
ous source domains could contribute to the generalization
ability of the language model (Lee et al., 2023; Hashimoto,
2021; Xie et al., 2023a). The domain weights adopted by
current state-of-the-art LLMs are mostly determined by
heuristics (Gao et al., 2020) or tuned according to a se-
ries of downstream tasks (Du et al., 2022), which can be
sub-optimal and costly.

Recently, Xie et al. (2023a) proposed a learnability-based
domain reweighting framework DOREMI, which settles do-
main weights using two small-scale auxiliary models: first,
a reference model is "well-trained" using uniform domain
weights; next, a second auxiliary model—referred to as
proxy model—is trained from scratch with the objective
to find domain weights that minimize the worst-case ex-
cess loss, i.e. the per-domain loss gap between the proxy
model and the well-trained reference model. The excess
loss is interpreted as an estimation for the remaining learn-
ability of a given domain at each training step—a large gap
indicating the proxy model can further learn to model the as-
sociated domain. Despite the encouraging empirical results
of DOREMI, minimizing the worst-case loss gap (i) creates
a strong dependency on the well-trained model whose capac-
ity can strongly influence the overall accuracy and requires
appropriate tuning, and (ii) creates a dissonance between the
ideal goal of minimizing the average validation loss across
domains and the employed objective which seeks to simply
mimic the well-trained model. Moreover, this approach can-
not be used when the target domains are different from the
training domains.

To mitigate these issues, we propose DOmain reweighting
with Generalization Estimation (DOGE), which finds op-
timal domain weight distributions by explicitly optimizing
for best generalization to a given set of domains. We follow
the two-stage process of DOREMI which consists of first
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obtaining optimized domain weights by training a small-
scale proxy model, and, in the second stage, training a final
larger model on data sampled according to those weights.
In contrast to DOREMI, DOGE only requires the training
of one proxy model. Moreover, we found DOGE to be less
dependent on the capacity of this proxy model (see § C.4).

When training the proxy model, at timestep t, we re-weight
the gradient from each source domain to greedily minimize
the average target domain loss at the next step t + 1. Our
derivation in § 2 shows that the resulting algorithm up-
weights training domains with a large gradient alignment
(inner-product) with the target domains, which reflects the
principle:

A data domain should receive a large weight if it
contributes to the learning of target domains.

Similarly to DOREMI, the final domain weights are ob-
tained by averaging the domain weights over the training of
the proxy model. The base model is then trained by sam-
pling its training data according to the final domain weights.
A visual overview of the DOGE method is shown in Fig. 1.

Contributions. We summarize our contributions as follows:

• We introduce and rigorously derive DOGE, an efficient
and effective domain reweighting framework, which
explicitly aims to generalize to a specific set of target
domains (§ 2);

• We empirically show that our method outperforms
strong baselines including DOREMI in terms of (i)
average perplexity, and (ii) few-shot reasoning capabil-
ities across 6 tasks (§ 3.1);

• We show how DOGE can handle cases where the target
domains are different from the training domains, and
consistently outperforms the baseline with uniform
domain weights (§ 3.2).

2. Domain Reweighting with Generalization
Estimation

In this section, we motivate and derive DOGE, for the goal
of re-weighting training domains Dtrain ≜ {D1, . . . , Dk}
to improve the model’s generalization to a given set of target
domains. We distinguish two scenarios for generalization:
(1) Universal generalization, where the target objective is
to minimize the validation loss across all source domains
{D1, . . . , Dk}; as well as (2) Out-of-domain generaliza-
tion where we aim at minimizing the validation loss on a
specific target domain (Dood), while Dood /∈ Dtrain. The
first case applies in most of the scenarios for LLM pretrain-
ing, where no specific downstream target has been set. The
later case is especially relevant when considering gener-
alization to specific target domain datasets (e.g. science,

low-resource languages) which are too small to have a sig-
nificant impact when used during pretraining.

Setup & notation. Let Dtrain ≜ {D1, . . . , Dk} be a large
corpus split into k domains according to meta-attributes
(e.g. source, topic). We aim to find domain weights over the
probability simplex α ∈ ∆k ⊂ Rk. The final data mixture
used to train the full-size language model is constructed
by first sampling a domain according to the domain-wise
distribution α, followed by uniformly sampling a batch B
from that domain (B ∼ UNIF(Di)). Overall, this leads to
the instance-wise distribution Pα ≜

∑k
i=1 αi · UNIF(Di).

In the following, we will describe how to optimize α guided
by training a proxy model of parameters θ on Dtrain. We
denote by li(θ) the expected next token prediction loss of
the proxy model on domain Di. Let l̄(θ) ≜ 1

k

∑
i∈[k] li(θ)

be the average loss across all k domains. Let |D| refer to
the number of samples in D.

Universal generalization. In the case of universal gen-
eralization, our goal is to minimize l̄(θ). This posit
that all k given training domains have the same im-
portance. As a point of comparison, note that the
classical loss used to train large language models is

l̃(θ) =
∑
i∈[k]

|Di|
|Dtrain|

li(θ) which could severely bias to do-

mains with larger scale. One naive approach could consist
in re-weighting samples by the inverse of the sampling prob-

ability: l̃(θ) =
∑
i∈[k]

α̃i
|Di|
|Dtrain|

li(θ) with α̃i =
|Dtrain|
|Di|

,

however, this approach ignores everything of the complex
intra-domain interactions considering the nature of the tex-
tual corpus which (i) have inevitable lexical, syntactic or
semantic overlaps, and (ii) can be more or less challenging
to learn. In practice, this naive uniform sampling approach
provides a strong baseline but often hinders the generaliza-
tion compared to other methods (see § 3).

We instead propose to optimize domain weights α ∈ ∆k

along the training of the proxy model θ, as a stochastic
bi-level optimization problem:

α ∈ argmin
α∈∆k

∑
i∈[k]

li(θ
⋆(α))

s.t. θ⋆(α) ∈ argmin
θ

∑
i∈[k]

αili(θ)

In the inner loop (1), the proxy model θ(α) is updated using
the rescaling factor α; in the outer loop (2), we update α to
adapt to the target given the updated model status. To avoid
complicated multi-step gradient unrolling, we only update θ
in the inner optimization problem over a single stochastic
step:

θ(t+1) ≜ θ(t) − η(t)
∑
i∈[k]

α
(t)
i ∇li(θ

(t)) (1)
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Step 1    Step 2      

update domain weights

update proxy modelGithub
Arxiv

CommonCrawl
Wikipedia

✖

reweighting

↠

resampling

train base model

train a small-scale proxy model to find optimal 
domain weights

train large-scale base LLM with resampled pretrain 
corpus according to the finalized domain weights

Figure 1. Summary of DOGE . Our method consists of two steps. In Step 1, we learn domain weights which maximize the
generalization of the proxy model to the target domains. The finalized domain weights are then used in Step 2 to resample data from each
domain to build a new pretraining data mixture for a larger-scale base model.

where α(t) ∈ ∆k is used to re-weight the loss from each
domain at time-step t, η(t) is the step size, and ∇li(θ(t))
is a stochastic gradient for samples of Di. The outer-loop
in bi-level optimization techniques usually requires second-
order derivatives (Grangier et al., 2023; Zhou et al., 2023),
which could introduce huge computation costs. Instead, we
update α by a simpler fully first-order rule, which allows to
reuse the gradients from the inner-loop.

Specifically, the update rule of the domain weights α can be
derived as follows. Denote ∆θ(t) = θ(t+1)− θ(t), at step t,
we aim to find the optimal α(t) to minimize the original
unweighted domain loss at the next step:

α
(t)
⋆ = argmin

α∈∆k

l̄(θ(t+1))

= argmin
α∈∆k

∑
i∈[k]

[li(θ
(t+1))− li(θ

(t))] (2)

= argmin
α∈∆k

∑
i∈[k]

⟨∇li(θ(t)),∆θ(t)⟩+ o(∥∆θ(t)∥)

= argmin
α∈∆k

∑
i∈[k]

〈
∇li(θ(t)),−η(t)

∑
j∈[k]

αj∇lj(θ(t))
〉
+ ε(t),

where ε(t) = o(∥∆θ(t)∥) = o(∥α(t)∥) (1), which is
a high-order remainder in the Taylor expansion. Let
W

(t)
j ≜ ⟨∇lj(θ(t)),

∑
i∈[k]∇li(θ(t))⟩ be the stochastic

generalization estimation function on the jth domain. In-
tuitively, this quantity measures the alignment of the learn-
ing tasks across domains: a high W

(t)
j means learning Dj

will also contribute to learning other domains. We write
W(t) = [W

(t)
1 , . . . ,W

(t)
k ] ∈ Rk for the vectorized general-

ization estimation scores across all domains. We can rewrite
the outer loop update (2) simply as:

α
(t)
⋆ = argmin

α∈∆k

−η(t)α⊤W(t) + ε(t) . (3)

We solve (3) by estimating ε(t) as the Bregman divergence
DΨ(α∥α(t−1)) with Ψ(α) =

∑
i αi log(αi), which is a

common technique in mirror descent (Nemirovski & Yudin,
1983; Beck & Teboulle, 2003) :

α(t) = argmin
α∈∆k

−η(t)α⊤W(t) + µDΨ(α∥α(t−1)), (4)

with µ as a hyperparameter controls the strength of regu-
larization. This yields the following multiplicative weights
update rule, see e.g. (Beck & Teboulle, 2003):

α(t) =
α̂(t)∑

i∈[k] α̂
(t)
i

, (5)

with α̂(t) = α(t−1) ⊙ exp
(η(t)W(t)

µ

)
. We estimate the

average domain loss
∑

i∈[k]∇li(θ(t)) by sampling another
batch consisting of instances uniformly sampled from all
domains. At each time-step t, we alternatively update α(t)

and θ(t). The final algorithm is summarized in Alg. 1. The
detailed derivation is presented in Appendix (§ B).

Out-of-domain generalization. In the out-of-domain gen-
eralization scenario we want to generalize to a Dood domain
that is not part of Dtrain. The above derivation still holds
only with minor modifications: (i) we are now consider-
ing our objective to be lood(θ) instead of l̄(θ), and (ii) we
now have W

(t)
j ≜ ⟨∇lj(θ(t)),∇lood(θ(t))⟩, for clarity we

call W(t)
ood = [W

(t)
1 , . . . ,W

(t)
k ]. The update of α(t) is the

same as in (5) replacingW(t) withW(t)
ood. The associated

algorithm can be seen in App. B (See Alg. 2), where all
differences with universal generalization (Alg. 1) are high-
lighted in blue.

Link between W(t) and influence functions. Follow-
ing (Pruthi et al., 2020), given samples from a source and
target domain Bs ∼ Ds and Bt ∼ Dt, the influence of Ds

on Dt can be estimated by I(Bs, Bt) = ⟨∇ls(θ),∇lt(θ)⟩.
Considering the definition of W (t)

j :

W
(t)
j ≜ ⟨∇lj(θ(t)),

∑
i∈[k]

∇li(θ(t))⟩ (6)

= ⟨∇lj(θ(t)),
∑

i∈[k],i̸=j

∇li(θ(t))⟩

︸ ︷︷ ︸
out-of-domain influence

+ ∥∇lj(θ(t))∥22︸ ︷︷ ︸
domain difficulty
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The first term in (6) estimates the sum of influences from all
the other k−1 domains on the jth domain, while the second
term denotes the magnitude of the gradient from domain Dj .
Intuitively, a domain should be up-weighted when (i) it
contributes to the learning of other domains (high out-of-
domain influence), or (ii)—in the universal generalization
case—when the domain itself has not been learnt enough
(high magnitude of gradient for this domain). Those two
mechanisms are precisely what Equ. (3) expresses.

Training the base model. Given the final domain weights
ᾱ, we train the full size model by sampling Dtrain accord-
ing to Pᾱ ≜

∑k
i=1 ᾱi · UNIF(Di).
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Figure 2. Universal generalization results on SlimPajama. In
(a) we compare several domain weight distributions obtained by
DOGE and DOREMI. We show two distributions for DOREMI

obtained by training the auxiliary models for 10k and 50k itera-
tions. DOGE’s proxy model has been trained for 10k iterations.
In (b) we plot the average 5-shot accuracy during the base model
training. DOGE acquires few-shot reasoning ability faster than all
other baseline methods and improves the final average accuracy
by a large margin.

3. DOGE Improves Generalization
In this section, we show how DOGE is reweighting the
source domains to improves the model’s performances in
both universal generalization and out-of-domain generaliza-
tion settings.

3.1. Universal Generalization

In the case of universal generalization, we aim to improve
the model’s generalization across all domains present in the

Algorithm 1 DOGE Domain Reweighting (for Universal
Generalization).

1: Input: Domain data splits D1, . . . , Dk, Proxy model
weights θ(0), Hyperparameters: number of training
steps T , batch size b, step size η(t), Bregman coeffi-
cient µ.

2: Initialize proxy weights θ(0)

3: Initialize proxy domain weights α(0) = 1
k1

4: for t ∈ [T ] do
5: Uniformly sample batch B(t) = {B(t)

1 , . . . , B
(t)
k }

6: Obtain∇li(θ(t), B
(t)
i ) for i ∈ [k]

7: ComputeW(t)

8: Update domain weights according to Eq. (5):
9: α̂(t) ← α(t−1) ⊙ exp(η(t)W(t)/µ)

10: α(t) ← α̂(t)/

k∑
i=1

α̂
(t)
i

11: Update θ(t):
12: θ(t+1) = θ(t) − η(t)

∑
i∈[k] α

(t)
i ∇li(θ(t),B

(t)
i )

13: end for
14: Return Domain weights ᾱ = 1

T

∑T
t=1 α

(t)

Algorithm 2 DOGE Domain Reweighting (for Out-of-
domain Generalization).

1: Input: Training domain data splits D1, . . . , Dk, OoD
domain Dood, Proxy model weights θ(0), Hyperparam-
eters: number of training steps T , batch size b, step size
η(t), Bregman coefficient µ.

2: Initialize proxy weights θ(0)

3: Initialize proxy domain weights α(0) = 1
k1

4: for t ∈ [T ] do
5: Uniformly draw B(t) = {B(t)

1 , . . . , B
(t)
k }∪{B

(t)
ood}

6: Obtain∇li(θ(t), B
(t)
i ) for i ∈ [k]

7: Obtain∇lood(θ(t), B
(t)
ood)

8: ComputeW(t)
ood

9: Update domain weights according to Eq. (5):
10: α̂(t) ← α(t−1) ⊙ exp(η(t)W(t)

ood/µ)

11: α(t) ← α̂(t)/

k∑
i=1

α̂
(t)
i

12: Update θ(t):
13: θ(t+1) = θ(t) − η(t)

∑
i∈[k] α

(t)
i ∇li(θ(t), B

(t)
i )

14: end for
15: Return Domain weights ᾱ = 1

T

∑T
t=1 α

(t)

training set. We measure the average perplexity across all
domains and 5-shot reasoning ability across a series of rea-
soning tasks, covering diverse knowledge fields including
physics, social science, logic inference etc.: COPA (Gor-
don et al., 2012), SciQ (Welbl et al., 2017), PIQA (Bisk
et al., 2019), LogiQA (Liu et al., 2020), WiC (Pilehvar
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& Camacho-Collados, 2019) and WinoGrande (Sakaguchi
et al., 2019). We use LM-eval Harness (Gao et al., 2021) to
assess the few-shot reasoning performance.

Training setup. We experiment on SlimPajama (Soboleva
et al., 2023), which is a deduplicated version of RedPajama
consisting of data from 7 domains. We train a small 82M
decoder-only transformer (Vaswani et al., 2023) as the proxy
model for domain reweighting. Auxiliary models for both
DOGE and DOREMI are trained for 10k iterations. We also
experiment with training the auxiliary models of DOREMI
for 50k steps, giving that baseline a strong advantage. The
final domain weights are used to train larger base models
(124M, 210M, 684M). We refer to those three methods as
DOGE-10k, DOREMI-10k and DOREMI-50k. We also
compare to the BASELINE with uniform domain weights,
which is the best heuristic for universal generalization with-
out prior knowledge on inter-domain relatedness. We report
domain weights from DOGE-10k as the average of three
random seeds. All models are trained from scratch with
batch size of 128, and sequence length of 512. The vo-
cabulary size of the tokenizer is 50304. Details on model
architectures are provided in App. A.

Evaluation on language modeling ability. We measure
the per-domain perplexity on held-out validation sets for
the largest scale base model (684M). Results for other
model sizes (124M and 210M) are provided in App. C.
According to Tab. 1, DOGE-10k outperforms BASELINE
and DOREMI-10k in 5 out of 7 domains, by a large mar-
gin. Notably, DOGE-10k outperforms all the other baseline
methods in terms of average perplexity, given a great advan-
tage in the number of iterations to train DOREMI-50k.

Evaluation on few-shot reasoning accuracy. We test the
5-shot reasoning accuracy across 6 tasks for our largest
(684M) models. According to Tab. 2 and Fig. 2.(b), DOGE-
10k improves few-shot reasoning ability of the base model,
especially at the early training stage. Our method outper-
forms the BASELINE and DOREMI-10k on all 6 tasks. In
contrast, DOREMI-10k slightly hurts the reasoning accu-
racy. With 40k more training iterations, DOREMI-50k out-
performs uniform BASELINE on most of the tasks, while
still left behind by DOGE-10k on 5 out of 6 reasoning tasks.
On average, DOGE-10k improves the 5-shot reasoning abil-
ity by 1.7 accuracy points over uniform BASELINE, which
outperforms all the other methods.

Evolution of domain weights. Fig. 3 shows the step-wise
(Bottom) and average (Top) domain weights evolution dur-
ing the training of the proxy model. The step-wise do-
main weights can be interpreted as the online contributions
from each domains, while the final domain weights ᾱ are
given by the average. According to Fig. 3.a and Fig. 3.d,
DOGE shows a clear phase transition, with different stages
of training, as in a curriculum: in an early stage, DOGE

up-weights Arxiv and Stackexchange while gradually up-
weighting C4, CC and Wikipedia, which contain a more
diverse lexical coverage and complicated semantics. The
domain-weights for the other two domains (GitHub and
Book) are kept low. We hypothesise that Github—with its
emphasis on code—has limited vocabulary and semantic
knowledge, and the complexity of Book might be covered by
C4 and CC, which are the two most up-weighted domains.
In comparison, the step-wise dynamic of DOREMI-10k in
Fig. 3.e and DOREMI-50k in Fig. 3.f oscillate greatly dur-
ing training. Despite the additional training steps for both
auxiliary models in DOREMI-50k, the final average domain
weights differ greatly with the ones from DOREMI-10k
(by a mean absolute difference of 0.08), which indicates
the strong dependency of DOREMI on the capacity of the
reference model and training iterations. We present the final
domain weights adopted by different methods in Fig. 2.a.

Robustness to the scale of proxy model. To further explore
the how the scale of the proxy model could impact the
final domain weights, we run the ablation experiments on
three different scales (60M, 82M, 124M). Notably, DOGE’s
final domain weights are consistent across various scale
of proxy model. The mean absolute difference of domain
weights between 60M (resp. 124M) and 82M proxy models
is less than 0.015 (resp. 0.005) across all 7 domains, which
demonstrates the robustness of our method. Compared to
DOREMI, DOGE has less dependencies on the capacity on
the auxiliary model(s) which requires less efforts and costs
to tune the size of the proxy model and choose the number
of iterations. The details of the ablation experiments are
presented in App. C.4.

Comparison of Computation Overhead. Our experiments
show DOGE to be more memory, time, and data efficient
than DOREMI. Indeed, DOREMI requires two auxiliary
models of the same scale, while DOGE only requires a sin-
gle proxy model. Moreover, while 10k steps were sufficient
for DOGE to improve the perplexity and few-shot reasoning
accuracies over the uniform baseline, DOREMI required
5× more tokens and 10× more floating point operations.

3.2. Out-of-Domain Generalization

In the case of Out-of-Domain (OoD) generalization, we aim
to improve the model’s generalization to a target domain
which is not part of the training mixture Dtrain. Given the
target domain is missing from Dtrain, we expect DOGE
to up-weigh the helpful domains among Dtrain while sam-
pling less from distinct ones. We consider two dataset:
SlimPajama and Wiki40b. Since DOREMI does not sup-
port this use-case, we only compare DOGE with BASELINE
with uniform domain weights. The ORACLE baseline also
enables access to the target domain, which shares the same
sampling weight as other source domains in Dtrain. We
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Table 1. Per-domain Perplexity for universal generalization with 684M parameter models. We compare DOGE-10k with DOREMI-
10k, DOREMI-50k and a Baseline with uniform domain weights. We measure the perplexities on validation sets for all of the 7 domains
of SlimPajama. DOGE outperforms the uniform baseline on 5 out of 7 domains and achieves the best average perplexity over all baseline
methods. Scores outperforming the baseline are in Bold. The average perplexity is calculated as the exponential of the average loss across
all domains instead of the average of all domain perplexities.

Domain Uniform baseline DOREMI-10k DOGE-10k DOREMI-50k

Arxiv 8.105 8.698 8.207 9.378
Book 44.990 50.594 44.574 42.557
C4 49.066 56.116 42.558 41.388
CommonCrawl 45.903 46.459 40.432 41.067
Github 3.944 3.739 4.107 4.301
Stackexchange 8.628 9.022 8.332 9.235
Wikipedia 12.047 11.380 11.443 10.519

Average 16.526 17.172 15.806 16.124
Worst-case 49.066 56.116 44.574 42.557

# domains outperform Baseline / 2 5 4

Table 2. Exact-match accuracies(%) for 5-shot reasoning tasks. In 5 out of 6 tasks, DOGE reaches the best accuracy compared to
other baseline methods. Only DOREMI-50k slightly outperforms DOGE on PIQA, using 40k more steps to train the auxiliary models.

Task Uniform baseline DOREMI-10k DOGE-10k DOREMI-50k

COPA 58.00 59.00 62.00 61.00
SciQ 61.80 60.30 65.00 64.50
LogiQA 23.20 24.58 25.50 23.81
PIQA 59.85 56.86 60.34 60.94
WiC 49.69 48.59 49.69 49.53
WinoGrande 50.99 49.41 51.22 49.17

Average 50.59 49.79 52.29 51.49

Table 3. Out-of-Domain generalization results on SlimPajama. DOGE significantly outperforms the uniform averaging baseline in
all domains. This demonstrates DOGE’s ability to select helpful sources of data for the given target. Domain weights for each target
domain are present in Fig. 4.c. Even when finetuning the pretrained models on the target domain, DOGE models reach a better perplexity.
Performance better than the baseline are highlighted in bold.

Baseline (w/o target) DOGE Baseline (w/o target)+fine-tuning DOGE+fine-tuning Oracle (with target)

Arxiv 18.92±0.14 16.70±0.08 10.47±0.01 10.20±0.01 9.78±0.01
Book 82.57±0.05 63.89±0.18 65.73±0.06 56.94±0.24 66.43±0.19
C4 89.56±0.38 63.96±0.11 71.24±0.09 56.91±0.17 70.69±0.14
CommonCrawl 81.65±0.47 57.77±0.56 65.75±0.01 51.173±0.04 67.06±0.15
Github 6.675±0.00 5.091±0.03 4.99±0.01 4.26±0.01 4.97±0.01
StackExchange 16.941±0.02 14.77±0.01 11.24±0.004 10.98±0.002 11.26±0.03
Wikipedia 58.04±0.32 53.87±0.35 18.38±0.02 17.71±0.05 17.61±0.02

assess the target domain perplexity on the held-out test set
and report average results over two seeds.

Wiki40b setup. We test the OOD-generalization capabili-
ties of DOGE in a multilingual setting, aiming to facilitate
low-resource language learning from mainstream language
corpus. We use the Wiki40b dataset (Guo et al., 2020),
which consists in a collection of Wikipedia articles in 40+
languages. We set English, German, Spanish, French and
Russian as source domains in Dtrain. The target domain
is set to Catalan or Dutch, which are considered as low-
resource languages. We train the proxy model (82M) for

10k steps to obtain the domain weights and then train the
base model (124M) for 10k steps.

SlimPajama-OoD setup. For out-of-domain generalization,
we set each of the domains in SlimPajama as the target
domain, with 0.05B tokens accessible. The remaining 6
domains are used as source domains Dtrain, each with 2B
tokens accessible. We run the proxy model (82M) for 10k
steps to obtain the domain weights and then train the base
model (124M) for 10k steps. We continually fine-tunine the
pretrained checkpoints for 1000 steps on the target domain.
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(a)  DoGE-10k 

(d)  DoGE-10k 

(b)  DoReMi-10k 

(e)  DoReMi-10k (f)  DoReMi-50k 

(c)  DoReMi-50k 

Easy Hard 

Figure 3. Average (Top row) and step-wise (Bottom row) domain weights evolution. We train the auxiliary models of DOREMI for
10k or 50k steps, which yields DOREMI-10k and DOREMI-50k. In DOGE (a, d), we observe a clear two-phase curriculum from
easy to hard domains. In contrast, the step-wise domain weights from both DOREMI-10k (e) and DOREMI-50k (f) oscillate greatly
during training. The final average domain weights differ a lot between DOREMI-10k (b) and DOREMI-50k (c), which reveals a strong
dependency on the capacity of auxiliary models and the training iterations.

Perplexity on the target domain. In Tab. 3, we show
how DOGE consistently outperforms the uniform baseline
across all seven domains in SlimPajama. On C4 and Com-
monCrawl, DOGE achieves a better performance than the
oracle without further fine-tuning. This demonstrates that
irrelevant data sources can deteriorate the adaptation to the
target domain, and DOGE can help to select helpful source
domains. After finetuning the pretrained checkpoints on the
target domain, DOGE pretrained models still outperform
the finetuned baseline. In Fig. 4.a and Fig. 4.b, we show
the test perplexity on Catalan and Dutch when training the
base models. DOGE models show a significant improve-
ment over the uniform baseline by learning from related
mainstream languages.

Automatically detected inter-domain affinities. For the
SlimPajama experiments, we presents the auto-detected
inter-domain affinities obtained by DOGE in Fig. 4.c. There
is a clear inter-dependency between C4 and CommonCrawl,
which are both web-crawled data sources; meanwhile, the
strong affinity between Stackexchange and Github is also
detected, which both contain code-related knowledge. Sim-
ilarly, the domain weights obtained in multilingual experi-
ments reflects the languages relatedness in etymology (Cole
& Siebert-Cole, 2022), where Catalan is close to French and
Spanish in Italic family, while Dutch is close to German in
Germanic family. (Fig. 4.a and Fig. 4.b).

4. Discussion and Limitations
Stage-wise domain weights is no better than global aver-
age. Following the success of curriculum learning (Hacohen

& Weinshall, 2019; Xu et al., 2020; Fan & Jaggi, 2023) in
multiple fields, we explore the potential of applying stage-
wise time-varying domain weights during the training of the
base model. We manually divided the training process of
the proxy model into K = 2, 3, 10 stages and average the
step-wise domain weights respectively to be the stage-wise
domain weights (Fig. 10). By applying stage-wise domain
weights, the total amount of samples from each domain are
the same as the global domain weights. As shown in App. E,
none of the time-varying strategies show clear improvement
over the global averaged domain weights in average per-
plexity. However, with K = 2, 3, the stage-wise domain
weights help the model learn hard domains (Wikipedia, CC,
C4) better, which aligns with the principle of curriculum
learning. With K = 10, the domain weights updates ev-
ery 1000 steps, while the performance of the base model is
much worse than applying static domain weights.

The proxy model performs worse than a same-scale base
model. With the step-wise dynamic adaptation, it is ex-
pected that the proxy model with the rescaled gradient could
outperform the base model trained with the learned domain
weights. However, compared with a base model with the
same scale (82M), we find that the proxy model consistently
performs worse in validation perplexity (see App. C.5). A
similar behavior is also mentioned by Xie et al. (2023a),
where both auxiliary models (the reference and the proxy)
in DOREMI cannot reach comparable performance to the
same-scale base model with resampling.

Better efficiency using parameter selection. The compu-
tation budget for generalization estimationW is quadratic
to the scale of model. Thus, we explore the potential of pa-
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(c) OoD generalization weights on SlimPajama

Figure 4. Out-of-Domain generalization results. In (a) (resp.
(b)), we compare DOGE with the uniform domain weights baseline
when attempting to generalize to Catalan (resp. Dutch) from a mix-
ture of German, Russian, Spanish, French and English wikipedia
articles from the Wiki40b dataset. The target languages are absent
from the training mixture. The histograms show DOGE up-weights
training languages having some similarity with the target. As a
result, DOGE’s loss on the target is decreasing faster than the
baseline. In (c) we show DOGE domain weights for OoD general-
ization on the SlimPajama dataset. Those domain weights result
from training mixtures consisting of all the training domains ex-
cept for one which is used as the target (Dood) domain. Each row
represents a distribution returned by Alg. 2. The target domain
is not used during training and hence is marked by a red cross.
The weight distributions look very coherent, e.g. to generalize to
GitHub, DOGE upweights stackexchange which contains a sig-
nificant fraction of code. Similarly, to generalize to cc, the c4
domain—which also consists in web data—is up-weighted.

rameter selection based on cancellation effect following the
empirical success of (Yeh et al., 2022). Specifically, we rank
all parameter modules (i.e. transformer blocks or embed-
ding layers) of model weights by the cancellation effect and
only use gradients of the selected modules when compute
W . Among the five parameter selection strategies, select-
ing 30 modules with highest cancellation effect achieve the
comparable average perplexity with only 2.5% computa-
tion costs for generalization estimationW . We provide the
details of parameter selection in Appendix (§ F).

5. Related Work
Data Selection for Language Modeling. Many works show
how a rigorously selected training corpus can effectively
improve downstream performance with fewer training to-
kens. Longpre et al. (2023) discover a trade-off between a
model’s toxic generalization behavior and its generalization
ability by applying quality control with various thresholds.
Gunasekar et al. (2023) and Li et al. (2023) trained a 1.3B
model PHI-1 using 7B text-book quality code data, outper-
forming previous larger models trained on larger dataset,
illustrating the potential of high-quality data.

However, due to scalability issues, most conventional data
selection methods fail to be applicable for LLM pretraining.
Data attribution methods based on influence function rank
the entire set of data samples at a fixed time step and often
require second-order computations, which can be intractable
on gigantic pretraining corpus (Koh & Liang, 2020; Agarwal
et al., 2017; Guo et al., 2021; Kwon et al., 2024). Classifier-
based data filtering techniques are commonly used to con-
struct a pretraining corpus (Gao et al., 2020; Penedo et al.,
2023). Everaert & Potts (2023) propose GIO to select a
subset that minimizes the KL-divergence to the target distri-
bution, yet incurs high computation complexity. Xie et al.
(2023b) present a scalable importance resampling strategy
by reducing dimensionality into an n-gram-featured sub-
space, which risks from a weak representation for sophis-
ticated semantics. Engstrom et al. (2024) train a linear
datamodel first to predict a mapping from training dataset
to downstream loss, then select a subset to minimize the
approximated loss.

Data Reweighting for LLM Pretraining. Instead of se-
lecting a subset, data reweighting remain the full access to
the whole dataset while re-scale the contribution of each in-
stance under various target tasks. Grangier et al. (2023) train
an extra weighting network to re-weight the loss from each
data point using bilevel optimization algorithms. Thakkar
et al. (2023) measure self-influence as the sample impor-
tance during pretraining. Compared to instance-wise strate-
gies, domain reweighting aims to reweigh or resample from
various data groups, which offers better scalability for lan-
guage model pretraining. DOREMI (Xie et al., 2023a) ap-
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plies Group DRO on the loss gap between two auxiliary
models to optimize the domain sampling weights. Chen
et al. (2023) propose to build an online resampling curricu-
lum by exploiting the dependency relationship among skills
represented by a directed skill graph. While the computation
cost for constructing the skill graph limits its applicability
to general language model pretraining.

6. Conclusion
We introduced DOGE, an effective and efficient domain
reweighting framework based on generalization estimation,
which finds the optimal domain weights tailored to vari-
ous generalization objectives. With the pretraining corpus
with reweighted domain sampling weights, our experiments
on SlimPajama show an improvment on LLM’s universal
generalization on langauge modelling and downstream few-
shot reasoning ability. With out-of-domain generalization
objective, DOGE efficiently accelerates the learning of the
target domains and low-resource language by selectively
learning from related data sources. Notably, DOGE gives
robust domain reweighting results across various scales of
proxy models, which demonstrates a great capacity to utilize
small-scale proxy model to accelerate the training of larger
models. Scaling-up experiments with larger models and
datasets is an important future direction.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Model Architectures
The maximal (min.) learning rate applied to train the largest model (684M) is 1.5× 10−4 (5× 10−5), while others apply
5× 10−4 (1× 10−4), with a cosine scheduler. The weight decay for all models is set as 0.01, the gradient clip is set as 1.0.

Table 4. Architecture hyperparameters for various model scales used in the paper. All models are vanilla Transformer decoder-only
models.

Layers Attention heads Embed dim Hidden dim Max. learning rate (min.)

60M 3 6 768 3072 5× 10−4 (1× 10−4)
82M 6 12 768 3072 5× 10−4 (1× 10−4)
124M 12 12 768 3072 5× 10−4 (1× 10−4)
210M 24 16 768 3072 5× 10−4 (1× 10−4)
684M 36 24 1200 4800 1.5× 10−4 (5× 10−5)

B. Derivation of Domain Weights Update Rule
To realize the optimal universal generalization performance within T steps, we optimize αt at each training step t, which
minimizes averaged cross-entropy loss L̄(θT ) across all k domains at the final stage. Denote l(θ) as the next-token
prediction (cross-entropy) loss of model parameterized by θ, li(θ) as the loss of the ith domain Di, our final objective can
be written as:

min
α1,...,αT∈∆k

L̄(θ(T )) = min
α1,...,αT∈∆k

∑
i∈[k]

li(θ
(T )) (7)

With a greedy approximation of (7), we search for the optimal domain weights αt to minimize the average loss over k
domains at step (t+1):

argmin
αt∈∆k

l̄(θ(t+1)) = argmin
αt∈∆k

∑
i∈[k]

li(θ
(t+1))

= argmin
αt∈∆k

∑
i∈[k]

[li(θ
(t+1))− li(θ

(t))] (8)

Take the first-order approximation, we estimate the loss for ith domain as:

li(θ
(t+1)) = li(θ

(t)) +∇li(θ(t)) · (θ(t+1) − θ(t)) + o(∥θ(t+1) − θ(t)∥)

= li(θ
(t)) +∇li(θ(t)) ·

−ηt · ∑
j∈[k]

αj
T∇lj(θ

(t))

+ ε(t),

where ε(t) = o(∥θ(t+1) − θ(t)∥) = o(∥α∥) as the high-order remainder from Taylor expansion. Denote Git := ∇li(θ(t)),
W

(t)
j ≜ ⟨∇lj(θ(t)),

∑
i∈[k]∇li(θ(t))⟩. We writeW(t) = [W

(t)
1 , . . . ,W

(t)
k ] ∈ Rk for the score vector regrouping general-

12
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ization estimations across all domains. Equ. (8) can be written as:

min
αt∈∆k

l̄(θ(t+1)) = min
αt∈∆k

ηt ·
∑
i∈[k]

li(θ
(t+1))

≈ min
αt∈∆k

−ηt ·
∑
i∈[k]

Git

∑
j∈[k]

αj
tG

j
t


= min

αt∈∆k
−ηt ·

∑
i∈[k]

αi
t

Git ∑
j∈[k]

Gjt


= min

αt∈∆k
−ηt ·

∑
i∈[k]

αi
tW

(t)
i

= min
αt∈∆k

−ηt · ⟨αt,W(t)⟩ (9)

We estimate ε(t) by introducing a regularization term via Bregman divergence Dh(α||αt−1) = h(α) − h(αt−1) −
⟨∇h(αt−1), α− αt−1⟩, h(α) =

∑
i αi lnαi. Adding this to (9), our optimization problem is:

αt := argmin
α∈∆k

l̄(θ(t+1))

≈ argmin
α∈∆k

−ηt · ⟨α,W(t)⟩+ µ ·Dh(α||αt−1)

= argmin
α∈∆k

−ηt · ⟨α,W(t)⟩+ µ(h(α)− ⟨∇h(αt−1), α⟩) (10)

With∇h(α) = [lnαi + 1]i, we take derivative of (10):

∇(·) = ∇
(
−ηt · ⟨α,W(t)⟩+ µ(h(α)− ⟨∇h(αt−1), α⟩)

)
= −ηt · W(t) + µ · [lnα+ 1]i − µ · [lnαt−1 + 1]i = 0 (11)

⇒ lnαt := lnα∗ = lnαt−1 +
ηtW(t)

µ
(12)

Out-of-domain Generalization. (Dood /∈ Dtrain) Here we derive the update rule with the objective to generalize to a
target domain, which is not included in the pretraining data sources, i.e. Dood /∈ Dtrain:

min
α1,...,αT∈∆k

L̄(θ(T )) = min
α1,...,αT∈∆k

lood(θ
(T ))

Denote Git := ∇li(θ(t)), we search for the optimal domain weights αt to minimize the average loss on Dood at step (t+1):

argmin
αt∈∆k

lood(θ
(t+1)) = argmin

αt∈∆k

lood(θ
(t+1))

= argmin
αt∈∆k

[lood(θ
(t+1))− lood(θ

(t))]

= argmin
αt∈∆k

−ηt ·
∑
i∈[k]

αi
t

(
GitGoodt

)
+ ε(t) (13)

Alternatively, we define the generalization gain of ith domain for the targeted domain Dood as W(t)
ood := αi

t∇li(θ(t)) ·
∇lood(θ(t)). Therefore, the optimization problem can be written as:

argmin
αt∈∆k

lood(θ
(t+1)) = argmin

αt∈∆k

−ηt ·
∑
i∈[k]

αi
t

(
GitGoodt

)
= argmin

αt∈∆k

−ηt ·
∑
i∈[k]

αi
tW

(t)
ood

= min
αt∈∆k

−ηt · ⟨αt,W(t)
ood⟩ (14)
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With Bregman divergence Dh(α||αt−1) = h(α)− h(αt−1)− ⟨∇h(αt−1), α− αt−1⟩, h(α) =
∑

i αi lnαi, we can derive
the update rule 15

αt := argmin
α∈∆k

lood(θ
(t+1))

≈ argmin
α∈∆k

−ηt · ⟨α,W(t)
ood⟩+ µ ·Dh(α||αt−1)

= argmin
α∈∆k

−ηt · ⟨α,W(t)
ood⟩+ µ(h(α)− ⟨∇h(αt−1), α⟩)

⇒ lnαi
t := lnαi

∗ = lnαi
t−1 +

ηtW(t)
ood

µ
(15)

C. Universal Generalization Evaluation
C.1. Domain Weights on SlimPajama.

Table 5. Domain weights from DOGE with 82M proxy models. The results are averaged by three random seeds with standard error.

Arxiv Book C4 CommonCrawl Github Stackexchange Wikipedia

0.088±0.0008 0.045±0.0006 0.269±0.0047 0.214±0.0101 0.070±0.0037 0.166±0.0023 0.148±0.0061

C.2. Evaluation on Various Scales of Base Model.

We provide the detailed evaluation results on various scale of base model trained on the reweighted pretraining data
corpus here (Table 6, Fig. 5, Fig. 6). According to the average perplexity, DOGE consistently outperforms all the other
baseline methods. Besides, DOREMI-50k outperforms uniform baseline with both 124M and 210M base models, while
DOREMI-10k fails to get the baseline performance, which suggests DOREMI has a great dependency on the capacity of the
auxiliary models.

Table 6. Perdomain perplexity results on 124/210M base model. DOGE consistently achieves the best average perplexity over all
baseline methods. Performance better than Baseline are in Bold.

124M 210M

Domain Baseline DOREMI-10k DOREMI-50k DOGE Baseline DOREMI-10k DOREMI-50k DOGE

Arxiv 8.672 9.353 10.149 8.954 8.247 9.041 9.637 8.456
Book 51.535 57.685 49.038 51.564 47.060 54.393 45.192 46.940
C4 56.424 63.968 48.494 49.937 51.862 60.781 44.799 45.588
CommonCrawl 52.661 53.347 47.898 47.297 48.319 50.456 44.176 43.193
Github 4.266 4.008 4.770 4.533 4.032 3.871 4.510 4.234
Stackexchange 9.555 9.898 10.392 9.365 8.948 9.477 9.760 8.723
Wikipedia 14.043 13.208 12.246 13.567 12.784 12.351 11.358 12.348

Average 18.566 19.208 18.355 18.066 17.218 18.285 17.119 16.661

14
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Figure 5. Perdomain perplexity of 124M base Model.

Figure 6. Perdomain perplexity of 210M base Model.

C.3. Early-stage Training Acceleration.

We have observed that DOGE reweighted pretraining corpus is able to accelerate the learning process, especially in the early
training stage. Fig. (7) zooms in into the first 2500 training steps of the base model, where the validation perplexity from
DOGE drops faster than all the other baseline models on each of all 7 domains, including those are downweighed with less
tokens seen. It indicates DOGE facilitates the learning of general knowledge, which is shared across domains.
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Figure 7. Perdomain perplexity in early-stage of training (first 2500 steps). DOGE outperforms baseline across all the domains no
matter it is up-weighed or down-weighed.

C.4. Ablation on the Scale of Proxy Model.

To examine how robust DOGE is with various scale of the proxy model, we train DOGE with three model scales: 60M,
82M and 124M (Table 7). All proxy models are trained on the same dataset (Slimpajama) by 10k steps, with the same
training hyperparameters. Notably, three proxy models with various scales results in consistent domain weights, with only
1.45% and 0.04% MAE across 7 domains. Since the difference between three sets of domain weights are negligible, we did
not re-train the base model.

Table 7. Domain weights from DOGE with various scale of proxy models. The results are consistent among three different scale of
proxy models.

Domain DOGE (60M) DOGE(82M) DOGE(124M) DOREMI (60M) DOREMI (82M) DOREMI (124M)

Arxiv 0.0997 0.0880 0.0890 0.0781 0.0424 0.0434
Book 0.0467 0.0450 0.0456 0.0830 0.0819 0.0546
C4 0.2455 0.2693 0.2789 0.1343 0.1141 0.1127
CommonCrawl 0.2004 0.2135 0.1968 0.2683 0.3811 0.3781
Github 0.0767 0.0703 0.0714 0.1055 0.0654 0.0753
Stackexchange 0.1968 0.1658 0.1703 0.1157 0.0847 0.0919
Wikipedia 0.1342 0.1482 0.1480 0.2150 0.2307 0.2440

MAE from 82M proxy 1.45% / 0.48% 3.66% / 0.91%

Computation Time (hours)1 4.5 6.0 10.5 20.5 39.0 51.5

C.5. Performance of Proxy Model.

We also compare the performance of the proxy model, which rescales the gradient from each domain at each single step, and
the base model trained with resampled training corpus. According to Fig. (8), the performance of the proxy model falls
behind the base model with resampled dataset with DOGE domain sampling weights. It is even worse than the baseline with
uniform domain weights.

16
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Figure 8. Comparison of the proxy model and the base model with the same scale (82M). The proxy model shows worse performance
on average perplexity than both the base model with resampled training data and uniform sampling weights.

D. Out-of-Domain Generalization Evaluation
D.1. Evaluation Curves on OoD tasks.

Fig. 9 shows detailed curve of validation perplexity during the training process. On all 7 domains, DOGE outperforms
uniform baseline without target domain. On Book, Github, C4 and CC, DOGE gets comparable or better perplexity than the
baseline with access to the target domain. However, on Arxiv, Stackexchange and Wikipedia, both DOGE and uniform
baseline without target have a large performance gap from the oracle. It indicates learning these domains requires more
domain-specific knowledge, which can hardly be obtained from the other source domains. In that case, the gain from source
domain reweighting could be limited.

Figure 9. Target domain perplexity on validation set. DOGE outperforms baseline with uniform domain weight by a large margin
across all target tasks. Notably, DOGE is comparable or even outperforms ORACLE (which the target domain is accessible) on several
target tasks (Book, C4, CC, Github).

17



DOGE: Domain Reweighting with Generalization Estimation

D.2. Domain Weights on OoD tasks.

We present all detailed domain weights on out-of-domain generalization on SlimPajama in Table (8), where each of 7
domains is set as the target iteratively. The domain weights on Wiki40b is shown in Table (9), where the low-resource
languages (Catalan and Dutch) are set as the target while five mainstream languages are used as the training datasets.

Table 8. Domain weights from DOGE (82M) on SlimPajama. The results are averaged by two random seeds with standard error.

Target Domain

Arxiv Book C4 CommonCrawl Github Stackexchange Wikipedia

Arxiv 0 0.063±0.0006 0.035±0.0002 0.045±0.0017 0.084±0.0003 0.095±0.0030 0.091±0.0201
Book 0.010±0.0018 0 0.117±0.0008 0.124±0.0071 0.051±0.00002 0.048±0.0015 0.149±0.0102
C4 0.125±0.0010 0.341±0.0036 0 0.674±0.0145 0.058±0.0008 0.099±0.0045 0.201±0.0056
CommonCrawl 0.142±0.0009 0.345±0.0047 0.721±0.0025 0 0.059±0.0004 0.076±0.0020 0.251±0.0258
Github 0.161±0.0005 0.055±0.0008 0.029±0.0002 0.035±0.0015 0 0.637±0.0124 0.103±0.0222
Stackexchange 0.366±0.0031 0.081±0.0019 0.063±0.0008 0.059±0.0018 0.691±0.0019 0 0.204±0.0221
Wikipedia 0.106±0.0019 0.113±0.0006 0.035±0.0004 0.063±0.0023 0.057±0.0003 0.045±0.0013 0

Table 9. Domain weights from DOGE (82M) on Wiki40B. The results are averaged by two random seeds with standard error.

English (en) German (de) French (fr) Spanish (es) Russian (ru)

Catalan (ca) 0.073±0.008 0.043±0.008 0.344±0.103 0.516±0.102 0.024±0.0001
Dutch (nl) 0.259±0.003 0.267±0.037 0.176±0.043 0.203±0.025 0.095±0.022

E. Stage-wise Curriculum
We provide the implementation and evaluation details of stage-wise curriculum learning in this section. Specifically, we
firstly train a 82M proxy model applying DOGE for 10k steps. We then divide the whole training process of the proxy model
into K = 2, 3, 10 stages, with 5000, 3333, 1000 training steps in each stage. By average the domain weights by number of
steps within each stage, we get the stage-wise sampling weights distribution as Fig. (10). We then train another 124M model
from scratch for 10k steps, where we map the stage-wise sampling weights within the corresponding training steps. We
compare the validation perplexity between the model trained with stage-wise curriculum and applying a globally-averaged
domain weights. The models trained by each curriculum should have seen the same amount of tokens from each domains in
expectation.

With K = 2, 3, the stage-wise curriculum keeps comparable performance as original DOGE, which applies the global
average as the sampling weights throughout the whole training process. It is worth noting that the models learns hard domains
(C4, CC, Book) slightly better than the global curriculum, while sacrificing the performance on easier domains (Arxiv,
Github). However, with an extremely find-grained curriculum (K = 10), the curriculum severely hurt the performance on
all the domains by a large margin. It suggests that given the same set of data covering diverse knowledge fields, the order of
training data does impact the language modelling effectiveness, so that we have to carefully determine the granularity of the
curriculum.
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Figure 10. Stage-wise curriculum with K = 2, 3, 10 learning stages.
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Figure 11. Per-domain perplexity on validation set with stage-wise curriculum.

F. Cancellation Effect
Following Yeh et al. (2022), at each time step t, we measure the ratio of the actual weight change and the summation of
gradient among the mini-batch B(t) for each module of model weights w. We sum up the ratio across the first Tc = 1000
steps to obtain the score of cancellation effect C(w) as:

C(w) =
∑
t∈[Tc]

∥w(t+1) −w(t)∥∑
(xi∈Bt)

∂l(xi)
∂w

(16)

During the measurement of cancellation effect, the mini-batch is sampled uniformly from all domains. After the first 1000
steps, we re-initialize the proxy model and compute gradient estimationW only using the gradient of the selected parameter
modules.

We then rank all 76 modules from the parameters of the 82M proxy model, and apply five parameter selection strategies: (1)
We select K = 10, 30, 50 modules with the lowest cancellation effect scores, denoting DOGE-(low10,low30,low50); (2)
We select K = 10, 30 modules with the highest cancellation effect scores, denoting DOGE-(high10,high30).

According to Table. (11), none of the parameter selection strategies could outperform the original DOGE, where the gradient
estimationW is computed using the full gradient of the proxy model. However, the domain weights from different parameter
selection strategies shows an intriguing pattern (Fig. 12): modules with low cancellation effect incline to upweigh unique
domains, which contain more domain specific knowledge (e.g. Wikipedia, Arxiv, Stackexchange), while modules with
high cancellation effect tend to upweigh diverse domains, which have broader knowledge coverage (e.g. CC, C4). It aligns
with the out-of-domain generalization experiment (§ 3.2), where Wikipedia and Stackexchange get least improvement from
domain reweighting, which indicates the uniqueness of the domain-specific knowledge.
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Table 10. Domain weights with parameter selection based on cancellation effect. DOGE-low[k] (DOGE-high[k]) denotes the k
modules with lowest (highest) cancellation effect are selected to compute W .

Domain DOGE-full DOGE-low10 DOGE-low30 DOGE-low50 DOGE-high30 DOGE-high10

Arxiv 0.08800 0.2071 0.1571 0.1094 0.07855 0.05635
Book 0.04500 0.04734 0.04601 0.04708 0.05304 0.05783
C4 0.2693 0.1139 0.1425 0.2209 0.2871 0.3406
CommonCrawl 0.2135 0.09111 0.1142 0.1658 0.2537 0.3316
Github 0.07027 0.1123 0.1005 0.07782 0.06943 0.04462
Stackexchange 0.1658 0.2061 0.1994 0.1726 0.1494 0.1050
Wikipedia 0.1482 0.2221 0.2402 0.2063 0.1088 0.06402

Table 11. Validation perplexity by domains with parameter selection based on cancellation effect. DOGE-low[k] (DOGE-high[k])
denotes the k modules with lowest (highest) cancellation effect are selected to compute W .

Domain Baseline (Uniform) DOGE-low10 DOGE-low30 DOGE-low50 DOGE-full DOGE-high30 DOGE-high10

Arxiv 8.672 8.106 8.447 8.735 8.954 9.092 9.413
Book 51.535 59.359 56.146 52.700 51.564 50.030 48.526
C4 56.424 61.225 57.866 53.652 49.937 48.422 45.789
CommonCrawl 52.661 57.891 54.500 49.487 47.297 45.696 42.990
Github 4.266 4.268 4.298 4.460 4.533 4.543 4.796
Stackexchange 9.555 9.075 9.102 9.336 9.365 9.494 9.982
Wikipedia 14.043 12.793 12.399 12.755 13.567 14.471 16.334

Average 18.566 18.848 18.442 18.151 18.066 18.067 18.359

Computation saved forW / 66.9% 42.8% 24.4% / 97.5% 99.9%
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Figure 12. Domain weights with parameter selection by cancellation effect.
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Figure 13. Validation perplexity by domain with parameter selection by cancellation effect.
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