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Abstract

Human conversation is usually conducted with
language, speech, and visual information. Each
communication medium contains rich informa-
tion and complementary to others, for exam-
ple, speech (para-lingual) may contain vibe
that is not well represented in language. Mul-
timodal LLM consider multimodal informa-
tion and aim to generate text responses. How-
ever, generating more natural and engaging
speech response has received little attention
even though response only with text cannot
give a rich conversation experience. In this pa-
per, we suggest a more human-like agent that
makes a speech response based on the conver-
sation mood and responsive style information.
Our model is trained to generate text responses
along with voice descriptions from multimodal
conversation environment. With the voice de-
scription, the model generates speech covering
para-lingual information. To achieve this goal,
we first build a novel multi-sensory conversa-
tion dataset mainly focused on speech to en-
able conversational agents to generate natural
speech communication. Then we propose our
multimodal LLM based model for generating
both text response and voice description. In
experimental results, our model demonstrates
the effectiveness of utilizing both visual and au-
dio modalities in conversation and generating
lively speech.

1 Introduction

"In real life, people make gestures and read
other people’s gestures when they communicate.
Whether someone is smiling, crying, shouting, or
frowning when saying ’thank you’ can indicate
various feelings from gratitude to irony. People
also form their response depending on such con-
text, not only in what they say but also in how they
say it (Chu et al., 2018)". Multimodal conversa-
tional agents, which can understand both verbal
and nonverbal cues such as gestures and tone of
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Figure 1: A dialogue example of multi-sensory con-
versation. (Top) represents text only responsive agent.
(Middle) represents text and audio responsive agent.
(Bottom) represents text and audio with para-linguistic
responsive agent.

voice, have a wide range of potential applications
across various domains. It can be employed in
customer service interactions to enhance user ex-
perience. They can interpret circumstances and
tone of voice to better understand customer emo-
tions and address their concerns effectively. In
online education, these agents could assist students
by gauging their engagement and comprehension
through nonverbal cues, adapting the teaching style
accordingly.

Recently, communication with machines has be-



come increasingly effective due to the remarkable
success of Large Language Models (LLMs). Even
considering just open-source models, we see signif-
icant advancements in various Question Answering
(QA) systems. For instance, Text-based QA sys-
tems (Touvron et al., 2023) can understand and
respond to text inputs. Visual QA systems (Liu
et al., 2023) can interpret both text and image in-
puts. Video QA systems (Lin et al., 2023) can
comprehend text and sequences of images. Audio-
Video QA systems (Zhang et al., 2023b) can pro-
cess text, video, and audio inputs. However, these
models are currently only capable of generating
text responses.

The easiest way to achieve multimodal commu-
nication may be combined with a Text-To-Speech
(TTS) module. However, current TTS modules are
inadequate for effective communication. For in-
stance, TTS modules (Popov et al., 2021; Shen
etal., 2023; Li et al., 2024) cannot generate speech
that incorporates para-linguistic information reflect-
ing the communication moo. To address these chal-
lenges, we propose our novel speech generation
model with paralingual information.

The creation of such conversational model re-
lies on exposure to a diverse range of multimodal
conversations that seamlessly integrate textual, vi-
sual, and acoustic elements. To comprehend multi-
modal information in conversations, we adopt the
BLIP-2 (Li et al., 2023) approach to ensure efficient
cross-modal training. To capture variations in vi-
sual scenes within videos, we employ a pre-trained
visual encoder to compute frame representations
separately. A video Q-Former is then introduced
to generate visual query tokens. For audio signals
from the video, we utilize a pre-trained audio en-
coder and an audio Q-Former to learn effective
auditory query embeddings. Finally, to generate
conversational responses with paralinguistic com-
ponents derived from the overall communication
atmosphere, we use instruction tuning. This guides
our model to generate voice descriptions that reflect
the desired speech atmosphere.

In order to develop the proposed conversational
agent, a substantial corpus of multimodal interac-
tive conversation data of considerable scale is desir-
able. However, there are limitations in the dataset
available for training the model such as smaller
scale or missing modality like audio. To over-
come these limitations, we present a new dataset
called MultiSensory Conversation (MSC) dataset.
Our dataset is a carefully curated collection of

about 31,000 utterances extracted from educational
YouTube videos. These videos encompass straight-
forward and natural conversational scenarios, mak-
ing them well-suited for the training of our model.

The contributions of our work can be summa-
rized as follows:

* To the best of our knowledge, we are first to
study a dialogue model incorporating para-
lingual output in responses. We generate
speech with paralinguistic information reflect-
ing multimodal factors in conversation.

* We introduce the MultiSensory Conversation
(MSC) dataset, a collection of around 31,000
utterances from educational YouTube videos,
which will be publicly available to advance
research in multimodal conversational agents.

* Our model effectively utilizes both visual and
auditory modalities, producing natural and
contextually appropriate speech responses, as
validated by both quantitative metrics and
qualitative assessments.

2 Related Work

2.1 Multimodal LLM

Large Language Models (LLMs) have demon-
strated a high level of common knowledge (Achiam
et al., 2023). Initial attempts to leverage this knowl-
edge for vision-language tasks mainly involve
adding visual information to LLMs. The common
approach is to encode image features using a pre-
trained vision model, project these features, and
then directly input them into the LLM (Lin et al.,
2023; Zhang et al., 2023b; Liu et al., 2024; Chen
et al., 2023). Traditional vision-language datasets
(Sharma et al., 2018; Schuhmann et al., 2022) are
not designed for instruction-following tasks (Liu
et al., 2024). To address this, detailed captions and
object bounding box information are provided to
the LLM, creating an instruction-following dataset.
Models trained on this dataset exhibits impressive
multimodal conversation abilities (Liu et al., 2024).

Beyond vision-language tasks, there have been
efforts to integrate various modalities into LLMs.
While vision-language tasks primarily focus on
generating text from image inputs, there have also
been attempts to generate other modalities using
LLMs (Wu et al., 2023; Tang et al., 2024). These
models try to retain the semantic information of
the input but often struggle with consistency across
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Figure 2: The illustration depicts the creation process of the MultiSensory Conversation dataset. Initially, raw
video segments are manually divided into dialogue units. Subsequently, each utterance undergoes automatic speech
recognition (ASR) to further refine segmentation, supported by scene detection and speaker diarization techniques.

modalities. Our approach enables speech inter-
action with LL.Ms without losing consistency by
merging TTS systems, circumventing the afore-
mentioned drawbacks.

2.2 Text-to-Speech

Diffusion models have gained traction in speech
synthesis due to their potential for diverse speech
sampling and fine-grained speech control (Zhang
et al., 2023a). Probabilistic diffusion and large pre-
trained speech language models achieve human-
level performance in synthesizing natural and di-
verse speech (Popov et al., 2021; Huang et al.,
2022b,a). Toward human-level TTS systems, mod-
eling speech styles as a latent random variable show
the potential on both single and multispeaker (Li
et al., 2022, 2024). Alternatively, natural language
prompting of speaker identity and style has demon-
strated promising results and provides an intuitive
method of control (Lyth and King, 2024). Our ap-
proach follows the natural language prompt method
for generating voice descriptions. By generating
responsive voice descriptions that consider the con-
versation history, we can enhance the naturalness
and contextual appropriateness of TTS outputs in
dialogue systems.

3 Data

The majority of existing datasets for multi-
modal conversation primarily involve utterances
consisting of single speakers, in the case of
AVSpeech (Ephrat et al., 2018) and MEAD (Wang
et al., 2020) where one speaker provides continuous
utterances, or MovieChat (Chu et al., 2018) do not
involve scene images or audios but the dataset has
texts and facial landmarks. However, to effectively
communicate in a more human-like way, a dataset

Train Valid Test | Total

# of Dialogue | 913 110 97 1120
# of Utterance | 25624 3145 2640 | 31409
Duration 17.5h  2.1h  1.8h | 21.5h

Table 1: Statistics of the MultiSensory Conversation
dataset.

that encompasses both looking at and conversing
with human faces along with voice is desirable and
no dataset has been curated with this precise focus
in mind. One notable dataset is the MELD (Poria
et al., 2018) that provides both facial images and
audio. However, since it was initially designed for
multimodal emotional analysis, it may not always
achieve precise audio splitting, which could result
in some parts of the speech being missing or cut
off. Also, since it originated from the TV series
Friends, most of the clips contain noise from au-
dience reactions not adequate for training natural
human-like speech generation models.

To address these limitations, we have taken the
initiative to develop our novel dataset, the Multi-
Sensory Conversation Dataset depicted in Figure 2.
This dataset originated from YouTube, and because
it is an educational video that allows people to com-
municate fluently in English, it consists of natural
conversations containing abundant visual compo-
nents for conversation such as background, human
face, gestures and various aspects of voice features
such as pitch, volume, timbre, and prosody.

3.1 Preprocessing
3.1.1 Dialogue Split

Manually segmenting over 36 hours of videos by
speech is a challenging task for an individual. Also,
it is necessary to check if any parts are not ap-
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Figure 3: An example of MultiSensory Conversation dataset. This illustration shows text, audio, and videos from
about 31,000 utterances obtained from educational YouTube videos.Dialogues within a single utterance are separated
using ASR, scene detection, and speaker diarization techniques.

propriate for learning conversations. So we pro-
ceeded to partition the data into units of dialogue
manually, aiming to address any existing inappro-
priateness. The criteria guiding the separation of
dialogues were as follows: 1) When multiple dia-
logues occurred within a single context. 2) In in-
stances where the scene transitioned to a different
setting during the conversation. 3) When transi-
tioning between similar scenes, provided that the
individuals involved changed.

3.1.2 Utterance Split

To efficiently split dialogue videos into individual
utterances, we can use a technique called Speaker
Diarization, aimed at segmenting and indexing au-
dio recordings by speaker identity and marking
speech timestamps. However, it has some limita-
tions, such as difficulty in accurately identifying
speakers and overly fragmenting single utterances.

To address these issues, we incorporated Auto-
matic Speech Recognition (ASR) with timestamp
capabilities. In our approach, we utilized a pre-
trained ASR model' that trains OpenAI’s Whisper-
large-v3 (Radford et al., 2023) on English-only
data, providing more accurate and faster inference
speeds. However, since this model is trained for
audio clips up to 25 seconds long, it struggles to
accurately timestamp longer clips. To overcome
this, we applied a scene detector” to divide longer
audio into shorter clips. For clips still exceeding 25
seconds, we employed speaker diarization®. This
method allowed us to more effectively segment the
entire video into distinct speech units, each corre-
sponding to individual speakers. Figure 3 shows a
sample of MSC dataset.

! distil-whisper/distil-large-v3
*https://github.com/Breakthrough/PySceneDetect
3pyannote/speaker-diarization-3.1

3.2 Metadata Processing
3.2.1 Speaker Assign

We assign a speaker ID to each video clip accord-
ing to dialogue units. While speaker diarization is
the desirable method for segmenting and indexing
speakers to utterances, as mentioned earlier, it has
limitations in speaker identification performance.
We take an alternative approach to address this
limitation: cluster the speech embedding. Figure 4
shows our approach. We obtain speech embeddings
from each video clip using WeSpeaker * (Wang
et al., 2023), a tool focused on speaker embedding
learning, particularly for speaker verification tasks.
By grouping speech embeddings, we perform clus-
tering with the HDBSCAN (Mclnnes et al., 2017)
algorithm, which can handle variable density and
does not require specifying the number of clusters.
We use cosine distance as the metric since most
speaker verification systems utilize cosine similar-
ity for evaluation. This method allows us to assign
each entire utterance to individual speakers effec-
tively.

3.2.2 Speech Description

Since our goal is speech generation, we decided to
extract para-lingual information that accurately de-
scribes speech. Parler-TTS (Lyth and King, 2024)
is a Text-to-Speech (TTS) system that transforms
text into speech, incorporating detailed speech de-
scriptions such as gender, pitch, speaking style, etc.
This system provides methods for creating these de-
scriptions, which we utilized in our process. From
the MSC dataset, we extract pitch, gender, speech
monotony, speaking pace, and reverberation ex-
cluding noise. To verify, especially for gender, we
conduct gender recognition > from audio which

*pyannote/wespeaker-voxceleb-resnet34-LM
Salefiury/wav2vec2-large-xlsr-53-gender-recognition-
librispeech
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Figure 4: Tllustration of our speaker assignment pipeline:
we obtain speech embeddings using WeSpeaker and
perform clustering with the HDB-SCAN algorithm.

shows 99.93 of F1 score. After that, we generate
natural language descriptions of them.

3.3 Data Statistic

The statistics are presented in Table 1. To summa-
rize, we divided the video content into a total of
1,120 dialogues and 31,409 utterances. The total
video length is 21.5 hours. The average duration
of an utterance is 2.46 seconds. You can find more
details in Appendix B.

4 Model

We develop an end-to-end model capable of pro-
cessing data from multiple modalities within a
large language model (LLM). Our model takes
in a set of images, audio, and text as inputs as
a single utterance and generates responsive tex-
tual sentence with voice description. Figure 5
shows the overview of our architecture. We de-
note our dataset as D = {d“,d”,dl} where a
is acoustic, v is visual, and [ is language. And
each dialogue consists of a set of utterances. Let
d™ = {u",uf, ..., u}",u}t, } as single dialogue
and ¢ is the order of utterance, and m presents
modality. Note that the dataset includes several
dialogues, but they are independent of each other.
For single utterance u;* = {uf,uf,ui}, video
and audio modalities go through each Q-Former to
generate a representation vector. Then the pro-
cessed utterance was brought together to LLM.
LLM input is integrated with the conversation
history {uf, ub’, ..., uf" 1, uf"}. Ultimately, LLM
generate the output {ai 15 désct+1} which is text
modality.

4.1 Multimodal Understanding

In Video-LLaMA (Zhang et al., 2023b), the video
and audio data are trained on each Q-Former, which

shares the same structure as Blip-2 (Li et al., 2023).
To initialize the Video Q-Former and Audio Q-
Former, we adopt the pretrained Q-Former from
Blip-2. These models are fine-tuned to enable un-
derstanding of visual and auditory information in
conversations. Within Q-Former, queries interact
via self-attention layers and with frozen feature
encoders via cross-attention layers. To match the
extracted feature’s dimension of video and audio to
the dimension of pretrained Q-Former during the
cross-attention process, we add a linear projection
layer inside Q-Former. They extract a fixed num-
ber of output features from both the image encoder
and audio encoder, regardless of the length of in-
put video and audio. In the Video Q-Former, we
consider the image feature list as a conversation
scene. For video sampling, we uniformly extract
three frames per second. However, in the Audio
Q-Former, the entire feature of the speech is taken
as input. While sampling is conducted for videos
to reduce redundant information and improve effi-
ciency, the same method cannot be applied to audio
due to significant information loss. Nevertheless,
Q-Former’s consistent output length characteris-
tic helps mitigate the miss-length issue between
video and audio information. The features after Q-
Former will concatenate with textual information
obtained from the embedding token of LLM and
treat it as an utterance feature.

4.2 Speech Description Generation

If the model can understand the intention of a single
utterance containing multimodal information, read-
ing conversation mood is possible with dialogue
history. We utilized LLM capable of understanding
dialogue history which is sequential information.
The features processed through the Q-Former are
projected into the embedding space of LLM using a
linear layer. Additionally, we employed Instruction
tuning to provide information about which speaker
is delivering each utterance.

The response considering the conversation mood
can be obtained in text format. But in order to
provide richer communication, we’ve trained our
model to reflect not just linguistic information but
also para-linguistic cues by describing voice. Our
model first generates the response text and then
produces a description influenced by that text. To
accomplish this, we’ve introduced instruction tun-
ing, a new process where voice descriptions are cre-
ated after the language model generates responses.
We also give instructions about who should speak,
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Figure 6: Workflow of Multimodal Encoding. Text, Audio, and Video inputs are processed independently. Text
is converted into text embedding, audio is processed into Speech Feature via the Audio Q-Former and Speech
Projection Layer, and Video is processed into video Feature via Video Q-Former and Video Projection Layer. These
features are concatenated to form a Multimodal Utterance, integrating information from three modalities.

which makes a model response or continues the
previous utterance. More details about instruction
tuning are presented in Appendix C.

4.3 Training Loss

Our approach involves end-to-end training. Ini-
tially, we use a target reference sentence paired
with its corresponding audio description. The cross-
entropy loss is then computed between the target
and the model output, as illustrated in Equationl,
with the concatenation operation ||.

Loss = C’E(uiﬂ |l desciyq, ﬁffﬂ | descirr) (1)

Our training primarily emphasizes the Video Q-
Former and Audio Q-Former models. Furthermore,
we fine-tune the large language model backbone
with parameter efficient fine tuning (Hu et al., 2021)
to specialize the model specifically for the conver-
sation task.

5 Experiment

5.1 Experimental setup

5.1.1 Multimodal Feature Extraction

We obtained modality-specific data from each
video segment, corresponding to an utterance unit.

For visual data, we extract visual features with
CLIP-VIT (Radford et al., 2021). This model
has a strong alignment with text, having a poten-
tial impact on downstream tasks. The audio data
extraction process gets an acoustic feature with
WavLM (Chen et al., 2022). This model tries
to solve full-stack downstream speech tasks with
speech information including speaker identity, par-
alinguistics, and spoken content.

5.1.2 Evaluation

In our experiments, we used two datasets: our MSC
dataset and the MELD dataset (Poria et al., 2018).
To evaluate our model’s performance, we employed
several metrics commonly used in natural language
processing. These included the BLEU score (Pap-
ineni et al., 2002), which measures n-gram overlap
between machine-generated text and reference text.
We also utilized METEOR (Banerjee and Lavie,
2005), designed to address limitations of BLEU
by considering factors like synonymy, stemming,
word order, and recall. Additionally, we employed
ROUGE (Lin, 2004), which is particularly useful
for evaluating the coherence and flow of summaries
and translations. These metrics collectively pro-
vided a thorough assessment of our model’s capa-



Datasets
Modality MSC MELD
B@l B@3 METEOR ROUGE | B@l B@3 METEOR ROUGE
Text 12.30 4.11 5.81 11.90 799 1.60 447 8.09
Text + Audio 1296 4.82 6.27 11.83 9.10 2.11 4.35 8.24
Text + Video 14.62 4.78 6.63 13.38 5.62 1.00 2.53 4.03
Text + Audio + Video | 15.11 5.25 6.89 14.12 10.23  2.19 4.74 9.88

Table 2: Ablation study on different modalities across two datasets. The text-only modality model represents a pure

LLM that has been fine-tuned with each dataset.

bility to generate high-quality text outputs com-
pared to reference data.

5.2 Text
5.2.1 Modality Ablation

Given that our model processes a multimodal input,
comprehending the impact of each modality on its
performance becomes crucial. Therefore, our aim
is to assess how metrics alter as we integrate in-
formation from diverse modalities into the existing
large language model. Table 2 shows the impact of
audio and video features. According to the MSC
dataset result, The addition of audio features and
video features influences the enhancement of con-
versational generation outcomes. Furthermore, The
incorporation of audio and video input noticeable
increase in the score. It is the same for the MELD
dataset, where incorporating audio and video inputs
also results in the highest performance. However,
the scale of the score is smaller, which implies that
the MSC dataset is more suitable for the tasks we
presented.

5.2.2 Qualitative Analysis

LLMs(Large Language Models) have demon-
strated remarkable capabilities in generating text
based solely on textual input. However, LLMs’
understanding and response generation is limited
when it comes to interpreting the emotional con-
text behind the same textual content presented with
different emotions. ¢ For instance, text-based LLM
might understand the sentence "Hello, how are
you?" the same way, regardless of whether the
speaker is happy or sad. Because it lacks access
to non-verbal cues such as tone of voice, or facial
expressions that convey these emotions.

In the Qualitative Analysis of evaluating multi-
modal model, we have demonstrated our model’s
capability to understand multimodality through
metric scores. This is evident in the enhanced
performance achieved by integrating text, audio,
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[Speaker 1] : “Do you have a toilet here?”

[Speaker 2] : “Oh no, I'm so sorry. There is no toilet in this shop.”
[Speaker 1] : “Ah, okay.”

i [Speaker 1 Response]

E Unimodal Model Output : “No problem.”
Multimodal Model Output: “Is there a toilet in the restaurant next door?”

i Reference: “Where is a toilet?”
!

[ Dialogue #2, History ]

[Speaker 1] : “Do you need some sunscreen, Daisy?”
[Speaker 1] : “I can put it on your back for you.”

[Speaker 2 Response]
Unimodal Model Output : “Oh, That would be great, Patty.”
Multimodal Model Output: “Thanks, but I'm okay.”
Reference: “No, thanks. I want a tan first.?”

Figure 7: Qualitative Evaluation of Multimodality. We
evaluate on our dataset, namely MultiSensory Conver-
sation Dataset.

and video. However, it is worth noting that met-
rics alone might not capture the full essence in an
open-domain scenario. Consequently, we present a
comparative analysis of our model’s outputs against
those of the text-based unimodal model in Figure 7.
Our model generates more natural responses and
demonstrates a better understanding of the context
than the unimodal model. The figure provides two
dialogues from different scenarios, illustrating how
the inclusion of additional modalities (audio and
video) enables our model to produce more contextu-
ally appropriate and natural responses. In Dialogue
1, the speaker’s gestures in the video and tone of
voice in the audio clearly indicate an urgent situa-
tion. In Dialogue 2, the output text adapts based on
information from the video, resulting in a generated



Model Accuracy
Ours 15.10%
Ours (w.o0. description) | 11.20%
StyleTTS2 13.72%
HierSpeech++ 12.54%

Table 3: Emotion classification result.
text that closely matches the reference.

5.3 Speech

5.3.1 Emotion Classification

In this experiment, we performed emotion classi-
fication using one of eight emotions: angry, calm,
disgust, fearful, happy, neutral, sad, and surprised.
The results demonstrated in Table 3. We use a
pretrained model from Hugging Face for emo-
tion classification ®. The baselines, including
StyleTTS2 (Li et al., 2024), HierSpeech++(Lee
et al., 2023), and Parler-TTS(Lyth and King, 2024)
which generated speech without natural language
prompts. Our model generates each speech sample
from text and voice descriptions and then com-
pares it with previous speech samples to assess
consistency. Results show our model outperformed
the baseline models in maintaining consistent emo-
tional expression across the conversation.

5.3.2 Qualitative Analysis

In the Qualitative Analysis of evaluating voice de-
scription, we have demonstrated our model’s capa-
bility to generate consistent emotional description.
We present a comparative analysis of our model’s
outputs against those of the reference one in Fig-
ure 8. The figure provides two dialogues from
different scenarios, demonstrating our model gen-
erates similar descriptions in terms of pace, pitch,
and tone which leads to producing more contextu-
ally appropriate and natural responses.

6 Limitation

One limitation of our model is its inability to gen-
erate speech with a speaker’s identical voice as
it appears in historical recordings. However, this
does not pose an issue during inference, as the
agent consistently uses the same voice. Poten-
tial risks include the copyright concerns associated
with YouTube videos. Since sharing downloaded
videos is prohibited, we only provide the prepro-
cessing code to ensure compliance with copyright

Sehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-
recognition

[ Dialogue #1, History ]

>
[Speaker 1] : “I also worked for two years in a chemical company in town in the
marketing department.™
[Speaker 2] : “Did you enjoy that job?”

[Speaker 1 Response]
Output Text : “Yes, I enjoyed it very much.”
Output Description : “A male speaker delivers a quite slow-paced monotone
speech with a very high-pitched voice in a confined, echo-less environment.”
Reference Text : “Yes, it was very interesting.”
Reference Description : “A male speaker with a very high-pitched voice
delivers a monotone speech in a very confined, echo-less environment at a quite
[ Dialogue #2, History ]

slow pace.”
i’ *-
L B e st

[Speaker 1] : “My family is very big, many people.”
[Speaker 2] : “Yes, Elena. That's nice. You have a big family. I have a small family.”
[Speaker 1] : “Now an extra person, me.”

[Speaker 2 Response]

Qutput Text : “Yes, you're a very important person.”

Qutput Description : “A female voice speaks quite slowly with a very low
pitch in a confined, slightly expressive tone.”

Reference Text : “Elena, you're one of the family now.”

Reference Description : “A female speaker delivers a quite expressive
speech with a very low pitch in a very confined, enclosed space.”

Figure 8: Qualitative Evaluation of description. We
evaluate on our dataset, namely MultiSensory Conver-
sation Dataset.

laws. This approach allows users to process their
own legally obtained data without violating any
terms of service or copyright regulations.

7 Conclusion

We study a dialogue model with visual and au-
dio inputs from a speaker, which is essential for
a more human-like conversation model. We pro-
pose a novel dataset that is suitable and curated for
training such a model. Then we propose a novel
multi-sensory conversation model that outperforms
the baseline in experiments and thus shows its ef-
fectiveness in both quantitative and qualitative eval-
uations. In the ablation study, we also demonstrate
the importance of each modality we exploited. In
the future, we aim to use and extend our model for
a more human-like appearance by merging with
Talking Face Generation from speech inputs (Zhou
et al., 2020) (Zhou et al., 2021) (Zhang et al.,
2023c) to considering emotional components (Peng
et al., 2023) (Gan et al., 2023). We believe our ap-
proach contributes to more natural and human-like
conversation and our proposed dataset may pro-
mote subsequent research in conversation models.
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A Implementation Details

We utilize Mistral-7B (Jiang et al., 2023) as our
LLM backbone. We train our model with the
following hyperparameters. We use a batch size
of 6 and Adam optimizer with learning rate of
5e-5 and learning rate decay of 0.98. The video
padding size is 50, audio padding size is 800.
This size made the same number of utterances
in a single dialogue history. We sample the
video data, capturing frames at a rate of three per
second for each utterance, while the audio remains
unsampled. We set the maximum input length for
LLM as 800 which can cover about 10 multimodal
histories. They are truncated from the oldest
history to prioritize focusing more on the latest
utterance. Finally, we tuned the number of epochs
on validation data and chose epoch 10. Our experi-
mental environment was conducted using a single
NVIDIA-A100 80G GPU. Training spent 30 hours.

B MSC Dataset Details

In this section, we show further details of the new
MSC dataset. The histograms of video durations
and word count can be found in Figure 9, 10. Note
that many videos begin with greetings such as
"Hello" or "Good Morning", which contribute to a
higher word count due to there conciseness. More
detailed examples of the dataset can be found in
Figure 11.

C Instruction-tuning

We give comprehensive instruction first and give
speaker ID information for each of utterance.
Lastly, we give another instruction for generating
voice descriptions. Figure 12 shows a sample of
instruction tuning. This sample demonstrates text
input for easy understanding, though actual input
includes not only text but also integrated text, audio,
and video modalities.

D LLM fine-tuning

We investigated the impact of fine-tuning a large
language model with parameter efficient fine-
tuning at Table 4, 5. This indicates that after fine-
tuning, the model exhibited enhanced conversa-
tional capabilities compared to its pre-fine-tuned
state.
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Figure 9: We report the histogram of video duration in
seconds.
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1
Text : Oh, Jay? How are you? i
Text Description : A male speaker delivers a very ]
expressive and animated speech with a high-pitched voice i
in a slightly confined sounding environment. i

i

1

AUIO: b

Text : Alittle sleepy.

1
1
1
Text Description : A female voice speaks very slowly ]
with a very low pitch and a moderate intonation in a i
confined, slightly echoey environment. i

i

1

[Speaker 1] Text : This is my friend. His name is Dan.

1
1
1
Text Description : A male speaker delivers a monotone |
speech with a very high-pitched voice in a confined, i
:
1
1
1

Chronological Order]

slightly echoey environment. He speaks slightly slowly.

Text : Nice to meet you.

1
1
1
Text Description : A female voice speaks quite slowly ]
with a very low pitch and moderate intonation in a i
confined, echo-less environment. i

i

1

AUdiO: —fffprme—sefi-cstipoe—-

Figure 11: MSC Dataset details

/ I Hy [utt;] Hy[utt,] - Hy[utt,] R \

I:  ### Instruction: Generate a following response of this conversation.

H;: ### Speaker_{1}: Hey, how was your vacation?

H,: ### Speaker_{2}: It was very fun.

Hj: ### Speaker_{1}: Where did you go?

Hy: ### Speaker_{2}: ] went to the beach.

Hs: ### Speaker_{1}: Who did you go with?

R: ###Generate a response format as [text of response (voice description)], Speaker {2}:"

\ /

Figure 12: Sample of an LLM input with instructions. This sample demonstrates text input for easy understanding,
though actual input includes not only text but also integrated text, audio, and video modalities.
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B@l B@2 B@3 B@4 METEOR ROUGE SPICE CIDEr
Ours w.o.ft | 13.96 7.96 5.03 3.25 6.55 12.77 4.01 34.98
Ours 15.11 8.57 5.25 335 6.89 14.12 4.02  38.53
Table 4: impact of LLM fine-tune on MSC dataset.
B@l B@2 B@3 B@4 METEOR ROUGE SPICE CIDEr
Ours w.o.ft | 5.67 211 097 048 2.90 4.95 1.02 6.13
Ours 10.23 433 219 1.21 4.74 9.88 2.25 16.63

Table 5: impact of LLM fine-tune on MELD dataset.
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