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Abstract

Human conversation is usually conducted with001
language, speech, and visual information. Each002
communication medium contains rich informa-003
tion and complementary to others, for exam-004
ple, speech (para-lingual) may contain vibe005
that is not well represented in language. Mul-006
timodal LLM consider multimodal informa-007
tion and aim to generate text responses. How-008
ever, generating more natural and engaging009
speech response has received little attention010
even though response only with text cannot011
give a rich conversation experience. In this pa-012
per, we suggest a more human-like agent that013
makes a speech response based on the conver-014
sation mood and responsive style information.015
Our model is trained to generate text responses016
along with voice descriptions from multimodal017
conversation environment. With the voice de-018
scription, the model generates speech covering019
para-lingual information. To achieve this goal,020
we first build a novel multi-sensory conversa-021
tion dataset mainly focused on speech to en-022
able conversational agents to generate natural023
speech communication. Then we propose our024
multimodal LLM based model for generating025
both text response and voice description. In026
experimental results, our model demonstrates027
the effectiveness of utilizing both visual and au-028
dio modalities in conversation and generating029
lively speech.030

1 Introduction031

"In real life, people make gestures and read032

other people’s gestures when they communicate.033

Whether someone is smiling, crying, shouting, or034

frowning when saying ’thank you’ can indicate035

various feelings from gratitude to irony. People036

also form their response depending on such con-037

text, not only in what they say but also in how they038

say it (Chu et al., 2018)". Multimodal conversa-039

tional agents, which can understand both verbal040

and nonverbal cues such as gestures and tone of041

Yes, I am very excited about the party.

AgentUser

…

Are you excited to go to the party?

Agent

User

…

Are you excited to go to the party?

Agent

User

…

Are you excited to go to the party?

Agent: Text

Agent : Text + Audio

Ours : Text + Audio + Para-lingual

* Text Description
Agent delivers a quite expressive speech with a 

very high-pitched voice at a moderate speed

Yes, I am very excited about the party.

Yes, I am very excited about the party.

Figure 1: A dialogue example of multi-sensory con-
versation. (Top) represents text only responsive agent.
(Middle) represents text and audio responsive agent.
(Bottom) represents text and audio with para-linguistic
responsive agent.

voice, have a wide range of potential applications 042

across various domains. It can be employed in 043

customer service interactions to enhance user ex- 044

perience. They can interpret circumstances and 045

tone of voice to better understand customer emo- 046

tions and address their concerns effectively. In 047

online education, these agents could assist students 048

by gauging their engagement and comprehension 049

through nonverbal cues, adapting the teaching style 050

accordingly. 051

Recently, communication with machines has be- 052
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come increasingly effective due to the remarkable053

success of Large Language Models (LLMs). Even054

considering just open-source models, we see signif-055

icant advancements in various Question Answering056

(QA) systems. For instance, Text-based QA sys-057

tems (Touvron et al., 2023) can understand and058

respond to text inputs. Visual QA systems (Liu059

et al., 2023) can interpret both text and image in-060

puts. Video QA systems (Lin et al., 2023) can061

comprehend text and sequences of images. Audio-062

Video QA systems (Zhang et al., 2023b) can pro-063

cess text, video, and audio inputs. However, these064

models are currently only capable of generating065

text responses.066

The easiest way to achieve multimodal commu-067

nication may be combined with a Text-To-Speech068

(TTS) module. However, current TTS modules are069

inadequate for effective communication. For in-070

stance, TTS modules (Popov et al., 2021; Shen071

et al., 2023; Li et al., 2024) cannot generate speech072

that incorporates para-linguistic information reflect-073

ing the communication moo. To address these chal-074

lenges, we propose our novel speech generation075

model with paralingual information.076

The creation of such conversational model re-077

lies on exposure to a diverse range of multimodal078

conversations that seamlessly integrate textual, vi-079

sual, and acoustic elements. To comprehend multi-080

modal information in conversations, we adopt the081

BLIP-2 (Li et al., 2023) approach to ensure efficient082

cross-modal training. To capture variations in vi-083

sual scenes within videos, we employ a pre-trained084

visual encoder to compute frame representations085

separately. A video Q-Former is then introduced086

to generate visual query tokens. For audio signals087

from the video, we utilize a pre-trained audio en-088

coder and an audio Q-Former to learn effective089

auditory query embeddings. Finally, to generate090

conversational responses with paralinguistic com-091

ponents derived from the overall communication092

atmosphere, we use instruction tuning. This guides093

our model to generate voice descriptions that reflect094

the desired speech atmosphere.095

In order to develop the proposed conversational096

agent, a substantial corpus of multimodal interac-097

tive conversation data of considerable scale is desir-098

able. However, there are limitations in the dataset099

available for training the model such as smaller100

scale or missing modality like audio. To over-101

come these limitations, we present a new dataset102

called MultiSensory Conversation (MSC) dataset.103

Our dataset is a carefully curated collection of104

about 31,000 utterances extracted from educational 105

YouTube videos. These videos encompass straight- 106

forward and natural conversational scenarios, mak- 107

ing them well-suited for the training of our model. 108

The contributions of our work can be summa- 109

rized as follows: 110

• To the best of our knowledge, we are first to 111

study a dialogue model incorporating para- 112

lingual output in responses. We generate 113

speech with paralinguistic information reflect- 114

ing multimodal factors in conversation. 115

• We introduce the MultiSensory Conversation 116

(MSC) dataset, a collection of around 31,000 117

utterances from educational YouTube videos, 118

which will be publicly available to advance 119

research in multimodal conversational agents. 120

• Our model effectively utilizes both visual and 121

auditory modalities, producing natural and 122

contextually appropriate speech responses, as 123

validated by both quantitative metrics and 124

qualitative assessments. 125

2 Related Work 126

2.1 Multimodal LLM 127

Large Language Models (LLMs) have demon- 128

strated a high level of common knowledge (Achiam 129

et al., 2023). Initial attempts to leverage this knowl- 130

edge for vision-language tasks mainly involve 131

adding visual information to LLMs. The common 132

approach is to encode image features using a pre- 133

trained vision model, project these features, and 134

then directly input them into the LLM (Lin et al., 135

2023; Zhang et al., 2023b; Liu et al., 2024; Chen 136

et al., 2023). Traditional vision-language datasets 137

(Sharma et al., 2018; Schuhmann et al., 2022) are 138

not designed for instruction-following tasks (Liu 139

et al., 2024). To address this, detailed captions and 140

object bounding box information are provided to 141

the LLM, creating an instruction-following dataset. 142

Models trained on this dataset exhibits impressive 143

multimodal conversation abilities (Liu et al., 2024). 144

Beyond vision-language tasks, there have been 145

efforts to integrate various modalities into LLMs. 146

While vision-language tasks primarily focus on 147

generating text from image inputs, there have also 148

been attempts to generate other modalities using 149

LLMs (Wu et al., 2023; Tang et al., 2024). These 150

models try to retain the semantic information of 151

the input but often struggle with consistency across 152
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Figure 2: The illustration depicts the creation process of the MultiSensory Conversation dataset. Initially, raw
video segments are manually divided into dialogue units. Subsequently, each utterance undergoes automatic speech
recognition (ASR) to further refine segmentation, supported by scene detection and speaker diarization techniques.

modalities. Our approach enables speech inter-153

action with LLMs without losing consistency by154

merging TTS systems, circumventing the afore-155

mentioned drawbacks.156

2.2 Text-to-Speech157

Diffusion models have gained traction in speech158

synthesis due to their potential for diverse speech159

sampling and fine-grained speech control (Zhang160

et al., 2023a). Probabilistic diffusion and large pre-161

trained speech language models achieve human-162

level performance in synthesizing natural and di-163

verse speech (Popov et al., 2021; Huang et al.,164

2022b,a). Toward human-level TTS systems, mod-165

eling speech styles as a latent random variable show166

the potential on both single and multispeaker (Li167

et al., 2022, 2024). Alternatively, natural language168

prompting of speaker identity and style has demon-169

strated promising results and provides an intuitive170

method of control (Lyth and King, 2024). Our ap-171

proach follows the natural language prompt method172

for generating voice descriptions. By generating173

responsive voice descriptions that consider the con-174

versation history, we can enhance the naturalness175

and contextual appropriateness of TTS outputs in176

dialogue systems.177

3 Data178

The majority of existing datasets for multi-179

modal conversation primarily involve utterances180

consisting of single speakers, in the case of181

AVSpeech (Ephrat et al., 2018) and MEAD (Wang182

et al., 2020) where one speaker provides continuous183

utterances, or MovieChat (Chu et al., 2018) do not184

involve scene images or audios but the dataset has185

texts and facial landmarks. However, to effectively186

communicate in a more human-like way, a dataset187

Train Valid Test Total
# of Dialogue 913 110 97 1120
# of Utterance 25624 3145 2640 31409

Duration 17.5h 2.1h 1.8h 21.5h

Table 1: Statistics of the MultiSensory Conversation
dataset.

that encompasses both looking at and conversing 188

with human faces along with voice is desirable and 189

no dataset has been curated with this precise focus 190

in mind. One notable dataset is the MELD (Poria 191

et al., 2018) that provides both facial images and 192

audio. However, since it was initially designed for 193

multimodal emotional analysis, it may not always 194

achieve precise audio splitting, which could result 195

in some parts of the speech being missing or cut 196

off. Also, since it originated from the TV series 197

Friends, most of the clips contain noise from au- 198

dience reactions not adequate for training natural 199

human-like speech generation models. 200

To address these limitations, we have taken the 201

initiative to develop our novel dataset, the Multi- 202

Sensory Conversation Dataset depicted in Figure 2. 203

This dataset originated from YouTube, and because 204

it is an educational video that allows people to com- 205

municate fluently in English, it consists of natural 206

conversations containing abundant visual compo- 207

nents for conversation such as background, human 208

face, gestures and various aspects of voice features 209

such as pitch, volume, timbre, and prosody. 210

3.1 Preprocessing 211

3.1.1 Dialogue Split 212

Manually segmenting over 36 hours of videos by 213

speech is a challenging task for an individual. Also, 214

it is necessary to check if any parts are not ap- 215
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6) I live on side 55.

1) Have you been on holiday in 
Bangkok?

2) No, I work there.

3) Really? Me too! 

4) Where do you live?

5) I live on Sukhumwe Road, 
            and where do you live?

Figure 3: An example of MultiSensory Conversation dataset. This illustration shows text, audio, and videos from
about 31,000 utterances obtained from educational YouTube videos.Dialogues within a single utterance are separated
using ASR, scene detection, and speaker diarization techniques.

propriate for learning conversations. So we pro-216

ceeded to partition the data into units of dialogue217

manually, aiming to address any existing inappro-218

priateness. The criteria guiding the separation of219

dialogues were as follows: 1) When multiple dia-220

logues occurred within a single context. 2) In in-221

stances where the scene transitioned to a different222

setting during the conversation. 3) When transi-223

tioning between similar scenes, provided that the224

individuals involved changed.225

3.1.2 Utterance Split226

To efficiently split dialogue videos into individual227

utterances, we can use a technique called Speaker228

Diarization, aimed at segmenting and indexing au-229

dio recordings by speaker identity and marking230

speech timestamps. However, it has some limita-231

tions, such as difficulty in accurately identifying232

speakers and overly fragmenting single utterances.233

To address these issues, we incorporated Auto-234

matic Speech Recognition (ASR) with timestamp235

capabilities. In our approach, we utilized a pre-236

trained ASR model1 that trains OpenAI’s Whisper-237

large-v3 (Radford et al., 2023) on English-only238

data, providing more accurate and faster inference239

speeds. However, since this model is trained for240

audio clips up to 25 seconds long, it struggles to241

accurately timestamp longer clips. To overcome242

this, we applied a scene detector2 to divide longer243

audio into shorter clips. For clips still exceeding 25244

seconds, we employed speaker diarization3. This245

method allowed us to more effectively segment the246

entire video into distinct speech units, each corre-247

sponding to individual speakers. Figure 3 shows a248

sample of MSC dataset.249

1distil-whisper/distil-large-v3
2https://github.com/Breakthrough/PySceneDetect
3pyannote/speaker-diarization-3.1

3.2 Metadata Processing 250

3.2.1 Speaker Assign 251

We assign a speaker ID to each video clip accord- 252

ing to dialogue units. While speaker diarization is 253

the desirable method for segmenting and indexing 254

speakers to utterances, as mentioned earlier, it has 255

limitations in speaker identification performance. 256

We take an alternative approach to address this 257

limitation: cluster the speech embedding. Figure 4 258

shows our approach. We obtain speech embeddings 259

from each video clip using WeSpeaker 4 (Wang 260

et al., 2023), a tool focused on speaker embedding 261

learning, particularly for speaker verification tasks. 262

By grouping speech embeddings, we perform clus- 263

tering with the HDBSCAN (McInnes et al., 2017) 264

algorithm, which can handle variable density and 265

does not require specifying the number of clusters. 266

We use cosine distance as the metric since most 267

speaker verification systems utilize cosine similar- 268

ity for evaluation. This method allows us to assign 269

each entire utterance to individual speakers effec- 270

tively. 271

3.2.2 Speech Description 272

Since our goal is speech generation, we decided to 273

extract para-lingual information that accurately de- 274

scribes speech. Parler-TTS (Lyth and King, 2024) 275

is a Text-to-Speech (TTS) system that transforms 276

text into speech, incorporating detailed speech de- 277

scriptions such as gender, pitch, speaking style, etc. 278

This system provides methods for creating these de- 279

scriptions, which we utilized in our process. From 280

the MSC dataset, we extract pitch, gender, speech 281

monotony, speaking pace, and reverberation ex- 282

cluding noise. To verify, especially for gender, we 283

conduct gender recognition 5 from audio which 284

4pyannote/wespeaker-voxceleb-resnet34-LM
5alefiury/wav2vec2-large-xlsr-53-gender-recognition-

librispeech
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Evaluation
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Figure 4: Illustration of our speaker assignment pipeline:
we obtain speech embeddings using WeSpeaker and
perform clustering with the HDB-SCAN algorithm.

shows 99.93 of F1 score. After that, we generate285

natural language descriptions of them.286

3.3 Data Statistic287

The statistics are presented in Table 1. To summa-288

rize, we divided the video content into a total of289

1,120 dialogues and 31,409 utterances. The total290

video length is 21.5 hours. The average duration291

of an utterance is 2.46 seconds. You can find more292

details in Appendix B.293

4 Model294

We develop an end-to-end model capable of pro-295

cessing data from multiple modalities within a296

large language model (LLM). Our model takes297

in a set of images, audio, and text as inputs as298

a single utterance and generates responsive tex-299

tual sentence with voice description. Figure 5300

shows the overview of our architecture. We de-301

note our dataset as D =
{
da, dv, dl

}
where a302

is acoustic, v is visual, and l is language. And303

each dialogue consists of a set of utterances. Let304

dm =
{
um1 , um2 , ..., umt , umt+1

}
as single dialogue305

and t is the order of utterance, and m presents306

modality. Note that the dataset includes several307

dialogues, but they are independent of each other.308

For single utterance umt =
{
uat , u

v
t , u

l
t

}
, video309

and audio modalities go through each Q-Former to310

generate a representation vector. Then the pro-311

cessed utterance was brought together to LLM.312

LLM input is integrated with the conversation313

history
{
um1 , um2 , ..., umt−1, u

m
t

}
. Ultimately, LLM314

generate the output
{
ûlt+1,

ˆdesct+1

}
which is text315

modality.316

4.1 Multimodal Understanding317

In Video-LLaMA (Zhang et al., 2023b), the video318

and audio data are trained on each Q-Former, which319

shares the same structure as Blip-2 (Li et al., 2023). 320

To initialize the Video Q-Former and Audio Q- 321

Former, we adopt the pretrained Q-Former from 322

Blip-2. These models are fine-tuned to enable un- 323

derstanding of visual and auditory information in 324

conversations. Within Q-Former, queries interact 325

via self-attention layers and with frozen feature 326

encoders via cross-attention layers. To match the 327

extracted feature’s dimension of video and audio to 328

the dimension of pretrained Q-Former during the 329

cross-attention process, we add a linear projection 330

layer inside Q-Former. They extract a fixed num- 331

ber of output features from both the image encoder 332

and audio encoder, regardless of the length of in- 333

put video and audio. In the Video Q-Former, we 334

consider the image feature list as a conversation 335

scene. For video sampling, we uniformly extract 336

three frames per second. However, in the Audio 337

Q-Former, the entire feature of the speech is taken 338

as input. While sampling is conducted for videos 339

to reduce redundant information and improve effi- 340

ciency, the same method cannot be applied to audio 341

due to significant information loss. Nevertheless, 342

Q-Former’s consistent output length characteris- 343

tic helps mitigate the miss-length issue between 344

video and audio information. The features after Q- 345

Former will concatenate with textual information 346

obtained from the embedding token of LLM and 347

treat it as an utterance feature. 348

4.2 Speech Description Generation 349

If the model can understand the intention of a single 350

utterance containing multimodal information, read- 351

ing conversation mood is possible with dialogue 352

history. We utilized LLM capable of understanding 353

dialogue history which is sequential information. 354

The features processed through the Q-Former are 355

projected into the embedding space of LLM using a 356

linear layer. Additionally, we employed Instruction 357

tuning to provide information about which speaker 358

is delivering each utterance. 359

The response considering the conversation mood 360

can be obtained in text format. But in order to 361

provide richer communication, we’ve trained our 362

model to reflect not just linguistic information but 363

also para-linguistic cues by describing voice. Our 364

model first generates the response text and then 365

produces a description influenced by that text. To 366

accomplish this, we’ve introduced instruction tun- 367

ing, a new process where voice descriptions are cre- 368

ated after the language model generates responses. 369

We also give instructions about who should speak, 370
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Figure 5: Overview of our model architecture. Multimodal Utterances, composed of text, audio, and video features,
are input into LLM(Large Language Model). LLM generates Text Response and Speech Description. These outputs
are then processed by Speech Decoder(TTS), which produces Speech Response.

Text Text Embedding

Audio
Speech 

Projection Layer

Video
Video 

Projection Layer

Video

Q-Former

Audio

Q-Former Speech Feature
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Multimodal 

Utterance
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Concatenation

Figure 6: Workflow of Multimodal Encoding. Text, Audio, and Video inputs are processed independently. Text
is converted into text embedding, audio is processed into Speech Feature via the Audio Q-Former and Speech
Projection Layer, and Video is processed into video Feature via Video Q-Former and Video Projection Layer. These
features are concatenated to form a Multimodal Utterance, integrating information from three modalities.

which makes a model response or continues the371

previous utterance. More details about instruction372

tuning are presented in Appendix C.373

4.3 Training Loss374

Our approach involves end-to-end training. Ini-375

tially, we use a target reference sentence paired376

with its corresponding audio description. The cross-377

entropy loss is then computed between the target378

and the model output, as illustrated in Equation1,379

with the concatenation operation ∥.380

Loss = CE(ult+1 ∥desct+1, û
l
t+1 ∥ ˆdesct+1) (1)381

Our training primarily emphasizes the Video Q-382

Former and Audio Q-Former models. Furthermore,383

we fine-tune the large language model backbone384

with parameter efficient fine tuning (Hu et al., 2021)385

to specialize the model specifically for the conver-386

sation task.387

5 Experiment388

5.1 Experimental setup389

5.1.1 Multimodal Feature Extraction390

We obtained modality-specific data from each391

video segment, corresponding to an utterance unit.392

For visual data, we extract visual features with 393

CLIP-VIT (Radford et al., 2021). This model 394

has a strong alignment with text, having a poten- 395

tial impact on downstream tasks. The audio data 396

extraction process gets an acoustic feature with 397

WavLM (Chen et al., 2022). This model tries 398

to solve full-stack downstream speech tasks with 399

speech information including speaker identity, par- 400

alinguistics, and spoken content. 401

5.1.2 Evaluation 402

In our experiments, we used two datasets: our MSC 403

dataset and the MELD dataset (Poria et al., 2018). 404

To evaluate our model’s performance, we employed 405

several metrics commonly used in natural language 406

processing. These included the BLEU score (Pap- 407

ineni et al., 2002), which measures n-gram overlap 408

between machine-generated text and reference text. 409

We also utilized METEOR (Banerjee and Lavie, 410

2005), designed to address limitations of BLEU 411

by considering factors like synonymy, stemming, 412

word order, and recall. Additionally, we employed 413

ROUGE (Lin, 2004), which is particularly useful 414

for evaluating the coherence and flow of summaries 415

and translations. These metrics collectively pro- 416

vided a thorough assessment of our model’s capa- 417
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Datasets
Modality MSC MELD

B@1 B@3 METEOR ROUGE B@1 B@3 METEOR ROUGE
Text 12.30 4.11 5.81 11.90 7.99 1.60 4.47 8.09
Text + Audio 12.96 4.82 6.27 11.83 9.10 2.11 4.35 8.24
Text + Video 14.62 4.78 6.63 13.38 5.62 1.00 2.53 4.03
Text + Audio + Video 15.11 5.25 6.89 14.12 10.23 2.19 4.74 9.88

Table 2: Ablation study on different modalities across two datasets. The text-only modality model represents a pure
LLM that has been fine-tuned with each dataset.

bility to generate high-quality text outputs com-418

pared to reference data.419

5.2 Text420

5.2.1 Modality Ablation421

Given that our model processes a multimodal input,422

comprehending the impact of each modality on its423

performance becomes crucial. Therefore, our aim424

is to assess how metrics alter as we integrate in-425

formation from diverse modalities into the existing426

large language model. Table 2 shows the impact of427

audio and video features. According to the MSC428

dataset result, The addition of audio features and429

video features influences the enhancement of con-430

versational generation outcomes. Furthermore, The431

incorporation of audio and video input noticeable432

increase in the score. It is the same for the MELD433

dataset, where incorporating audio and video inputs434

also results in the highest performance. However,435

the scale of the score is smaller, which implies that436

the MSC dataset is more suitable for the tasks we437

presented.438

5.2.2 Qualitative Analysis439

LLMs(Large Language Models) have demon-440

strated remarkable capabilities in generating text441

based solely on textual input. However, LLMs’442

understanding and response generation is limited443

when it comes to interpreting the emotional con-444

text behind the same textual content presented with445

different emotions. c For instance, text-based LLM446

might understand the sentence "Hello, how are447

you?" the same way, regardless of whether the448

speaker is happy or sad. Because it lacks access449

to non-verbal cues such as tone of voice, or facial450

expressions that convey these emotions.451

In the Qualitative Analysis of evaluating multi-452

modal model, we have demonstrated our model’s453

capability to understand multimodality through454

metric scores. This is evident in the enhanced455

performance achieved by integrating text, audio,456

   Unimodal Model Output : “No problem.”

   Multimodal Model Output: “Is there a toilet in the restaurant next door?”

   Reference: “Where is a toilet?”

[ Dialogue #1, History ]

[Speaker 1 Response]

[Speaker 1] : “Do you have a toilet here?”

[Speaker 2] : “Oh no, I'm so sorry. There is no toilet in this shop.”

[Speaker 1] : “Ah, okay.”

   Unimodal Model Output : “Oh, That would be great, Patty.”

   Multimodal Model Output: “Thanks, but I’m okay.”

   Reference: “No, thanks. I want a tan first.?”

[ Dialogue #2, History ]

[Speaker 2 Response]

[Speaker 1] : “Do you need some sunscreen, Daisy?”

[Speaker 1] : “I can put it on your back for you.”

Figure 7: Qualitative Evaluation of Multimodality. We
evaluate on our dataset, namely MultiSensory Conver-
sation Dataset.

and video. However, it is worth noting that met- 457

rics alone might not capture the full essence in an 458

open-domain scenario. Consequently, we present a 459

comparative analysis of our model’s outputs against 460

those of the text-based unimodal model in Figure 7. 461

Our model generates more natural responses and 462

demonstrates a better understanding of the context 463

than the unimodal model. The figure provides two 464

dialogues from different scenarios, illustrating how 465

the inclusion of additional modalities (audio and 466

video) enables our model to produce more contextu- 467

ally appropriate and natural responses. In Dialogue 468

1, the speaker’s gestures in the video and tone of 469

voice in the audio clearly indicate an urgent situa- 470

tion. In Dialogue 2, the output text adapts based on 471

information from the video, resulting in a generated 472
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Model Accuracy
Ours 15.10%

Ours (w.o. description) 11.20%
StyleTTS2 13.72%

HierSpeech++ 12.54%

Table 3: Emotion classification result.

text that closely matches the reference.473

5.3 Speech474

5.3.1 Emotion Classification475

In this experiment, we performed emotion classi-476

fication using one of eight emotions: angry, calm,477

disgust, fearful, happy, neutral, sad, and surprised.478

The results demonstrated in Table 3. We use a479

pretrained model from Hugging Face for emo-480

tion classification 6. The baselines, including481

StyleTTS2 (Li et al., 2024), HierSpeech++(Lee482

et al., 2023), and Parler-TTS(Lyth and King, 2024)483

which generated speech without natural language484

prompts. Our model generates each speech sample485

from text and voice descriptions and then com-486

pares it with previous speech samples to assess487

consistency. Results show our model outperformed488

the baseline models in maintaining consistent emo-489

tional expression across the conversation.490

5.3.2 Qualitative Analysis491

In the Qualitative Analysis of evaluating voice de-492

scription, we have demonstrated our model’s capa-493

bility to generate consistent emotional description.494

We present a comparative analysis of our model’s495

outputs against those of the reference one in Fig-496

ure 8. The figure provides two dialogues from497

different scenarios, demonstrating our model gen-498

erates similar descriptions in terms of pace, pitch,499

and tone which leads to producing more contextu-500

ally appropriate and natural responses.501

6 Limitation502

One limitation of our model is its inability to gen-503

erate speech with a speaker’s identical voice as504

it appears in historical recordings. However, this505

does not pose an issue during inference, as the506

agent consistently uses the same voice. Poten-507

tial risks include the copyright concerns associated508

with YouTube videos. Since sharing downloaded509

videos is prohibited, we only provide the prepro-510

cessing code to ensure compliance with copyright511

6ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-
recognition

   Output Text : “Yes, I enjoyed it very much.”

   Output Description : “A male speaker delivers a quite slow-paced monotone 

speech with a very high-pitched voice in a confined, echo-less environment.”

   Reference Text : “Yes, it was very interesting.”

   Reference Description : “A male speaker with a very high-pitched voice 

delivers a monotone speech in a very confined, echo-less environment at a quite 

slow pace.”

[ Dialogue #1, History ]

[Speaker 1 Response]

[Speaker 1] : “I also worked for two years in a chemical company in town in the 

marketing department.”

[Speaker 2] : “Did you enjoy that job?”

   Output Text : “Yes, you're a very important person.”

   Output Description : “A female voice speaks quite slowly with a very low 

pitch in a confined, slightly expressive tone.”

   Reference Text : “Elena, you're one of the family now.”

   Reference Description : “A female speaker delivers a quite expressive 

speech with a very low pitch in a very confined, enclosed space.”

[ Dialogue #2, History ]

[Speaker 2 Response]

[Speaker 1] : “My family is very big, many people.”

[Speaker 2] : “Yes, Elena. That's nice. You have a big family. I have a small family.”

[Speaker 1] : “Now an extra person, me.”

Figure 8: Qualitative Evaluation of description. We
evaluate on our dataset, namely MultiSensory Conver-
sation Dataset.

laws. This approach allows users to process their 512

own legally obtained data without violating any 513

terms of service or copyright regulations. 514

7 Conclusion 515

We study a dialogue model with visual and au- 516

dio inputs from a speaker, which is essential for 517

a more human-like conversation model. We pro- 518

pose a novel dataset that is suitable and curated for 519

training such a model. Then we propose a novel 520

multi-sensory conversation model that outperforms 521

the baseline in experiments and thus shows its ef- 522

fectiveness in both quantitative and qualitative eval- 523

uations. In the ablation study, we also demonstrate 524

the importance of each modality we exploited. In 525

the future, we aim to use and extend our model for 526

a more human-like appearance by merging with 527

Talking Face Generation from speech inputs (Zhou 528

et al., 2020) (Zhou et al., 2021) (Zhang et al., 529

2023c) to considering emotional components (Peng 530

et al., 2023) (Gan et al., 2023). We believe our ap- 531

proach contributes to more natural and human-like 532

conversation and our proposed dataset may pro- 533

mote subsequent research in conversation models. 534
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A Implementation Details738

We utilize Mistral-7B (Jiang et al., 2023) as our739

LLM backbone. We train our model with the740

following hyperparameters. We use a batch size741

of 6 and Adam optimizer with learning rate of742

5e-5 and learning rate decay of 0.98. The video743

padding size is 50, audio padding size is 800.744

This size made the same number of utterances745

in a single dialogue history. We sample the746

video data, capturing frames at a rate of three per747

second for each utterance, while the audio remains748

unsampled. We set the maximum input length for749

LLM as 800 which can cover about 10 multimodal750

histories. They are truncated from the oldest751

history to prioritize focusing more on the latest752

utterance. Finally, we tuned the number of epochs753

on validation data and chose epoch 10. Our experi-754

mental environment was conducted using a single755

NVIDIA-A100 80G GPU. Training spent 30 hours.756

757

B MSC Dataset Details758

In this section, we show further details of the new759

MSC dataset. The histograms of video durations760

and word count can be found in Figure 9, 10. Note761

that many videos begin with greetings such as762

"Hello" or "Good Morning", which contribute to a763

higher word count due to there conciseness. More764

detailed examples of the dataset can be found in765

Figure 11.766

C Instruction-tuning767

We give comprehensive instruction first and give768

speaker ID information for each of utterance.769

Lastly, we give another instruction for generating770

voice descriptions. Figure 12 shows a sample of771

instruction tuning. This sample demonstrates text772

input for easy understanding, though actual input773

includes not only text but also integrated text, audio,774

and video modalities.775

D LLM fine-tuning776

We investigated the impact of fine-tuning a large777

language model with parameter efficient fine-778

tuning at Table 4, 5. This indicates that after fine-779

tuning, the model exhibited enhanced conversa-780

tional capabilities compared to its pre-fine-tuned781

state.782

Figure 9: We report the histogram of video duration in
seconds.

Figure 10: We report the histogram of word count in
words.
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Text Description : A male speaker delivers a very 

expressive and animated speech with a high-pitched voice 

in a slightly confined sounding environment.

[Speaker 1]
Text : Oh, Jay? How are you? 

Text Description : A female voice speaks very slowly 

with a very low pitch and a moderate intonation in a 

confined, slightly echoey environment. 

[Speaker 2] Text : A little sleepy.

Text Description : A male speaker delivers a monotone 

speech with a very high-pitched voice in a confined, 

slightly echoey environment. He speaks slightly slowly.

[Speaker 1] Text : This is my friend. His name is Dan.

Text Description : A female voice speaks quite slowly 

with a very low pitch and moderate intonation in a 

confined, echo-less environment.

[Speaker 2] Text : Nice to meet you.

Audio:

Audio:

Audio:

Audio:

C
h

ro
n

o
lo

g
ic

a
l 

O
rd

er
]

Figure 11: MSC Dataset details

I H1 utt1  H2 utt2  ∙∙∙  Hn uttn  R

I:  ### Instruction:  Generate a following response of this conversation.
H1: ### Speaker_{1}: Hey, how was your vacation?
H2: ### Speaker_{2}: It was very fun.
H3: ### Speaker_{1}: Where did you go?
H4: ### Speaker_{2}: I went to the beach.
H5: ### Speaker_{1}: Who did you go with?
R: ###Generate a response format as [text of response (voice description)], Speaker_{2}: " 

Figure 12: Sample of an LLM input with instructions. This sample demonstrates text input for easy understanding,
though actual input includes not only text but also integrated text, audio, and video modalities.
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B@1 B@2 B@3 B@4 METEOR ROUGE SPICE CIDEr
Ours w.o.ft 13.96 7.96 5.03 3.25 6.55 12.77 4.01 34.98
Ours 15.11 8.57 5.25 3.35 6.89 14.12 4.02 38.53

Table 4: impact of LLM fine-tune on MSC dataset.

B@1 B@2 B@3 B@4 METEOR ROUGE SPICE CIDEr
Ours w.o.ft 5.67 2.11 0.97 0.48 2.90 4.95 1.02 6.13
Ours 10.23 4.33 2.19 1.21 4.74 9.88 2.25 16.63

Table 5: impact of LLM fine-tune on MELD dataset.
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