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Abstract

In the field of medical imaging, deep neural networks such as Convolutional Neural Networks
(CNNs) and Vision Transformers (ViT) have demonstrated remarkable achievements. In
this paper, we focus on classifying thorax diseases based on radiographic images. The key
to the success of classification involves effectively extracting features from disease-impacted
areas in radiographic images. Although various neural network architectures and training
methods, including self-supervised learning through contrastive/restorative techniques, have
been utilized for such classification tasks, there remains a lack of systematic approaches to
mitigate the negative impacts of noise and non-disease elements in the images. To tackle
this issue, we introduce a new Low-Rank Feature Learning (LRFL) technique in this study,
which can be implemented in the training processes of different neural networks. The LRFL
approach is both empirically inspired by a Low Frequency Property (LFP) and theoretically
supported by our precise generalization bounds for neural networks using low-rank features.
Notably, LFP is prevalent not only in deep neural networks across general machine learning
applications but also across all thorax medical datasets examined in this study. In our
empirical evaluation, the LRFL method, when applied to a ViT or CNN that has been
pre-trained on unlabeled chest X-rays using Masked Autoencoders (MAE), outperforms
existing methods in terms of multi-class area under the receiver operating curve (mAUC)
and classification accuracy. The code is available at https://anonymous.4open.science/
r/medical_projects-BBFE/.

1 Introduction

Following the huge success of deep learning, recent studies have developed deep neural networks (DNNs)
for various tasks in medical imaging, such as disease classification and abnormality detection in chest X-
rays (Guendel et al., 2018; Xiao et al., 2023). Accurate clinical decision-making with DNNs heavily relies
on learning informative medical feature representation. Early works adopt convolutional neural networks
(CNNs) such as U-Net (Ronneberger et al., 2015) for representation learning on radiographic images. Re-
cently, Vision Transformers (ViTs) (Dosovitskiy et al., 2020) are also adopted to learn informative medical
representations from radiographic images (Xiao et al., 2023), utilizing their capabilities in capturing long-
range feature dependencies. Albeit the success of CNNs and ViTs in analyzing radiographic images, their
accuracy heavily relies on the quality and quantity of data and annotations (Feng et al., 2020). However,
the collection of large amounts of training data and high-quality annotations in the medical imaging do-
main is extremely hard (Xiao et al., 2023). To tackle this problem, self-supervised learning (SSL) has been
employed as a solution for acquiring representations from unlabeled data. Given the greater availability of
unlabeled medical images (Azizi et al., 2022), SSL proves to be an efficient approach for obtaining discrimi-
native representations. SSL employs a range of pretext tasks to acquire transferable representations without
manual annotations. Over recent years, numerous variations of self-supervised learning have surfaced using
contrastive learning (Chen et al., 2020c) and restorative learning (Xiao et al., 2023).

Building upon the advancements in deep learning, recent studies have pushed forward the development of
deep neural networks (DNNs) for applications in medical imaging, such as disease classification and the
detection of abnormalities in chest X-rays (Guendel et al., 2018; Xiao et al., 2023). The accuracy of clinical
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decisions made using DNNs primarily hinges on their capacity to learn robust medical feature representations.
Pioneering efforts utilized convolutional neural networks (CNNs), like U-Net (Ronneberger et al., 2015), to
foster representation learning from radiographic images. Lately, Vision Transformers (ViTs) (Dosovitskiy
et al., 2020) have also been employed to harvest informative medical representations from these images (Xiao
et al., 2023), leveraging their proficiency in handling long-range dependencies among features. While CNNs
and ViTs have demonstrated success in processing radiographic images, their effectiveness largely depends
on the quality and volume of the available data and annotations (Feng et al., 2020). However, collecting
a large dataset of high-quality annotations in medical domains is notably challenging (Xiao et al., 2023).
To overcome this issue, self-supervised learning (SSL) has been utilized to procure representations from
unlabeled data. Given the increased accessibility of unlabeled medical images (Azizi et al., 2022), SSL has
been established as an effective approach for learning discriminative representations. It incorporates a series
of pretext tasks designed to learn transferable features without relying on manual annotations. Over the
years, a myriad of self-supervised learning methods have emerged, utilizing contrastive learning (Chen et al.,
2020c) and restorative learning (Xiao et al., 2023) to enhance the learning process.

Challenges in the Current Literature for Disease Classification. In this paper, we focus on the
classification of thorax diseases. Clinical studies indicate that the disease-affected areas in radiographic
images are often subtle, showing localized variations, and these challenges are compounded by the pervasive
noise present in radiographic imaging as discussed in Section 2.1. It is vital to effectively and robustly
extract features from these disease areas for accurate disease classification on radiographic images. While
a variety of neural architectures like CNNs and ViTs, along with diverse training methods including self-
supervised learning using contrastive and restorative learning, have been applied to this task, there still
lacks a principled approach to effectively mitigate the impact of noise and non-disease background on the
classification of diseases in radiographic images.

Our Contributions. The contributions of this paper are presented as follows.

First, to address the challenges highlighted earlier, we introduce a novel Low-Rank Feature Learning (LRFL)
method, which is adaptable across the training of different neural networks for thorax disease classification.
The LRFL strategy utilizes low-rank features to classify diseases. The adoption of low-rank features is
inspired by a Low Frequency Property (LFP), as illustrated in Figure 1. LFP suggests that the low-rank
projection of the ground truth training labels captures most of the essential information. In fact, LFP
is commonly observed in various classification scenarios utilizing deep neural networks, such as (Rahaman
et al., 2019; Arora et al., 2019; Cao et al., 2021; Choraria et al., 2022). Inspired by LFP, LRFL integrates the
truncated nuclear norm (TNN) as a low-rank regularization term into the training loss of the neural network,
promoting the use of low-rank features for classification. Since the features relevant for classification are pre-
dominantly low-rank, the high-rank features, which carry most of the noise and background information, are
significantly reduced, thereby diminishing their impact on the learning process. Importantly and significantly
different from existing low-rank learning methods reviewed in Section 2.3, we introduce a novel separable ap-
proximation for the TNN, enabling the optimization of the LRFL training loss using standard SGD. Results
in Table 5 show that our LRFL method achieves 7×-10× acceleration in the training process compared to
the existing augmented Lagrange multiplier based method (Lee & Lam, 2016) for optimizing the TNN. The
appropriate feature ranks retained in the LRFL method across various datasets are determined through
an efficient cross-validation process, and the optimal ranks are detailed in Table 8 in Section A.2 of the
appendix. Extensive experimental results demonstrate that our LRFL method renders new record mAUC
on three standard thorax disease datasets, NIH-ChestX-ray (Wang et al., 2017), COVIDx (Pavlova et al.,
2022), and CheXpert (Irvin et al., 2019), surpassing the current state-of-the-art (SOTA) baselines (Xiao
et al., 2023) with the same pre-training setup.

Second, we provide a theoretical analysis showing a sharp generalization bound for the LRFL method, under-
scoring the substantial benefits of employing low-rank regularization within LRFL. Given these theoretical
insights and the versatility of LRFL across various neural networks, we anticipate broader applications of
LRFL in the classification of other diseases beyond thoracic ones, potentially enhancing classification tasks
across different radiographic imaging contexts. It is worthwhile to mention that the literature has stud-
ied low-rank learning using TNN resembling LRFL as to be reviewed in Section 2.3. Our LRFL method
builds upon these foundational principles by incorporating low-rank regularization into the training of neu-
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(a) NiH-ChestXray-14 (b) COVIDx (c) CheXpert

Figure 1: Eigen-projection (first row) and signal concentration ratio (second row) of Vit-Base/16 on NiH-
ChestXray-14, COVIDx, and CheXpert. To compute the eigen-projection, we first calculate the eigenvectors
U of the kernel gram matrix K ∈ Rn×n computed by a feature matrix F ∈ Rn×d, then the projection value is
computed by p = 1

C

∑C
c=1

∥∥U⊤Y(c)
∥∥2

2/
∥∥Y(c)

∥∥2
2 ∈ Rn, where C is the number of classes, and Y ∈ {0, 1}n×C

is the one-hot labels of all the training data, Y(c) is the c-th column of Y. The eigen-projection pr for
r ∈ [min(n, d)] reflects the amount of the signal projected onto the r-th eigenvector of K, and the signal
concentration ratio of a rank r reflects the proportion of signal projected onto the top r eigenvectors of K.
The signal concentration ratio for rank r is computed by

∥∥p(1:r)
∥∥

2, where p(1:r) contains the first r elements
of p. For example, by the rank r = 38, the signal concentration ratio of Y on NIH ChestX-ray14, COVIDx,
and CheXpert are 0.959, 0.964, and 0.962 respectively.

ral networks, aiming to improve thorax disease classification by reducing the adverse effects of noise and
irrelevant background information. Different from the conventional low-rank learning methods,
our approach introduces a separable approximation to the TNN, facilitating the optimization
process and enhancing the generalization ability of the model. Such improved generalization is
evidenced by the improved prediction accuracy of LRFL compared to the current state-of-the-art (SOTA)
methods in medical image analysis.

We also present ablation study results evidencing our contributions. In particular, in Section 4.5, we perform
ablation study evidencing the effectiveness of LRFL in reducing the adverse effects of background for thorax
disease classification. We also compare the eigenvalues of the kernels and the kernel complexity (Bartlett
et al., 2005; Koltchinskii, 2006; Mendelson, 2002) associated with the LRFL models and the corresponding
base models in Section A.3.1 of the appendix, and the lower kernel complexity of the LRFL models suggests
their lower generalization error (Bartlett et al., 2005; Koltchinskii, 2006; Mendelson, 2002).

Notations. We use bold letters to denote matrices or vectors. [A]i stands for the i-th row of a matrix A.
∥·∥p denotes the p-norm of a vector or a matrix. ∥·∥F is the Frobenius norm of a matrix. We use [m . . . n]
to indicate numbers between m and n inclusively, and [n] denotes the natural numbers between 1 and n
inclusively.
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2 Related Works

2.1 Radiographic Imaging

Radiographic imaging plays a fundamental role in medical image analysis (Li et al., 2023). Unlike photo-
graphic images which exhibit a variety of backgrounds (Deng et al., 2009), radiographic images maintain
consistent backgrounds due to standardized imaging protocols (Zhou, 2021; Li et al., 2022; Shamshad et al.,
2022; Xiao et al., 2023). The clinical details are dispersed throughout these images, with regions indicating
disease displaying localized variations, adding complexity to their analysis (Xiao et al., 2023; Suetens, 2017;
Zhou et al., 2022c). Noise is an inherent feature of radiographic images, arising from several sources such
as quantum fluctuations, electronic noise, scatter radiation, motion blur, and overlapping anatomical struc-
tures (Siewerdsen et al., 1997; 1998; Manson et al., 2019; Chandra & Verma, 2020). Studies in (Goyal et al.,
2018; Hussain & Hyeon Gu, 2024) show that inevitable noise exists in radiographic images and can affect
disease detection on them. Particularly, quantum noise, which results from statistical variations in the X-ray
photons detected, is often a major concern (Shung et al., 2012b;a; Suetens, 2017; Chandra & Verma, 2020).
This type of noise creates a grainy appearance that obscures fine details and reduces image contrast (Shung
et al., 2012b). The intensity of quantum noise varies with factors like the X-ray dose, the sensitivity of
the detector, and the thickness of the examined object. Although quantum noise is fundamentally modeled
as a Poisson process (Suetens, 2017; Chandra & Verma, 2020), at high photon counts, it approximates a
Gaussian distribution, which facilitates the application of various noise reduction strategies (Lee et al., 2018;
Ding et al., 2018).

2.2 Medical Image Analysis with Deep Learning

Deep learning has achieved impressive advancements in photographic image analysis (He et al., 2016; Lin
et al., 2017b;a), leading to a surge of interest in its application within the medical imaging domain due
to its capacity to learn discriminative representations. Convolutional Neural Networks (CNNs) such as U-
Net (Ronneberger et al., 2015; Falk et al., 2018; Zhou et al., 2018) have been trailblazers in the medical
domain, setting new benchmarks across a range of tasks including image classification (Shen & Gao, 2018;
Wang et al., 2019; Ma et al., 2020), object detection (Falk et al., 2019; Zhou et al., 2018; Yang & Yu, 2021),
and semantic segmentation (Yang & Yu, 2021; Yao et al., 2021; Zhou et al., 2018; Simpson et al., 2019;
Sourati et al., 2019). Additionally, methods like Recurrent Neural Networks (RNNs) (Zhou et al., 2019a;
Gao et al., 2019) and Reinforcement Learning (RL) techniques (Zhou et al., 2021; Xu et al., 2022; Hu et al.,
2023) have been explored for their potential. More recently, vision transformers, inspired by the efficacy
of transformers in natural language processing (Vaswani et al., 2017), have surpassed traditional CNNs in
various computer vision benchmarks (Yuan et al., 2021; Dosovitskiy et al., 2020; Liu et al., 2021; Zhu et al.,
2021; Cai et al., 2023). While there are ongoing discussions regarding the generalization, data requirements,
and computational efficiency of transformers versus CNNs (Liu et al., 2022b; Zhou et al., 2022b; Bao et al.,
2021; Xiao et al., 2022; Touvron et al., 2021; Ding et al., 2022; Bai et al., 2021; Mao et al., 2022; Zhang
et al., 2022; Zhou et al., 2022a; Dosovitskiy et al., 2020; Steiner et al., 2021; Tay et al., 2022; Paul & Chen,
2022), transformers have demonstrated significant promise in the field of medical image analysis (Xiao et al.,
2023; Chen et al., 2021a;b), benefiting from the self-attention mechanism that adeptly models long-range
dependencies unlike the local convolutions of CNNs (Li et al., 2023). With the limited availability of high-
quality annotations, self-supervised contrastive learning approaches (Chen et al., 2020c;b; Grill et al., 2020;
Caron et al., 2020; Xiao et al., 2023) have become popular for pre-training networks in medical imaging (Zhou,
2021; Xiao et al., 2023; Chen et al., 2021a). However, the high uniformity in radiographic images due to
standardized imaging protocols (Xiang et al., 2021; Haghighi et al., 2022) introduces unique challenges,
distinct from those in photographic imaging (He et al., 2020; Chen et al., 2020c). To combat this, recent
initiatives employ restorative strategies such as masked autoencoders (MAE) (Alex et al., 2017; Chen et al.,
2019; Zhou et al., 2019b; Zhu et al., 2020; Chen et al., 2020a; Xie et al., 2022; Xiao et al., 2023; He et al., 2022)
for network pre-training (Xiao et al., 2023). In line with recent developments, we also utilize MAE (Xiao
et al., 2023) to pre-train our networks prior to engaging in low-rank feature learning.
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2.3 Low-Rank Learning

Low-rank learning has garnered significant attention across various fields for its capacity to reduce dimension-
ality, suppress noise, and enhance feature extraction. Robust Principal Component Analysis (RPCA) (Can-
dès et al., 2011) serves as a cornerstone in this realm, efficiently separating data matrices into low-rank
and sparse components. This technique proves invaluable for vision-related tasks such as image denoising
and background subtraction. Building on this foundation, (Yang & Cohen, 2015) introduced singular value
pruning, a method to impose low-rank constraints on neural network layers, thereby boosting both compu-
tational efficiency and performance. The concept of TNN regularization (TNNR) has been further refined
by researchers like (Hu et al., 2013), who noted that TNNR more accurately approximates the rank function
by selectively minimizing singular values, essential for precise low-rank matrix recovery in noisy conditions.
Following that, some existing works (Lee & Lam, 2016; Hu et al., 2015; Zhang et al., 2017) propose to perform
low-rank feature learning by minimizing the TNN of the feature matrix. Additionally, the use of TNNR in
tensor completion has markedly improved the restoration of incomplete visual data, utilizing tensor singu-
lar value decomposition (t-SVD) (Liu et al., 2017; Zhang et al., 2020). More contemporary learning-based
methods, such as those developed by (Indyk et al., 2019), have optimized low-rank approximations through
targeted training, enhancing practical application outcomes. Furthermore, recent studies (Gao et al., 2021;
Lu et al., 2015; Ren et al., 2022) also demonstrate that learning low-rank features can significantly enhance
the robustness of deep neural networks against noise in input images.

3 Formulation

3.1 Pipeline for Thorax Disease Classification

We utilize the masked MAE technique (He et al., 2022) for the initial pre-training of both CNNs and ViTs
following(Xiao et al., 2023), and subsequently fine-tune the pre-trained networks with our Low-Rank Feature
Learning (LRFL). The full training pipeline of learning low-rank features for disease classification can be
described in three steps. In the first step, which is the pre-training step, we pre-train the networks using the
self-supervised restorative learning method, masked MAE (He et al., 2022), on a diverse pre-training dataset
that includes ImageNet-1k (Krizhevsky et al., 2012) and a collection of X-rays (0.5M) (Xiao et al., 2023).
During this phase, we randomly mask patches on input images and drive the networks to optimize pixel-wise
image reconstruction for the obscured patches. In the second step, which is the regular fine-tuning step,
we fine-tune the pre-trained networks employing cross-entropy loss aimed at image classification on specific
target datasets, namely NIH-ChestX-ray (Wang et al., 2017), COVIDx (Pavlova et al., 2022), and CheXpert
(Irvin et al., 2019). In the last step, which is the low-rank feature learning step, we fix the backbones of
the networks and fine-tune the linear classifier utilizing our novel LRFL method.

3.2 Problem Setup for LRFL

We now introduce the problem setup for LRFL with training details. Suppose the training data are given
as {xi, yi}n

i=1 where xi and yi ∈ RC are the i-th training data point and its corresponding class label vector
respectively, and C is the number of classes. Each element yi is binary with [yi]j = 1 indicating the j-th
disease is present in xi, otherwise [yi]j = 0 for j ∈ [C]. Suppose that the neural network trained by step two
of our pipeline in Section 3.1 generates a feature vector fW1(0)(x) ∈ Rd (the output of the layer preceding the
final linear/softmax layer of the network) for any input x, and fW′(·) is the feature extraction function with
W′ being the weights of the feature extraction backbone of the network. Let W1(0) denote the weights of
feature extraction backbone by step two of the pipeline. We then train a linear neural network by optimizing

min
W

L(W) = 1
n

n∑
i=1

KL
(
yi, σ

(
WfW1(0)(x)

))
(1)

for the low-rank feature learning step, where W ∈ RC×d is the weight matrix for the network. Here
σ̃ is an element-wise sigmoid function, σ̃(a) ∈ RC with [σ̃(a)]c = 1/(1 + exp(−ac)) for a ∈ RC and
c ∈ [C]. KL stands for the element-wise binary cross-entropy function. Given two nonnegative vectors
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u = [u1, . . . , ud] ∈ Rd, v = [v1, . . . , vd] ∈ Rd where ui ∈ {0, 1} for all i ∈ [d] and ∥v∥∞ ≤ 1, KL(u, v) :=∑d
j=1 −ui log vi − (1 − ui) log(1 − vi) for u, v ∈ Rd. We use Y =

[
y⊤

1 ; y⊤
2 ; . . . ; y⊤

n

]
∈ Rn×C to denote the

training label matrix by stacking the label vectors of all the training data. Let the mapping function of the
linear neural network used in the loss function L(W) be NNW(x) = WfW1(0)(x).

Motivation for Low-Rank Regularization The Low Frequency Property is illustrated in Figure 1, that
is, the low-rank projection of the ground truth class labels possesses the majority of the information of
the class labels. Inspired by this observation, our LRFL encourages the low-rank part of the feature to
participate in the classification process. In this way, the noise and non-disease areas in the high-rank part of
the feature are mostly not learned by LRFL so as to improve the classification accuracy. Using notations in
Section 3.2, the truncated nuclear norm (TNN) of F is ∥F∥T :=

∑d
i=T +1 σi where T ∈ [0, d] and we use the

convention that
∑d

i=d′ · = 0 for d′ > d. It will be shown by the generalization error bound to be discussed
in Section 3.3 that a smaller ∥F∥T renders a tighter upper bound for the generalization error of the linear
neural network used for LRFL. This observation gives a strong theoretical motivation for us to add the TNN
∥F∥T to the training loss L(W) so as to reduce ∥F∥T .

3.3 Generalization Bound for Low-Rank Feature Learning

We define the loss function ℓ(NNW(x), y) := ∥NNW(x) − y∥2
2, and the generalization error of the network NN

is the expected risk of the loss ℓ, which is denoted by LD(NNW) := E(x,y)∼D [ℓ(NNW(x), y)], with D being
the distribution of the data x and its class label y. The network NNW generates a feature F ∈ Rn×d of all
the training data with Fi = f⊤

W1(0)(xi) for i ∈ [n]. The kernel gram matrix for the feature F is Kn = 1
n FF⊤.

We let λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂r̄ > 0 be the eigenvalues of Kn where r̄ ≤ min {n, d} is the rank of Kn. Suppose
the Singular Value Decomposition of F is F = UΣV⊤, where U ∈ Rn×d has orthogonal columns, Σ ∈ Rd×d

is a diagonal matrix with diagonal elements being the singular values of F, and V ∈ Rd×d is an orthogonal
matrix. The columns of U and V are also called the left eigenvectors and the right eigenvectors of F
respectively. Let σ1 ≥ σ2 . . . ≥ σd be the singular values of F, and Ȳ = U(r̄)U(r̄)⊤Y be the projection of the
training label matrix Y onto the subspace spanned by the top-r̄ left eigenvectors of F, where U(r̄) ∈ Rn×r̄ is
formed by the top r̄ eigenvectors in U. Then we have the following theorem giving the sharp generalization
error bound for the linear neural network NNW in (1). The proof this theorem is deferred to Section B of
the appendix.

Theorem 3.1. For every x > 0, with probability at least 1 − exp(−x), after the t-th iteration of gradient
descent for all t ≥ 1, we have

LD(NNW) ≤ c1
∥∥Y − Ȳ

∥∥2
F + c1

(
1 − ηλ̂r

)2t

∥Y∥2
F + c2 min

h∈[0,r]

h

n
+

√√√√ 1
n

r∑
i=h+1

λ̂i

+ c3x

n
, (2)

where c1, c2, c3 are positive constants.

Remark 3.2. The RHS of (2) is the generalization error bound for the linear neural network used in LRFL
as step three of the pipeline in Section 3.1. Moreover, let σ1 ≥ σ2 . . . ≥ σd be the singular values of F. Due

to the fact that
√

1
n

r∑
i=h+1

λ̂i ≤ 1
n

r∑
i=h+1

σi, it follows by (2) that

LD(NNW) ≤ c1
∥∥Y − Ȳ

∥∥2
F + c1

(
1 − ηλ̂r

)2t

∥Y∥2
F + c2

(
h

n
+ 1

n

d∑
i=T +1

σi

)
+ c3x

n
, (3)

which holds for all T ∈ [0, d]. (3) motivates the reduction of the TNN of the feature F, as detailed in the
next subsection.
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3.4 Optimization of the TNN in SGD

The TNN ∥F∥T is not separable, so the training loss with ∥F∥T cannot be directly optimized by the standard
SGD. To address this problem, we propose an approximation ∥F∥T to ∥F∥T which is separable so that ∥F∥T

can be optimized by standard SGD.

First, we note that if U, V are known, then Σ = U⊤FV. If we have an approximation U to U and an
approximation V to V, then Σ can be approximated by Σ = U⊤FV. As a result, the approximation

∥F∥T to the TNN is ∥F∥T =
n∑

i=1

(
d∑

s=T +1

d∑
k=1

U⊤
siFikVks

)
. Due to the above discussions, the loss function

of LRFL with the approximate TNN ∥F∥T is LLRFL(W) = 1
m

∑
vi∈VL

KL (yi, [σ (FW)]i) + η∥F∥T , which is
separable, so that it can be trained by the standard SGD. η > 0 is the weighting parameter for the TNN.
Because LLRFL(W) is to be optimized by the standard SGD, we have the loss function of LRFL for the j-th
minibatch Bj ⊆ [n] as

Lj(W) = 1
|Bj |

∑
i∈Bj

KL (yi, [σ (FW)]i) + η

|Bj |
∑
i∈Bj

(
d∑

s=T +1

d∑
k=1

U⊤
siFikVks

)
. (4)

The approximation U and V can be computed as the left and right eigenvectors of the feature F computed
at earlier epochs. In order to save computation and avoiding performing SVD for F at every epoch, we
propose to update U and V only after certain epochs. Algorithm 1 describes the training algorithm for the
neural network trained with LRFL, which uses the standard SGD to optimize the loss function LLRFL(W),
as step three of our pipeline in Section 3.1. Before the first epoch, we compute U and V as the left and right
eigenvectors of the feature F at the initialization of the neural network. After every t0 epochs for t0 being
a constant integer, we update U and V as the left and right eigenvectors of the feature F produced by the
neural network right after t0-th epoch, with t0 being a constant integer.

Algorithm 1 Training Algorithm with the Approximate TNN by SGD
1: Initialize the weights W1 by W1 = W1(0), and initialize W2 randomly
2: Compute feature F by the neural network, and its SVD as F = UΣV
3: Update U = U, V = V
4: for t = 1, 2, . . . , tmax do
5: if t ≡ 0 (mod t0) then
6: Compute feature F of the neural network, and its SVD F = UΣV.
7: Update U = U, V = V
8: end if
9: for b = 1, 2, . . . , B do

10: Update W by applying gradient descent on batch Bj ⊆ [n] using the gradient of the loss Lj in Eq.(4)
11: end for
12: end for
13: return The trained weights W of the network

4 Experimental Results

In this section, we conduct experiments on medical datasets to demonstrate the effectiveness of the proposed
LRFL method. The experiments section is organized as follows. In Section 4.1, we discuss our experimental
setup and implementation details. In Sections 4.2, Section 4.3, and Section 4.4, we evaluate LRFL models for
thorax disease classification on CheXpert, NIH ChestX-ray 14, and COVIDx, respectively. Comprehensive
ablation studies on LRFL are performed in Section 4.5. Additional experimental results are deferred to
Section A of the appendix. In Section A.1, we evaluate the training time of LRFL models compared with
the baseline models. In Section A.2, we show the cross-validation results of hyper-parameters for different
models and different datasets. Additional ablation study results are presented in Section A.3 of the appendix.

7



Under review as submission to TMLR

4.1 Implementation Details

In this section, we assess the effectiveness of the proposed Low-Rank Feature Learning (LRFL) method for
classifying thoracic diseases. We employ networks that were previously trained on ImageNet (Russakovsky
et al., 2015) or chest X-rays detailed in (Xiao et al., 2023) using MAE, a self-supervised strategy that involves
reconstructing absent pixels from masked regions of the input images. When ImageNet-1k and X-rays (0.5M)
are used for the pre-training of models in our paper, all the images will be reshaped to 224×224×3 following
the settings in (Xiao et al., 2023). We subsequently fine-tune these pre-trained networks employing low-rank
regularization on three publicly available X-ray datasets: (1) NIH ChestX-ray14 (Wang et al., 2017), (2)
Stanford CheXpert (Irvin et al., 2019), and (3) COVIDx (Pavlova et al., 2022). Fine-tuning involves using
the ADAM optimizer, with a batch size set at 1024 for all datasets. The fine-tuning process consists of two
phases. Initially, we fine-tune the entire network for 75 epochs as per the protocols described in (Xiao et al.,
2023). This is followed by an additional 75 epochs of fine-tuning that incorporates low-rank regularization.
The learning rate follows a cosine schedule, with the initial rate, denoted by µ, determined through cross-
validation for each model and dataset combination. Standard values for momentum and weight decay are
maintained at 0.9 and 0, respectively. We also implement typical data augmentation techniques, which
include random-resize cropping, random rotation, and random horizontal flipping. To ensure a balanced
evaluation, all baseline models are also subjected to an additional 150 epochs of fine-tuning, which typically
results in negligible improvements. A thorough analysis of this extended fine-tuning phase is provided in
Table 12 in Section A.3.3 of the appendix. Our evaluation of the LRFL approach spans both CNN and
vision transformer architectures, including models like ResNet-50, DenseNet, ViT-S, and ViT-B. We denote
our LRFL models as ’X-LR’, where ’X’ represents the base model such as ResNet-50.

Tuning the T , η, and µ by Cross-Validation. We search for the optimal values of feature rank T ,
the weighting parameter for the TNN η, and the learning rate µ on each dataset. Let T = ⌈γ min(n, d)⌉,
where γ is the rank ratio. The selection process for γ and η involves 5-fold cross-validation, utilizing 20%
of the training data for each dataset. We test γ values from the set {0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2}
and η from {5 × 10−4, 1 × 10−3, 2.5 × 10−3, 5 × 10−3, 1 × 10−2}. Additionally, µ is evaluated from {5 ×
10−4, 2.5 × 10−4, 1 × 10−4, 5 × 10−5, 2.5 × 10−5, 1 × 10−5}. We determine the optimal values for η, γ, and
µ with a sequential greedy search strategy. Initially, we fix η and µ to ascertain the optimal γ through
cross-validation. With the best γ identified, we then keep µ constant and search for the ideal η. Finally,
having established the optimal values for both γ and η, we adjust to find the best µ through cross-validation.
The selected optimal values for η, γ, and µ confirmed through cross-validation are detailed in Table 8 in
Section A.2 of the appendix. Additionally, Table 9 in Section A.2 the appendix shows the time of the entire
cross-validation process, affirming its efficiency and minimal impact on the overall computational burden of
the training procedure.

4.2 Stanford CheXpert

Experimental setup. The CheXpert dataset (Irvin et al., 2019) encompasses a collection of 224,316 chest
X-rays obtained from 65,240 patients, with 191,028 of these images designated for training purposes. Each
X-ray in the dataset is accompanied by radiology reports that identify the presence of 14 distinct diseases.
Following the protocol in (Xiao et al., 2023), all images are uniformly resized to a resolution of 224 × 224.
Furthermore, we calculate and report the mean Area Under the Curve (AUC) for five specific disease classes
and undertake a thorough comparison with state-of-the-art baseline methods to evaluate the effectiveness of
our approach.

Results and analysis. Table 1 presents the performance comparisons between the baseline models and the
models enhanced with LRFL. Throughout this section, we use the postfix “-LR” to indicate a neural network
trained with our LRFL. For instance, we employ a Vision Transformer (ViT-B) model pre-trained on 489, 090
chest X-rays and a ViT-S model pre-trained on 266, 340 chest X-rays using Masked Autoencoders (MAE)
(Xiao et al., 2023). After fine-tuning the ViT-B network on the CheXpert dataset, it records a mean AUC of
89.3%. Notably, the ViT-B-LR, trained with our LRFL method, attains state-of-the-art performance with
an mAUC of 89.8%, representing an enhancement of 0.5% over the standard ViT-B. Similarly, the ViT-S-LR
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model shows a 0.4% improvement in mAUC over the original ViT-S model, underlining the efficacy of the
LRFL approach.

Table 1: Performance comparisons between
LRFL models and SOTA baselines on CheXpert,
where the second best performance is underlined.

Method Architecture Rank mAUC (%)
Allaouzi et al.(Allaouzi & Ahmed, 2019)

DN121

- 82.8
Irvin et al.(Irvin et al., 2019) - 88.9

Pham et al.(Pham et al., 2021) - 89.4
Haghighi et al.(Haghighi et al., 2022) - 87.6

Kang et al.(Kang et al., 2021) - 89.0
DN121 (MoCo v2) (Xiao et al., 2023) - 88.7

DN121 (Xiao et al., 2023) - 88.7
ViT-S (Xiao et al., 2023) ViT-S/16 - 89.2

ViT-S-LR (Ours) ViT-S/16 0.05r 89.6
ViT-B (Xiao et al., 2023) ViT-B/16 - 89.3

ViT-B-LR (Ours) ViT-B/16 0.05r 89.8

Table 2: Performance comparisons on five diseases in NIH
ChestXray-14 (in AUC).

Models Atelectasis Mass Nodule Pneumonia Pneumothorax
ResNet-50 77.6 83.1 77.5 72.7 85.5

ResNet-50-LR 78.1 83.7 78.4 73.4 86.4
DenseNet-121 77.9 83.6 77.4 73.1 85.7

DenseNet-121-LR 78.5 84.0 78.3 74.3 86.7
ViT-S 78.2 82.5 74.2 74.1 86.7

ViT-S-LR 78.5 82.9 74.7 74.7 87.3
ViT-B 78.7 83.6 75.9 74.3 87.6

ViT-B-LR 79.4 83.8 76.8 74.9 89.1

4.3 NIH ChestX-ray14

Experimental setup. NIH ChestX-ray14 (Wang et al., 2017) consists of 112, 120 X-rays collected from
30, 805 unique patients. Each X-ray can have up to 14 associated labels, with the possibility of multiple
labels per image. Following the official data split in (Wang et al., 2017), we use 75, 312 images for training
and 25, 596 images for testing. The raw images from the dataset are sized 1024 × 1024. In our experiments,
we scale down the input images to 224 × 224. We report the mean AUC (Area Under the Curve) for 14
distinct classes and conduct a comprehensive comparison with 18 widely recognized and influential baseline
methods.

Table 3: Performance comparisons between LRFL models and SOTA baselines on NIH ChestX-ray14. RN,
DN, and SwinT represent ResNet, DenseNet, and Swin Transformer.

Method Architecture Pre-training Rank mAUC
Wang et al. (Wang et al., 2017) RN50

ImageNet-1K

- 74.5
Li et al.(Li et al., 2018) RN50 - 75.5

Yao et al. (Yao et al., 2018) RN&DN - 76.1
Wang et al.(Wang et al., 2019) R152 - 78.8

Ma et al.(Ma et al., 2019) R101 - 79.4
Tang et al.(Tang et al., 2018) RN50 - 80.3

Baltruschat et al.(Baltruschat et al., 2019) RN50 - 80.6
Guendel et al.(Guendel et al., 2018) DN121 - 80.7
Guan et al.(Guan & Huang, 2018) DN121 - 81.6

Seyyed et al.(Seyyed-Kalantari et al., 2020) DN121 - 81.2
Ma et al.(Ma et al., 2020) DN121(×2) - 81.7

Hermoza et al.(Hermoza et al., 2020) DN121 - 82.1
Kim et al.(Kim et al., 2021) DN121 - 82.2

Haghighi et al.(Haghighi et al., 2022) DN121 - 81.7
Liu et al.(Liu et al., 2022a) DN121 - 81.8

Taslimi et al.(Taslimi et al., 2022) SwinT - 81.0
MoCo v2 (Xiao et al., 2023) DN121 X-rays (0.3M) - 80.6

MAE (Xiao et al., 2023) DN121 - 81.2
RN-50 (Xiao et al., 2023) RN50 ImageNet-1K - 81.8

RN-50-LR (Ours) RN50 0.05r 82.2
DN-121 (Xiao et al., 2023) DN121 ImageNet-1K - 82.0

DN-121-LR (Ours) DN121 0.05r 82.4
ViT-S (Xiao et al., 2023) ViT-S/16 X-rays (0.3M) - 82.3

ViT-S-LR (Ours) ViT-S/16 0.05r 82.7
ViT-B (Xiao et al., 2023) ViT-B/16 X-rays (0.5M) - 83.0

ViT-B-LR (Ours) ViT-B/16 0.05r 83.4

Results and Analysis. Table 3 presents the performance comparisons between the LRFL models and SOTA
baselines on the NIH ChestX-ray14 dataset. For example, we use ViT-B model pre-trained on 266, 340 chest
X-rays with Masked Autoencoders (MAE) (Xiao et al., 2023). It is observed that all LRFL models achieve
improvements in mean AUC compared to the corresponding base models. For instance, the pre-trained
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ViT-B network is fine-tuned on the NIH ChestX-ray14 dataset and achieves a mean AUC of 83.0. The
corresponding LRFL model, denoted as ViT-B-LR, achieves a mean AUC of 83.4. ViT-S-LR improves its
base model, ViT-S, by a mean AUC of 0.4%. Similar improvements are observed for CNN-based models
as well. For example, ResNet-50-LR improves its base model by a mean AUC of 0.4%. It is important to
highlight that the research community dedicated four years to enhancing the mAUC score for CNN-type
architectures, advancing it from 74.5% to 82.2%, which was primarily attributed to the challenging nature
of the classification with the NIH ChestX-ray14 dataset. In addition, we also show the AUC for five diseases
in the NIH ChestX-ray14 dataset in Table 2, where LRFL models perform much better than corresponding
base models. For example, the ViT-B-LR model achieves a AUC of 89.1% on Pneumothorax with a 1.5%
improvement compared to the ViT-B. These improvements underscore the effectiveness of LRFL in enhancing
disease detection capabilities.

4.4 COVIDx

Experimental setup. The COVIDx dataset (Version 9A) (Pavlova et al., 2022) consists of 30,386 chest
X-rays sourced from 17,026 unique patients. Consistent with prior studies (Pavlova et al., 2022; Xiao et al.,
2023), we partition this dataset into 29,986 images for training across four distinct classes, and 400 images
for testing, which are categorized into three classes. For objective evaluations and to ensure fair comparisons
with previous methodologies, we report the Top-1 accuracy for the test set, which encompasses the three
classes.

Results and Analysis. Table 4 compares the performance of SOTA transformer-based models and the
LRFL models on the COVIDx dataset. Similar to Section 4.2, the base Vision Transformers (ViTs), namely
ViT-S and ViT-B, are initially pre-trained on chest X-rays using Masked Autoencoders (MAE). Subsequently,
these pre-trained models are fine-tuned on the COVIDx dataset. Results in Table 4 show that both ViT-
S-LR and ViT-B-LR models surpass their respective base models. Specifically, ViT-S-LR and ViT-B-LR
demonstrate an improvement in accuracy by 1.6% and 1.7%, respectively. Table 4 also presents a performance
comparison between our LRFL models and other leading models on the COVIDx dataset. Notably, the
LRFL models significantly outperform CNN-based models such as DenseNet-121. For instance, the ViT-B-
LR model achieves a new SOTA top-1 accuracy of 97% at an input resolution of 224×224. This represents
a substantial increase of 1.7% over the previous SOTA performance as reported in (Xiao et al., 2023),
highlighting the effectiveness of integrating LRFL into transformer-based models for medical image analysis
on the COVIDx dataset.

Table 4: Performance comparisons between LRFL models and SOTA baselines on COVIDx (in accuracy).
DN represents DenseNet.

Method Architecture Rank Covid-19 Sensitivity Accuracy
COVIDNet-CXR Small (Wang et al., 2020) - - 87.1 92.6
COVIDNet-CXR Large (Wang et al., 2020) - - 96.8 94.4

MoCo v2 (Xiao et al., 2023) DN121 - 94.5 94.0
DN121 (Xiao et al., 2023) DN121 - 97.0 93.5
ViT-S (Xiao et al., 2023) ViT-S/16 - 94.5 95.2

ViT-S-LR (Ours) ViT-S/16 0.01r 97.5 96.8
ViT-B (Xiao et al., 2023) ViT-B/16 - 95.5 95.3

ViT-B-LR (Ours) ViT-B/16 0.003r 98.5 97.0

4.5 Ablation Study

Efficiency Analysis of the Separable Approximation to the TNN. To verify the efficiency of the
novel training algorithm of LRFL with the separable approximation to the TNN in Algorithm 1, we compare
the training time of our LRFL models with an existing method for optimizing the TNN, TNNM-ALM (Lee
& Lam, 2016), on NIH ChestX-ray14, CheXpert, and COVIDx. The results in Table 5 show that our
LRFL method achieves 7×-10× acceleration in the training process on the three datasets, demonstrating
the effectiveness and efficiency of the separable approximation to the TNN proposed in our paper.
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Table 5: Training time (minues) comparisons on NIH ChestX-ray14, CheXpert, and COVIDx.

Methods Training Time (minutes)
NIH ChestX-ray14 CheXpert COVIDx

ViT-S 54 90 23
ViT-S (TNM-ALM) (Lee & Lam, 2016) 804 854 342

ViT-S-LR 98 117 38
ViT-B 72 162 32

ViT-B (TNM-ALM) (Lee & Lam, 2016) 915 1461 418
ViT-B-LR 113 185 45
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Figure 2: Grad-CAM (Selvaraju et al., 2017) visualization results on NIH ChestX-ray 14 are shown. The
figures in the first row depict the visualization results of ViT-Base, while the figures in the second row show
the visualization results of Low-Rank ViT-Base. The ground-truth bounding box for each disease is indicated
in green. Additional Robust Grad-CAM (Selvaraju et al., 2017) visualization results of Low-Rank ViT-Base
and Low-Rank ResNet-50 can be found in Figure 3 and Figure 4 in the appendix.
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Figure 3: Robust Grad-CAM (Selvaraju et al., 2017) visualization results on NIH ChestX-ray 14. The
figures in the first row are the visualization results of ViT-Base, and the figures in the second row are the
visualization results of Low-Rank ViT-Base.

Ablation Study on LRFL in Reducing the Adverse Effects of Background. To demonstrate that
LRFL models are more robust to the background than the baselines, we perform an ablation study on LRFL
to reduce the adverse effects of background. In this study, we create a mask for the disease area for each
original image, then decompose the original image, which has a bounding box for the disease, into a disease
image and a background image. Both the disease image and the background image are of the same size as
the original image. The background image has grayscale 0 in the masked disease area, and the disease image
has grayscale 0 in the non-disease area. We feed the three images, which are the original image, the disease
image, and the background image, to an LRFL model and obtain the original features, disease features,
and background features for the LRFL model, respectively. We also feed these three images to a baseline
model and obtain the original features, disease features, and background features for the baseline model.
For each original image, we measure the distance between the disease features and original features using
KL-divergence on the softmaxed features for the LRFL model and the baseline model. We then compute
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Figure 4: Robust Grad-CAM (Selvaraju et al., 2017) visualization results on NIH ChestX-ray 14. The
figures in the first row are the visualization results of ViT-Base, and the figures in the second row are the
visualization results of Low-Rank ResNet-50.

the average feature distance for each model, which is the average distance between the disease features and
original features over the images with a ground-truth bounding box for the disease in the NIH ChestX-ray
14. The results in Table 6 indicate that the original features are closer to the disease features by the LRFL
models compared to the baseline models, evidencing the effectiveness of the LRFL models in reducing the
adverse effect of the background area. We also remark that since only the low-rank part of the original
features participates in the classification process, the noise and non-disease areas in the high-rank part of the
features are mostly not learned by LRFL, and in this manner, LRFL is robust to both noise and background.

Table 6: Average feature distance between original features and disease features of images with a ground-
truth bounding box for the disease in the NIH ChestX-ray 14.

Methods mAUC (%) Average Feature Distance
ViT-S 82.3 0.7030

ViT-S-LR 82.7 0.6352
ViT-B 83.0 0.5642

ViT-B-LR 83.4 0.6628

Grad-CAM Visualization. To study how LRFL improves the performance of base models in disease
detection, we use the Grad-CAM (Selvaraju et al., 2017) to visualize the parts in the input images that are
responsible for the predictions of the base models and low-rank models. Grad-CAM (Selvaraju et al., 2017)
visualization results of Low-Rank ViT-Base are illustrated in Figure 2. Robust Grad-CAM (Selvaraju et al.,
2017) visualization results of Low-Rank ViT-Base and Low-Rank ResNet-50 are illustrated in Figure 3 and
Figure 4. All Grad-CAM visualization results illustrate that our LRFL models usually focus more on the
areas inside the bounding box associated with the labeled disease. In contrast, the base models also focus
on the areas outside the bounding box or even areas in the background. Additional Grad-CAM visualization
results can be found in Figure 6 in Section A.3.4 of the appendix.

In addition, we compare the kernel eigenvalues and kernel complexities LRFL models and base models in
Table 10 and Figure 5 in Section A.3.1 of the appendix. We perform an ablation study on LRFL models
in scenarios with limited data availability in Table 11 in Section A.3.2 of the appendix. In Table 12 in
Section A.3.3 of the appendix, we compare LRFL with other fine-tuning strategies.

5 Conclusion

In this study, we propose a novel Low-Rank Feature Learning (LRFL) method designed for the classification
of thorax diseases. LRFL aims to mitigate the negative impacts of noise and non-disease areas in radiographic
images, enhancing disease classification accuracy. The LRFL method is universally adaptable across various
neural network architectures, drawing empirical support from the low frequency property and theoretical
support from a sharp generalization bound developed for neural networks utilizing low-rank features. Our
comprehensive experimental evaluations across several thorax disease datasets including NIH-ChestX-ray,
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COVIDx, and CheXpert—highlight robust performance improvements of LRFL in terms of both multi-class
Area Under the Curve (mAUC) and overall classification accuracy.
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A More Experimental Results

A.1 Training Time Analysis

We evaluate the training time of LRFL models and compare them with the training time of the baseline
models. The evaluation of LRFL models and baseline models is performed on 4 Nvidia A100 GPUs. It is
observed from the results in Table 7 that the training time of LRFL models is comparable to the training time
of LRFL models. The main computational overhead of LRFL models is the computation of the eigenvectors
of the feature matrix F and the TNN. However, the computation overhead is largely reduced by avoiding
performing SVD for the feature matrix F at every epoch, benefiting from the approximation algorithm we
designed in Algorithm 1.

Table 7: Training time comparison between LRFL models and baseline models on NIH ChestX-ray14,
CheXpert, and CovidX. All the results are reported in minutes.

Datasets NIH ChestX-ray14 CheXpert CovidX
ViT-S 54 90 23

ViT-S-LR 98 117 38
ViT-B 72 162 32

ViT-B-LR 113 185 45

A.2 Cross-Validation Results

The optimal values of the rank ratio γ, weighting parameter η, and learning rate µ decided by cross-validation
for different models on different datasets are shown in Table 8.

In addition, the time for the entire cross-validation process in searching for the optimal values of the rank
ratio γ, weighting parameter η, and learning rate µ are shown in Table 9. The evaluation is performed on
4 Nvidia A100 GPUs. As we use only 20% of the training data for cross-validation and train the models
with each option for only 40% of the entire number of training epochs, the entire cross-validation process is
efficient and does not largely increase the computation cost of the training process.
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Table 8: Optimal values of rank ratio γ, weighting parameter η, and learning rate µ decided by cross-
validation for different models on different datasets.

Models Parameters NIH-ChestX-ray COVIDx CheXpert

ViT-S
γ 0.05 0.01 0.05
η 5 × 10−4 1 × 10−3 1 × 10−3

µ 5 × 10−5 2.5 × 10−5 1 × 10−5

ViT-B
γ 0.05 0.003 0.05
η 5 × 10−4 1 × 10−3 1 × 10−3

µ 5 × 10−5 2.5 × 10−5 2.5 × 10−5

Table 9: Time Spent for cross-validation on NIH ChestX-ray14, CheXpert, and CovidX. All the results are
reported in minutes.

Datasets NIH ChestX-ray14 CheXpert CovidX
ViT-S-LR 149 178 57
ViT-B-LR 172 285 69

A.3 Additional Ablation Study

A.3.1 Study on the Kernel Eigenvalues and Kernel Complexity

Kernel complexity (Bartlett et al., 2005; Koltchinskii, 2006; Mendelson, 2002) is a widely-studied complexity
measure for the generalization capability of kernel-based learning algorithms. In this section, we compare
the eigenvalues of the kernel and kernel complexity of ViT-B-LR and ViT-B on ChestX-ray14, COVIDx,
and CheXpert. Given the representations of all the training images F learned by ViT-B or ViT-B-LR, the
kernel complexity of the gram matrix Kn = 1

n FF⊤, which is also defined in Section 3.3, can be computed
by

Kernel Complexity of Kn = min
h∈[0,n]

h

n
+

√√√√√ n∑
i=h+1

λ̂i

n

 . (5)

The eigenvalues of ViT-B-LR and ViT-B on ChestX-ray14, COVIDx, and CheXpert are illustrated in Fig-
ure 5. The computed kernel complexities of ViT-B-LR and ViT-B on ChestX-ray14, COVIDx, and CheXpert
are shown in Table 10. It is observed that LRFL significantly reduces the kernel complexity of the image
representations, which suggests that the LRFL models have lower generalization errors (Bartlett et al., 2005;
Koltchinskii, 2006; Mendelson, 2002).

Table 10: Kernel complexity comparison between ViT-B-LR and ViT-B on ChestX-ray14, COVIDx, and
CheXpert.

Method ChestX-ray14 COVIDx CheXpert
Kernel Complexity h Kernel Complexity h Kernel Complexity h

ViT-B 0.0101 465 0.0207 303 0.0040 766
ViT-B-LR 0.0076 262 0.0155 187 0.0038 389

A.3.2 Experiments in Small Data Regimes

Experimental setup. We explore the effectiveness of low-rank features learned in scenarios with limited
data availability, which is particularly significant given the challenges in acquiring high-quality data annota-
tions in the medical imaging domain. We expect that LRFL models can demonstrate improved performance
in such situations due to our theoretical guarantee of the better generalization capability of LRFL. We ran-
domly select 5%, 10%, 15%, 20%, 25%, and 50% of the training data from the NIH ChestX-ray14 dataset
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Figure 5: Eigenvalues comparison between ViT-B-LR and ViT-B on ChestX-ray14, COVIDx, and CheXpert.

and then fine-tune the base model using its default training configurations. We then train LRFL models for
20 epochs.

Results and analysis. As depicted in Table 11, our LRFL models consistently outperform their corre-
sponding base methods across all data subsets, including 5%, 10%, 15%, 20%, 25%, and 50% on the NIH
ChestX-ray14 dataset. Notably, the average improvement in performance is more substantial for the 5%
data subset compared to the remaining subsets. For instance, ViT-B-LR exhibits a remarkable improvement
of 1.05% for the 5% data subset, which significantly surpasses the improvements of 0.15%, 0.06%, 0.06%,
0.09%, and 0.11% observed for the 10%, 15%, 20%, 25%, and 50% training data subsets, respectively. These
findings are consistent with our expectations, showcasing the strong generalization capability of LRFL mod-
els in mitigating over-fitting issues with limited data. In conclusion, our findings in the low-data regimes
demonstrate the superiority of our LRFL in delivering more generalizable and robust representations for
tasks with limited data availability, thereby contributing to the reduction of annotation costs.

Table 11: The table evaluates the performance of various models under low data regimes on the NIH ChestX-
rays14 dataset. Models trained with low-rank features effectively combat overfitting in scenarios with limited
data availability, thereby enhancing the quality of representations for downstream tasks.

Pre-training Dataset Model

Label Fractions
5% 10% 15% 20% 25% 50%

Rank mAUC Rank mAUC Rank mAUC Rank mAUC Rank mAUC Rank mAUC

X-rays(0.3M) ViT-S - 61.22 - 73.19 - 76.99 - 78.65 - 79.57 - 81.20
ViT-S-LR(Ours) 0.05r 61.81 0.2r 73.84 0.04r 77.21 0.04r 78.86 0.05r 79.65 0.05r 81.35

X-rays(0.5M) ViT-B - 70.71 - 78.67 - 79.99 - 80.59 - 81.13 - 82.19
ViT-B-LR (Ours) 0.05r 71.76 0.2r 78.82 0.2r 80.05 0.1r 80.65 0.05r 81.22 0.05r 82.30

A.3.3 Exploring Fine-tuning Strategies

Our LRFL method learns low-rank features by leveraging models pre-trained on the target dataset. In
this section, we conduct an ablation study to investigate the significance of low-rank regularization in the
fine-tuning process. A detailed comparative analysis of low-rank regularization against several performance-
enhancing techniques, including mix-up (Zhang et al., 2018), label smoothing (Müller et al., 2019), and EMA
(Wightman, 2019), is presented in Table 12. We performed an experiment by fine-tuning without low-rank
regularization and other tricks, which serves as a baseline for studying the effects of fine-tuning strategies.
All models underwent equivalent training epochs to ensure a fair comparison. The results demonstrate that
LRFL models achieve the highest performance improvement compared to all other approaches. Notably,
unlike natural images, applying mix-up, label smoothing, or EMA to the NIH ChestX-ray dataset leads
to performance drops (see Table 12). Fine-tuning models pre-trained on the target dataset without low-
rank regularization does not lead to performance improvements compared to fine-tuning with low-rank
regularization. For example, the original ViT-S (Xiao et al., 2023) achieves a mean AUC of 82.27% on NIH
Chest Xray-14. Fine-tuning this model for 20 epochs without low-rank regularization leads to a mean AUC
of 82.26%, whereas fine-tuning with low-rank regularization for 75 epochs results in a mean AUC of 83.40%.
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We observe similar results for all models based on low-rank features, demonstrating the significance of LRFL.

Table 12: Comparison of fine-tuning strategies on NIH ChestX-ray14.

Model mAUC
Base Model Fine-tuning Mix-up (Zhang et al., 2018) Label Smoothing (Müller et al., 2019) EMA (Wightman, 2019) LRFL

ViT-S 82.27 82.26 82.09 82.24 82.26 82.70
ViT-B 83.00 83.00 82.37 82.99 82.98 83.40

A.3.4 Additional Grad-CAM Visualization Results

More grad-cam visualization results of Low-Rank ViT-Base on NIH ChestX-ray 14 are illustrated in Figure 6.
We visualize the parts in the input images that are responsible for the predictions of the ground-truth disease
label for base models and low-rank models. The visualization results show that our low-rank models usually
focus more on the areas inside the bounding box associated with the labeled disease. In contrast, the base
models also focus on the areas outside the bounding box or even areas in the background.
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Figure 6: Grad-CAM visualization results on NIH ChestX-ray 14. The figures in the first row are the
visualization results of ViT-Base, and the figures in the second row are the visualization results of Low-Rank
ViT-Base.

B Proofs

Proof of Theorem 3.1. It can be verified that at the t-th iteration of gradient descent for t ≥ 1, we have

W(t) = W(t−1) − η

n
F⊤
(

FW(t−1) − Y
)

. (6)

It follows by (6) that

FW(t) = FW(t−1) − ηKn

(
FW(t−1) − Y

)
= FW(t−1) − ηKn

(
FW(t−1) − Ȳ

)
, (7)

where Kn = 1/n · FF⊤, Ȳ = U(r̄)U(r̄)⊤Y.

We define F(W, t) := FW(t), then it follows by (7) that

F(W, t) − Ȳ = (In − ηKn)
(
F(W, t) − Ȳ

)
,

which indicates that

F(W, t) − Ȳ = (In − ηKn)t (F(W, 0) − Ȳ
)

= − (In − ηKn)t Ȳ,
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and

∥F(W, t) − Y∥F ≤
∥∥Y − Ȳ

∥∥
F +

(
1 − ηλ̂r

)t ∥∥Ȳ
∥∥

F

≤
∥∥Y − Ȳ

∥∥
F +

(
1 − ηλ̂r

)t

∥Y∥F. (8)

As a result of (8), by using the proof of (Bartlett et al., 2005, Theorem 3.3,Corollary 6.7), for every x > 0,
with probability at least 1 − exp(−x),

LD(NNW) ≤ c1
∥∥Y − Ȳ

∥∥2
F + c1

(
1 − ηλ̂r

)2t

∥Y∥2
F

+ c2 min
h∈[0,r]

h

n
+

√√√√ 1
n

r∑
i=h+1

λ̂i

+ c3x

n
. (9)
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