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ABSTRACT

A crucial issue in federated learning is the heterogeneity of data between clients,
which can lead to model weight divergence, eventually deteriorating the model
performance. Personalized federated learning (pFL) has been proven to be an ef-
fective approach to addressing data heterogeneity in federated learning. However,
existing pFL studies seldom verify whether the broadcast global model is bene-
ficial for the local model performance. To address this, we propose a novel pFL
method, called federated learning with similarity information supervision (Fed-
SimSup). Specifically, FedSimSup incorporates a local supervisor to assist the
model training and a personalized model for global information aggregation. The
role of the supervisor is to refine the personalized model when it is not benefi-
cial for the local model performance, ensuring the effective global information
aggregation while aligning with the local heterogeneous data. Additionally, the
similarity relationships between the clients are measured using label distribution
differences of the local raw data to weight the personalized models, promoting
information usage among similar clients. Experimental results demonstrate three
advantages of FedSimSup: (1) It shows better performance over heterogeneous
data compared with seven state-of-the-art federated learning methods; (2) It can
allow for different model architectures across different clients; (3) It offers a cer-
tain degree of interpretability.

1 INTRODUCTION

In the digital age, data privacy has become increasingly important, which stands in contrast to the
growing demand for data in artificial intelligence. In response to the challenges of data privacy,
federated learning (FL) has experienced rapid growth (Cheng et al., 2020). The goal of FL is to
maximize the utilization of each client’s data while preserving their privacy and minimizing com-
munication costs, by training a comprehensive global machine learning model. In typical FL, the
overall process is as follows: (1) participating clients first download the latest model from the server
for local use. (2) clients train and update the model on their local datasets. (3) clients upload the up-
dated model to the server. (4) the server then aggregates the models collected from multiple clients
and updates the global model, which is provided to clients involved in subsequent communications.

When dealing with independent and identically distributed (IID) data, the most popular FL method
FedAvg (McMahan et al., 2017) is guaranteed to converge and delivers good performance. However,
in real-world scenarios, Non-IID data is more common, and this heterogeneous setting will slow
down the convergence and degrade the learning performance (Zhao et al., 2018). To address this,
in recent years, personalized federated learning (pFL) (Tan et al., 2022a) has been developed as one
of the effective methods to address challenges caused by the Non-IID data. Mainstream pFL can
be categorized into two primary directions. One approach focuses on training a more robust global
model that can generalize effectively across all clients. The other approach is to train personalized
models for each client to address the issue of data heterogeneity. The two directions address the
Non-IID problem to some extent from different perspectives.

From the perspective of an individual client in the FL process, after uploading its model, the client
hopes to receive more beneficial global information from the server to better assist in processing
its local data. However, a challenge is that the client cannot determine whether the model received
from the server contains more useful information for processing its local data. Liang et al. (2020)
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and Collins et al. (2021) address this issue by decoupling the deep and shallow parameters of the
model. Fallah et al. (2020) applies the MAML (Finn et al., 2017) framework in FL to construct
an initialization model that performs well after a few rounds of updating on heterogeneous data.
Hanzely & Richtárik (2020) propose constructing personalized models by combining global and
local models. Sattler et al. (2020) clusters clients based on their similarity and performs federated
learning within each cluster.

However, in these methods, clients do not directly verify the information contained in the models
received from the server. For instance, if local data distributions significantly differ from the global
model, the model may not generalize well, leading to poor performance. Additionally, in cases of
adversarial or faulty clients, unverified models could be influenced by malicious updates, compro-
mising both performance and security. In this case, for a resource-constrained client, which is quite
commonly seen for internet of things devices, the client may encounter difficulties in performing
multiple rounds of training to properly adjust the received aggregated model to make it suitable for
the local heterogeneous data. As a result, the local model performance of these clients will not be
guaranteed.

Therefore, we propose setting up a local supervisor to assist the model in fitting the local heteroge-
neous data using only a very limited number of communication rounds. Our proposed algorithm is
termed FedSimSup (Federated learning with similarity information supervisor).

The contributions of our work are summarized as follows:

• We propose a novel supervisor-assisted pFL framework. Each client is assigned a local
unique supervisor to monitor the information contained in the aggregated personalized
model received from the server. If the information is beneficial to the client, the super-
visor will update to improve supervision. Otherwise, the supervisor will guide the client to
adjust the personalized model to be close to the state it was in after the last training.

• We propose leveraging the client’s label similarity information to assist the model training
via weighting personalized models. By evaluating relationships based on distribution dif-
ferences of labels of different clients, each client can engage in selective learning from other
clients. Through this selective learning process, clients can focus on integrating knowledge
that is most applicable to their own context, improving overall model performance and
efficiency.

The advantages of our proposed FedSimSup are as follows.

• We demonstrate its strong personalization capability, showing superior performance com-
pared to other methods without the need for fine-tuning or other optimizations.

• Our method addresses the issue of model heterogeneity to some extent, allowing clients to
build different model architectures based on their own needs and computational capabili-
ties.

• Our method possesses a certain level of interpretability, enhancing clients’ trust in the
model and facilitating future exploratory research.

2 RELATED WORK

Non-IID Data. In real-world scenarios, Non-IID situation arises in various forms, such as attribute
skew, label skew, temporal skew and data quality skew (Zhu et al., 2021). Among these, label skew
is particularly prevalent and can significantly impact model performance. We focus primarily on
label distribution skew, which can be categorized into label size imbalance and label distribution
imbalance (Li et al., 2022). Label size imbalance (Pathological distribution) proposed in FedAvg
(McMahan et al., 2017) firstly. In this setting, a hyperparameter c is defined such that each user’s
dataset comprises data from only c different categories, where a smaller c indicates a more pro-
nounced imbalance between clients. Label distribution imbalance (Dirichlet distribution) refers to
the instances of labels for client k following the distribution pk,c ∼ Dir(α), where Dir(·) represents
the Dirichlet distribution (Hsu et al., 2019) and a smaller α indicates a greater degree of imbalance.
In our work, we conducted experimental discussions on both types of label skew scenarios.
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Personalized Federated Learning is an effective way to address data heterogeneous settings. Ex-
isting methods can generally be categorized into several types. First, Data augmentation (Jeong
et al., 2018; Duan et al., 2019; Shin et al., 2020) aims to reduce data heterogeneity, enabling the use
of the standard FL to address the problem. Following this, Regularization (Hanzely & Richtárik,
2020; T Dinh et al., 2020; Li et al., 2020) prevents client overfitting and accelerates global con-
vergence, enhancing the overall robustness of the model. Additionally, Meta learning (Jiang et al.,
2019; Fallah et al., 2020; Scott et al., 2024) enables the global model to achieve personalization
more quickly on the client side. Furthermore, Multi-task learning (Smith et al., 2017; Huang et al.,
2021) treats each client as a different task and leverage relationships between them to handle het-
erogeneous settings. Moreover, Clustering (Sattler et al., 2020; Briggs et al., 2020; Ghosh et al.,
2020) divides clients into different homogeneous groups, whithin FL is performed more effectively.
Lastly, Knowledge distillation (Li & Wang, 2019; Kamp et al., 2023) transfers knowledge from the
server or other clients to a specific client, ensuring that each client benefits from shared insights.

Parameter decoupling refers to separating the model’s parameters and implementing stepwise train-
ing, with one set of parameters being globally shared and another set trained locally, thereby enhanc-
ing the personalization capability. There are several main decoupling methods: The first method
divides the network into base layers and personalized layers (Arivazhagan et al., 2019; Xu et al.,
2023b; Liu et al., 2024), with the base layers being globally shared to obtain the generalized feature
information, while the personalized layers are trained only locally to allow different clients to pro-
cess the features in their own ways. The second method uses embeddings from the each client as
personalization layers (Bui et al., 2019; Liang et al., 2020), aiming to extract unique features to be
processed by the global model. Other methods, like Li et al. (2024) propose FedRAP which learns
a global view and a personalized view locally on each client to achieve personalization. Parameter
decoupling reduces the amount of transmitted parameters, thereby decreasing communication over-
head to some extent. Although parameter decoupling has demonstrated its effectiveness in multiple
aspects, it still faces challenges in handling scenarios with extreme data heterogeneity. Future re-
search could explore more efficient decoupling strategies to optimize the performance of federated
learning.

Model interpolation learns personalized models by combining local models with the global model,
thus balancing the model’s generalization and personalization capabilities. Hanzely & Richtárik
(2020) designs a new objective function that incorporates a penalty term with a coefficient of λ.
When λ → ∞, it becomes FedAvg, and when λ is zero, it corresponds to a model trained only
locally. The value of λ controls the trade-off between local and global differences. Additionally,
Deng et al. (2020) propose a method to find an optimal combination of local and global models,
aiming to enhance model performance under diverse client data distribution. Moreover, Chen et al.
(2023) propose elastic aggregation, which performs adaptive interpolation based on the sensitivity
of the model parameters, allowing for dynamic adjustments according to the specific needs of each
client.

3 METHOD

3.1 PROBLEM FORMULATION

In this work, we assume supervised federated learning with a total of n clients, each having its
own Non-IID distributed dataset Di =

{(
xi
1, y

i
1

)
,
(
xi
2, y

i
2

)
· · ·

(
xi
mi

, yimi

)}
⊂ X × Y , for i ∈

{1, 2 · · ·n}, where mi is the amount of data for client i. We use both the Dirichlet method (Hsu
et al., 2019) and the Pathological method (McMahan et al., 2017) to partition the data to simulate
Non-IID distribution (Detailed partitioning methods are provided in the Appendix). Each client has
a model (which may or may not be the same) qθi : X → Y maps input xi

j ∈ X to predict label
qθi

(
xi
j

)
∈ Y which is compared with the corresponding true label yij ∈ Y , θi ∈ Θ represents the

model parameters, and
(
xi
j , y

i
j

)
denotes one data in client i. The parameters of each client’s model

θi are trained based on its local dataset by minimizing the following objective function

min
θi∈Θ

L (Di, θi) =
1

mi

∑mi

j=1ℓ
(
qθi

(
xi
j

)
, yij

)
, (1)

where ℓ : Y × Y → R+ is the loss function that measures the degree of inconsistency between the
predicted labels qθi

(
xi
j

)
and true labels yij .
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(a) The framework of FedSimSup (b) Model’s usage

Figure 1: (a) is the framework of FedSimSup. During each communication round, the server dis-
tributes the corresponding personalized model to the participating clients (red and green clients).
These clients train their personalized models under the supervision of the local supervisor. Once
the communication concludes, the personalized models are uploaded to the server, while the non-
participating clients (yellow client) aggregate their personalized model with the trained personalized
model based on similarity information. (b) shows the model architecture used by the client.

If each client has sufficient data and enough training resources, they can train a model that is suitable
for their local data. However, this approach presents several issues: (1) In reality, not all clients have
abundant data which severely affects the training of the model. (2) Some clients, such as those using
portable devices like smartphones, may not support large-scale training (Pfeiffer et al., 2023). (3)
When the model encounters data that it has not seen or has seen very little of during training, its
performance will be poor (Zhu et al., 2021). To address these issues, federated learning has been
proposed.

In standard FL, each client uses the same model, denoted as qθ1 = qθ2 · · · = qθn , we refer to
this model collectively as qθ. Let N (t) denotes the clients participating in the t-th communication
round. The server distributes the model to these clients, who then train the model locally using the
local objective function (1).

After training, the clients upload their models to the server for aggregation(McMahan et al., 2017):

θt+1 =

∑
i∈N (t)(miθ

t
i)∑

i∈N (t)mi
, (2)

where θti is the model of client i after completing local training in the t-th communication round.
This method takes into account the impact of data volume, aiming to allow clients with less data
to learn from those with more data. However, this method performs poorly in terms of conver-
gence speed and model performance in the presence of Non-IID data across clients. We propose
FedSimSup in this work to address this issue.

3.2 LEARNING UNDER SUPERVISOR

In standard FL, one issue is that when the server sends the global model to local clients, the clients
cannot determine whether the received model, containing global information, is more beneficial than
the model trained in the previous round. To address this, we divide the model into two parts: the first
part is the supervisor, which is trained locally but not uploaded. The second part is the personalized
model, which is uploaded and aggregated. The reason why it has personalized characteristics will
be explained in 3.3.

For demonstration purposes, we directly scale down the personalized model proportionally to create
the supervisor, which then assists the personalized model in its usage. In practice, the architecture
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of the supervisor does not need to be the same for every client. Each client can independently de-
sign their own supervisor architecture according to their specific needs and capabilities. The server
only needs to manage the personalized model but not the whole local model. This approach sig-
nificantly enhances the personalization capability of the model while simplifying management.We
demonstrate the performance results when clients adopt different structures in 4.2. The structure of
the model is shown in Figure 1b. And the local objective function also changes from (1) to

min
si∈S,θi∈Θ

L (Di, si, θi) =
1

mi

∑mi

j=1ℓ
(
qθi

(
xi
j

)
+ qsi

(
xi
j

)
, yij

)
, (3)

where si ∈ S is the parameters of supervisor and θi ∈ Θ is the parameters of personalized model.
Here, we simply sum the results of the two models. The training process of our model is divided
into two parts:

min
si∈S

L (Di, si, θi) , (4)

min
θi∈Θ

L (Di, si, θi) . (5)

The purpose of (4) is that if the global model contains more beneficial information, the supervisor
will undergo a significant update to better assist the training process. However, if the global model is
not beneficial to the local data, the supervisor has already been fitted to the local data, we hypothesize
that it will undergo only minor updates or remain unchanged. The purpose of (5) is to train the model
under the supervision of the supervisor, ensuring that after acquiring global information, it becomes
more fitted to the local data.

The role of the supervisor is to guide the local model during training by providing oversight based
on the previously learned local data. It helps prevent the model from deviating too much from its fit
to the local data while still incorporating beneficial global updates. The supervisor ensures that the
personalized model maintains a balance between leveraging global information and staying aligned
with the local distribution. We will demonstrate its supervisory assistance role in the 4.2.

3.3 UTILIZATION OF SIMILARITY INFORMATION

In the case of data heterogeneity, it is challenging to construct a model using (2) that performs well
across all n clients

min
θ∈Θ

∑n
i=1L (Di, θ) , (6)

where θ is the global model used by all clients. Therefore, we establish a personalized model for
each client based on their local data distribution. At the end of a local training round, we perform
the following operations on all clients’ personalized models (the following operations are performed
on the personalized model, unrelated to the supervisor).

If a client i participates in this round of communication, then the personalized model θt+1
i of the

i-th client at t+1 round is set to the updated θti after training without aggregating information from
other clients

θt+1
i = θti , if i ∈ N (t) . (7)

If the client i does not participate in this round of communication, then θt+1
i of the i-th client is

updated as follows.

θt+1
i = αt

iθ
t
i +

(
1− αt

i

)∑
j∈N (t)

sij
sumt

i

θtj , if i /∈ N (t) , (8)

αt
i =

K ·mi∑
j∈N (t) mj +K ·mi

, sumt
i =

∑
j∈N (t) sij , (9)

where K is the number of clients participating in communication in each round, αt
i is a parameter

that measures the amount of data, calculated based on the ratio of the local data amount to the
total data amount of clients participating in the t-th communication, which aligns with the original
standard FL concept. sij ∈ [0, 1] is the value that measures the similarity between client i and client
j. A larger value of sij indicates a greater similarity between client i and j. In (8), we aggregate the
personalized models of clients who do not participate in communication, based on their data volume
and the similarity between them and the clients actively participating in training. By doing this, we
can ensure that clients that do not participate in training at each round can still benefit from the clients
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Algorithm 1 FedSimSup
Input: Dataset distributed across m clients D = {D1, D2 · · ·Dn}, client participating rate r, the
number of global epochs T , personalized model epochs τθ, supervisor epochs τs

1: Initialize θ01, θ
0
2 · · · θ0n, s01, s02 · · · s0n

2: for t = 1, 2 · · ·T do
3: N (t)← server randomly samples max (1, nr) clients
4: for each client i ∈ N (t) do
5: client i initializes st,0i ← st−1,τs

i ▷ Initialize the supervisor
6: server sends θt−1,τθ

i to client i as θt,0i ▷ Initialize the personalized model
7: st,τsi , θt,τθi ← LocalUpdate(st,0i , θt,0i , fi, Di) ▷ Train the two separately
8: client i sends updated personalized model θt,endi to server
9: end for

10: for each client i /∈ N (t) do
11: set st,τsi ← st−1,τs

i ▷ The supervisor is not changed
12: aggregate θt,τθi by (8) ▷ Obtain global information based on similarity
13: end for
14: end for
15:
16: LocalUpdate(s0, θ0, f,D):
17: for j = 1, 2 · · · τs do
18: sj ← SGD

(
f(sj−1, θ0), sj−1

)
▷ Update the supervisor within τs

19: end for
20: for j = 1, 2 · · · τθ do
21: θj ← SGD

(
f(sτs , θj−1), θj−1

)
▷ Update the personalized model within τθ

22: end for
23: return sτs , θτθ

that participate in training, thereby promoting the effective global information aggregation. In this
work, the similarity information is represented by the cosine similarity between the proportions of
each client’s data label distribution, which we believe better reflects the intrinsic similarity between
clients. This requires us to collect the label proportions of cleints at the beginning of the entire task
and compute the similarity between each client on the server, as shown in Figure 1a.

3.4 FEDSIMSUP ALGORITHM

We provide the pseudocode for FedSimSup in Algorithm 1, and below we will explain it in detail.

Local Update In each communication round, customers are randomly selected to participate based
on a fixed participation rate r and receive the personalized model θ sent by the server. Client i
participates in the t-th round, receives the personalized model θti , and has a supervisor sti stored
locally. The local supervisor is updated for τs epochs.

st,ji ← SGD
(
f(st,j−1

i , θt,0i ), st,j−1
i

)
, (10)

where j ∈ (1, 2, · · · τs), and θt,0i denotes the personalized model of client i that has not been updated.
we use Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) to update s based on the
gradient of s. Then, the personalized model is updated within round τθ:

θt,ji ← SGD
(
f(st,τsi , θt,j−1

i ), θt,j−1
i

)
, (11)

where j ∈ (1, 2, · · · τθ). After completing these two processes locally, save the supervisor st,τsi and
upload the personalized model θt,τθi for aggregation of other clients.

Server Update The server receives the personalized models uploaded from client setN (t), without
modifying them. For clients who did not participate in the communication, it aggregates their models
based on (2), leveraging similarity information to learn from the clients that have participated in this
round of training.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets We evaluate FedSimSup by classification tasks using the CIFAR10, CIFAR100
(Krizhevsky et al., 2009) and FEMNIST (Caldas et al., 2018). CIFAR10 and CIFAR100 are among
the most classic image classification tasks, both containing 60, 000 images, evenly distributed across
10 and 100 categories, respectively. We let each client follow a Dirichlet distribution with α values
of 0.1 and 0.5 to simulate a Non-IID setting for CIFAR10 and CIFAR100 datasets. FEMNIST is a
dataset with 62 different character categories (including numbers and uppercase and lowercase En-
glish letters), with a total of 805,263 samples. We test the performance of our proposed FedSimSup
and algorithms under comparison under the Dirichlet distribution for CIFAR10, CIFAR100, and
FEMNIST datasets. We also test the performance under the Pathological distribution for CIFAR10
and CIFAR100 datasets. Details of data partitioning are given in the Appendix.

Baselines We compare FedSimSup with six methods, including FedAvg (McMahan et al., 2017),
Per-FedAvg (Fallah et al., 2020), FedRep (Collins et al., 2021), FedProto (Tan et al., 2022b), Fed-
Prox (Li et al., 2020) and FedPac (Xu et al., 2023a). In FedProx, a proximal term is used to improve
stability. Per-FedAvg proposes using the MAML framework to obtain an initial model that quickly
adapts to clients. FedRep (Collins et al., 2021) sets up a unique head for each client to enhance
personalization capability. FedProto (Tan et al., 2022b) aggregates the local prototypes to avoid
gradient misalignment. FedPac (Xu et al., 2023a) conducts explicit local-global feature alignment
by leveraging global semantic knowledge. Additionally, we also compare our FedSimSup with the
performance of conducting local training separately on each client.

Settings for Baselines During local training, we also randomly select clients at a proportional rate
in each round and conduct training, but we do not perform aggregation. This means that the client’s
model will only change after client participates in communication. In the FedAvg method, we set
the client participation rate to 0.1, the number of communication rounds to 1000, and the local
epochs to 5. For other methods, unless specified otherwise, the parameters remain the same. In the
FedProx method, we set the µ to 1 to improve stability. In the FedPac method, we set λ to 1. In the
Per-FedAvg method, we set τ to 4 and α to 0.001, and use Per-FedAvg (HF). During testing, each
client performs fine-tuning for 3 epochs. In the FedRep method, we set the classification head as
the personalized layer, training the classification head for 2 epochs and the representation layer for
3 epochs. In the FedProto method, we set the importance weight λ to 1.

Model Like most pFL approaches, FedSimSup uses the LeNet-5 (LeCun et al., 1998) as the local
model for each client, considering the communication cost. LeNet-5 consists of two convolutional
layers and two linear layers. For fairness, we use LeNet-5 as the model for all algorithms under
comparison in this work. Since our FedSimSup includes both a supervisor and a personalized model
in each client. Thus, to ensure the number of parameters of FedSimSup is almost same as that
of competing algorithms, we proportionally reduce the size of LeNet-5 to approximately one-sixth
of that of the personalized model. In the experiments, to test the influence of different supervisor
architectures on the performance, we let each client randomly select one from three types of architec-
tures, i.e., the aforementioned LeNet-5, a smaller convolutional neural network (CNN), and a large
transformer structure (Vaswani, 2017), to simulate real-world client scenarios. These three differ-
ent models represent the differences in computational capabilities, needs, and intellectual property
among clients in the real world.

Training Details We set the global communication rounds to 1,000 and the local training epochs to
5, with 3 epochs dedicated to training the personalized model and 2 epochs for training the supervi-
sor. For CIFAR10 and CIFAR100, we set the number of clients to 50 and 100 with a participation
rate of 0.1 per round. For FEMNIST we maintain its original setup with a total of 3,597 clients to
ensure that our method remains effective under a large number of clients. About the participation,
we set it to 0.1 for local training and 0.01 for other methods. We set the batch size for SGD to 32 and
the learning rate to 0.1. The detailed settings for other methods will be mentioned in the Appendix.

4.2 EXPERIMENTAL RESULTS

Table 1 compares FedSimSup with other methods under the Dirichlet distribution, showing that
FedSimSup is optimal in all tested cases. Notably, on the more challenging CIFAR100 dataset,
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Table 1: Accuracy under Dirichlet distribution (best valued per setup in bold).

CIFAR10 CIFAR100 FEMNIST

clients num(Dir) 100(0.1) 50(0.1) 100(0.5) 50(0.5) 100(0.1) 50(0.1) 100(0.5) 50(0.5) 3597

Local 86.67 86.3 59.4 61.81 40.44 43.28 17.99 21.6 66
FedAvg 33.45 43.22 50.89 54.91 20.2 20.89 23.34 27.01 79.76
FedProx 33.24 37.9 51.18 54.87 19.43 19.89 22.36 26.1 74.2

Per-FedAvg 79.12 79.09 38.13 50.44 3.92 10.69 1.59 3.11 2.57
FedRep 88.43 88.18 71.96 73.89 46.48 52.03 25.8 32.59 81.26

FedProto 86.75 86.15 59.98 61.85 41.55 43.61 17.61 22.13 9.98
FedPac 86.41 85.59 66.59 68.15 41.23 43.52 23.2 23.97 78.24

FedSimSup 89.73 88.88 73.9 75.08 50.67 55.48 32.5 39.23 84.32

Table 2: Accuracy under Pathological distribution (best valued per setup in bold).

CIFAR10 CIFAR100

clients num(Shard) 100 (2) 50 (2) 100 (5) 50 (5) 100 (5) 50 (5) 100 (20) 50 (20)

Local 86.07 88.3 65.2 68.4 66.72 67.32 27.93 34.98
FedAvg 40.15 39.13 51.8 53.41 12.97 14.98 20.21 21.65
FedProx 38.96 35.63 51.71 53.02 12.52 13.79 19.51 21.17

Per-FedAvg 51.59 70.67 29.1 51.43 2.97 9.34 1.43 5.24
FedRep 86.65 88.57 74.52 77.24 62.96 67.27 39.4 46.4

FedProto 86.09 87.76 64.04 67.31 65.83 66.33 28.19 34.09
FedPac 85.48 87.67 71.27 72.68 54 59.92 21.29 34.53

FedSimSup 87 88.07 75.75 76.99 63.91 65.77 43.83 48.87

it demonstrates an improvement of about 4 - 6% compared to the second-best method. Table 2
presents the experimental comparison of FedSimSup under the Pathological distribution, where it
can be seen that FedSimSup is not always the best method. Upon analysis, we believe this is due
to the similarity computation under the Pathological distribution resulting in only a few possible
discrete values, which affects the finer differentiation of similarity between clients, thus leading to a
performance that is not as good as that under the Dirichlet distribution.

Figure 2: Comparison of convergence speeds among different methods.
Convergence Analysis We found that using similarity information accelerates convergence speed

Figure 3: Comparison of convergence
speed with and without similarity informa-
tion.

information accelerates convergence speed, which has
practical significance in cases with limited communi-
cation. In Figure 3, we compare the impact of using
similarity information versus not using it on conver-
gence speed. The experiment has been conducted on
CIFAR10, and we display the results for the first 100
epochs. Results show that the use of similarity infor-
mation do accelerate convergence speed, demonstrat-
ing the effectiveness of our proposed similarity mea-
surement and aggregation strategy.

We also compared the convergence speeds of differ-
ent methods. In Figure 2,the accuracy changes of various methods under non-iid distributions of
CIFAR-10 and CIFAR-100, with Dir(0.1) and Dir(0.5), over 1000 epochs are presented. In the more
challenging CIFAR-100 task with a larger number of categories, our method shows a slower initial
improvement. However, by learning from other clients based on similarity, it can acquire knowledge
that is more akin to its own, leading to better overall performance. Furthermore, our method ex-
hibits larger fluctuations in performance under the Dir(0.5) distribution. We believe this is due to the

8
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Table 3: Experiments of using different supervisor architectures.

CIFAR10 CIFAR100

clients num(Dir) 100 (0.1) 50 (0.1) 100 (0.5) 50 (0.5) 100 (0.1) 50 (0.1) 100 (0.5) 50 (0.5)

FedSimSup-T 90.77 91.27 70.45 73.05 51.32 55.73 30.14 36.12
FedSimSup-C 84.49 87.9 69.91 71.85 44.32 44.95 25.63 30.77
FedSimSup-L 86.19 85.38 67.77 70.21 45.28 47.51 23.44 32.24

Whole 87.36 88.24 69.41 71.73 46.82 50.23 26.72 32.95
Original 89.73 88.88 73.9 75.08 50.67 55.48 32.5 39.23

relatively small differences between clients, making them less sensitive to variations in similarity.
Therefore, our method tends to achieve better results on tasks that are more challenging and have
greater disparities.

Supervisory Assistance We verify the supervisory assistance effect of the supervisor using Class
Activation Map (CAM) (Selvaraju et al., 2017) in image classification tasks. As shown in Figure 4,
the image on the left is the original classification task image, the middle one is the CAM of the pe-

Figure 4: CAM of the personalized model
(middle) and the supervisor (right).

rsonalized model, and the one on the right is the CAM
of the supervisor. It can be observed that, when try-
ing to recognize the image as a cat, the personalized
model, possibly influenced by information learned
from other clients, tends to focus on scattered details,
such as the cat’s eyes or nose. In contrast, the super-
visor focuses on the entire body of the cat, helping to
prevent the personalized model’s attention from devi-

ating too much. Thus, we conclude that the supervisor and personalized model in our FedSimSup
have different focuses, enhancing the interpretability of the model’s behavior.

Different Supervisor Architectures We simulate three types of clients employing different supervi-
sor architectures to observe their effects. These include a transformer architecture with a larger num-
ber of parameters (FedSimSup-T), a CNN network with fewer parameters (FedSimSup-C), and the
original small LeNet-5 architecture (FedSimSup-L). Table 3 shows the performance of clients using
these different supervisor architectures in the same federated learning process. “Whole” represents
the combined performance of the three types of clients, while “Original” shows the performance of
the original method where all clients used the same LeNet-5 supervisor architecture. As observed
in Table 3, only adopting the transformer architecture shows better performance in the two CIFAR
datasets than FedSimSup-C and FedSimSup-L. This is reasonable since the transformer architecture
has the largest number of parameters. We also observe that the overall performance with different ar-
chitectures (row 4 in Table 3) is slightly worse compared to when all clients use the same supervisor
architecture (row 5 in Table 3). This is an unavoidable consequence of model heterogeneity. Despite
this, the performance gap is not large, and some clients achieved better results by selecting models
that fit their individual needs. Therefore, we conclude that our proposed FedSimSup is flexible to
include different model architectures for different clients according to their computational resources
and needs, allowing them to achieve better performance and faster inference.

5 CONCLUSION AND FUTURE WORK

In this work, to address the issue in federated learning where the global information sometimes de-
viates too much from the local data and clients learn indiscriminately from other clients, we propose
a novel pFL method, FedSimSup. Our approach allows each client to employ their own supervisor
with flexible architectures to assist local training, preventing the model from deviating too much
from the local data. Additionally, we utilize the similarity information to standardize the way of
clients learning from other clients’ information. Overall, FedSimSup provides better performance in
handling Non-IID scenarios, while allowing clients the freedom to customize their model architec-
tures and offering a certain level of interpretability. In FedSimSup, our similarity measurement only
considers differences in distribution of labels, resulting in slightly worse performance on patholog-
ically distributed data. Also, the similarity information remains static, but during the learning pro-
cess, a deeper understanding of the similarity between clients should be more helpful for improving

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the overall performance. Thus, one of our future work will focus on designing dynamic similarity
measurements to handle various label distributions. Additionally, since our proposed FedSimSup
can accommodate different model architectures for different clients, another direction of our future
work will focusing on studying what the most effective combination of model architectures for all
clients to simultaneously balance the overall algorithm performance and clients’ own computational
ability.
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A APPENDIX-EXPERIMENTS

A.1 DATA PARTITIONING

Our data partitioning only considers the label differences between clients.

Pathological Non-IID partition In pathological distribution, we first need to determine the number
of categories c to be distributed to each client. We will partition the data based on the total amount
of data, the number of categories, the number of clients, ensuring that each piece of data does not
appear more than once and that all data is utilized. We present our partitioning on CIFAR-10, as
shown in Figure 5a.

(a) Pathological Non-IID partition (b) Dirichlet Non-IID partition

Figure 5: Partitioning on CIFAR-10

Dirichlet Non-IID partition In the Dirichlet distribution, the distribution for each client is indepen-
dent. Assume that the distribution for client is governed by a vector q (qi > 0, i ∈ [1,M ], ∥q∥1 = 1)
of length M , where M represents the number of classes. The vector q is sampled from a Dirichlet
distribution

q ∼ Dir(αp) (12)
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p (pi > 0, i ∈ [1,M ], ∥p∥1 = 1) represents the prior class distribution that we manually set. Here,
we define them as pi =

1
M , i ∈ [1,M ]. The parameter α is a concentration parameter, which can

be simply understood as determining the probability that a sample belongs to the prior p When each
element in p is the same. The probability density function of the Dirichlet distribution is given by:

(q | αp) = 1

B (αp)

∏M
i=1q

αpi−1
i (13)

B (αp) =

∏M
i=1 Γ (αpi)

Γ
(∑M

i=1αpi

) (14)

And E (qi) = pi. We can see from 13 that when αpi is large, our samples are nearly qi =
1
M , i ∈

[1,M ], whereas when αpi is small, only one category appears in the samples. Therefore, we can set
the size of αp to control the degree of Non-IID data. Since each element in p is the same and we are
only concerned with the size of αp, we can set just one variable α to automatically normalize p and
control the generation of the desired data.

However, this partitioning method still presents some issues. First, different clients may have over-
lapping data, or certain data in the dataset may not be utilized. Second, the number of samples for
each client is predetermined and the same across all clients, which is almost impossible in real-world
scenarios because clients vary in their ability to collect data. Therefore, we apply the Dirichlet dis-
tribution to the data for each class, where q and p become vectors of size N , where N is the number
of clients. During the partitioning process, we need to ensure that a larger portion of the data is
allocated to clients with fewer overall data points to maintain a Non-IID distribution. However, a
problem arises when there are too many clients: insufficient data may result in some clients having
too little data after all categories have been split. In this case, we can repartition the data until the
client with the least amount of data reaches the required threshold. We present our partitioning on
CIFAR-10, as shown in Figure 5b.
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