
Target-Agnostic Gender-Aware Contrastive Learning for Mitigating Bias in
Multilingual Machine Translation

Minwoo Lee1* Hyukhun Koh2 Kang-il Lee1

Dongdong Zhang3 Minsung Kim1 Kyomin Jung1,2

1Dept. of ECE, Seoul National University, 2IPAI, Seoul National University,
3Microsoft Research Asia

{minwoolee, hyukhunkoh-ai, 4bkang, kms0805, kjung}@snu.ac.kr
dozhang@microsoft.com

Abstract

Gender bias is a significant issue in machine
translation, leading to ongoing research efforts
in developing bias mitigation techniques. How-
ever, most works focus on debiasing bilingual
models without much consideration for mul-
tilingual systems. In this paper, we specifi-
cally target the gender bias issue of multilin-
gual machine translation models for unambigu-
ous cases where there is a single correct trans-
lation, and propose a bias mitigation method
based on a novel approach. Specifically, we
propose Gender-Aware Contrastive Learning,
GACL, which encodes contextual gender infor-
mation into the representations of non-explicit
gender words. Our method is target language-
agnostic and is applicable to pre-trained mul-
tilingual machine translation models via fine-
tuning. Through multilingual evaluation, we
show that our approach improves gender ac-
curacy by a wide margin without hampering
translation performance. We also observe that
incorporated gender information transfers and
benefits other target languages regarding gen-
der accuracy. Finally, we demonstrate that our
method is applicable and beneficial to models
of various sizes.1

1 Introduction

In machine translation research, gender bias has
emerged as a significant problem, with recent neu-
ral machine translation (NMT) systems exhibiting
this bias (Prates et al., 2020). This bias can mani-
fest in various ways, such as the misgendering of
individuals based on stereotypes or defaulting to
masculine gender translations. As a result, there is
a growing need to address and mitigate gender bias
in machine translation systems to ensure fair and
unbiased translations that accurately reflect the in-
tended meaning without perpetuating gender-based
assumptions.

*Work done during internship at MSRA.
1Code available at https://github.com/minwhoo/GACL
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Figure 1: Example sentence from the WinoMT bench-
mark and the corresponding translation outputs of mul-
tilingual NMT systems. Existing systems often fail to
translate with correct gender inflections.

Efforts have been made in recent studies to mit-
igate the gender bias issue in machine translation
(Choubey et al., 2021, Saunders and Byrne, 2020,
Costa-jussà and de Jorge, 2020). However, most of
the works focus on mitigating bilingual NMT mod-
els and evaluate on a single language direction. Re-
cently, Costa-jussà et al. (2022) demonstrated that
the shared encoder-decoder architecture in multilin-
gual NMT systems leads to worse gender accuracy
compared to language-specific modules. Nonethe-
less, it remains unclear whether the existing debi-
asing methods would yield similar effectiveness in
multilingual NMT models.

In this work, we investigate in detail the gender
bias issue of multilingual NMT models. We focus
on translating unambiguous cases where there is
only one correct translation with respect to gender.
We consider multiple target languages simultane-
ously with various gender-based metrics and find
that even the state-of-the-art multilingual NMT sys-
tems still exhibit a tendency to prefer gender stereo-
types in translation.

Therefore, we propose a new debiasing method
for multilingual MT based on a new perspective
of the problem. We hypothesize that the gen-
der bias in unambiguous settings is due to the

https://github.com/minwhoo/GACL


lack of gender information encoded into the non-
explicit gender words and devise a scheme to in-
ject correct gender information into their latent
embeddings. Specifically, we develop Gender-
Aware Contrastive Learning, GACL, which as-
signs gender pseudo-labels to text and encodes
gender-specific information into encoder text rep-
resentations. Our method is agnostic to the target
translation language as the learning is applied on
the encoder side of the model and can be applied
to debias pre-trained NMT models through fine-
tuning. We also evaluate whether existing debias-
ing techniques for bilingual NMT are equally ef-
fective for multilingual systems and compare their
effectiveness on different target languages.

Experimental results show that our method is
highly effective at improving gender bias metrics
for all 12 evaluated languages, with negligible im-
pact on the actual translation performance. We find
our approach applicable to various model archi-
tectures and very efficient in that it demonstrates
significant gender accuracy improvement with just
a few thousand steps of fine-tuning. We also dis-
cover that the debiasing effects extend to target
language directions that are not trained on previous
models. Through further analysis, we demonstrate
that our method effectively incorporates contextual
gender information into the model encoder repre-
sentations.

In summary, the contributions of our work are as
follows:

• We find that recent multilingual NMT mod-
els still suffer from gender bias and propose
GACL, a novel gender debiasing technique
for multilingual NMT models based on con-
trastive learning.

• To the best of our knowledge, we are the first
to show that the gender debiasing effect trans-
fers across other languages on multilingual
NMT models that were not fine-tuned.

• Through extensive evaluation and analysis, we
show that our method is effective across mul-
tiple architectures while having a negligible
impact on translation performance.

2 Method

In this paper, we propose GACL, a gender-aware
contrastive learning method for mitigating the un-
ambiguous gender bias issue in multilingual ma-
chine translation. Our approach is applicable to
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Figure 2: Overview of our proposed method. Train
data is first filtered for sentences containing gender-
related words. The processed dataset is used to fine-
tune NMT model using machine translation and gender-
aware contrastive learning objectives.

multilingual models that have encoder-decoder ar-
chitectures and support English-to-many transla-
tion directions. We filter gender-related data and
fine-tune the pre-trained NMT model with the fil-
tered data. The overview of the method is shown
in Figure 2.

2.1 Data Filtering and Preprocessing

We first filter the parallel train data for sentence
pairs that contain gendered words in the English
source sentence using the gender-related word list
by Zhao et al. (2018). We exclude sentences
that contain either no gendered words or gendered
words of both male and female genders. After fil-
tering the train data, we undersample the larger of
the sentence pairs containing male and female gen-
der words so that the number of samples for each
gender is the same, in similar fashion to Choubey
et al. (2021).

2.2 Gender-aware Contrastive Loss

We devise a contrastive loss that incorporates gen-
der information into the encoder embeddings. Al-
though the optimal approach would be to apply
the contrastive scheme exclusively to words that
exhibit gender-based translation variations, this
varies depending on the translated language and
is challenging to know in advance. Hence, we use
mean-pooled sentence-level embeddings for our
contrastive learning scheme instead.

Given hi as the encoder embedding of the source
sentence, we define positive samples to be the set of
sentence representations that have the same gender
as hi and negative samples as the set of representa-
tions that have the opposite gender. We correspond-
ingly formulate contrastive loss as follows:



L(i)
GC = −

∑
h+∈H+

i

log
esim(hi,h

+)/τ∑
h∗∈H+

i ∪H−
i
esim(hi,h∗)/τ

,

where H+
i is the set of positive samples, H−

i

is the set of negative samples, sim(·, ·) is the
cosine similarity function, and τ is the tempera-
ture hyperparameter. Our formulation is equiva-
lent to the supervised contrastive loss by Khosla
et al. (2020), where we use the gender informa-
tion as pseudo-labels to define positive and neg-
ative pairs. In practice, we use positive samples
H+

i = {h′i} ∪ {hj |gj = gi} where h′i is the repre-
sentation based on different dropout seed, as in Gao
et al. (2021), and hj are in-batch samples with the
same gender marking gi. For negative samples, we
use H−

i = {hk|gk ̸= gi} where hk are the in-batch
samples with different gender markings.

In addition to the gender-aware contrastive loss,
we train our model with the original machine trans-
lation loss to prevent forgetting. We also add knowl-
edge distillation loss with the frozen machine trans-
lation model as the teacher model to preserve the
translation performance (Shao and Feng, 2022). In
sum, our training objective is as follows:

Ltrain = (1− α) · LMT + α · LKD + λ · LGC ,

where the machine tranlation loss LMT and the
knowledge distillation loss LKD is added with
weights based on hyperparameter α, and our pro-
posed loss LGC is added with multiplied hyperpa-
rameter λ.

3 Experimental Framework

In this section, we describe the details of the ex-
periments, including the data, metrics, baseline
methods, training architecture, and parameters.

3.1 Dataset and Metrics

In order to measure the unambiguous gender bias in
machine translation systems, we employ two eval-
uation benchmarks: WinoMT and MT-GenEval.

WinoMT (Stanovsky et al., 2019) is a widely
used gender bias evaluation benchmark consist-
ing of 3,888 English sentences, where each sen-
tence contains an occupation and a gendered coref-
erential pronoun. WinoMT supports ten target lan-
guages: German, French, Italian, Ukrainian, Polish,
Hebrew, Russian, Arabic, Spanish, and Czech.

Four metrics are used to measure the gender bias
with the WinoMT dataset.

Accuracy measures whether the occupation is
translated with the correct gender inflection based
on the pronoun. The occupation word is deter-
mined using source-target alignment algorithm,
and the inflected gender is detected using target
language-specific morphological analysis.
∆G = Accmale −Accfemale measures the dif-

ference in accuracy between male sentences and
female sentences.
∆S = Accpro − Accanti measures the dif-

ference in accuracy between sentences with
pro-stereotypical and anti-stereotypical gender-
occupation pairings as defined by Zhao et al.
(2018).

∆R = Recallmale − Recallfemale, suggested
by Choubey et al. (2021), measures the difference
in the recall rate of male and female sentences.

MT-GenEval (Currey et al., 2022) is a recently
released gender accuracy evaluation benchmark
that provides realistic, gender-balanced sentences
in gender-unambiguous settings. We use the coun-
terfactual subset, where for each sentence, there
exists a counterfactual version in the set with only
the gender changed. MT-GenEval supports eight
target languages: Arabic, German, Spanish, French,
Hindi, Italian, Portuguese, and Russian.

Four metrics are used to measure the gender bias
with the MT-GenEval dataset.

Accuracy is measured based on whether the un-
ambiguously gendered occupation has the correct
gender inflection. Unlike WinoMT, however, ac-
curacy is measured differently; using the counter-
factual variants, words that are unique to a single
gender are extracted for each sentence, and a trans-
lation is marked correct if the words unique to a
different gender are not included in the translation.

However, this definition of accuracy has a prob-
lem in that even if the translation is incorrect, it
could still be marked correct if the words unique to
the different gender are not be contained. To avoid
this problem, we define an alternative measure of
accuracy, denoted Explicit Accuracy. In measur-
ing explicit accuracy, a translation is marked cor-
rect if the words unique to different gender are not
included in the translation, and the words unique
to the same gender are explicitly included in the
translation. This definition makes explicit accuracy
a stricter version of the original accuracy.
∆G = Accmale − Accfemale and E-∆G =



ExplicitAccmale − ExplicitAccfemale measures
the difference of male and female sentences in
terms of accuracy and explicit accuracy respec-
tively.

We use the FLORES-200 (Costa-jussà et al.,
2022), a standard multilingual NMT benchmark, to
measure the translation performance of our mod-
els. FLORES-200 consists of 3,001 sentences sam-
pled from English Wikimedia projects and profes-
sionally translated into 200+ languages. We use
SentencePiece BLEU (spBLEU) and ChrF++ as
evaluation metrics.

3.2 Baselines
We compare three baseline methods that have been
previously proposed to mitigate gender bias in ma-
chine translation.

Balanced: Costa-jussà and de Jorge (2020) pro-
posed to filter existing parallel corpora for sen-
tences with gender mentions and subsample the
data to create a balanced version of the dataset. We
fine-tune the machine translation system on the bal-
anced dataset. We use the WMT18 en-de dataset
as processed by Edunov et al. (2018).

GFST: Choubey et al. (2021) proposed a method
to create a gender-balanced parallel dataset with
source- and target-language filtering of pseudo-
parallel data. In our work, instead of re-training
the model with GFST from scratch, we fine-tune
the initially trained model with the target-filtered
data. We use the same news2018 corpus used in
the original work for the monolingual corpus.

Handcrafted: Saunders and Byrne (2020) pro-
posed to use a small, high-quality handcrafted par-
allel dataset containing a balanced combination of
gendered pronouns and occupations to fine-tune
the machine translation system. We use the hand-
crafted en2de dataset provided by the authors in
our work, which consists of 388 samples.

3.3 Implementation Details
We use three pre-trained multilingual model ar-
chitectures as our backbone for our experiments:
M2M-100 (Fan et al., 2020), SMaLL-100 (Mo-
hammadshahi et al., 2022a), which is a knowledge-
distilled model from M2M-100, and NLLB-200
(Costa-jussà et al., 2022). Due to resource limi-
tations, we use a 1.2 billion parameter variant for
M2M-100 and a 1.3 billion parameter distilled vari-
ant for NLLB-200. We train with a batch size
of 8 and learning rate of 4e-6 with 200 warmup
steps and inverse square root learning rate decay
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Figure 3: Relationships between translation perfor-
mance and gender bias metrics of multilingual NMT
models. Each point represents the average score of an
NMT system on the ten target languages of the WinoMT
dataset.

schedule. The hyperparameters for the contrastive
learning objective was set to λ = 1.0 and α = 0.4
based on hyperparameter search (refer to Appendix
B). We evaluate every 100 training steps and early
stop based on the Explicit Accuracy score of the
MT-GenEval development set for the fine-tuned
language direction. For evaluation, we use beam
search of beam size 5 during decoding.

4 Results

In this section, we explore the gender bias issue of
recent multilingual NMT models and report exper-
imental results of the gender bias mitigation tech-
niques of multilingual machine translation models.

4.1 Gender Bias Evaluation of Recent
Multilingual NMT Models

We first evaluate existing multilingual NMT mod-
els on gender bias and analyze their relationship
with their translation performance. We test seven
model variants of different sizes based on three
model architectures: M2M-100, SMaLL-100, and
NLLB-200. For gender bias, we evaluate on the
WinoMT dataset for all 10 languages and average
the results. Similarly for translation performance,
we evaluate on the FLORES-200 devtest set on
the same 10 language directions and average the
results. For the correlation measure between trans-
lation performance and gender bias metrics, we use
Pearson’s correlation coefficient ρ.



FLORES-200 WinoMT
Method spBLEU↑ Acc.↑ ∆G|↓| ∆S|↓|

SMaLL-100 32.02 46.25 31.43 9.85
M2M-100 34.60 49.66 26.85 18.14
NLLB-200 40.92 62.44 9.37 24.94

ChatGPT 27.02† 54.25 21.09 24.95

Table 1: Average spBLEU score and WinoMT metrics
of NMT systems and ChatGPT (gpt-3.5-turbo) on the
ten target languages of the WinoMT dataset. †ChatGPT
spBLEU score is obtained from Lu et al. (2023).

As shown in Figure 3, we find a strong positive
correlation (ρ = 0.98) between the translation per-
formance and the gender accuracy. As shown by a
negative correlation of ∆G (ρ = −0.97) and ∆R
(ρ = −0.96), the accuracy and recall gap between
genders are also reduced as translation performance
improves. However, the correlation between trans-
lation performance and ∆S is positive (ρ = 0.91),
implying that better-performing models rely more
on occupation stereotypes rather than the original
context for gender disambiguation.

Overall, we conclude that recent multilingual
models continue to show similar tendencies as MT
systems previously reported by Kocmi et al. (2020),
with positive correlation with gender accuracy, neg-
ative correlation with ∆G, and positive correlation
with ∆S. This suggests that the development of
NMT systems with a unidimensional focus on per-
formance is insufficient to address the gender bias
issue, and active consideration is required.

Recently, ChatGPT2 has shown remarkable per-
formance in various zero-shot NLP tasks, includ-
ing machine translation. We evaluate the gen-
der bias of ChatGPT (gpt-3.5-turbo) in per-
forming zero-shot machine translation. We use
the prompt “Translate the following sentence into
<lang>. <sent>”, where <lang> is the name of
target language and <sent> is the source sentence.
As shown in Table 1, ChatGPT falls short regard-
ing the spBLEU score but achieves relatively high
gender accuracy, surpassing M2M-100 with 54.25.
However, we also find that the ∆S is the highest
for ChatGPT, indicating that its translation output
often relies on gender stereotypes.

4.2 Main Experimental Results

We report the results of fine-tuning multilingual
NMT model with our GACL method along with
other baseline methods. Specifically, we fine-tune

2https://chat.openai.com
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get languages supported by WinoMT. Results of the
SMaLL-100 baseline model, model fine-tuned on en2de
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ported.

the model on a single language direction and ob-
serve its effect on the corresponding language direc-
tion (denoted in-domain, ID) as well as other lan-
guage directions (denoted out-of-domain, OOD).
We use the WMT18 en-de dataset (Edunov et al.,
2018) for fine-tuning on English to German lan-
guage direction. For evaluation, all target lan-
guages supported by the dataset were evaluated.
This involves 10 target languages for WinoMT and
8 for MT-GenEval. Finally, we use the union of the
languages covered by the two datasets for evaluat-
ing translation performance on the FLORES-200
dataset, which amounts to 12 target languages.

As shown in Table 2, the results on the SMaLL-
100 model show that our method, GACL, achieves
the greatest improvement in in-domain gender ac-
curacy for both WinoMT and MT-GenEval with
27.3 and 13.0 absolute improvement from the base-
line respectively. On the other hand, other baseline
methods that were originally proposed for bilingual
MT systems proved to be less effective compared
to our method. GFST was proved to be the least
effective out of the baselines, with less than 3%
improvement in gender accuracy, and fine-tuning
on the Handcrafted set second was most effective,
with 20.6% improvement. Based on these results,
we suggest that for multilingual MT models, it is
more effective to use a smaller, focused dataset on
gender and occupation where the bias of the model
is exhibited.

As shown by OOD gender accuracy and |∆G|



WinoMT MT-GenEval FLORES-200

ID OOD ID OOD ID OOD
Method Acc.↑ ∆G|↓| Acc.↑ |∆G| ↓ E-Acc.↑ E-∆G|↓| E-Acc.↑ |E-∆G|↓ spBLEU↑ spBLEU↑

Baseline 57.4 24.2 45.0 32.2 54.7 10.0 42.3 27.1 36.0 32.7
Balanced 72.9 3.8 49.7 22.4 56.7 8.3 44.1 23.9 35.4 32.4
GFST 59.9 20.9 46.2 31.1 57.3 10.3 41.9 27.2 35.5 32.4
Handcrafted 78.0 −1.5 52.7 18.4 58.7 4.0 45.1 22.4 35.8 32.7
GACL (Ours) 84.7 −3.7 65.5 8.1 67.7 −2.0 56.2 12.9 36.0 32.7

Table 2: Main experimental results on the WinoMT, MT-GenEval, and FLORES-200 datasets for the SMaLL-100
model. The in-domain (ID) setting signifies the en-de language direction in which the model is fine-tuned, while the
out-of-domain (OOD) setting encompasses the remaining language directions supported by the dataset.

WinoMT MT-GenEval FLORES-200

Method Acc.↑ |∆G|↓ |∆S|↓ |∆R| ↓ E-Acc.↑ |E-∆G|↓ Acc.↑ |∆G|↓ spBLEU↑ ChrF++↑

SMaLL-100
Baseline 46.2 31.4 9.9 57.5 43.8 25.0 57.9 25.6 33.0 52.3
GACL (Ours) 67.4 7.7 6.4 18.4 57.6 11.5 73.2 11.1 33.0 52.2
- with LMT Only 52.0 20.6 9.3 44.2 45.7 22.0 61.3 21.6 32.6 51.8
- with LGC Only 63.5 9.0 7.5 21.7 55.3 13.0 71.6 12.7 32.5 51.7

M2M-100
Baseline 49.7 26.8 18.2 53.9 44.9 23.5 58.0 23.9 35.5 53.6
GACL (Ours) 71.4 6.4 7.3 15.5 59.3 8.8 73.3 9.2 34.9 53.1

NLLB-200
Baseline 61.7 9.0 24.5 29.3 57.1 16.7 66.4 16.8 40.5 57.2
GACL (Ours) 78.2 3.9 6.1 6.2 69.9 5.9 80.4 5.5 40.0 56.9

Table 3: Full experimental results averaged over all covered languages on the WinoMT, MT-GenEval, and FLORES-
200 datasets. Evaluated model architectures are SMaLL-100, M2M-100-1.2B, and NLLB-200-1.3B-distilled.

metrics in Table 2, gender bias mitigation strategies
also have a positive effect on the unseen target lan-
guages during fine-tuning, regardless of the method
used. This implies that gender-related information
is agnostic to the target language, and the debiasing
effects are transferred to other languages. However,
while other baseline methods have a much lower
improvement in OOD than ID, our approach is al-
most as effective in OOD. Fine-tuning on the Hand-
crafted set improves WinoMT accuracy by 20.6%
in ID and 7.7% in OOD, while GACL approach
improves by 25.7% and 20.5% respectively.

We report the full results on all evaluated metrics
and model architectures in Table 3. We observe
that applying GACL improves upon all gender ac-
curacy and bias metrics for all evaluated model
architectures. Especially, we find that |∆S| metric
of NLLB-200, which scored highest out of all meth-
ods before fine-tuning, is reduced to 6.1, the lowest
out of all methods. On the other hand, we find that
the spBLEU and ChrF++ metrics for M2M-100 and
NLLB-200 drop by an average of 0.5 points. We
suggest that catastrophic forgetting did not occur
during fine-tuning due to the model’s fast conver-
gence. Still, the fine-tuning was long enough to

significantly improve gender-related translations.

4.3 Results for Individual Target Languages

We report the individual results for each target lan-
guage on the WinoMT dataset in Figure 4. To ob-
serve the effect of the target language used during
GACL fine-tuning, we evaluate and report on two
language directions: English to German (en2de)
and English to Turkish (en2tr). In contrast with
the German language, which has rich gender mor-
phology, the Turkish language is a gender-neutral
language that lacks grammatical gender. We use
the same TED2020 corpus (Reimers and Gurevych,
2020) for getting gender-balanced training data to
rule out the effect of data domain from our experi-
ments.

Results show that the en2de-finetuned model has
higher gender accuracy than the en2tr-finetuned
model by an average of 3.6%. However, using
en2tr is quite effective on improving gender ac-
curacy and reducing ∆G on all evaluated target
languages. Since the target language of Turkish
does not contain gender-related words, results sug-
gest that the gender-related knowledge is accessible
from the source encoder representations, and our



Positive Negative P:N MT-GenEval
Dropout In-batch In-batch Ratio Acc. |∆G|

Baseline - 61.01 8.95

✓ ✓ 1:B 66.82 3.11
✓ ✓ B-1:B 66.15 3.02

✓ ✓ ✓ B:B 66.93 2.83

Table 4: Ablation of different contrastive pair combina-
tions on the MT-GenEval development set. B denotes
one-half of the train batch size.

approach is able to mitigate the bias that lies within
it.

4.4 Ablation Study

We compare the effects of using different con-
trastive samples in Table 4. First, we observe that
using single dropout representation as the positive
sample and in-batch sentence representations with
different gender as negative samples achieves sub-
stantial performance improvement on both gender
accuracy and ∆G. We can also see that using just
in-batch samples with the same gender as positive
samples can similarly improve the gender accu-
racy. However, we find that incorporating all avail-
able samples within the batch for positive samples
achieves the best results.

We also perform an ablation study on training
with just machine translation loss LMT , which is
equivalent to the Baseline method, and just the
gender-aware contrastive loss LGC . The results
shown in Table 3 show that training with LMT on a
gender-balanced dataset improves over the baseline
by a relatively small amount for all metrics. On the
other hand, training with just LGC loss achieves
surprisingly high performance on both gender eval-
uation benchmarks. We point out that training on
LGC only updates the encoder parameters of an
encoder-decoder model, and thus having gender-
aware contextual embedding in the encoder repre-
sentations can be effective. We also observed dur-
ing the fine-tuning process with only LGC that the
performance converges quickly within 200 steps,
and upon further fine-tuning, both translation per-
formance and gender accuracy deteriorate very
quickly. We thus conclude that losses like LMT and
LKD are required to prevent catastrophic forgetting
during fine-tuning and enable stable training to get
optimal convergence on gender-aware contrastive
learning.
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Figure 5: t-SNE visualization of encoder output repre-
sentation of occupation words. Circle and cross markers
denote embeddings of the original SMaLL-100 model
and GACL-finetuned variant, respectively. The colors
of the marker denote the context of the occupation word.

5 Analysis

In this section, we investigate how our GACL fine-
tuning method affects the model representations
regarding gender. Specifically, we use 40 stereotyp-
ical occupation words from the WinoMT dataset,
where 20 are stereotypically assumed male while
the remaining 20 are assumed female. We label the
“stereotypical gender” of an occupation word as de-
fined by this gender assumption. We then construct
a sentence with the template “He is <occupation>.”
and “She is <occupation>.” as encoder input. Here,
the pronouns decide the “contextual gender” of the
occupation word. Finally, a single contextual repre-
sentation vector is computed by taking the average
of encoder output representations of the tokens that
make up the occupation word. We use this same
representation extraction process for both the base-
line SMaLL-100 model and the SMaLL-100 model
fine-tuned with GACL.

To examine the representations, we employ the
t-SNE dimension reduction technique (van der
Maaten and Hinton, 2008) to visualize the occu-
pation representations in 2 dimensions, as shown
in Figure 5. We observe that the representations
for each occupation are clustered closely together
regardless of the sentence context and model. This
shows that the contextual gender has a relatively
little contribution to the representation compared
to the semantic meaning of the occupation. Also,
our fine-tuning method induces a relatively small
change, preserving the semantic distinction be-
tween the occupations. Finally, we note that the
average distance between representations of differ-
ent contexts is farther apart for the GACL repre-
sentations (0.59) than the baseline representations
(0.19), suggesting that the contrastive objective has
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gender labels, and higher scores are better for contextual
gender labels.

guided the model to differentiate the occupation
based on the gender context.

To investigate how much gender information is
encoded within the embeddings in-depth, we per-
form k-means clustering with k = 2 on the occu-
pation embeddings, and evaluate the cluster quality
based on stereotypical and contextual gender as
label assignments. Based on the Purity and Nor-
malized Mutual Information (NMI) metrics, we
see that clusters for both models have negligible
alignment with the stereotypical gender assignment
(Figure 6). On the other hand, we find that clus-
tering based on GACL embeddings is very well
aligned with the contextual gender, while the base-
line model continues to be misaligned. This shows
that GACL representations capture contextual gen-
der information significantly better than the base-
line representations.

6 Related Works

Gender Bias in NLP Chung et al. (2022) point out
that the existing English-centric Large Language
Models (LLMs) suffer from gender-stereotypical
words. However, fixing biases that are deeply in-
grained in hidden representations is a challenging
task (Gonen and Goldberg, 2019; Orgad and Be-
linkov, 2022). Previous researchers such as Rav-
fogel et al. (2020); Kumar et al. (2020); Gaci et al.
(2022b) debias the hidden representation using
learning-based methods. However, Kumar et al.
(2022) point out the limitations of such studies
and recommend the use of data augmentation tech-
niques (Webster et al., 2020; Sharma et al., 2021;
Lauscher et al., 2021). In addition to aforemen-
tioned research, Attanasio et al. (2022) and Gaci
et al. (2022a) focus on biased attention weights, and

Cheng et al. (2021) and He et al. (2022) use a con-
trastive learning scheme to reduce bias in sentence
embeddings and language models respectively.

Multilingual Machine Translation Studies
such as mBERT (Pires et al., 2019) and XLM-R
(Goyal et al., 2021) have shown that it is possible
to train language models on multiple languages si-
multaneously, a method referred to as multilingual
training. Recent research has proven that multilin-
gual training contributes to a positive impact on
NMT (Aharoni et al., 2019; Tran et al., 2021; Chi-
ang et al., 2022). According to Carrión-Ponz and
Casacuberta (2022), by training multilingual NMT
models further with a few-shot regularization, a de-
crease in the performance can be prevented. Knowl-
edge distillation also helps NMT models preserve
their original performance (Shao and Feng, 2022).

Gender Bias in Machine Translation Bilin-
gual NMT models have been shown to be eas-
ily exposed to gender biases (Prates et al., 2020).
Correspondingly, Zhao et al. (2018); Choubey
et al. (2021); Currey et al. (2022) employ data
augmentation-based approach to reduce gender
bias of MT models. In addition, Saunders and
Byrne (2020) propose utilizing a transfer-learning
method, and Savoldi et al. (2021) develop a unified
framework to tackle the biases. However, these
works mostly do not consider multilingual NMT
models that support multiple language directions.

Alternatively, Fleisig and Fellbaum (2022) pro-
pose an adversarial learning framework to miti-
gate gender bias in machine translation models by
removing gender information when the input has
masked gender context. Our approach, on the other
hand, injects the correct contextual gender informa-
tion from encoder output contrastively when given
inputs have gender contexts.

In the case of multilingual machine translation,
Costa-jussà et al. (2022) have shown that the shared
encoder-decoder architecture of multilingual NMT
models has a negative effect on the gender bias.
Also, Mohammadshahi et al. (2022b) investigate
how the multilingual model compression affects
gender bias. Contemporary work by Cabrera and
Niehues (2023) examines gender preservation in
zero-shot multilingual machine translation. How-
ever, no existing work that the authors are aware
of specifically considers mitigating the unambigu-
ous gender bias of multilingual NMT models for
multiple language directions simultaneously.



7 Conclusion

In this work, we conducted an investigation into the
gender bias of multilingual NMT models, specif-
ically focusing on unambiguous cases and eval-
uating multiple target languages. Our findings
indicated that even state-of-the-art multilingual
NMT systems tend to exhibit a preference for
gender stereotypes in translations. We then pro-
posed a novel debiasing method, Gender-Aware
Contrastive Learning (GACL), which injects con-
textually consistent gender information into latent
embeddings. Our experiments demonstrated that
GACL effectively improves gender accuracy and
reduces gender performance gaps in multilingual
NMT models, with positive effects extending to
target languages not included in fine-tuning. These
findings highlight the importance of addressing
gender bias in machine translation and provide a
promising approach to mitigate it in multilingual
NMT systems.

Limitations

The gender debiasing process in this study relies on
a curated list of gender word pairs to identify and
filter gendered terms in the dataset. However, this
approach may not cover the whole of the gendered
terms present in the world. The limited coverage of
gendered terms could potentially introduce biases
and inaccuracies in the evaluation results, as certain
gendered terms may be missed or not appropriately
accounted for.

Furthermore, our method only deals with binary
gender, and do not consider the possible representa-
tions of non-binary genders and their bias in transla-
tion. As languages vary in their use of grammatical
gender and they often lack clearly defined rules
or established linguistic structures for non-binary
genders, it is especially challenging to evaluate
and mitigate bias in this context. This limitation
highlights the need for further research and consid-
eration of more diverse gender representations in
bias mitigation.

While we extend gender bias evaluation to mul-
tilingual settings, this study is still limited to the
provided target languages, which predominantly in-
clude medium-to-high resource languages. Due to
a lack of evaluation data, the evaluated source lan-
guage is also limited to English. Consequently, the
findings and conclusions may not be representative
of the gender biases present in languages that are
not included in the evaluation. The limitations in

language coverage may restrict the generalizability
of the study’s results to a broader linguistic context.

The focus of this study is primarily on evalu-
ating gender bias in unambiguous settings where
the intended gendered terms are clear. However,
the investigation of gender bias in ambiguous set-
tings, where the gendered term can have multiple
interpretations, is not addressed in this study. Con-
sequently, the study does not provide insights into
potential biases in ambiguous gendered language
use, which can also contribute to societal biases
and stereotypes.

Our work focuses on recent NMT models based
on the encoder-decoder architecture, and hence the
effect of our method on decoder-only NMT models
remains unverified. Nevertheless, our approach is
applicable to other model architectures as long as
we can aggregate a representation of the source
input sentence. Specifically for decoder-only archi-
tectures, one feasible strategy would be to pool the
decoder model outputs of tokens up to given source
input sentence. As decoder-only large language
models such as ChatGPT are increasingly being
considered for the MT task, we believe this is an
interesting direction for future work.

Ethical Considerations

Our work attempts to reduce bias and misrepre-
sentations in translation of masculine and femi-
nine gendered referents. Our methodology and
evaluation has been limited to considering binary
genders, which overlooks non-binary genders and
correspondingly doesn’t consider bias in gender-
inclusive and gender-neutral translations. Possible
mitigations include extending the translation data
to incorporate sentences with gender-neutral inflec-
tions and defining a separate gender pseudo-label
for applying proposed contrastive loss. The lack
of flexibility in gender could also be mitigated by
extending our work to controlled generation where
the preferred gender inflection is given as input.

Furthermore, in our work, the evaluated source
language was limited to English, and evaluated
target languages are mostly of high-resource.
Correspondingly, our work may under-represent
bias found in unevaluated low-resource languages.
However, the findings in our work show poten-
tial gender debiasing effects transferring to non
fine-tuned languages, and extending gender bias
evaluation resources to include low-resource lan-
guages may help analyze and mitigate gender bias



for those languages.
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A Experimental Details

A.1 ChatGPT Generation
For our experiments using ChatGPT, we use the
API provided by OpenAI for generating text, using
the model gpt-3.5-turbo. For a small number of
cases, ChatGPT generated multiple lines of text de-
limited by newline characters, leading to errors in
source-target alignment during WinoMT evalution.
For these cases, we split the sentence based on the
newline character and take the first sentence as the
translation.

A.2 Data Preprocessing Details
In our work, we use the cleaned WMT18 en-de
dataset, as pre-processed by Edunov et al. (2018).
By filtering for sentences with gender-related
words, we find 415,401 masculine and 86,431 fem-
inine sentence sets. Next, masculine sentence sets
are undersampled with random sampling while all
samples from feminine set are used to create a final
balanced set of total 2*86,431=172,862 samples.
We do not perform additional processing to handle
other domain differences except gender.

A.3 Fine-tuning Details
For our experiments, hyperparameter search was
done manually with learning rate from {2e-6, 4e-6,
8e-6}, batch size from {4, 8, 16, 32}, and learning
rate warmup steps from {100, 200, 400} based on
fine-tuning GACL on the SMaLL-100 architecture
and metric based on explicit accuracy on the MT-
GenEval development set. Our final selection of
hyperparameters is then used for all experiments
in our paper. One exception for fine-tuning GACL
with NLLB-200 architecture is we set the learn-
ing rate to 8e-6 due to its slower convergence dur-
ing training in comparison to other architectures.
For fine-tuning with our GACL method, we use
balanced random sampling so that the number of
sentences for each gender are equal within one
mini-batch.

The fine-tuned dataset size and number of fine-
tuning steps before early stopping is shown in Table
5. We notice that Balanced and GFST data aug-
mentation based methods trained for more than one
thousands steps before early stopping. On the other
hand, our GACL method and Handcrafted method
stopped fine-tuning within one thousand steps.

We fine-tuned the SMaLL-100 model on 1
NVIDIA A6000 GPU, and fine-tuned M2M-100
1.2B and NLLB-200 1.3B distilled models on 1

Method Dataset size # Steps

SMaLL-100
Balanced 172,862 3,700
GFST 1,802,832 1,900
Handcrafted 388 200
GACL 172,862 700
- with LGC only - 200

M2M-100
GACL 172,862 400

NLLB-200
GACL 172,862 800

Table 5: Dataset size and number of training steps before
early stopping for the fine-tuning experiments in our
work.
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Figure 7: Experimental results on tuning hyperparame-
ter α. the spBLEU scores are the average score on 10
language directions on FLORES200 development set
and gender accuracy is the average explicit accuracy on
the MT-GenEval development set.

NVIDIA A100 80GB GPU. We use the pre-trained
model checkpoints downloaded from the Hugging-
face website.3

B Additional Experiments

B.1 Many2many Translation Performance

The 12 target languages covered by the WinoMT
and MT-GenEval are mostly categorized as
high-resource languages (Mohammadshahi et al.,
2022a). Thus, we extend our FLORES-200 evalua-
tion to languages of low and medium resources for
both source and target languages to more accurately
analyze the impact of our approach on multilingual
translation performance.

For this experiment, we use the four resource
levels defined by Mohammadshahi et al. (2022a):
High (H), Medium (M), Low (L) and Very Low

3https://huggingface.co/



FLORES-200 spBLEU
Method VL2VL VL2L VL2M VL2H L2VL L2L L2M L2H M2VL M2L M2M M2H H2VL H2L H2M H2H X2X

SMALL-100
Baseline 26.6 14.5 21.8 15.3 17.7 9.4 13.7 11.3 22.6 12.2 19.7 11.7 21.2 12.6 15.3 12.2 16.1
GACL 26.8 13.9 21.7 14.8 17.1 8.7 13.5 10.8 22.6 11.7 19.8 11.3 21.1 12.1 15.2 11.6 15.8
- w/o LKD 26.7 13.1 21.4 14.0 16.5 7.7 12.9 9.9 22.4 10.9 19.7 10.7 20.8 11.3 14.8 10.6 15.2

M2M-100
Baseline 30.0 12.7 22.9 13.1 19.7 8.3 14.0 11.4 25.5 10.7 20.2 11.0 22.4 10.7 16.3 9.9 16.2
GACL 29.8 12.0 22.3 12.8 19.7 7.8 13.7 11.1 25.4 10.1 19.8 10.6 22.2 10.0 15.7 9.5 15.8

NLLB-200
Baseline 31.9 26.0 26.6 25.8 30.2 25.5 25.9 25.2 28.7 24.0 24.2 23.4 30.3 25.7 25.6 24.0 26.4
GACL 31.4 25.7 25.9 25.1 29.8 25.1 25.2 24.6 28.3 23.5 23.5 22.7 29.8 25.2 24.7 23.2 25.9

Table 6: Many2many translation performance evaluation by resource level on FLORES-200 using the spBLEU
metric. X2X represents the total average score.

FLORES-200 ChrF++
Method VL2VL VL2L VL2M VL2H L2VL L2L L2M L2H M2VL M2L M2M M2H H2VL H2L H2M H2H X2X

SMALL-100
Baseline 48.0 34.4 35.3 35.9 38.7 27.7 27.4 30.2 44.7 31.9 33.7 31.5 43.1 32.4 28.7 33.0 34.8
GACL 48.1 33.5 35.1 35.2 38.0 26.6 26.9 29.2 44.5 30.9 33.6 30.8 43.0 31.5 28.5 32.0 34.2
- w/o LKD 48.0 32.1 34.7 34.1 37.1 24.7 25.8 27.6 44.3 29.5 33.4 29.8 42.6 30.0 27.8 30.6 33.3

M2M-100
Baseline 50.4 29.9 35.7 31.7 39.0 24.0 26.0 29.8 46.7 27.9 33.5 29.4 43.2 27.7 29.3 28.8 33.3
GACL 50.3 29.1 35.2 31.5 39.1 23.2 25.7 29.3 46.7 27.1 33.1 29.1 43.0 26.8 28.8 28.2 32.9

NLLB-200
Baseline 51.6 45.3 38.5 45.9 50.0 44.6 37.9 45.3 49.0 43.7 36.6 43.8 50.4 45.2 37.9 44.6 44.4
GACL 51.2 45.1 38.1 45.4 49.7 44.4 37.4 44.7 48.7 43.2 36.0 43.2 50.1 44.8 37.3 44.0 44.0

Table 7: Many2many translation performance evaluation by resource level on FLORES-200 using the ChrF++
metric. X2X represents the total average score.

(VL), and evaluate many2many translation perfor-
mance using spBLEU. Due to resource limitations,
we sample 5 languages for each resource group
and evaluate across all sampled language direc-
tions. The languages used are as follows: High re-
source languages include French, German, Italian,
Russian, and Spanish (Latin America). Medium
resource languages are Arabic, Bulgarian, Chi-
nese (Simplified), Korean, and Turkish. Low re-
source languages are Afrikaans, Amharic, Bosnian,
Cebuano, and Kazakh. Very Low resource lan-
guages are Belarusian, Croatian, Filipino (Taga-
log), Nepali, and Occitan. The averaged results by
resource group are reported in Tables 6 and 7.

B.2 Ablation Results on Hyperparameter α

We report the effects of changing the hyperparme-
ter α used to determine the relative weight between
LMT and LKD in the joint training loss we em-
ployed during fine-tuning.

As shown in Figure 7, we find that for translation
performance, setting α to 0.4 performs the best,
while using a single loss of either LMT (i.e. α = 0)
and LKD (i.e. α = 1) performs slightly worse. For
gender accuracy, we find that trends are not very
clear, with α set to 1.0 being the most effective
and α of 0.4 second most effective. Based on these
findings, we choose to use α value of 0.4 for the
rest of the experiments in this paper.

B.3 Relationship between translation
performance and gender bias metrics for
each language

In Figure 8, we report results on the relationship
between translation performance and gender bias
metrics for each language. We observe similar cor-
relations between translation performance and gen-
der bias metrics of multilingual MT systems across
each independent target languages. However, the
slope of the correlation differs by the target lan-
guage.

B.4 Gender bias evaluation results for each
target language

We report the evaluation results on WinoMT and
MT-GenEval datasets for each of the supported
target languages individually in Tables 8 and 9.
For all evaluations, the source language is fixed to
English, as it is the only provided source language
for the datasets.

B.5 Statistical significance tests

We share the results on statistical significance test-
ing between our GACL model (Table 3; row 2)
and our ablation fine-tuned with LGC only (Table
3; row 4) which scored closely in accuracy scores.
We conduct a paired randomized permutation test
with the number of resamples N set to 100,000.
The p-values from the test are shown in Table 10.



Target lang. de ru fr it es uk he ar pl cs AVG
Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G

Baseline 57.4 24.2 35.8 27.0 50.3 24.3 40.7 38.2 53.3 26.4 38.8 35.5 47.7 21.0 45.6 39.5 44.2 42.3 48.9 35.5 46.2 31.4
Balanced 72.9 3.8 38.8 22.6 59.6 7.9 43.4 29.1 64.7 8.0 40.1 32.5 49.2 17.0 50.3 28.1 46.8 34.0 54.3 22.8 52.0 20.6
GFST 59.9 20.9 36.3 27.8 54.2 17.0 41.4 38.3 55.9 21.8 39.6 36.2 47.9 22.0 46.5 40.9 43.8 41.8 49.8 34.5 47.5 30.1
Handcrafted 78.0 −1.5 38.1 22.7 63.9 3.2 49.4 19.3 69.8 2.6 42.3 28.9 51.5 13.3 51.6 25.6 50.6 29.8 57.1 20.1 55.2 16.4
GACL (Ours) 84.8 −3.7 46.8 10.8 78.4 −7.8 67.4 −2.5 85.5 −5.1 52.5 15.0 64.3 2.8 66.1 4.7 61.1 14.4 67.4 9.7 67.4 3.9

Table 8: Accuracy and ∆G scores on the 10 target languages of the WinoMT dataset.

Target lang. de ru fr it es pt ar hi AVG
Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G Acc. ∆G

Baseline 62.3 10.0 68.7 20.0 55.3 23.0 49.0 39.0 56.3 27.0 53.0 27.7 65.7 14.3 52.7 38.7 57.9 25.0
Balanced 65.7 8.3 68.7 19.0 57.3 21.3 57.0 34.3 60.7 19.3 56.3 25.0 72.0 10.7 52.7 37.7 61.3 22.0
GFST 65.0 10.3 67.3 22.0 53.3 23.0 48.7 38.3 55.3 26.0 53.0 29.0 67.0 14.3 50.7 37.7 57.5 25.1
Handcrafted 66.7 4.0 69.7 17.0 57.0 18.7 56.0 33.0 61.0 19.7 57.7 22.3 70.7 12.0 53.7 34.3 61.5 20.1
GACL (Ours) 76.0 −2.0 84.7 5.3 65.3 9.0 71.7 18.0 72.7 9.0 70.7 10.0 85.3 7.7 59.0 31.3 73.2 11.0

Table 9: Accuracy and ∆G scores on the 8 target languages of the MT-GenEval test set.
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Figure 8: Relationships between translation perfor-
mance and gender bias metrics of multilingual NMT
model for various evaluated target languages.

We found that the GACL method shows higher
accuracy than the ablation on 10 out of 10 evalu-
ated languages on WinoMT dataset and 4 out of
8 evaluated languages on MT-GenEval dataset di-
rections with statistical significance of p-value less
than 0.05.

B.6 Gender evaluation on the secondary
entity of the WinoMT dataset

The WinoMT dataset is comprised of sentences that
mention two entities; one entity has an unambigu-
ous gender indicated by a coreferential pronoun,
while the gender of the other entity is ambiguous.
In this subsection, we evaluate the effect of gen-
der debiasing methods on this secondary, gender-
unspecified entity in the WinoMT dataset. We use
the variation dataset proposed by Saunders et al.

Dataset Target Lang. P-value

de < 1e−5
ru 6e−5
fr < 1e−5
it < 1e−5

WinoMT es < 1e−5
uk < 1e−5
he < 1e−5
ar < 1e−5
pl < 1e−5
cs < 1e−5

ru 1e−2
es 4e−2
fr 1e−1*

MT-GenEval it 1e−2
ar 2e−1*
de 4e−1*
hi N/A
pt 4e−5

Table 10: P-values from randomized pairwise permuta-
tion test between accuracy scores of GACL and ablation.
* denotes evaluations that are not stastistically signifi-
cant with respect to threshold of 0.05.

Method Accprim. Accsec. ∆

Baseline 46.3 48.6 2.3
GFST 47.5 52.2 4.7
Handcrafted 55.2 59.0 3.8
GACL (Ours) 67.4 72.7 5.3

Table 11: Gender “Accuracy” of the primary and sec-
ondary entities in the WinoMT dataset.

(2020) and show the results in Table 11. We found
that all previous methods as well as ours lead to an
consistent increase in gender accuracy of secondary
entity by about 5% compared to gender accuracy
of primary entity, which is consistent with findings
by Saunders et al. (2020). Note that none of the
evaluated methods, including ours, explicitly ac-
count for entities with ambiguous gender and this
issue is left for future research.


