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Deep Learning Models to Predict Primary Open-Angle Glaucoma Using
Longitudinal Visual Field Measurements
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Abstract

Glaucoma is a major cause of blindness and vi-
sion impairment worldwide and visual field (VF)
tests are essential for monitoring the conversion
of glaucoma. Existing research often uses VF
data at a single time point to predict glaucoma;
few explored the longitudinal trajectories. Addi-
tionally, many deep learning techniques treat the
time-to-glaucoma prediction as a binary classifi-
cation problem (glaucoma Yes/No), resulting in
the misclassification of some censored subjects
into the non-glaucoma category and decreased
power. To tackle these challenges, we propose
and apply several deep-learning approaches that
naturally incorporate temporal and spatial infor-
mation in longitudinal visual field data and pre-
dict time-to-glaucoma. The proposed methods’
prediction performance is validated on the large
Ocular Hypertension Treatment Study (OHTS)
dataset. Extensive experiments show that the pro-
posed LSTM and Bi-LSTM have better predic-
tion performance than the traditional Cox pro-
portional hazards model, ResNet50-LSTM, and
CNN-LSTM methods.

1. Introduction
Primary open-angle glaucoma (POAG) is an irreversible
optic neuropathy associated with glaucomatous damage
by the progressive loss of retinal ganglion cells (RGCs),
which leads to ultimate structural changes that cause visual
field (VF) defects. This chronic disease is one of the lead-
ing causes of blindness worldwide. Therefore, monitoring
visual field examination and making predictions of time-
to-glaucoma are vital to prevent disease progression and
irreversible vision loss.
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The visual field data are collected from the 24-2 Humphrey
Visual Field map shown in Figure 1 (Feldon et al. 2006).
Among 54 test points on the Humphrey Visual Field map,
two blind points are excluded from the analysis, resulting
in 52 points for measurement. The total deviation (TD)
at each location is the difference of the test result (in dB)
from that of a “normal” patient’s field of the same age
(Feldon et al. 2006), while a large TD indicates a poor eye
condition. During a clinical visit, the TD of these 52 points
are recorded for both eyes, which could be used for the
prediction of glaucoma.

However, early diagnosis with longitudinal glaucomatous
VF can be difficult since it contains random errors and
fluctuates over time which vary between patients and lo-
cations. Therefore, using VF observation only at baseline
or a fixed time point may fail to capture disease progression
trends, leading to poor prediction performance on time-to-
conversion. To overcome this barrier, traditional statistical
methods (e.g., linear and exponential regression models pro-
posed by McNaught et al. (1995) and Caprioli et al. (2011)
respectively), machine learning methods (e.g., variational
Bayes proposed by Murata et al. (2014)), and deep learning
methods (e.g., recurrent neural network (RNN) (Park, Kim,
and Lee, 2019)) were used to capture such variation in the
longitudinal point-wise VF data. However, those methods
cannot be directly used for disease diagnosis or time-to-
glaucoma prediction. They may be further extended for
diagnosis purposes with the help of classification methods.
For example, Asaoka et al. (2016) and Kucur et al. (2018)
proposed deep-learning methods to classify patients into
early glaucoma or normal group. It is worth noting that
converting the time-to-event prediction into classification
can be less powerful and biased for disease diagnosis, be-
cause classification techniques do not take censoring into
account and misclassify some right-censored subjects to a
none-event group.

To predict the time-to-glaucoma using longitudinal VF
data, we propose to combine landmark analysis with ar-
tificial intelligence methods, including long-short-term-
memory (LSTM, Graves 2012), bidirectional long-short-
term-memory (Bi-LSTM, Schuster 1997), convolutional
neural network (CNN)-LSTM (Kucur et al. 2018), and
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ResNet50-LSTM (Gheisari et al. 2021) to capture the tem-
poral trends and small localized VF defects. Of note, these
methods were originally introduced in the classification
framework, while we are among the first to adapt them to
the landmark analysis for a survival outcome.

While the use of longitudinal biomarkers for survival pre-
diction has been extensively studied by statisticians, deep
learning methods have also shown great success in iden-
tifying temporal dependencies in repeated measurements.
However, there is a scarcity of literature that merges the
traditional landmark model with deep learning methods for
time-to-event prediction using longitudinal biomarkers. Our
contribution is to introduce a framework that seamlessly
combines deep learning techniques (e.g., LSTM, Bi-LSTM,
CNN-LSTM) with traditional landmark analysis to improve
the performance of time-to-event prediction. Additionally,
we provide implementation code in which these deep learn-
ing methods are optimized using the negative partial likeli-
hood function loss function specific to landmark analysis.
Our deep learning approaches are presented in section 2.
We then compare the prediction performance of our pro-
posed deep learning structures on four prespecified land-
mark time points using the Ocular Hypertension Treatment
Study (OHTS) dataset. Estimation results are given in sec-
tion 3. Some discussion and concluding remarks are given
in section 4.

2. Model Specification
2.1. Data Sources

In this study, we analyze the data from the Ocular Hyperten-
sion Treatment Study (OHTS) - a randomized trial testing
whether topical ocular hypotensive medication delays or
prevents the onset of primary open-angle glaucoma (POAG;
Gordon et al. 1999, 2020, Kass et al. 2002, 2021). OHTS
randomized 1,636 participants in 22 clinics nationwide, 25%
of whom self-identified as African origin, to either treatment
with topical ocular hypotensive mediation or close observa-
tion. In OHTS, measures of variables were recorded every
6 months for a median follow-up of 11 years and reassessed
after 20 years, using the same schedule of tests and measures
in both randomization arms.

For all the methods below, we use the visual field (VF)
data collected from the 24-2 Humphrey VF map. In this
map, 52 total deviation (TD) values in a plane are assessed
quantitatively on their threshold sensitivity to spots of light,
which are stretched into a 52× 1 vector at each observation
time. Figure 1 shows one example of the 24-2 Humphrey
VF map (Feldon et al. 2006).

2.2. Model Development

Landmark Analysis

Landmark analysis is widely applied for survival prediction
with longitudinal covariates or features, where a survival
model is fitted from a series of time origins (landmarks) only
on those patients still at risk at the landmark time (Anderson
et al. 1983). The risk function is estimated based on features
measured up to the landmark time. All methods considered
in this paper are within the landmark analysis framework.

Cox’s proportional hazards model

Under the Cox’s proportional hazards model, let s denote
the prespecified landmark time, and v denote a clinically
relevant prediction time period, the hazard for subject i
conditional on predictors from time s up to time s+ v can
be obtained by

hi (t | Xi,Yi(s), s, v) = h0,s(t | s) exp {αYi(s)} ,

where t ∈ (s, s+ v) and Yi(s) is longitudinal VF observa-
tions of length 52 (for the 52 VF locations) of subject i at
time s, Yi(s) is the longitudinal VF observation history
up to time s, and h0,s(t | s) denotes the baseline hazard
function at time t for landmark time s.

LSTM Architecture (Hochreiter and Schmidhuber
(1996))

Suppose that the number of observations before a given
landmark time s is l, then the VF inputs feeding into the
LSTM for each subject is l vectors of length 52. The struc-
ture of LSTM is shown in Figure 2(A). Stretched inputs are
fed into two layers of LSTM, followed by a dropout layer
and another two layers of LSTM. The outputs from previous
layers of LSTM are then used as inputs for a feed-forward
neural network layer with a Sigmoid activation function
to calculate the final risk score prediction. The output for
subject i at landmark time s is denoted as rθ(Yi(s)), where
θ denotes the unknown parameters in the proposed LSTM
structure. With the predicted risk scores, for t ∈ (s, s+ v),
the hazard of developing glaucoma at time t for subject i
under the Cox proportional hazards model is defined as

hi (t | Xi,Yi(s), s, v) = h0,s(t | s) exp {rθ(Yi(s))} .

Bidirectional LSTM Architecture (Schuster 1997)

LSTM only preserves the information in one direction, from
past to future or from future to past. However, bidirectional
LSTM (Bi-LSTM) has the inputs flowing in two ways to
preserve future and past information, which is usually more
suitable for complex structures. The proposed bidirectional
LSTM structure for landmark analysis is similar to the pro-
posed LSTM structure introduced above. For each subject
at every observational time point, VF data are stretched into
a 52× 1 vector. If the number of VF observations before a
given landmark time s is l, then the inputs of dimension
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52 × l are fed into the bidirectional LSTM. The structure
of Bi-LSTM is shown in Figure 2(B), with two layers
of bidirectional LSTM followed by a dropout layer, and
then the hidden nodes are fed into two bidirectional LSTM
layers followed by a feed-forward neural network layer with
a Sigmoid activation to make the final risk score predictions.

CNN-LSTM Architecture (Kucur et al. 2018)

CNNs require input images with fixed height, width,
and depth. However, visual field maps cannot be used
directly as inputs for CNNs because they lack a standard
representation for perimetric data points. To maintain the
spatial information in the visual field map and convert it
into a suitable input format for a CNN, in the beginning,
the 52 visual field data points are converted into a 61× 61
image. Following Kucur, Hollo, and Sznitman (2018),
we convert the visual field map into a new image using a
novel Voronoi representation and then train the transformed
Voronoi images in the designed CNN-LSTM algorithm.
For a subject with l number of visual field examinations
before landmark time s, the converted images of dimension
61 × 61 × l first pass through the CNN. The structure
of the CNN-LSTM is shown in Figure 2(C). After two
CNN layers with two max-pooling in the middle of the
two layers, the output is flattened into a vector followed
by a fully connected layer. The visual field map features
are condensed into vectors of length 52, representing a
summary of information at 52 locations on the map, and
then used as inputs for the subsequent LSTM. The LSTM
architecture is the same as in Figure 2(A). The final outputs
from the CNN-LSTM architecture are risk predictions for
each subject at a specified landmark time.

ResNet50-LSTM Architecture (Gheisari et al. 2021)

ResNet-50 is a 50-layer CNN with 48 convolutional lay-
ers, one max-pooling layer, and one average pooling layer.
Similar to CNN-LSTM, in applying the ResNet50-LSTM
architecture proposed by Gheisari et al. (2021), we also use
transformed Voronoi images (Kucur, Hollo, and Sznitman,
2018) as input to ResNet50 to extract spatial features. The
outputs of ResNet50 are vectors of length 52. The output
length is set to be 52 to be consistent with other methods.
Then the outputs from ResNet50 are fed into LSTM, which
shares the same structure as the LSTM method shown in
Figure 2(A). The detailed structure of ResNet50-LSTM
is shown in Figure 2(D). In the beginning, ResNet50 is
applied to extract spatial information from each visual field
Voronoi image. Then the longitudinal extracted features are
fed into the LSTM accounting for time-dependency to make
a prediction on the risk scores.

Of note, the CNN-LSTM method trains the convolutional

neural network and LSTM simultaneously, while ResNet50-
LSTM trains the convolutional neural network and LSTM
in completely separate phases.

Loss Function

The loss function is defined as the negative partial log-
likelihood:

l(θ) := −
∑

i:δi=1

r̂θ (Yi(t))− log
∑

j∈R(Ti)

er̂θ(Yj(t))


where Ti is the true failure time, Ci is the censoring time,
and Vi = min(Ti, Ci) denotes the observed event time for
the ith subject. The censoring indicator δi is defined as
δi = I(Ti<Ci). The risk set ℜ(t) = {i : Ti ≥ t} is the set
of patients still at risk of failure at time t.

3. Experimental settings
We compare the five methods on their time-to-glaucoma
prediction with the Ocular Hypertension Treatment Study
(OHTS) dataset, including conventional landmark analysis
under Cox proportional hazards model (CPH), the LSTM
method, the Bi-LSTM method, the CNN-LSTM method,
and the ResNet50-LSTM method. The conventional land-
mark analysis under Cox proportional hazards model is
regarded as the baseline method. The proposed LSTM,
Bi-LSTM, CNN-LSTM, and ResNet50-LSTM are imple-
mented by Keras and Tensorflow.

We investigate the prediction performance at four landmark
time points: 1.5 years, 2 years, 2.5 years, and 3 years. Sub-
jects in the analysis were expected to examine every 6 month
from baseline, which results in 4, 5, 6 and 7 number of ob-
servations (including baseline) for the four landmark times,
respectively. The number of glaucoma events for each land-
mark time point 1.5 years, 2 years, 2.5 years, and 3 years
are 301, 286, 262, and 248, respectively. It is desirable to
find an early landmark time point with adequate prediction
power for clinical practice. In the application, we exclude
subjects who have missing observations at the first three
observation times for reliable estimation. The sample used
for training and testing is 1436 subjects with 2872 eyes.
For subjects with intermittent missing VF maps before the
landmark time, we use the last observation carried forward
(LOCF) method to impute those intermediate missing VF
data.

For the LSTM method and bidirectional LSTM method,
each visual field map is transformed to a length 52 vector.
For ResNet50-LSTM, we use the transformed Voroni im-
ages with size 61× 61 as inputs for ResNet50, the extracted
features for each patient are of length 52× 1 and are then
fed into LSTM for training and prediction with a batch size
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(A) (B)

(C)

Figure 1. (A). Schematic of a 52-point (program 24-2) Humphrey Visual Field for a left eye (bs: blind spot). The numbers on the plot
indicate location indexes in a visual field map. (B). Example of a Humphrey Visual Field with an inferior altitudinal field defect. The
numbers are the difference between the values in decibels of each point in the linear array between a single visual field and those of
age-matched controls. Bold points indicate locations with inferior altitudinal defects. (C).Example of heatplot of a visual field map with
TD values at 52 locations. Purple means low values, and red means high values.

(A) (B)

(C)
(D)

Figure 2. (A). LSTM with l number of longitudinal VF observations. (B). Bi-LSTM with l number of longitudinal VF observations. (C).
CNN-LSTM with l = 7 number of longitudinal VF observations. (D). ResNet50-LSTM with l number of longitudinal VF observations.
Red arrows represent time-dependence among VF maps. Blue arrows represent Voronoi transformation.
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Table 1. The averaged C-index on the 10 cross-validation sets as the predictive performance by the five methods.

Landmark time CPH LSTM Bi-LSTM ResNet50-LSTM CNN-LSTM
1.5 years 0.597 0.657 0.657 0.523 0.579
2 years 0.559 0.642 0.644 0.516 0.520
2.5 years 0.559 0.657 0.666 0.558 0.656
3 years 0.568 0.697 0.704 0.613 0.642

64. As for the CNN-LSTM method, similarly, visual field
maps with 52 points are resized to 61 × 61 × l Voronoi
images, where l is the number of longitudinal observation
times at each landmark time. For example, l = 7 when the
landmark time point is 3 years. The transformed Voronoi
images are fed into the convolutional layer (kernel size 3×3,
hidden size 8) and a max-polling layer (pool size 2) twice
to extract image features. Then the extracted features are
flattened and fed into a fully connected layer with the Relu
activation function (size 52). During training, we use the
Adam optimizer with a learning rate = 10−5 and a batch
size of 64.

4. Results
We report the concordance index (C-index) to compare the
prediction performance of different methods. C-index is the
most commonly used evaluation metric in survival analysis
(Harrell et al. 1984) as a measure of the rank correlation
between predicted risk scores and observed time points. If C-
index= 1, the prediction model has the best performance in
the sense that the ranking of predicted risk scores perfectly
matches that of the observed event times.

We use ten-fold cross-validation to train the model. In each
fold, to mimic the patients’ event distribution in the original
dataset, we use stratified sampling on the OHTS data with
the same ratio of censored and uncensored patients in each
sample and divide the data by ten folds. C-indexes shown
in Table 1 are those averaged on each of 10 cross-validation
folds.

Overall, the LSTM and bidirectional LSTM methods have
the highest C-indexes among the five methods on all land-
mark time points. Lower C-indexes from the ResNet50-
LSTM and CNN-LSTM methods suggest that it might be
unnecessary to convert the VF data to the Voronoi image for
the prediction purpose. Furthermore, it appears that as the
duration of landmark time increases (more VF data avail-
able), the accuracy of predictions tend to improve. Accord-
ing to our analysis using the LSTM and Bi-LSTM methods,
a three-year VF data set can achieve an AUC of 0.70.

5. Conclusion
We employed a variety of deep-learning techniques, includ-
ing LSTM, Bi-LSTM, CNN-LSTM, and ResNet50-LSTM,
to analyze longitudinal visual field data with the goal of pre-
dicting the empirical distribution of the future event time for
subjects who had not yet experienced the event or censoring
prior to the landmark time. The proposed structures are
intended to capture both spatial and temporal information
and predict the survival probability in the presence of right-
censored data. For landmark analysis of time-to-POAG
prediction with longitudinal VF observations, the proposed
LSTM and Bi-LSTM demonstrate better prediction perfor-
mance than the traditional Cox proportional hazards model,
ResNet50-LSTM, and CNN-LSTM methods. Our results il-
lustrate the potential benefits of using deep learning methods
in time-to-POAG prediction with longitudinal features.

All methods used in the experiment are within the landmark
analysis framework. An alternative approach is the joint
modeling framework, which models both the longitudinal
measures and the survival outcomes jointly, utilizing shared
random effects to account for correlation (Rizopoulos et al.
2017, Suresh et al. 2017, Tanner et al. 2021, Lin and Luo
2022). It would be interesting to extend the proposed deep
learning structures into the joint modeling framework and
perform time-to-event predictions.

Besides visual field data, the OHTS dataset also contains
other covariates such as age, intraocular pressure, central
corneal thickness, pattern standard deviation, and vertical
cup disc ratio, which are informative on time-to-glaucoma
prediction and might be worthy of investigation in the future
study to improve prediction performance.

In this paper, we treat each eye independently. To account
for dependency between two eyes on the same patient, we
recommend to use frailty method for cluster effect (Paik,
Tsai, and Ottman (1994), Ripatti and Palmgren (2000)).
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