
Published in Transactions on Machine Learning Research (04/2025)

Fairness-Aware Dense Subgraph Discovery

Emmanouil Kariotakis emmanouil.kariotakis@kuleuven.be
ESAT-STADIUS
KU Leuven
Nicholas D. Sidiropoulos nikos@virginia.edu
Department of Electrical Engineering
University of Virginia
Aritra Konar aritra.konar@kuleuven.be
ESAT-STADIUS
KU Leuven

Reviewed on OpenReview: https: // openreview. net/ forum? id= 7rqV7Cb67L

Abstract

Dense subgraph discovery (DSD) is a key graph mining primitive with myriad applications
including finding densely connected communities which are diverse in their vertex composition.
In such a context, it is desirable to extract a dense subgraph that provides fair representation
of the diverse subgroups that constitute the vertex set while incurring a small loss in terms of
subgraph density. Existing methods for promoting fairness in DSD have important limitations
- the associated formulations are NP–hard in the worst case and they do not provide flexible
notions of fairness, making it non-trivial to analyze the inherent trade-off between density
and fairness. In this paper, we introduce two tractable formulations for fair DSD, each
offering a different notion of fairness. Our methods provide a structured and flexible approach
to incorporate fairness, accommodating varying fairness levels. We introduce the fairness-
induced relative loss in subgraph density as a price of fairness measure to quantify the
associated trade-off. We are the first to study such a notion in the context of detecting
fair dense subgraphs. Extensive experiments on real-world datasets demonstrate that our
methods not only match but frequently outperform existing solutions, sometimes incurring
even less than half the subgraph density loss compared to prior art, while achieving the target
fairness levels. Importantly, they excel in scenarios that previous methods fail to adequately
handle, i.e., those with extreme subgroup imbalances, highlighting their effectiveness in
extracting fair and dense solutions.

Figure 1: A toy example of Fair DSG with 2 vertex groups; protected (red) and unprotected (blue). Left:
Densest subgraph without fairness constraints; density = 2. Right: Densest subgraph with fairness constraints
(equal number of red and blue vertices); density = 1.875.

1

https://openreview.net/forum?id=7rqV7Cb67L

Published in Transactions on Machine Learning Research (04/2025)

1 Introduction

Ensuring that data-driven algorithms do not disproportionately impact different population subgroups is
a key challenge in human-centered applications of artificial intelligence. The field of algorithmic fairness
(Dwork et al., 2012; Feldman et al., 2015; Kleinberg et al., 2018; Holstein et al., 2019) focuses on designing
fairness-enhancing mechanisms to mitigate algorithmic bias. Fairness considerations have been formulated as
optimization problems in both supervised and unsupervised learning (see the surveys Friedler et al. (2019);
Chouldechova & Roth (2020) and references therein). In contrast, it remains a nascent area of research in
graph mining, where fairness considerations are also important (Dong et al., 2023). To date, only few graph
mining problems have been analyzed under the lens of algorithmic fairness.

Dense subgraph discovery (DSD) is one key graph mining primitive that aims to extract subgraphs with high
internal connectivity from a given graph (see the survey Lanciano et al. (2024) and references therein). DSD
finds widespread applications ranging from mining social media trends (Angel et al., 2012), detecting patterns
in gene annotation graphs (Khuller & Saha, 2009), and spotting fraud in e-commerce and financial networks
(Hooi et al., 2016; Li et al., 2020; Chen & Tsourakakis, 2022). A popular formulation used for extracting
dense subgraphs maximizes the average induced degree (Goldberg, 1984). This is because the problem can
be solved exactly using maximum-flows, or approximated efficiently at scale using greedy vertex-peeling
algorithms (Charikar, 2000; Boob et al., 2020; Chekuri et al., 2022), or convex optimization algorithms (Harb
et al., 2023; Nguyen & Ene, 2024; Harb et al., 2022), with guarantees on the sub-optimality of the solution.

In this paper, we study the problem of extracting the densest subgraph from a given graph that meets
a target fairness criterion. Such considerations can arise in DSD when the vertices of the graph (e.g.,
corresponding to a web or social network) are annotated with sensitive information pertaining to an individual’s
gender/race/religion/political leaning, etc., which partitions the vertex set into different population subgroups.
The fair dense subgraph problem then corresponds to locating a dense subgraph with adequate levels of
representation of each subgroup in the extracted subset. Simply applying a pre-existing algorithm for DSD
can fail in this regard. Indeed, studies on real-world graphs (Anagnostopoulos et al., 2020; 2024) have revealed
that existing methods return subgraphs which typically exhibit strong homophily, with little to no diversity
in the composition of the vertex attributes. Motivating examples of fairness in DSD include selection of
diverse teams from a social network of professional contacts (Marcolino et al., 2013; Rangapuram et al., 2013),
and recommending balanced content to social media users that spans the various views of the individuals
comprising the network, thus mitigating polarization (Musco et al., 2018).

While DSD is a well-studied topic, extracting fair dense subgraphs has received limited attention. Although
the recent works of Anagnostopoulos et al. (2020; 2024); Miyauchi et al. (2023) have initiated progress in
this area, they have some inherent limitations. Notably, their formulations are NP–hard in the worst-case,
necessitating approximation algorithms. These methods also struggle with rigid or hard-to-set fairness criteria.
Another key issue is the inherent trade-off between subgraph density and fairness, which is difficult to analyze
and has not been formally explored due to the NP-hardness of existing approaches (see Section 2 for details).

Contributions: In this paper, we focus on the setting where the vertices of the graph are divided in two
subgroups, protected and unprotected. Our objective is to overcome the limitations of prior work by (i)
proposing new, tractable (polynomial-time solvable) formulations which are (ii) capable of generating a
spectrum of fair dense subgraphs with varying levels of fairness. This approach enables users to analyze the
trade-off between subgraph density and fair representation of the protected group, and quantify the price of
fairness, i.e., the density loss required to meet a target fairness level. We point out that these features are
absent in the formulations of Anagnostopoulos et al. (2020; 2024); Miyauchi et al. (2023). Our key technical
idea is to promote fairness in DSD through a pair of judiciously chosen regularizers that create tractable
problems and establish regularization paths representing various fairness levels.

To summarize:

• We introduce two tractable formulations for fair DSD that are capable of accommodating variable
fairness levels. This enables flexible selection across a spectrum of target fairness levels, enhancing the
applicability of the formulations.

2

Published in Transactions on Machine Learning Research (04/2025)

Figure 2: Comparing perfectly balanced fair subgraphs obtained via prior art and FADSG-I (ours, purple) on
4 different Twitch datasets. (Top): Price of fairness (the lower, the better). (Bottom): Fraction of protected
vertices in induced subgraph (set to 50% for perfect balance).

• We analyze the inherent trade-off between subgraph density and target fairness for a difficult example
using the price of fairness measure. Our results indicate that enhancing fairness can significantly reduce
density, regardless of the algorithm used.

• Through extensive experiments on diverse datasets, we demonstrate superior performance (see Figure 2)
and practical utility of our formulations over existing approaches.

Preliminaries and Notation: Consider a simple, undirected graph G = (V, E) on n := |V| vertices and
m := |E| edges. Let w : E → Rm

++ denote a set of positive weights defined on the edges of G; i.e., each
edge {i, j} ∈ E is assigned a positive weight w{i,j}. If each edge has unit weight, the graph G is said to be
unweighted. Let A denote the n× n symmetric adjacency matrix of G with entries aij = w{i,j},∀ {i, j} ∈ E
and e be the n-dimensional vector of all-ones. Given a vertex subset S ⊆ V, let GS = (S, ES) denote the
subgraph induced by S. The (weighted) sum of edges in GS is denoted as e(S) :=

∑
{i,j}∈ES

w{i,j}. The
subgraph density of GS is its average (induced) degree, which is expressed as ρ(S) := 2e(S)/|S|. Given a
vertex subset S ⊆ V, let x ∈ {0, 1}n denote its corresponding binary indicator vector. In terms of x, the
subgraph density can be equivalently expressed as ρ(x) := (x⊤Ax)/(e⊤x). In addition, each vertex v ∈ V
possesses a binary group label that designates it as belonging to the protected or unprotected group. Thus,
the vertices of G can be partitioned into a protected Sp ⊂ V, with np := |Sp|, and an unprotected subset
S̄p := V \ Sp. A real-valued set function f : 2V → R defined on a ground set V is supermodular if and only if
(iff) f(A)+f(B) ≤ f(A∪B)+f(A∩B) for all A,B ⊆ V . Equivalently, f is supermodular iff f(v|A) ≤ f(v|B),
for all A ⊆ B ⊆ V \ {v}, where f(v|S) := f(S ∪ {v})− f(S) denotes the marginal value of v with respect to
S. If f(∅) = 0, f is said to be normalized. A function f is submodular iff −f is supermodular. A function is
modular if it is both supermodular and submodular. Relevant to this paper, the function e(S) is monotone
supermodular, whereas |S| is modular.

2 Related Work

Densest subgraph and it variants: Given a graph G, the classic Densest Subgraph (DSG) problem
(Goldberg, 1984) aims to extract a dense vertex subset S ⊆ V that maximizes the average (induced) degree.
DSG can be solved exactly in polynomial time via maximum flows, but this is computationally demanding
for large graphs. In practice, a scalable greedy algorithm that iteratively peels vertices is used, providing a
1/2-factor approximation (Asahiro et al., 2000; Charikar, 2000). The algorithm was generalized in the recent
work of Boob et al. (2020), which proposed a multi-stage greedy algorithm Greedy++ that exhibits fast
convergence to a near-optimal solution of DSG without relying on flows. The follow-up work of Chekuri
et al. (2022) provided a performance analysis of Greedy++, and demonstrated that it can attain (1− ϵ)-
approximate solutions of DSG in O(1/ϵ2) iterations. Building on this approach, a general peeling-based

3

Published in Transactions on Machine Learning Research (04/2025)

framework Super-Greedy++ was introduced by Chekuri et al. (2022) for obtaining (1− ϵ)-approximate
solutions for the broader problem class of computing densest supermodular subsets, which can be expressed
as maxS⊆V{F (S)/|S|}, where F (S) is a monotone, normalized, supermodular function. Note that DSG is a
special case, with F (S) = e(S). More generally, it was shown by Harb et al. (2023) that Super-Greedy++
exhibits convergence to an optimal dense decomposition vector of f , which corresponds to a partition of of V
into a finite collection of subsets S1, . . . ,Sk, such that each for each i ∈ {1, . . . , k}, Si is the unique maximal
subset that maximizes λi = (F (Si ∪ Xi−1)− F (Xi−1))/|Si| over V \ Xi−1, where Xi−1 := ∪j<iSj . The value
of λ1 corresponds to density of the densest supermodular subset, whereas subsequent values monotonically
decrease, λ1 > · · · > λk. For DSG, we refer to such a decomposition as a dense decomposition on a graph G.

A separate line of research (Danisch et al., 2017; Harb et al., 2022; Nguyen & Ene, 2024) for developing fast
approximation algorithms for DSG has blossomed around applying convex-optimization algorithms for solving
a tight linear programming (LP) relaxation of DSG originally proposed by Charikar (2000). The work of
Danisch et al. (2017) considered a quadratic programming problem derived from the dual of the LP relaxation
of Charikar (2000), and applied the Frank-Wolfe algorithm (Frank et al., 1956) for solving it. Recently, the
authors of Harb et al. (2022) developed faster algorithms for DSG and dense decompositions on graphs by
solving the dual LP relaxation via accelerated proximal gradient (Beck & Teboulle, 2009). This was later
improved upon by Nguyen & Ene (2024) using tools from area convexity Sherman (2017) and accelerated
random coordinate descent Ene & Nguyen (2015) to develop faster approximation algorithms for DSG and
dense decompositions on graphs, respectively.

An important variant of DSG is finding the k-core decomposition of a graph Seidman (1983). A k-core is the
maximal subgraph (by size) where every vertex has an induced degree of at least k. The largest value of k for
which such a subgraph exists is known as the degeneracy, and the corresponding subgraph is known as the
max-core. Extracting the max-core is tantamount to finding the vertex subset which maximizes the minimum
induced degree. A slight modification of the greedy peeling algorithm for DSG exactly solves this problem.

Recently, it has been shown (Veldt et al., 2021) that the solution of DSG and the k-core both correspond to
special cases of a more general framework known as the Generalized Mean Densest Subgraph (GMDSG)
problem. This framework is parameterized by a single parameter p, based on computing generalized means of
degree sequences of a subgraph, with DSG and k-core corresponding to the choices of p = 1 and p = −∞,
respectively. Hence, by varying p, one can extract a family of dense subgraphs which obey different notions of
density. For p ≥ 1, GMDSG can be solved optimally in polynomial-time via maximum flows, or approximated
via a generalized greedy peeling algorithm. Additionally, it was shown by Chandrasekaran et al. (2024) that
for p < 1, GMDSG is NP–hard for p in the range p ∈ (−1/8, 0) ∪ (0, 1/4), and that the solutions of DSG and
max-core provide a 1/2-approximation for GMDSG when p < 1.

Other variants of DSG consider imposing size restrictions on the extracted subgraph. The Densest-k-
Subgraph (DkS) problem (Feige et al., 2001) seeks to determine the edge densest subgraph of size k,
which is NP–hard and also notoriously difficult to approximate (Bhaskara et al., 2012; Manurangsi, 2017).
Notwithstanding this fact, practical algorithms which work well for this problem on real graphs include
Papailiopoulos et al. (2014); Konar & Sidiropoulos (2021). Another variant, DamkS (Andersen & Chellapilla,
2009), maximizes average degree subject to the size of the subgraph being at most k, and is NP–hard.
Meanwhile, the DalkS problem (Andersen & Chellapilla, 2009) maximizes average degree subject to the
subgraph size being at least k. DalkS is also NP–hard (Khuller & Saha, 2009), with greedy and linear
programming approximation algorithms known.

Fairness in DSD: Subgraphs extracted via DSG or its variants are not guaranteed to fulfill a pre-specified
fairness criterion (regardless of the algorithmic approach employed), as the respective formulations do not
explicitly take into account any protected attributes that the vertices may possess. This issue was recently
brought up by Anagnostopoulos et al. (2020; 2024); Miyauchi et al. (2023), which considered the task of
extracting dense subgraphs that satisfy a group-fairness criterion. In Anagnostopoulos et al. (2020; 2024),
each vertex is a member of either a protected or an unprotected group, and the goal is to extract the densest
subgraph with an equal number of vertices from both groups (perfect balance). The follow-up work of Miyauchi
et al. (2023) proposed a pair of fairness promoting formulations which can handle multiple vertex groups.
The first (Miyauchi et al., 2023, Problem 1) corresponds to an extension of Anagnostopoulos et al. (2020;

4

Published in Transactions on Machine Learning Research (04/2025)

2024) that aims to find the densest subgraph subject to the constraint that the number of vertices from each
group in the solution does not exceed a fixed fraction of the solution size. The second formulation (Miyauchi
et al., 2023, Problem 2) concerns finding the densest subgraph while ensuring that at least a pre-specified
number of vertices from each group are present in the solution. A separate work (Oettershagen et al., 2024)
considered a variation of the fair DSG problem where the edge relationships (as opposed to vertices) in a
graph are modeled as belonging to different groups. The authors of Oettershagen et al. (2024) proposed
formulations for extracting fair dense subgraphs containing exactly, at most, and at least a certain number of
edges from each edge type.

While serving as a reasonable means of promoting fairness in DSD, the aforementioned approaches have
important limitations. (i): Fairness is enforced using hard combinatorial constraints, which renders the
problem formulations of Anagnostopoulos et al. (2020; 2024); Miyauchi et al. (2023) NP–hard in the worst case.
Meanwhile, the decision versions of the problems considered in Oettershagen et al. (2024) are demonstrated to
be NP-complete. Since optimal solution cannot be guaranteed in polynomial-time for every problem instance,
it is a non-trivial task to analyze the trade-off between density and fairness made by these formulations on
real-world datasets. (ii): The approximation algorithms developed in Anagnostopoulos et al. (2020; 2024);
Miyauchi et al. (2023) do not tackle the problem directly, but adopt a two-pronged approach. In the first part,
which corresponds to a relaxation step, the fairness constraints are decoupled from the problem formulation
and a dense subgraph is extracted. This is followed by a “rounding” step that takes the dense subgraph
as input and aims to make the solution feasible with respect to the fairness constraints. However, such a
strategy, which is employed in Anagnostopoulos et al. (2020; 2024) and Miyauchi et al. (2023, Problem 1),
can cause a large drop in practical performance. Although the spectral relaxation algorithms proposed in
Anagnostopoulos et al. (2020; 2024) provide sub-optimality guarantees, these apply under the assumption that
the degree distribution of the underlying graph is near uniform; a condition that rarely holds in real-world
graphs which typically exhibit a skewed-degree distribution (Newman, 2003). In practice a heuristic procedure
adjusts the output of DSG by ad-hoc addition of vertices from the least represented group until perfect
balance is reached. Meanwhile, Miyauchi et al. (2023) compute an approximation to DalkS to obtain an
initial solution for Problem 1 without imposing fairness, which is then refined via a post-processing step that
adds or removes vertices until the target fairness constraints are met. Regarding the second formulation of
Miyauchi et al. (2023, Problem 2), a linear programming relaxation with quality guarantees is developed,
albeit the algorithm exhibits high complexity. A low complexity greedy algorithm is proposed as an alternative,
which offers quality guarantees under very specific conditions on the optimal solution of the problem, which
are difficult to verify a priori. On the other hand, Oettershagen et al. (2024) provides a constant-factor
approximation algorithm for their edge-fairness problem, but these guarantees apply to graphs which are
everywhere sparse – a restrictive assumption. (iii): The fairness criteria employed in Anagnostopoulos et al.
(2020; 2024); Miyauchi et al. (2023) can be restrictive, or difficult to properly tune in order to achieve a
target representation level. The case of perfect balance is the sole consideration of Anagnostopoulos et al.
(2020; 2024), whereas Miyauchi et al. (2023, Problem 1) only guarantee that the representation level of each
subgroup is no more than a fixed fraction of the total vertices in the solution. However, it is not possible to
specify a priori which subgroup attains maximum representation or whether this upper bound is attained at
all. This implies that even in the simplest setting of two subgroups (i.e., protected and unprotected), the
method may not be effective in guaranteeing a target level of representation of the protected group. The
second formulation Miyauchi et al. (2023, Problem 2) ensures only that at least a certain number of vertices
from the protected group are included in the solution, and cannot guarantee attaining a specific proportion of
protected vertices, which is the focus of our work. Meanwhile, Oettershagen et al. (2024) quantifies fairness
w.r.t. edges via edge-type constraints, which is not directly comparable with our work as we measure fairness
w.r.t. vertices.

3 Problem Statement

Recall the classic Densest Subgraph (DSG) problem (Goldberg, 1984). Given an undirected graph G, DSG
aims to extract a dense vertex subset S ⊆ V that maximizes the average (induced) degree. The problem can
be expressed as

5

Published in Transactions on Machine Learning Research (04/2025)

Definition 1 (DSG).
x∗ = argmax

x∈{0,1}n

ρ(x), (1)

where ρ(x) := (x⊤Ax)/(e⊤x) denotes the subgraph density of a candidate subgraph x ∈ {0, 1}n in terms of
average induced-degree.

In contrast to prior work on fairness in DSD where fairness requirements are explicitly enforced as constraints,
we adopt a regularization based approach, where group-fairness in the extracted subgraph is promoted by an
appropriately chosen regularizer. In this section, we introduce our formulations.

Given a graph G with designated protected and unprotected subgroups of vertices, let ep ∈ {0, 1}n denote the
binary indicator vector of the protected subset Sp. Define the regularizer r1(x) := (e⊤

p x)/e⊤x and consider
the first Fairness-Aware Densest Subgraph (FADSG-I) problem.
Definition 2 (FADSG-I).

x∗(λ) = argmax
x∈{0,1}n

{
g(x, λ) := ρ(x) + λ · r1(x)

}
. (2)

Here, λ ≥ 0 is the regularization parameter. The objective function g(x, λ) consists of two terms - the first
term ρ(x) corresponds to subgraph density, whereas for λ > 0, r1(x) promotes the inclusion of vertices from
the protected subset Sp. This can be seen by equivalently expressing r1(·) as the set function

r1(S) = |S ∩ Sp|
|S|

. (3)

It is evident that 0 ≤ r1(S) ≤ 1, with the upper bound being attained for any subset S ⊆ Sp. Meanwhile,
r1(S) = 0 iff S does not contain any protected vertices. Thus, larger values of r1(·) correspond to vertex
subsets containing a greater fraction of protected vertices. Note that r1(S) = 1/2 corresponds to the case
of perfect balance (Anagnostopoulos et al., 2020; 2024), with equal number of protected and unprotected
vertices in S. Moreover, the choice of r1(S) = np/n implies that the number of vertices in the solution is
proportional to the number of vertices in the population, a property known as demographic parity (Dwork
et al., 2012). By varying λ, we allow r1(·) to span a range of values, which affords flexibility in extracting
dense subgraphs exhibiting varying fairness levels.

When λ = 0, FADSG-I reduces to DSG, the solution of which is not guaranteed to contain any protected
vertices. As λ is increased, greater emphasis is placed on maximizing r1(x), enhancing the inclusion of
protected vertices. For λ→∞, r1(x∗(λ))→ 1, and the solution of problem (2) corresponds to the densest
subset of Sp. Clearly, by varying λ in the interval [0,∞), the solution of (2) spans a spectrum which lies
between these two extremes. By appropriately selecting λ, desired representation levels of the protected
subset can be achieved. Hence, in contrast to Anagnostopoulos et al. (2020; 2024); Miyauchi et al. (2023),
our group-fairness formulation (2) affords much greater flexibility in trading-off subgraph density in exchange
for protected subset representation.

It is worth pointing out that in certain scenarios, the solution of FADSG-I may not provide satisfactory levels
of representation of the protected subset. Although the regularizer r1(·) promotes the inclusion of protected
vertices in the solution of (2), it does not explicitly take into account the fraction of such vertices that are
represented. Even for (infinitely) large values of λ in (2), the maximal level of representation attainable
corresponds to the densest subset of Sp. However, this does not imply that the fraction of the vertices
of Sp that will be included in the solution of FADSG-I will be large (please see Table 7, Appendix H.3
for experimental results indicating this). These considerations motivate a more focused formulation for
incorporating protected vertices in the solution, which we designate as the FADSG-II problem.
Definition 3 (FADSG-II).

x∗(λ) ∈ argmax
x∈{0,1}n

{
h(x, λ) := ρ(x)− λ · r2(x)

}
. (4)

6

Published in Transactions on Machine Learning Research (04/2025)

In this case, r2(x) := (∥x− ep∥2
2)/e⊤x is a regularizer and λ ≥ 0 is a regularization parameter. The above

problem differs from FADSG-I in the choice of the regularizer. Note that the numerator of r2(·) can be viewed
as the Hamming distance between the sets S and Sp, since ∥x− ep∥2

2 =
∑

i∈V(x(i)− ep(i))2 corresponds to
the number of disagreements between S (with indicator vector x) and Sp (with indicator vector ep). Hence,
for a given value of λ > 0, the objective function of (4) aims to maximize subgraph density while penalizing
the distance between the extracted and the protected subgraphs. As λ→∞, r2(x∗(λ))→ 0, and the solution
x∗(λ) coincides with the entire protected subset itself. Building on this observation, consider the case where
the target fairness requirement stipulates that 50% of the vertices in the protected subset be included in S.
We have the following result (see Appendix A.1 for proof).

Lemma 4. r2(S) = 1⇔ |S∩Sp|
|Sp| = 1

2 .

More generally, although problems (1) and (3) promote different notions of fairness, it is interesting to note
that the two formulations are not completely unrelated. In particular, we have shown that the following
relationship holds (see Appendix A.2 for the proof).
Lemma 5. For the regularizers r1(S) and r2(S), the following inequalities hold: r1(S) + r2(S) ≥ 1 and
2r1(S) + r2(S) ≤ 1 + np

2 .

The implication of the above result is that given the value of one regularizer, we can attain bounds on the
other (see Figure 9, Appendix A.2 for a visualization). Since providing explicit representation of the protected
subset is absent in the fairness formulations of Anagnostopoulos et al. (2020; 2024); Miyauchi et al. (2023),
FADSG-II goes beyond what is attainable using the prior art.

Tractability: A limitation of the formulations of Anagnostopoulos et al. (2020; 2024); Miyauchi et al. (2023)
is that they are NP–hard in the worst-case. Since optimality cannot be guaranteed, this implies that the
solution obtained by their approximation algorithms may not be satisfactory in terms of the loss in density
incurred for a target fairness level. In contrast, it turns out that problems (2) and (4) can always be solved
exactly in polynomial-time, irrespective of λ (see Appendix B for details). This implies that by varying λ, we
can trace the Pareto-optimal boundary between the two components comprising the objective function (i.e.,
density and fairness) of both problems (2) and (4). This enables us to reveal the underlying trade-off between
density and fairness on real-world datasets. As mentioned before, the intrinsic hardness of the formulations
in Anagnostopoulos et al. (2020; 2024); Miyauchi et al. (2023) does not allow for such a feature.

Our formulations are explicitly designed to study the density-fairness trade-off in a disciplined way for the
foundational setting of two vertex groups. As we will see later, they can outperform existing two-group
(protected, unprotected) approaches by a significant margin. The extension of our approaches to the case of
multiple vertex groups is deferred to future work.

4 Selecting the Regularization Parameter λ

A key component of problems (2) and (4) is the choice of the λ parameter. Clearly, increasing the value of
λ promotes the inclusion of protected vertices in the subgraph extracted by FADSG-I and II, albeit at the
expense of subgraph density. This section examines how λ can be selected in our formulations to guarantee
that the solutions obtained correspond to the densest subgraph that attains a target fairness level.

The first step is to determine the start and end points of the regularization paths of problems (2) and (4),
which determine the intervals characterizing all possible solutions generated by each formulation. While
λ = 0 corresponds to the start of the regularization path for both problems (note that this is tantamount
to solving DSG in both cases), determining the end is a non-trivial task in general. This stems from the
fact that both problems are combinatorial in nature. In the context of FADSG-I, we wish to determine λmax
such that for all λ ≥ λmax, the solution x∗(λ) is the densest subset of the protected subset Sp. Let S∗

p ⊆ Sp

denote the densest protected subset and ρ(S∗
p) denote its density. While it is difficult to pin down the exact

analytical form of λmax, the following result can be derived (see Appendix C.1 for proof).
Proposition 6. For λ ≥ λmax := [maxS⊃Sp

{(ρ(S)− ρ(S∗
p))/(1− np

|S|)}], the solution of (2) is the densest
protected subset S∗

p .

7

Published in Transactions on Machine Learning Research (04/2025)

The above result shows that there exists a finite value of λ that corresponds to the end of the regularization
path of FADSG-I. However, it is difficult to further simplify it. Meanwhile, for FADSG-II, the analogous
definition of λmax corresponds to the value such that for all λ ≥ λmax, the solution x∗(λ) is the protected
subset Sp. For the end of its regularization path, a finite λ can be shown to exist, similarly to FADSG-I (see
Appendix C.2). In practice, it is computationally easier to find a suitable λmax (which we know exists owing
to Propositions 6 and 10 in Appendix C) via trial and error (see Appendix G, Table 6 for values used). This
enables us to bound the interval of the regularization path for a given dataset, which in turn facilitates the
selection of the regularization parameter that corresponds to a target fairness level, as explained next.

4.1 Selection of Target Fairness Level

FADSG-I: For λ = 0, let x∗(0) denote the solution of problem (2), i.e., DSG. We also denote l1 := r1(x∗(0)) ≥
0 as the fraction of protected vertices present in the solution of DSG. This corresponds to the level of fairness
(as measured by r1(·)) that is attainable by the solution of the non-fair DSG problem, and is not guaranteed
to be non-zero in general. Meanwhile, we know that x∗(λmax) corresponds to the densest protected subset
for which u1 := r1(x∗(λmax)) = 1. Let α ∈ [l1, u1] denote the desired fairness level; i.e., we wish to select λ
such that the solution of (2), x∗(λ), is the densest subgraph that satisfies r1(x∗(λ)) = α. To this end, we will
exploit the fact that the function r1(x∗(λ)) is non-decreasing in λ. Consequently, if we define the function

ψ1(λ) := r1(x∗(λ))− α, (5)

we can employ bisection on λ to solve the equation ψ1(λ) = 0, in order to meet the target fairness level
α ∈ [l1, u1]. The lower and upper limits of the bisection interval correspond to 0 and λmax respectively,
for which ψ1(0) = l1 − α ≤ 0 and ψ1(λmax) = 1 − α ≥ 0. Moreover, note that each choice of λ ∈ [0, λmax]
corresponds to solving an instance of (2), which, as pointed out before, is tractable.

FADSG-II: A similar technique can be applied to select λ in problem (4) as well. Let x∗(0) denote the
solution of problem (4), which again corresponds to DSG, and define u2 := r2(x∗(0)) ≥ 0. In this case,
x∗(λmax) corresponds to the entire protected subset, for which l2 := r2(x∗(λmax)) = 0. Since r2(x∗(λ)) is
non-increasing in λ, given a desired value of r2(·) defined as δ ∈ [l2, u2], we can solve the equation

ψ2(λ) := r2(x∗(λ))− δ = 0 (6)

via bisection on λ. The initial bisection interval is [0, λmax], with ψ2(0) = u2 − δ ≥ 0 and ψ2(λmax) = −δ ≤ 0.
For each λ ∈ [0, λmax], an instance of problem (4) has to be solved, which is also tractable.

Unlike FADSG-I, in this case it is more difficult to set δ to a pre-determined value as it does not admit a
straight-forward interpretation of corresponding to a particular target fairness level. An important exception
is the case where δ = 1, which is equivalent to the requirement that 50% of the protected subset is represented
in the solution (see Lemma 4). Thus, the bisection-search strategy can be applied to determine the value of λ
that will extract the densest subgraph that contains 50% of the protected vertices.

A subtle point is that for the bisection framework to provably terminate, the functions ψ1(λ) and ψ2(λ)
should be continuous for every target fairness level, and for every graph. Although we cannot show this at
present, we observed in our experiments that depending on the nature of the underlying Pareto-optimal
frontier, some target fairness levels may be more difficult to attain than others. However, in general, the
overall procedure works very well on real datasets.

5 Quantifying the Price of Fairness

FADSG-I and II trade off subgraph density in order to promote the inclusion of protected vertices. Con-
sequently, the density of the fair subgraphs obtained via (2) and (4) is no larger than the density of their
non-fair counterpart DSG; i.e., a loss in subgraph density is the price paid for ensuring fairness. The loss
incurred in attaining a target fairness level ϕ, either α for FADSG-I or δ for FADSG-II, can be quantified
using the price of fairness.

8

Published in Transactions on Machine Learning Research (04/2025)

For a given graph G, the price of fairness (PoF) for a fixed value of ϕ is

PoF(G, ϕ) :=
ρ∗

G − ρ∗
G(ϕ)

ρ∗
G

:= 1−
ρ∗

G(ϕ)
ρ∗

G
, (7)

where ρ∗
G(ϕ) is the density of the densest subgraph in G attaining a target fairness level ϕ, and ρ∗

G is the
density of the solution of DSG. Simply stated, PoF(G, ϕ) is the ratio of the loss in subgraph density suffered
in meeting the fairness requirement ϕ and the maximum density ρ∗

G in the absence of fairness considerations.
Let ϕ0 denote the fairness level of the solution of DSG (obtained with explicitly imposing fairness), then
ρ∗

G(ϕ0) = ρ∗
G , and thus PoF(G, ϕ0) = 0. As ϕ diverges from ϕ0, the resulting density ρ∗

G(ϕ) decreases, and
consequently PoF(G, ϕ) approaches 1. For a desired value of ϕ, the closer PoF(G, ϕ) is to 1, the greater is
the price paid (in terms of density) for extracting the desired fair dense subgraph.

Similar definitions have been considered for analyzing fairness in influence maximization (Tsang et al., 2019)
and graph covering (Rahmattalabi et al., 2019). To the best of our knowledge, however, we are the first
to study such a notion in the context of detecting fair dense subgraphs. Analyzing the price of fairness is
inherently complex due to multiple factors like the type of graph considered, the protected subgraph, and the
desired level of fairness.

Figure 3: The “lollipop”
graph for n = 16. The un-
protected set (blue) forms a
clique on 4 vertices whereas
the protected set (red)
forms a path graph on 12
vertices.

The “Lollipop” Graph: We base our study on a difficult example which
exemplifies the underlying tension between density and fairness. Consider the
“lollipop” graph (denoted as Ln). In this construction, the unprotected vertices
constitute a clique of size

√
n (C√

n), while the protected vertices form a path
graph on n −

√
n vertices (Pn−

√
n), with one end connected to C√

n (so that
the overall graph is connected). We point out that the “lollipop” graph mimics
the properties of real-world graphs in the following manner: (i) the graph Ln

has O(n) edges, and is hence sparse, (ii) the majority of vertices (n−
√
n to be

precise) have low degree (≤ 2), while the remaining vertices have high degree
(at least

√
n− 1). Intuitively, we expect the solution of DSG for the “lollipop”

graph to be the clique C√
n, as it corresponds to a region of high density. Since

this solution does not contain any protected vertices, from a fairness perspective,
it is the worst possible solution. In addition, as the protected subset Pn−

√
n

is minimally connected, and thus has low density, we expect that improving the
representation of protected vertices will cost a large decrease in density, reflected by a large price of fairness.

FADSG-I: Let us analyse how the PoF is affected by altering the balance between the majority and
minority vertices in the desired solution. Consider the case where the desired proportion of unprotected and
protected vertices in the extracted subgraph is 1 : γ, with γ ∈ {1, 2, · · · , n−

√
n}, and the desired balance

is αγ := γ/(1 + γ). Note that the case of γ = 1 corresponds to the perfect balance scenario considered in
Anagnostopoulos et al. (2020; 2024). Then, the PoF can be expressed as follows (see Appendix D.1 for
proof).
Proposition 7.

PoF(Ln, αγ)

= αγ

[
1− 2√

n−1

]
, αγ ∈

{
1
2 , · · · , 1−

1√
n

}
> 1−

[
1

(
√

n) + 2√
n−1

]
, αγ ∈

{
1− 1√

n+1 , · · · , 1−
1

n−
√

n+1

} (8)

Since the target fairness level αγ increases with γ, the above result reveals that the PoF increases with γ, as
expected. Perhaps surprisingly, even when αγ is large but (strictly) lesser than 1, it is still possible that the
PoF is at least 1−O(1/

√
n), which can again be made arbitrarily close to 1. For smaller values of αγ , we

have that limn→∞ PoF(Ln, αγ) = αγ . In this case, the PoF is at most the desired fairness level αγ .

FADSG-II: Regarding FADSG-II, we can show that for the lollipop graph, there exists a one-to-one
correspondence between the target fairness parameters δ of FADSG-II and α of FADSG-I such that solutions
of the two problems coincide (refer to Appendix D.2 for proof). Hence the analysis remains the same as that
of FADSG-I.

9

Published in Transactions on Machine Learning Research (04/2025)

6 Algorithmic Approach

Although FADSG-I and II can be optimally solved using maximum flows, we refrain from using such an
approach. The main reason is that for a target fairness level, we have to solve multiple instances of each
problem within a binary search framework to determine the appropriate regularization parameter λ. Since
solving each maximum flow problem incurs Ω(n2) complexity (even for sparse graphs), the overall procedure
for computing an exact solution can be computationally prohibitive. Thus, we adopt an approximation
approach that seeks to quickly compute high quality sub-optimal solutions for a given instance of FADSG-I
and II (i.e., for a fixed λ). The key observation is that both of these problems correspond to special cases
of a general problem, the Densest Supermodular Subset (DSS) problem (Chekuri et al., 2022). Given
a supermodular function F : 2V → R, the problem seeks a subset that maximizes the ratio F (S)/|S|. For
this problem class, several algorithmic strategies are available. One option is to employ Super-Greedy++
(Chekuri et al., 2022), a multi-stage greedy algorithm which generalizes the prior-art of Asahiro et al. (2000);
Boob et al. (2020); Veldt et al. (2021). If F (·) is normalized, non-negative, and monotone, for a given ϵ ∈ (0, 1),
the algorithm outputs an (1− ϵ)-approximation of the optimal objective value of DSS in O

(
1/ϵ2

)
iterations.

The peeling process dominates the computational complexity of each iteration and it can be implemented to
run in O(m+ n logn), by handling the vertices of S using a Fibonacci heap (Fredman & Tarjan, 1987) with
key values being ℓv + F (v|S − v), similar to Miyauchi et al. (2023). Hence, Super-Greedy++ can run in
O((m+ n logn)/ϵ2). Its main appeal is that it can be efficiently implemented, and exhibits strong empirical
performance (Boob et al., 2020; Nguyen & Ene, 2024). Additionally, it is straightforward to implement it
using the objective functions of FADSG-I and II (for more details, see [Algorithm 1, Appendix E]).

An alternative is to consider the iterative convex-optimization algorithms developed in Danisch et al. (2017);
Harb et al. (2022); Nguyen & Ene (2024). These methods are centered around solving the dual LP relaxation
of DSG (Charikar, 2000). However, modifying and implementing these algorithms (which are tailored for
DSG) for our problems poses a greater challenge relative to Super-Greedy++. FADSG-I and II have to be
reformulated as a constrained convex optimization problem via an extension of the dual linear programming
(LP) relaxation of DSG proposed in Charikar (2000). Moreover, since the algorithms of Danisch et al. (2017);
Harb et al. (2022); Nguyen & Ene (2024) are tailored to exploit the structure of the dual LP relaxation based
on DSG, it is not clear to what extent they would need to be modified in order to be applicable for our
problems, and whether the requisite changes would still result in low-complexity updates. Another practical
drawback of these continuous methods (even when applied to plain DSG) is that a subroutine known as
fractional peeling (Harb et al., 2022) has to be applied on each of the generated iterates if one desires to extract
an estimate of the densest supermodular subset (which corresponds to the densest subgraph for DSG) at each
iteration. However, performing a single round of fractional peeling incurs a complexity of O(m+ n logn),
which has the same complexity order as a single iteration of Super-Greedy++. Consequently, determining
the point at which the estimate of the DSS has converged from the continuous iterates can prove to be
computationally expensive, unless the fractional peeling subroutine is sparingly used. Even then, this can come
at the cost of executing the convex optimization algorithms for a larger number of iterations than required for
the sequence of DSS estimates to converge. We point out that this is a non-issue in Super-Greedy++, as
its combinatorial nature makes it easy to keep track of the best estimate of the DSS at each iteration. Owing
to these reasons, we elect to choose Super-Greedy++ as the algorithmic primitive for FADSG-I and II.

Note that the objective function of FADSG-I can be expressed in the form of the DSS problem, with a
non-negative, monotone supermodular numerator. Hence, the Super-Greedy++ algorithm can be applied
directly to problem (2) to obtain a high-quality approximate solution. For FADSG-II, its objective function
can be expressed as well as the ratio F (S)/|S|, where the numerator is supermodular, making problem
(4) a special case of DSS. However, since the numerator may not always be non-negative for every λ > 0,
Super-Greedy++ does not guarantee an (1− ϵ)-approximation in all cases (see Huang et al. (2024) for a
counter-example). Nonetheless, Super-Greedy++ can still be applied on problem (4) and our experiments
indicate that it can serve as an effective heuristic. For details regarding implementation, refer to Appendix E.

It is worth pointing out that although we employ approximation algorithms for our problem formulations,
there is a difference compared to that of the prior art Anagnostopoulos et al. (2024; 2020); Miyauchi et al.
(2023). More specifically, we employ approximation as a means of improving scalability, as opposed to dealing
with intractability.

10

Published in Transactions on Machine Learning Research (04/2025)

Table 1: Summary of dataset statistics: number of vertices (n), number of edges (m), and size of protected
subset (np). The datasets contain multiple graphs and the statistics represent mean values with standard
deviations. The full list of datasets can be found in Appendix F.

Dataset n m np

Amazon (10) 3699± 2764 22859± 18052 1927± 2537
LastFM (19) 7624 27806 424± 454
Twitch (6) 5686± 2393 71519± 45827 2523± 1787

7 Experimental Evaluation

Experimental Setup: We consider various real-world datasets, with Table 1 summarizing their statistics
(for more information, see Appendix F). The implementation of our approach is publicly available on Github1.

The following baselines were selected as performance benchmarks:
• 2-DFSG (Anagnostopoulos et al., 2020; 2024). The algorithm starts from the solution of DSG and

subsequently introduces vertices from the underrepresented group in an arbitrary fashion, until perfect
balance is reached.

• PS, FPS (Anagnostopoulos et al., 2020; 2024). Paired Sweep (PS) and Fair Paired Sweep (FPS) are
spectral algorithms. They categorize the elements based on their group and sort them in a manner
reminiscent of spectral clustering.

• DDSP (Miyauchi et al., 2023). The algorithm initially computes a constant-factor approximate solution
to DalkS with k = ⌈1/α⌉, with α being the maximum desired fraction of monochromatic vertices. Then,
the algorithm makes the solution feasible by adding an arbitrary vertex from the least represented group,
similar to 2-DFSG.

7.1 Evaluation of FADSG-I

Comparison with prior art: In order to compare FADSG-I with the baselines, we set the target fairness
level α = 0.5. Therefore, our formulation aims to extract a dense subgraph with perfect balance. We point out
that we exclude datasets for which the protected vertices in the DSG solution are more than the unprotected,
as they already meet and exceed the target α = 0.5. Figures 2 and 4 illustrate a comparative analysis with
prior art. The top sections showcase the price of fairness (PoF) for each algorithm across various datasets,
while the bottom sections depict the fraction of protected vertices in the solutions. As the results indicate,
our proposed formulation consistently yields the lowest PoF values across a broad spectrum of scenarios.2

It can be observed from Figures 2 and 4 that for certain datasets, FADSG-I does not find a perfectly balanced
subgraph (see Figure 4, Amazon hpc & op). To obtain a better understanding, we plot the regularization
path of r1(S) for these datasets in Figure 5. A noteworthy observation is the emergence of “fairness plateaus”
where the fairness level remains constant across intervals of λ. Since FADSG-I is tractable, these figures
correspond to the actual Pareto frontier which characterizes the trade-off between fairness and density. This
phenomenon suggests that the graph’s inherent structure leads to certain fairness levels that arise naturally.
For instances where the data’s underlying structure does not inherently support a perfect division (i.e.,
Amazon hpc & op), FADSG-I does not enforce it. Figure 6 depicts the outcomes in datasets where there
exists an extreme imbalance in the composition of the protected and unprotected subgroups, i.e., we have
np ≪ n (see Table 4, Appendix F). In such cases, DDSP consistently fails to produce balanced/fair solutions.
In fact, we observe an extreme gap to the desired fairness level of 0.5, as well as a PoF that is always worse
than that of FADSG-I. The other prior methods always achieve a perfect balance, but with a significantly
higher PoF compared to our algorithm. This is an important feature of FADSG-I, as it can provide a near
optimal solution, when the nature of the graph allows it, while almost always paying the least in terms of PoF.

1https://github.com/ekariotakis/fadsg_tmlr2025
2Note that, in all experiments, in order to compute ρ∗

G , we employ the exact max flow algorithm (Goldberg, 1984).

11

https://github.com/ekariotakis/fadsg_tmlr2025

Published in Transactions on Machine Learning Research (04/2025)

Figure 4: Comparing induced perfectly balanced fair subsets of prior art and FADSG-I (Ours), on different
Amazon datasets. Top: PoF. Bottom: Fraction of protected vertices in induced subsets, r1(S).

Figure 5: The fraction of protected vertices in the induced subset, r1(S), as function of λ, for FADSG-I. Left:
Amazon hpc - Middle: Amazon op - Right: Twitch ptbr.

Figure 6: Comparing induced perfectly balanced fair subsets of prior art and FADSG-I (Ours), on different
LastFM datasets. Top: PoF. Bottom: Fraction of protected vertices in induced subsets, r1(S).

Various target fairness levels: Next, we investigate the ability of FADSG-I to extract subgraphs
corresponding to various fairness levels, contrary to PS, FPS, or 2-DFSG. Although DDSP allows adjusting
group representation levels, it can’t guarantee a priori which group (i.e., protected or unprotected) will meet
them. Returning to Figure 5, it can be observed that the fairness levels are non-decreasing with λ. Notably,
this value can only surpass or equal that of the classic DSG solution (λ = 0), aligning with our objective of
enhancing fairness. The achievable fairness levels are contingent upon the underlying nature of the dataset,

12

Published in Transactions on Machine Learning Research (04/2025)

Figure 7: Fraction of protected vertices in each induced subgraph, r1(S), of FADSG-I, for various values of
target fairness level α, for the Twitch datasets. (Dotted lines: fairness value in the solution of classic DSG
that we want to enhance.)

Figure 8: Twitch datasets. Top: PoF of FADSG-II (Ours) for δ = 1. Bottom: Comparing Ours (δ = 1)
with DSG. Fraction of the protected subset that belongs in the solutions.

with datasets like Twitch ptbr exhibiting smoother curves (Figure 5 - Right), resulting in naturally varying
degrees of fairness. In contrast, certain datasets, such as Amazon hpc & op (Figure 5), display plateaus
that correspond to specific fairness levels induced in the final solution. Figure 7 demonstrates the flexibility
of FADSG-I in extracting fair dense subgraphs that attain varying target fairness levels α, which correspond
to the fraction of protected vertices in the induced subgraph. Starting from the fairness level attained by the
DSG solution, we can introduce more fairness to our solution by increasing the desired value of α.

7.2 Evaluation of FADSG-II

Direct comparison with prior art is not feasible here, since FADSG-II utilizes a different fairness criterion, as
detailed in Section 3. In Figure 8, we compare this formulation with DSG. The top section depicts the PoF
of the solution obtained from FADSG-II, and the bottom one illustrates the fraction of all of the protected
vertices in the solutions of DSG and FADSG-II. For the Twitch datasets, DSG’s solution includes only
about 1/5 of the protected vertices. This is clearly due to the fact that DSG does not take into account the
protected attributes of the vertices. On the other hand, FADSG-II for δ = 1, yields solutions with nearly half
of the protected vertices, while achieving a relatively low PoF. Similar to FADSG-I, there are instances where
the solution does not precisely align with the desired fairness level. This can be attributed to the structure of
each graph, which may not inherently exhibit the specific fraction we are aiming for (see Appendix H for
more details).

13

Published in Transactions on Machine Learning Research (04/2025)

8 Conclusions

We addressed the fairness-aware densest subgraph problem by introducing two tractable formulations, each
incorporating a different regularizer in the objective function, to provide two different notions of fairness.
The inclusion of fairness introduces the inherent fairness-density trade-off. In order to quantify this trade-off
we proposed a measure of the price of fairness, and we analyzed it based on an illuminating example – which
revealed the underlying tension between density and fairness. To assess the effectiveness of the proposed
solutions, we employed a peeling-based approximation algorithm, and compared their performance against
the prior art using real-world datasets. Our findings revealed that FADSG-I generally incurs a lower price of
fairness (PoF) in achieving perfect balanced subgraphs, sometimes even less than half of that of prior art.
FADSG-I can also induce a perfectly balanced subgraph in some extreme scenarios where existing approaches
fall short, and it is capable of providing various fairness levels, other than perfect balance. Furthermore,
FADSG-II promotes an alternative notion of inclusion of protected vertices, often achieving this with a
relatively low PoF. Together, these formulations offer flexible solutions for balancing fairness and density in
subgraph discovery. Extending our approach to handle multiple vertex groups using regularizers which are
designed to ensure that no protected group is inadequately represented constitutes a direction of future work.

Broader Impact

The authors posit this work on the assumption that practitioners will appropriately select the protected
subset and publicly disclose it along with the results of their analysis.

Acknowledgments

Supported in part by the National Science Foundation, USA under grant IIS-1908070 and the KU Leuven
Special Research Fund BOF/STG-22-040.

References
Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided they blog.

In Proceedings of the 3rd international workshop on Link discovery, pp. 36–43, 2005.

Aris Anagnostopoulos, Luca Becchetti, Adriano Fazzone, Cristina Menghini, and Chris Schwiegelshohn.
Spectral relaxations and fair densest subgraphs. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, pp. 35–44, 2020.

Aris Anagnostopoulos, Luca Becchetti, Matteo Böhm, Adriano Fazzone, Stefano Leonardi, Cristina Menghini,
and Chris Schwiegelshohn. Fair projections as a means toward balanced recommendations. ACM Trans.
Intell. Syst. Technol., 16(1), December 2024. ISSN 2157-6904. doi: 10.1145/3664929.

Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In International workshop
on algorithms and models for the web-graph, pp. 25–37. Springer, 2009.

A. Angel, Nick Koudas, Nikos Sarkas, and Divesh Srivastava. Dense subgraph maintenance under streaming
edge weight updates for real-time story identification. VLDB, 5(6), 2012.

Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily finding a dense subgraph.
Journal of Algorithms, 34(2):203–221, 2000.

Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. Optimization with sparsity-
inducing penalties. Foundations and Trends® in Machine Learning, 4(1):1–106, 2012.

Wenruo Bai, Rishabh Iyer, Kai Wei, and Jeff Bilmes. Algorithms for optimizing the ratio of submodular
functions. In International Conference on Machine Learning, pp. 2751–2759. PMLR, 2016.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM journal on imaging sciences, 2(1):183–202, 2009.

14

Published in Transactions on Machine Learning Research (04/2025)

Aditya Bhaskara, Moses Charikar, Venkatesan Guruswami, Aravindan Vijayaraghavan, and Yuan Zhou.
Polynomial integrality gaps for strong sdp relaxations of densest k-subgraph. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pp. 388–405. SIAM, 2012.

Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos Tsourakakis, Di Wang, and Junxing
Wang. Flowless: Extracting densest subgraphs without flow computations. In Proceedings of The Web
Conference 2020, pp. 573–583, 2020.

Karthekeyan Chandrasekaran, Chandra Chekuri, Manuel R Torres, and Weihao Zhu. On the generalized
mean densest subgraph problem: Complexity and algorithms. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2024.

Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In International
Workshop on Approximation Algorithms for Combinatorial Optimization, pp. 84–95. Springer, 2000.

Chandra Chekuri, Kent Quanrud, and Manuel R Torres. Densest subgraph: Supermodularity, iterative
peeling, and flow. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1531–1555. SIAM, 2022.

Tianyi Chen and Charalampos Tsourakakis. Antibenford subgraphs: Unsupervised anomaly detection in
financial networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 2762–2770, 2022.

A. Chouldechova and A. Roth. A snapshot of the frontiers of fairness in machine learning. Commun. of the
ACM, 63(5):82–89, 2020.

Michael Conover, Jacob Ratkiewicz, Matthew Francisco, Bruno Gonçalves, Filippo Menczer, and Alessandro
Flammini. Political polarization on twitter. In Proceedings of the international aaai conference on web and
social media, volume 5, pp. 89–96, 2011.

Maximilien Danisch, T-H Hubert Chan, and Mauro Sozio. Large scale density-friendly graph decomposition
via convex programming. In Proceedings of the 26th International Conference on World Wide Web, pp.
233–242, 2017.

Yushun Dong, Jing Ma, Song Wang, Chen Chen, and Jundong Li. Fairness in graph mining: A survey. IEEE
Transactions on Knowledge and Data Engineering, 2023.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214–226,
2012.

Alina Ene and Huy Nguyen. Random coordinate descent methods for minimizing decomposable submodular
functions. In International Conference on Machine Learning, pp. 787–795. PMLR, 2015.

Adriano Fazzone, Tommaso Lanciano, Riccardo Denni, Charalampos E Tsourakakis, and Francesco Bonchi.
Discovering polarization niches via dense subgraphs with attractors and repulsers. Proceedings of the VLDB
Endowment, 15(13):3883–3896, 2022.

Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica, 29(3):410–421,
2001.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian.
Certifying and removing disparate impact. In proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 259–268, 2015.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research logistics
quarterly, 3(1-2):95–110, 1956.

15

Published in Transactions on Machine Learning Research (04/2025)

Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network optimization
algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

S. A Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary, Evan P Hamilton, and
Derek Roth. A comparative study of fairness-enhancing interventions in machine learning. In FAccT, pp.
329–338, 2019.

Satoru Fujishige. Submodular functions and optimization. Elsevier, 2005.

Andrew V Goldberg. Finding a maximum density subgraph. Technical report, University of California
Berkeley, CA, 1984.

Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combinatorial optimiza-
tion, volume 2. Springer Science & Business Media, 2012.

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Faster and scalable algorithms for densest subgraph
and decomposition. Advances in Neural Information Processing Systems, 35:26966–26979, 2022.

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Convergence to lexicographically optimal base in a
(contra) polymatroid and applications to densest subgraph and tree packing. In 31st Annual European
Symposium on Algorithms, ESA 2023, pp. 56. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH,
Dagstuhl Publishing, 2023.

K. Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and Hanna Wallach. Improving fairness
in machine learning systems: What do industry practitioners need? In CHI, pp. 1–16, 2019.

Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos. Fraudar: Bounding
graph fraud in the face of camouflage. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 895–904, 2016.

Yufan Huang, David F Gleich, and Nate Veldt. Densest subhypergraph: Negative supermodular functions
and strongly localized methods. In Proceedings of the ACM on Web Conference 2024, pp. 881–892, 2024.

Samir Khuller and Barna Saha. On finding dense subgraphs. In International colloquium on automata,
languages, and programming, pp. 597–608. Springer, 2009.

J. Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ashesh Rambachan. Algorithmic fairness. In Aea
papers and proceedings, volume 108, pp. 22–27, 2018.

Vladimir Kolmogorov and Ramin Zabih. What energy functions can be minimized via graph cuts? In
European conference on computer vision, pp. 65–81. Springer, 2002.

Aritra Konar and Nicholas D Sidiropoulos. Exploring the subgraph density-size trade-off via the lovaśz
extension. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp.
743–751, 2021.

Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi. A survey on the densest
subgraph problem and its variants. ACM Computing Surveys, 56(8):1–40, 2024.

X. Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, and Xueqi Cheng.
Flowscope: Spotting money laundering based on graphs. In AAAI, volume 34, pp. 4731–4738, 2020.

Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-subgraph. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 954–961, 2017.

Leandro Soriano Marcolino, Albert Xin Jiang, and Milind Tambe. Multi-agent team formation: Diversity
beats strength? In Twenty-Third International Joint Conference on Artificial Intelligence. Citeseer, 2013.

Atsushi Miyauchi, Tianyi Chen, Konstantinos Sotiropoulos, and Charalampos E Tsourakakis. Densest diverse
subgraphs: How to plan a successful cocktail party with diversity. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1710–1721, 2023.

16

Published in Transactions on Machine Learning Research (04/2025)

Cameron Musco, Christopher Musco, and Charalampos E Tsourakakis. Minimizing polarization and disagree-
ment in social networks. In Proceedings of the 2018 world wide web conference, pp. 369–378, 2018.

M. Newman. The structure and function of complex networks. SIAM review, 45(2):167–256, 2003.

Ta Duy Nguyen and Alina Ene. Multiplicative weights update, area convexity and random coordinate descent
for densest subgraph problems. In International Conference on Machine Learning, pp. 37683–37706. PMLR,
2024.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled reviews
and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods in natural language
processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP),
pp. 188–197, 2019.

Lutz Oettershagen, Honglian Wang, and Aristides Gionis. Finding densest subgraphs with edge-color con-
straints. In Proceedings of the ACM Web Conference 2024, pp. 936–947. ACM, 2024. ISBN 9798400701719.

James B Orlin. Max flows in o (nm) time, or better. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pp. 765–774, 2013.

Dimitris Papailiopoulos, Ioannis Mitliagkas, Alexandros Dimakis, and Constantine Caramanis. Finding
dense subgraphs via low-rank bilinear optimization. In International Conference on Machine Learning, pp.
1890–1898. PMLR, 2014.

Aida Rahmattalabi, Phebe Vayanos, Anthony Fulginiti, Eric Rice, Bryan Wilder, Amulya Yadav, and Milind
Tambe. Exploring algorithmic fairness in robust graph covering problems. Advances in Neural Information
Processing Systems, 32, 2019.

Syama Sundar Rangapuram, Thomas Bühler, and Matthias Hein. Towards realistic team formation in social
networks based on densest subgraphs. In Proceedings of the 22nd international conference on World Wide
Web, pp. 1077–1088, 2013.

Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and visualization.
In Proceedings of the AAAI conference on artificial intelligence, volume 29, 2015.

Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather, from statistical
descriptors to parametric models. In Proceedings of the 29th ACM international conference on information
& knowledge management, pp. 1325–1334, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding, 2019.

Stephen B Seidman. Network structure and minimum degree. Social networks, 5(3):269–287, 1983.

Jonah Sherman. Area-convexity, ℓ∞ regularization, and undirected multicommodity flow. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 452–460, 2017.

Alan Tsang, Bryan Wilder, Eric Rice, Milind Tambe, and Yair Zick. Group-fairness in influence maximization.
In IJCAI, 2019.

Sotiris Tsioutsiouliklis, Evaggelia Pitoura, Panayiotis Tsaparas, Ilias Kleftakis, and Nikos Mamoulis. Fairness-
aware pagerank. In Proceedings of the Web Conference 2021, pp. 3815–3826, 2021.

Nate Veldt, Austin R Benson, and Jon Kleinberg. The generalized mean densest subgraph problem. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1604–1614,
2021.

17

Published in Transactions on Machine Learning Research (04/2025)

A Lemmas

A.1 Proof of Lemma 4

Proof. We express r2(.) in set notation as

r2(S) = |S|+ |Sp| − 2|S ∩ Sp|
|S|

. (9)

The claim then follows by noting that r2(S) = 1⇔ |Sp| − 2|S ∩ Sp| = 0.

A.2 Proof and Intuition of Lemma 5

Proof. Note that r2(·) can be expressed in terms of r1(·) as
follows

r2(S) = 1 + np

|S|
− 2r1(S). (10)

• For the first inequality: Since |Sp| ≥ |Sp ∩ S| = r1(S)|S|, it
implies that |Sp|

|S| ≥ r1(S). Hence, we obtain

r2(S) ≥ 1− r1(S). (11)

• For the second inequality: We have that np

|S| ≤
np

2 , since each
solution has at least one edge. Hence, we obtain

2r1(S) + r2(S) ≤ 1 + np

2 . (12)
1

1

r1(S) + r2(S) = 1

2r1(S) + r2(S) = 4

r1(S) = 1

R

0

np+2

2

np−2

2

np+2

4

r1(S)

r2(S)

Figure 9: The joint fairness region of
the regularizers r1(S) and r2(S), for a
graph with np protected vertices.

Furthermore, we define the joint fairness region characterized by the above inequalities as the fol-
lowing polytope:

R :=
{

(r1(S), r2(S)) : 0 ≤ r1(S) ≤ 1, 0 ≤ r2(S) ≤ 1 + np

2 , r1(S) + r2(S) ≥ 1, 2r1(S) + r2(S) ≤ 1 + np

2

}
\{r1(S) = 0 ∧ r2(S) = 1}

(13)

Note that the point (0, 1) is excluded from R, since if r1(S) = 0⇔ |S ∩ Sp| = 0 and r2(S) = 1⇔ |S ∩ Sp| =
1
2 |Sp| ⇒ |Sp| = 0, which is a contradiction since we assume that there always exists at least one protected
vertex in the graph. We can approximate this point when np ≪ n. In this case, when r1(S)→ 0, it can still
hold that half of the protected vertices belong in the solution, i.e., r2(S) = 1.

Let us consider the three remaining corner-points of R.

• (Bottom right:) We can attain (1, 0) when r2(S) = 0, meaning that the solution is the protected set Sp,
hence r1(S) = |S∩Sp|

|S| = 1.

• (Top left:) We can attain (0, np+2
2) only when the solution contains just one edge that connects two

unprotected vertices. This holds because when r1(S) = 0⇔ |S ∩ Sp| = 0⇒ r2(S) = np

2 + 1, which is
equal to the desired value only for |S| = 2.

• (Top right:) We can attain (1, np−2
2) only when the solution contains just one edge that connects two

protected vertices. This holds because when r1(S) = 1 ⇔ |S ∩ Sp| = |S| ⇒ r2(S) = np

2 − 1, which is
equal to the desired value only for |S| = 2⇔ |S ∩ Sp| = 2.

18

Published in Transactions on Machine Learning Research (04/2025)

B Tractability details

First, consider problem (2). Define the functions p1(x, λ) := x⊤Ax + λ · e⊤
p x, and q(x) := e⊤x. Thus, the

objective function can be expressed as g(x, λ) = p1(x, λ)/q(x). Since p1(·, λ) is the sum of a non-negative,
monotone supermodular function and a non-negative modular function, the result is also non-negative,
monotone supermodular (for every λ ≥ 0). This implies that FADSG-I corresponds to maximizing the
ratio of a monotone, non-negative supermodular function and a modular function. The solution to such a
problem can be determined in polynomial-time by solving a finite number of supermodular maximization
(SFM) sub-problems within a binary-search framework (Fujishige, 2005; Bai et al., 2016). Since SFM incurs
polynomial-time complexity (Grötschel et al., 2012), the claim follows. Furthermore, the quadratic form of
p1(·, λ) can be exploited to show that each sub-problem is equivalent to solving a minimum-cut problem
(Goldberg, 1984; Kolmogorov & Zabih, 2002), which can be accomplished via maximum-flow, as we show in
Appendix B.1.1. Each maximum-flow problem incurs complexity O(nm) (Orlin, 2013) and an upper-bound
on the maximum number of binary-search steps required is O(log(n+ λ) + log(n)) (see Appendix B.2).

Next, consider problem (4), and define the function p2(x, λ) := x⊤Ax− λ · (e− 2ep)⊤x− λ · np. Then, the
objective function of FADSG-II can be expressed as the ratio h(x, λ) = p2(x, λ)/q(x). While p2(·, λ) is a
supermodular function (being the sum of a supermodular and a modular function), it is not guaranteed to
be non-negative for every choice of λ > 0. Additionally, it is not normalized either, since p2(0, λ) = −λ · np.
Nevertheless, we can still show that (4) can be solved via a sequence of maximum-flow problems using a small
modification of the binary-search strategy, as we explain in Appendix B.1.2. Thus, FADSG-II can also be
solved exactly in polynomial-time.

B.1 Exact solutions via max-flow

B.1.1 Applying max-flow on FADSG-I

Figure 10: An edge-weighted
directed graph (U ,A, wβ) con-
structed from G, β and λ.

Based on the interpretation of Lanciano et al. (2024, Algorithm 1) for
Goldberg’s max-flow based algorithm (Goldberg, 1984), we only need to
make a small modification in order to apply it to FADSG-I.

The algorithm maintains an estimate of the unknown optimal value by
tracking upper and lower bounds, which it progressively tightens through
binary search. To update them, the algorithm employs a max-flow (equiva-
lently min-cut) computation. Let β ≥ 0 be the midpoint of the bounds kept
in the current iteration of the max-flow based algorithm. For G = (V, E),
Sp the protected set and λ the regularization parameter of FADSG-I (con-
stant), the algorithm constructs the following edge-weighted directed graph
(U ,A, wI

β) (Figure 10), with U = V ∪{s, t}, A = As∪AE ∪Ap
t ∪A

p̄
t , where

As = {(s, v)|v ∈ V}, AE = {(u, v), (v, u)|{u, v} ∈ E}, Ap
t = {(u, t)|v ∈ Sp}

and Ap̄
t = {(u, t)|v ∈ S̄p} and wI

β : A → R+ such that

wI
β(e) =

deg(v) e = (s, v) ∈ As

1 e ∈ AE
β − λ e ∈ Ap

t

β e ∈ Ap̄
t

. (14)

An s− t cut of (U ,A, wβ) is a partition of (X ,Y) of U , such that s ∈ X and t ∈ Y. Then define the cost of
an s− t cut (X ,Y), as cost(X ,Y) :=

∑
(u,v)∈A:u∈X ,v∈Y wβ(u, v).

Lemma 8. Let (X ,Y) be an s− t cut of the edge-weighted directed graph (U ,A, wI
β), and S = X \ {s}. Then

it holds that cost(X ,Y) = 2m+ β|S| − p1(S, λ), where p1(S, λ) = 2e(S) + λ|S ∩ Sp|.

19

Published in Transactions on Machine Learning Research (04/2025)

Proof. Any edge from X to Y is contained in exactly one of the following sets: {(s, v) ∈ As|v ∈ V \ S},
{(u, v) ∈ AE |u ∈ S, v ∈ V \ S}, {(v, t) ∈ Ap

t |v ∈ S}, {(v, t) ∈ A
p̄
t |v ∈ S}. Therefore the cost of (X ,Y) is

cost(X ,Y) =
∑

(s,v)∈As:v∈V\S

wI
β(s, v) +

∑
(u,v)∈AE :u∈S,v∈V\S

wI
β(u, v) +

∑
(u,t)∈Ap

t :v∈S

wI
β(v, t) +

∑
(u,t)∈Ap̄

t :v∈S

wI
β(v, t)

=
∑

v∈V\S

deg(v) + |{(u, v) ∈ E|u ∈ S, v ∈ V \ S}+ (β − λ)|S ∩ Sp|+ β(|S| − |S ∩ Sp|)

= 2m− 2e(S) + β|S| − λ|S ∩ Sp| = 2m+ β|S| − 2e(S)− λ|S ∩ Sp|
= 2m+ β|S| − p1(S, λ).

(15)

Let (X ,Y) be the minimum s− t cut (or max-flow) of (U ,A, wI
β). If X ≠ {s}, then S = X \ {s} is a vertex

subset that satisfies β|S| − p1(S, λ) ≤ 0⇔ p1(S,λ)
|S| ≥ β, and we can update the lower bound by β. If X = {s},

then there is no S ⊂ V that satisfies p1(S,λ)
|S| > β, and the upper bound can be replaced by β. Therefore, we

can apply the same procedure as that of Lanciano et al. (2024, Algorithm 1), with a small change at the
initial upper bound β

(0)
ub ← m.

B.1.2 Applying max-flow on FADSG-II

We follow the same procedure as we did in Appendix B.1.1, but with a slightly different edge-weighted graph.
For G = (V, E), Sp the protected set and λ the regularization parameter of FADSG-II (constant), the algorithm
constructs the following edge-weighted directed graph (U ,A, wII

β), with U = V∪{s, t}, A = As∪AE∪Ap
t ∪A

p̄
t ,

where As = {(s, v)|v ∈ V}, AE = {(u, v), (v, u)|{u, v} ∈ E}, Ap
t = {(u, t)|v ∈ Sp} and Ap̄

t = {(u, t)|v ∈ S̄p}
and wII

β : A → R+ such that

wII
β (e) =

deg(v) e = (s, v) ∈ As

1 e ∈ AE
β − λ e ∈ Ap

t

β + λ e ∈ Ap̄
t

. (16)

Lemma 9. Let (X ,Y) be an s− t cut of the edge-weighted directed graph (U ,A, wII
β), and S = X \{s}. Then

it holds that cost(X ,Y) = (2m− λ · np) + β|S| − p2(S, λ), where p2(S, λ) = 2e(S)− λ(|S|+ |Sp| − 2|S ∩ Sp|).

Proof. Any edge from X to Y is contained in exactly one of the following sets: {(s, v) ∈ As|v ∈ V \ S},
{(u, v) ∈ AE |u ∈ S, v ∈ V \ S}, {(v, t) ∈ Ap

t |v ∈ S}, {(v, t) ∈ A
p̄
t |v ∈ S}. Therefore the cost of (X ,Y) is

cost(X ,Y) =
∑

(s,v)∈As:v∈V\S

wII
β (s, v) +

∑
(u,v)∈AE :u∈S,v∈V\S

wII
β (u, v) +

∑
(u,t)∈Ap

t :v∈S

wII
β (v, t) +

∑
(u,t)∈Ap̄

t :v∈S

wII
β (v, t)

=
∑

v∈V\S

deg(v) + |{(u, v) ∈ E|u ∈ S, v ∈ V \ S}+ (β − λ)|S ∩ Sp|+ (β + λ)(|S| − |S ∩ Sp|)

= 2m+ β|S| − 2e(S) + λ|S| − 2λ|S ∩ Sp| = 2m+ β|S| − (p2(S, λ) + λ|Sp|)
= (2m− λ · np) + β|S| − p2(S, λ).

(17)

Similarly to FADSG-I, let (X ,Y) be the minimum s− t cut (or max-flow) of (U ,A, wII
β). If X ̸= {s}, then

S = X \ {s} is a vertex subset that satisfies β|S| − p2(S, λ) ≤ 0⇔ p2(S,λ)
|S| ≥ β, and we can update the lower

bound by β. If X = {s}, then there is no S ⊂ V that satisfies p2(S,λ)
|S| > β, and the upper bound can be

replaced by β. Therefore, we can again apply the same procedure as that of Lanciano et al. (2024, Algorithm
1), with a small change in the initial upper bound β

(0)
ub ← (m− λ · np)/2, since λ · np is a constant.

20

Published in Transactions on Machine Learning Research (04/2025)

B.2 Upper bound on the number of binary search iterations for FADSG-I and II

Applying binary search to solve problems (2) and (4) requires specifying an initial interval [L,U], where (L,U)
denote lower and upper bounds on the optimal value of (2) and (4), respectively, with L < U . The number
of binary search iterations needed to solve problems (2) and (4) is log U−L

∆ , with ∆ being the difference of
any two distinct values of the objective function of FADSG-I and II. It is straight-forward to prove that
∆ ≥ O(1/n2), similarly to Fazzone et al. (2022, Lemma 1).

B.2.1 For FADSG-I

For FADSG-I, we have the following bounds:

min
x∈{0,1}n

g(λ,x) ≥ min
x∈{0,1}n

ρ(x) + λ min
x∈{0,1}n

r1(x)⇒ L1 = 0. (18)

and
max

x∈{0,1}n
g(λ,x) ≤ max

x∈{0,1}n
ρ(x) + λ max

x∈{0,1}n
r1(x)⇒ U1 = (n− 1) + λ. (19)

Thus, the number of iterations is

log U1 − L1

∆ ≤ log n− 1 + λ

1/n2 = log(n− 1 + λ) + logn2 = O(log(n+ λ) + logn). (20)

B.2.2 For FADSG-II

For FADSG-II, we have the following bounds:

min
x∈{0,1}n

h(λ,x) ≥ min
x∈{0,1}n

ρ(x)− λ · max
x∈{0,1}n

r2(x)⇒ L2 = −λ · n. (21)

and
max

x∈{0,1}n
h(λ,x) ≤ max

x∈{0,1}n
ρ(x)− λ · min

x∈{0,1}n
r2(x)⇒ U2 = n− 1. (22)

Thus, the number of iterations is

log U2 − L2

∆ ≤ log n− 1 + λ · n
1/n2 = log((1 + λ) · n− 1) + logn2 = O(log(1 + λ) + logn). (23)

C Identifying the end of the regularization path

In order to determine the choice of λ that corresponds to the end of the regularization path of FADSG-I
and II, we can consider analyzing the optimality conditions of problems (2) and (4). Our reasoning behind
this step is that for continuous, convex regularization problems, studying the Karush-Kuhn-Tucker (KKT)
conditions of the problem (which are necessary and sufficient for optimality) can facilitate the selection of the
regularization parameter (see Bach et al. (2012)). However, while our formulations are tractable, they are
combinatorial in nature, for which there is no analogue of the KKT conditions in general. We note that for
the special case where the objective function being maximized is supermodular, the following characterization
of the optimality conditions is known.

Fact 1: (Fujishige, 2005) Consider the problem maxA⊆V F (A), where F (A) is a supermodular function.
Then, a set A∗ is optimal if and only if

F (A∗) ≥ F (B),∀ B ⊆ A∗ and ∀ B ⊇ A∗. (24)

Hence, in order to certify that a candidate solution is optimal, it suffices to check only all its subsets and
supersets, instead of examining all subsets of V . The above property of supermodular functions can be viewed
as a statement to the effect that local optimality implies global optimality, akin to convex functions in the
continuous domain. Going forward, this property will prove useful.

21

Published in Transactions on Machine Learning Research (04/2025)

C.1 FADSG-I

Unfortunately, problem (2) is not supermodular, and hence (24) does not directly apply. To circumvent
this limitation, we make the key observation that (2) is equivalent to solving a supermodular maximization
problem of the following form.

Fact 2: Let v∗
λ be the optimal value of a given instance of (2). Then a maximizer of (2) is also a maximizer

of the supermodular problem
max
S⊆V

{
F (S) := p1(S, λ)− v∗

λ · q(S)
}
. (25)

Furthermore, the optimal value of the above problem is 0.

Consequently, the optimality condition (24) can be applied for the above problem, which in turn will allow us
to determine the smallest value of the regularization parameter λ for which the solution of (2) is the densest
protected subgraph of Sp. Let S∗

p ⊆ Sp denote the densest protected subset and ρ(S∗
p) denote its density.

When the solution of (2) equals S∗
p , the optimal value is v∗

λ = ρ(S∗
p) + λ, since r1(S∗

p) = 1. We are now ready
to prove Proposition 6 (restated below for convenience).

Proposition 6. For λ ≥ λmax := [maxS⊃Sp{(ρ(S)− ρ(S∗
p))/(1− np

|S|)}], the solution of (2) is the densest
protected subset S∗

p .

Proof. Applying the optimality conditions of (24) to problem (25), we obtain the condition

F (B) ≤ F (S∗
p),∀ B ⊇ S∗

p . (26)

Since F (S∗
p) = 0, the condition simplifies to

p1(B, λ)− v∗
λ · q(B) ≤ 0,∀ B ⊇ S∗

p

⇔ 2e(B) + λ · |B ∩ Sp| − v∗
λ · |B| ≤ 0,

⇔ 2e(B)
|B|

+ λ · |B ∩ Sp|
|B|

≤ ρ(S∗
p) + λ.

(27)

Define ρ(B) := 2e(B)/|B| to be the density of the subgraph induced by B. Then, we obtain

ρ(B)− ρ(S∗
p) ≤ λ ·

[
1− |B ∩ Sp|

|B|

]
,∀ B ⊇ S∗

p . (28)

We now distinguish between two categories of supersets B. Either we have (i): Sp ⊇ B ⊇ S∗
p , or (ii):

B ⊃ Sp ⊇ S∗
p . If the first case is true, condition (28) reduces to

ρ(B) ≤ ρ(S∗
p),∀ Sp ⊇ B ⊇ S∗

p , (29)

which is always guaranteed to hold (irrespective of λ) since S∗
p is the densest protected subset. This implies

that we only need consider the second category of supersets. Then, (28) becomes

λ ≥
ρ(B)− ρ(S∗

p)
1− |B∩Sp|

|B|

,∀ B ⊃ Sp. (30)

Since |B ∩ Sp| = |Sp| = np,∀ B ⊃ Sp, we finally obtain

λ ≥ max
B⊃Sp

{
ρ(B)− ρ(S∗

p)
1− np

|B|

}
. (31)

Note that the optimality conditions (24) also require us to verify that the above choice of λmax satisfies

F (B) ≤ F (Sp),∀ B ⊆ Sp. (32)

22

Published in Transactions on Machine Learning Research (04/2025)

Note that for B = ∅, the above condition is guaranteed to hold irrespective of λ. For subsets B satisfying
∅ ⊂ B ⊂ Sp, we have |B ∩ Sp| = |B|. Consequently, (28) becomes

ρ(B)− ρ(S∗
p) ≤ 0,∀ ∅ ⊂ B ⊂ Sp, (33)

which is again always satisfied irrespective of λ, since ρ(S∗
p) is the densest protected subset. The claim then

follows.

C.2 FADSG-II

We adopt the same line of reasoning as the previous subsection. Our starting point is the fact that given an
instance of (4) with optimal value v∗

λ, a maximizer of (4) is also a maximizer of the following supermodular
maximization problem

max
S⊆V

{
F (S) := p2(S, λ)− v∗

λ · q(S)
}

(34)

with optimal value equal to 0. This allows us to use the optimality conditions of the above problem (which are
characterized by (24)) to determine the smallest value of λ required so that the solution of (4) corresponds
to the protected subset Sp. Note that in such a case we have v∗

λ = ρ(Sp). We are now ready to prove
Proposition 4.2.

Proposition 10. Define the quantities

λ1 := max
B⊃Sp

{
ρ(B)− ρ(Sp)

1− np

|B|

}
, λ2 := max

∅⊂B⊂Sp

{
ρ(B)− ρ(Sp)

np

|B| − 1

}

Then, for λ ≥ max{λ1, λ2}, the solution of (4) is the protected subset Sp.

Proof. Since F (·) is supermodular, the optimality conditions (24) assert that

F (B) ≤ F (Sp),∀ B ⊇ Sp. (35)

Since F (Sp) = 0, the condition becomes

p2(B, λ)− v∗
λ · q(B) ≤ 0,∀ B ⊇ Sp

⇔ 2e(B)
|B|

− λ · r2(B) ≤ ρ(Sp),

⇔ ρ(B)− ρ(Sp) ≤ λr2(B)

(36)

For a superset B ⊃ Sp, we have r2(B) = 1− (np/|B|). Thus we obtain the condition

λ ≥ λ1 := max
B⊃Sp

{
ρ(B)− ρ(Sp)

1− np

|B|

}
. (37)

From (24), we also have the condition

F (B) ≤ F (Sp),∀ B ⊆ Sp, (38)

which can be simplified as

2e(B)− λ · [|B|+ |Sp| − 2|B ∩ Sp|] ≤ ρ(Sp) · |B|,∀ B ⊆ Sp. (39)

A little calculation reveals that when B = ∅, the above condition holds irrespective of λ ≥ 0. Hence, we
restrict our attention to subsets of the form ∅ ⊂ B ⊂ Sp. In this case (39) becomes

ρ(B)− ρ(Sp) ≤ λr2(B),∀ ∅ ⊂ B ⊂ Sp. (40)

23

Published in Transactions on Machine Learning Research (04/2025)

Since r2(B) = (np/|B|)− 1, we finally obtain

λ ≥ λ2 := max
∅⊂B⊂Sp

{
ρ(B)− ρ(Sp)

np

|B| − 1

}
. (41)

Combining the inequalities (37) and (41), we obtain

λ ≥ max{λ1, λ2}. (42)

from which the claim follows.

D Analyzing the Price of Fairness

Recall that the lollipop graph on n vertices (denoted as Ln) comprises an unprotected clique of size
√
n

(denoted as C√
n), while the protected vertices form a path graph on n−

√
n vertices (denoted as Pn−

√
n),

with one end connected to C√
n (so that the overall graph is connected).

In order to analyze the price of fairness (PoF) on Ln, the following facts will be useful. Let Ck denote a
clique on k vertices with density ρ(Ck) := k − 1. Additionally, let Pk denote a path graph on k vertices. A
little calculation reveals that the density of the path graph is ρ(Pk) := 2 · (1− 1/k). Given two distinct vertex
subsets X ,Y with no overlap, let e(X ;Y) denote the number of edges with one endpoint in X and the other
in Y. Then, the number of edges induced by the combined vertex subset X ∪ Y can be expressed as

e(X ∪ Y) = e(X) + e(Y) + e(X ;Y). (43)

Proposition 11. For n > 9, the densest subgraph of Ln is the unprotected clique C√
n.

Proof. Consider a candidate subgraph comprising r ≤
√
n unprotected vertices and s ≤ n−

√
n protected

vertices. The solution can be expressed as S = Cr ∪ Ps, with density ρ(S) given by

ρ(S) = 2e(Cr ∪ Ps)
r + s

= 2[e(Cr) + e(Ps) + e(Cr;Ps)]
r + s

≤ 2[e(Cr) + e(Ps) + 1]
r + s

≤ max
{

2e(Cr)
r

,
2[e(Ps) + 1]

s

}
= max{ρ(Cr), 2} = max{r − 1, 2}.

(44)

The first inequality stems from the fact that e(Cr;Ps) ≤ 1, whereas the second inequality is due to the
following fact: given positive numbers a, b, c, d, we have (a + c)/(b + d) ≤ max{a/b, c/d}. For r > 3, the
maximum is attained by the first term (irrespective of s) - note that a necessary condition is n > 9. Hence
we obtain

ρ(S) ≤ r − 1 ≤
√
n− 1, (45)

for any candidate subgraph S. Both inequalities are satisfied with equality when S = Cr with r =
√
n, which

establishes the desired claim.

We now turn towards formalizing this intuition. From Proposition 11, it follows that ρ∗
Ln

=
√
n − 1, and

l1 = 0. Hence, the admissible range of α is the unit interval [0, 1] (which is the largest possible range). First,
consider the case where the target fairness level α = 1, which corresponds to extracting the subgraph Pn−

√
n

induced by the protected vertices.3 This case corresponds to the opposite extreme of DSG (where no fairness
is imposed). It turns out that the PoF can be expressed as follows.
Proposition 12. PoF(Ln, 1) > 1− [2/(

√
n− 1)].

Proof. For n > 9, have established that ρ∗
Ln

=
√
n− 1. Since ρ(Pn−

√
n) < 2, it follows from the definition

that PoF(Ln, 1) > 1− [2/(
√
n− 1)].

3Note that by construction, the densest protected subset coincides with the entire protected subset in this case.

24

Published in Transactions on Machine Learning Research (04/2025)

The above result is pessimistic as it demonstrates that in the worst-case, the price paid in extracting the fair
component can be made arbitrarily close to 1, via a suitable choice of n. Additionally, it demonstrates that
the lollipop graph is indeed a suitable candidate for analyzing the worst-case trade-off between density and
fairness. Next, we present the proof of Proposition 7, in order to understand how the PoF is affected by
altering the balance between the majority and minority vertices in the desired solution.

D.1 Proof of Proposition 7

Recall that the desired proportion of unprotected and protected vertices in the extracted subgraph is 1 : γ,
where γ ∈ {1, 2, · · · , n−

√
n} is a positive integer. In this case, the target fairness level can be expressed as

the ratio αγ := γ/(1 + γ). We aim to show that

PoF(G, αγ)

= αγ

[
1− 2√

n−1

]
, αγ ∈

{
1
2 , · · · , 1−

1√
n

}
> 1−

[
1

(
√
n) + 2√

n− 1

]
, αγ ∈

{
1− 1√

n+ 1 , · · · , 1−
1

n−
√
n+ 1

} (46)

Proof. Consider the range γ ∈ {1, · · · ,
√
n − 1}, for which αγ lies in the range { 1

2 , · · · , 1 −
1√
n
}. Given a

value γ lying in the above range, the optimal fair densest subgraph comprises
√
n unprotected vertices of

C√
n and γ

√
n protected vertices of the path graph Pn−

√
n. The optimal density is

ρ∗
Ln

(αγ) =
2e(C√

n ∪ Pγ
√

n)
(1 + γ)

√
n

= (
√
n− 1 + 2γ)
(1 + γ) (47)

Hence, the PoF is

PoF(Ln, αγ) = 1−
ρ∗

Ln
(αγ)
ρ∗

Ln

= γ

1 + γ

[
1− 2√

n− 1

]
. (48)

Next, we consider γ in the range {
√
n, · · · , n−

√
n} for which αγ ranges from {1− 1√

n+1 , · · · , 1−
1

n−
√

n+1}.
In this range, the optimal fair densest subgraph comprises the n−

√
n vertices of the protected subgraph

Pn−
√

n and r <
√
n unprotected vertices from C√

n such that r satisfies r = (n−
√
n)/γ. The density of the

solution is given by

ρ∗
Ln

(αγ) =
2e(Cr ∪ Pn−

√
n)

(1 + γ)r = (r − 1 + 2γ)
(1 + γ) = (n−

√
n− γ + 2γ2)
γ(1 + γ) =

√
n(
√
n− 1)

γ(1 + γ) + 2γ − 1
(1 + γ)

(49)

Hence, the PoF in this case can be expressed as

PoF(Ln, αγ) = 1−
[√

n

γ(1 + γ) + 2γ − 1
(1 + γ)(

√
n− 1)

]
> 1−

[√
n

γ2 + 2√
n− 1

]
≥ 1−

[√
n

(
√
n)2 + 2√

n− 1

]
= 1−O(1/

√
n)

(50)

D.2 Equivalence of δ and α

As we have already explained in Section 5, the solution of DSG without any fairness considerations is the
clique C√

n that contains the unprotected vertices. For this solution, it holds that r2(S) attains its maximum
value, which is r2(S) =

√
n. As we decrease the target fairness value δ of FADSG-II from this upper bound

δu =
√
n, the solution will gradually include more and more protected vertices from the protected subgraph

Pn−
√

n, until we reach the point that we have the whole graph G, for which point it holds that r2(S) = 1√
n

.
Up to this point, it always holds that we have a certain fraction (say 1/x < 1) of the protected vertices in the
solution, i.e., |S∩Sp|

|Sp| = 1
x < 1⇔ |S ∩ Sp| = np

x = n−
√

n
x . This implies that

r1(S) = |S ∩ Sp|
|S|

=
n−

√
n

x√
n+ n−

√
n

x

⇔ r1(S) =
√
n− 1√

n+ (x− 1) , (51)

25

Published in Transactions on Machine Learning Research (04/2025)

Moreover, it follows that

r2(S) = 1 + np

|S|
− 2r1(S) = 1 + np − 2|S ∩ Sp|

|S|
= 1 +

np − 2 1
xnp

|S|
= 1 +

1
x (x− 2)np

|S|

=
√
n+ x−1

x np√
n+ 1

xnp

=
√
n+ x−1

x (n−
√
n)

√
n+ 1

x (n−
√
n)

=
1 + x−1

x (
√
n− 1)

1 + 1
x (
√
n− 1)

= x+ (x− 1)
√
n− x+ 1

x+
√
n− 1

⇔ r2(S) = (x− 1)
√
n+ 1√

n+ (x− 1)

⇔ x = (1 + r2(S))(1−
√
n)

r2(S)−
√
n

,

(52)

which implies that
r1(S) = (n+ r2(S))− (r2(S) + 1)

√
n

n− 1 . (53)

If we further decrease the target fairness value δ, the solution will contain all of the protected vertices and it
is going to start removing the unprotected ones. Hence, it will always hold that |S∩Sp|

|Sp| = 1⇔ |S ∩ Sp| = np.
This results in

r2(S) = 1 + np

|S|
− 2 |S ∩ Sp|

|S|
⇔ |S| = np − 2|S ∩ Sp|

δ − 1 = np

1− r2(S) (54)

and
r1(S) = |S ∩ Sp|

|S|
= np

np

1−r2(S)
⇔ r1(S) = 1− r2(S). (55)

Finally, we get the following mapping of δ to α:

• if δ > 1√
n

, with |S∩Sp|
np

= 1
x < 1, then

α =
√

n−1√
n+(x−1) = (n+δ)−(δ+1)

√
n

n−1 . [corresponds to the 1st branch of Eq. (46)]

• if δ ≤ 1√
n

, with |S∩Sp|
np

= 1⇔ |S ∩ Sp| = np , then
α = 1− δ. [corresponds to the 2nd branch of Eq. (46)]

E Super-Greedy++

Super-Greedy++ is a efficient multi-stage greedy algorithm designed to retrieve high-quality solutions
for problems referred to as Densest Supermodular Subset (DSS), i.e., maximization of F (S)/|S|, for
F : 2V → R. This algorithm can extract (1− ϵ)-approximate solutions, for ϵ ∈ (0, 1) under some conditions in
O(1/ϵ2) iterations, as the following result of Chekuri et al. (2022) indicates.
Theorem 13. Let F : 2V → R≥0 be a normalized, non-negative, and monotone supermodular function over
the ground set V, with n = |V|. Let ϵ ∈ (0, 1). Let ∆ = maxv∈V F (v|V) and OPT the maximum of F (S)/|S|
over all S ⊆ V. For T ≥ O

(∆·ln n
OP T ·ϵ2

)
, Super-Greedy++ outputs a (1− ϵ)-approximate solution to DSS.

Pseudo-code of the algorithm is provided in (Algorithm 1). In order to implement this algorithm for FADSG-I
and II, one has to derive the expressions of F (v|S − v), which are provided in Section E.1. For programming
simplicity, our implementation at this point does not include heaps. Instead, we adopt a direct approach in
which each time we recompute the values of F (v|S − v) and extract the minimum, while updating vertex
degrees after peeling. Therefore, the computational complexity per iteration of our implementation is O(n2),
resulting in an overall complexity of O(n2/ϵ2).

E.1 Analytical Expressions of F (v | S − v).

As defined in Section 1, f(v|S) := f(S ∪ {v})− f(S). Thus, F (v | S − v) = F (S)− F (S − v), where {S − v}
is the set S without the vertex v. Furthermore, with degS(v), we denote the degree of v in the induced set S.

26

Published in Transactions on Machine Learning Research (04/2025)

Algorithm 1 Super-Greedy++
Input: F : 2V → R≥0, T ∈ Z+
Output: Sdensest
Sdensest ← V
for all v ∈ V, set ℓ

(0)
v = 0

for i : 1→ T do
Si,1 ← V
for j : 1→ n do

v∗ ∈ argminv∗∈Si,j
ℓ

(i−1)
v + F (v | Si,j − v)

ℓ
(i)
v∗ ← ℓ

(i−1)
v∗ + F (v∗ | Si,j − v∗)

Si,j+1 ← Si,j − v∗

if F (Si,j)
|Si,j | > F (Sdensest)

|Sdensest| then
Sdensest ← Si,j

end if
end for

end for

FADSG-I: In FADSG-I, the objective function is g(x, λ) = (x⊤Ax + λ · e⊤
p x)/(e⊤x). For a given λ, we can

set F (x) = x⊤Ax + λ · e⊤
p x = p1(x, λ) and express it in terms of S ⊆ V, to get F (S) = 2e(S) + λ|S ∩ Sp|.

We also have that:

F (S − v) =
{

2e(S)− 2degS(v) + λ(|S ∩ Sp| − 1), if v ∈ S ∩ Sp

2e(S)− 2degS(v) + λ|S ∩ Sp|, if v ̸∈ S ∩ Sp
. (56)

Thus:

F (v | S − v) = F (S)− F (S − v) =
{

2degS(v) + λ, if v ∈ S ∩ Sp

2degS(v), if v ̸∈ S ∩ Sp
. (57)

FADSG-II: In FADSG-II, the objective function is h(x, λ) = (x⊤Ax− λ∥x− ep∥2
2)(e⊤x). If we expand the

norm of the numerator we get

∥x− ep∥2
2 = ∥x∥2

2 + ∥ep∥2
2 − 2e⊤

p x = |S|+ |Sp| − 2|S ∩ Sp|. (58)

For a given λ, we can set F (x) = x⊤Ax − λ∥x − ep∥2
2 and express it in terms of S ⊆ V, to get F (S) =

2e(S) + λ(|S|+ |Sp| − 2|S ∩ Sp|). We also have that:

F (S − v) =
{

2e(S)− 2degS(v)− λ(|S| − 1 + |Sp| − 2(|S ∩ Sp| − 1)), if v ∈ S ∩ Sp

2e(S)− 2degS(v)− λ(|S| − 1 + |Sp| − 2|S ∩ Sp|), if v ̸∈ S ∩ Sp

=
{

2e(S)− 2degS(v)− λ(|S|+ |Sp| − 2|S ∩ Sp|)− λ, if v ∈ S ∩ Sp

2e(S)− 2degS(v)− λ(|S|+ |Sp| − 2|S ∩ Sp|) + λ, if v ̸∈ S ∩ Sp
.

(59)

Thus:
F (v | S − v) = F (S)− F (S − v) =

{
2degS(v) + λ, if v ∈ S ∩ Sp

2degS(v)− λ, if v ̸∈ S ∩ Sp
. (60)

F Dataset details.

A summary of the statistics of all the datasets used in our experiments can be found in Table 2.

Political Books Dataset (PolBooks): The vertices of the network are books on US politics included in
the Amazon catalog, with an edge connecting two books if they are frequently co-purchased by the same
buyers4. Each book is categorized based on its political stance, with possible labels including liberal, neutral,
and conservative. In our experiments, we focused solely on the subgraph formed by liberal and conservative

4https://websites.umich.edu/~mejn/netdata/

27

https://websites.umich.edu/~mejn/netdata/

Published in Transactions on Machine Learning Research (04/2025)

Table 2: Full summary of dataset statistics: number of vertices (n), number of edges (m), and size of protected
subset (np).

Dataset n m np

PolBooks 92 374 43
PolBlogs 1222 16717 586
Amazon (10) 3699± 2764 22859± 18052 1927± 2537
Deezer 28281 92752 12538
LastFM (19) 7624 27806 424± 454
GitHub 37700 289003 9739
Twitch (6) 5686± 2393 71519± 45827 2523± 1787
Twitter 18470 48053 11355

books, resulting in 92 vertices (43 associated with a conservative and 49 with a liberal worldview) connected
by a total of 374 edges, as curated in Anagnostopoulos et al. (2020; 2024).

Political Blogs Dataset (PolBlogs) (Adamic & Glance, 2005): The vertices of the network are weblogs
on US politics, with edges representing hyperlinks. Each blog is categorized by its political stance, left or
right, with the left ones composing the protected set.

Amazon Products Metadata (Amazon) (Ni et al., 2019): The vertices represent Amazon products,
and the edges denote frequent co-purchasing product pairs. The attribute associated with each product
is their category. In our experiments we used 10 different such datasets (see Table 3), as assembled in
Anagnostopoulos et al. (2020; 2024). We name them based on the initials of the categories.

Table 3: Summary of Amazon Product Metadata and Twitch Users Social Networks datasets statistics: the
number of vertices (n), the number of edges (m), and size of protected subset (np).

Dataset n m np

Amazon 3699± 2764 22859± 18052 1927± 2537
Amazon b 230 592 83
Amazon ps 1809 14099 230
Amazon is 2009 8341 1495
Amazon hpc 3011 10004 1352
Amazon op 2281 16542 462
Amazon ah 10378 53679 8163
Amazon acs 5056 33827 987
Amazon g 6435 56553 5376
Amazon so 3216 19331 604
Amazon tmi 2565 15619 520
Twitch 5686± 2393 71519± 45827 2523± 1787
Twitch de 9498 153138 5742
Twitch engb 7126 35324 3888
Twitch es 4648 59382 1360
Twitch fr 6549 112666 2415
Twitch ptbr 1912 31299 661
Twitch ru 4385 37304 1075

LastFM Asia Social Network (LastFM) (Rozemberczki & Sarkar, 2020): The vertices represent users of
LastFM from Asian countries, and the edges are mutual follower connections among them. The attribute
associated with each user is their location.

For the LastFM Asia Social Network dataset, we choose each time a different group to be the protected
one, and we denote the resulting dataset as LastFM-i, with i being the index of the set that is considered

28

Published in Transactions on Machine Learning Research (04/2025)

protected. The number of vertices of each protected set can be found in Table 4. We also consider the
LastFM-100 network, for which we combine the vertices of all locations with less than 100 vertices and
consider them as the protected set.

Table 4: Number of protected vertices np for each of the LastFM-i datasets.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 100

np 1098 54 73 515 16 391 655 82 468 58 1303 138 57 63 570 257 254 1572 387

Deezer Europe Social Network (Deezer) (Rozemberczki & Sarkar, 2020): The vertices represent users of
Deezer from European countries, and the edges are mutual follower connections among them. The attribute
associated with each user is their gender.

GitHub Developers (GitHub) (Rozemberczki et al., 2019): The vertices represent developers in GitHub
who have starred at least 10 repositories, and the edges are mutual follower relationships between them. The
attribute associated with each user is whether they are web or a machine learning developers.

Twitch Users Social Networks (Twitch) (Rozemberczki et al., 2019): The vertices represent users of
Twitch that stream in a certain language, and the edges are mutual friendships between them. The attribute
associated with each user is if the user is using mature language.

Twitter Retweet Political Network (Twitter) (Rossi & Ahmed, 2015; Conover et al., 2011): The vertices
are Twitter users, and the edges represent whether the users have retweeted each other. The attribute
associated with each user is their political orientation (Tsioutsiouliklis et al., 2021).

G Details of Experiments

In order to find the appropriate λ value for the desired target fairness level that we had for each experiment,
we performed bisection on λ values. The lower bound was always 0 and the upper was λmax. The value of
λmax was computed experimentally for each dataset. We specifically chose the value of λmax based on our
observation that it led to the densest protected subgraph for FADSG-I and the entire protected subgraph for
FADSG-II. Moreover, increasing λmax beyond this point did not alter the desired outcomes. The specific
values employed for each dataset and formulation are detailed in Table 6. Furthermore, this bisection was
performed with a tolerance on λ, ε = 10−9. Thus, the number of iterations for each bisection experiment
was bounded by

⌈
log2

λmax
ε

⌉
. Furthermore, in recent work of Fazzone et al. (2022), a stopping criterion for

the number of iterations in the Super-Greedy++ algorithm is being introduced, ensuring a certain level
of solution’s quality. However, we observed that this criterion tends to be conservative for our purposes.
Through experimentation with various datasets, we determined that a value of T = 5 iterations provided
satisfactory results across all our datasets in our implementation of Super-Greedy++. Table 5 shows an
example of the running time of each algorithm, on Amazon tmi dataset.

All experiments were performed on a single machine, with Intel i7-13700K CPU @ 3.4GHz and 128GB of
main memory running Python 3.12.0. The code of the baselines were obtained via personal communication
with the respective authors.

Table 5: Comparison of running time of each algorithm for Amazon tmi dataset. Using heaps will drastically
reduce the complexity of our algorithm by O(n).

DDSP PS FPS 2-DFSG FADSG-I (Ours)

Time (sec) 0.135372 0.371171 0.167832 10.079753 918

29

Published in Transactions on Machine Learning Research (04/2025)

Table 6: λmax values for each dataset and formulation.

Dataset FADSG-I FADSG-II Dataset FADSG-I FADSG-II

Amazon b 20 12 PolBooks 1.2 5
Amazon ps 18 50 PolBlogs 100 100
Amazon is 35 150 Deezer 40 125
Amazon hpc 35 70 LastFM (all) 40 50
Amazon op 50 50 Github 100 200
Amazon ah 40 200 Twitch (all) 100 200
Amazon acs 40 50 Twitter 150 200
Amazon g 40 140
Amazon so 40 50
Amazon tmi 40 50

H Additional Experimental Results

In this section, we offer further insights by presenting additional results obtained from various datasets,
aiming to reinforce the validity of our findings.

H.1 FADSG-I:

In Figure 11 a comparison with prior art is illustrated, for the remaining datasets. Once more, we exclusively
showcase datasets where the DSG solution exhibits a fairness level lower than the desired one of 0.5.

Figure 11: Comparing induced perfectly balanced fair subsets of prior art and FADSG-I (Ours), on PolBooks,
Blogs, Deezer and Github datasets. Top: PoF. Bottom: Fraction of protected vertices in induced subsets.

Figures 12, 13 and 14 illustrate the flexibility of our definition of fairness level α. They reveal that certain
desired fairness levels may be unattainable. As explained in Section 7.1, this limitation arises from the
inherent structure of the graph, which does not naturally accommodate certain fairness levels. This can be
clearly observed in Figure 13, where the right subfigure exhibits a notable discontinuity just before the curve
reaches the value of 0.6, jumping to a value greater than 0.8. This is translated in the left subfigure, to an
attained fairness level is slightly greater than 0.8, despite the desired level being 0.6.

30

Published in Transactions on Machine Learning Research (04/2025)

Figure 12: Fraction of protected vertices in each induced subgraph of FADSG-I, for various values of target
fairness level α, for the Amazon datasets. The dotted lines represent the fairness value in the solution of
classic DSG, which we want to enhance.

Figure 13: PolBlogs dataset - FADSG-I. Left: Fraction of protected vertices in each induced subgraph,
for various values of target fairness level α. Middle: PoF for various values of target fairness level α. The
dotted lines represent the fairness value in the solution of DSG. Right: Fraction of protected vertices in each
induced subgraph, for various values of the regularization parameter λ.

Figure 14: Twitter dataset - FADSG-I. Left: Fraction of protected vertices in each induced subgraph, for
various values of target fairness level α. The dotted lines represent the fairness value in the solution of DSG.
Right: PoF for various values of target fairness level α.

Figure 15: Fraction of protected vertices in the induced subset, as function of λ, for FADSG-I. (Left:
LastFM-12 - Right: LastFM-13).

31

Published in Transactions on Machine Learning Research (04/2025)

H.2 FADSG-II:

In Figures 16, 17 and 18, we compare FADSG-II with DSG. The top sections show what fraction of all of
the protected nodes belongs in the solutions, and the bottom ones depict the PoF for FADSG-II. Again, for
some datasets the solution is not exactly the desired one, which is something that can be attributed to the
structure of each graph, as it can be seen in Figure 19.

Figure 16: LastFM datasets. Bottom: PoF of FADSG-II for δ = 1. Top: Comparing FADSG-II (Ours) for
δ = 1 with DSG. Fraction of the protected subset that belongs in induced subsets.

Figure 17: Amazon datasets. Bottom: PoF of FADSG-II for δ = 1. Top: Comparing FADSG-II (Ours) for
δ = 1 with DSG. Fraction of the protected subset that belongs in induced subsets.

Figure 18: Rest of the datasets. Bottom: PoF of FADSG-II for δ = 1. Top: Comparing FADSG-II (Ours)
for δ = 1 with DSG. Fraction of the protected subset that belongs in induced subsets.

32

Published in Transactions on Machine Learning Research (04/2025)

Figure 19: The fraction of all of the protected vertices included in induced subsets as function of λ, for
FADSG-II. (Left: Amazon g - Right: Amazon op).

Figure 20: Fraction of all of the protected vertices that belong in the induced subset, as function of λ, for
FADSG-II. (Left: LastFM-4 - Right: LastFM-14).

33

Published in Transactions on Machine Learning Research (04/2025)

H.3 Resulting proportions of protected vertices in FADSG-I solution

Table 7: Resulting proportions of protected vertices in FADSG-I solution S. np the total number of protected
vertices, |S ∩ Sp| the number of protected vertices in S, |S∩Sp|

|S| the proportion of protected vertices in S, and
|S∩Sp|

|Sp| the proportion among all of the protected vertices that belong in S.

LastFM Dataset
Dataset np = |Sp| |S ∩ Sp| |S∩Sp|

|S|
|S∩Sp|

|Sp| Protected Set np = |Sp| |S ∩ Sp| |S∩Sp|
|S|

|S∩Sp|
|Sp|

PolBooks 42 26 1.0 0.6046 0 1098 62 1.0 0.0565
PolBlogs 586 117 1.0 0.1997 1 54 10 1.0 0.1852
Amazon b 83 10 1.0 0.1205 2 73 26 1.0 0.3562
Amazon ps 230 17 1.0 0.0739 3 515 43 1.0 0.0835
Amazon is 1495 134 1.0 0.0896 4 16 16 1.0 1.0000

Amazon hpc 1352 25 1.0 0.0185 5 391 44 1.0 0.1125
Amazon op 462 8 1.0 0.0173 6 655 46 1.0 0.0702
Amazon ah 8163 62 1.0 0.0076 7 82 14 1.0 0.1707
Amazon acs 987 35 1.0 0.0355 8 468 35 1.0 0.0748
Amazon g 5376 65 1.0 0.0121 9 58 13 1.0 0.2241
Amazon so 604 16 1.0 0.0265 10 1303 69 1.0 0.0530
Amazon tmi 520 17 1.0 0.0327 11 138 40 1.0 0.2899
Twitch de 5742 382 1.0 0.0665 12 57 11 1.0 0.1930

Twitch engb 3888 34 1.0 0.0874 13 63 25 1.0 0.3968
Twitch es 1360 160 1.0 0.1176 14 570 59 1.0 0.1035
Twitch fr 2415 287 1.0 0.1188 15 257 52 1.0 0.2023

Twitch ptbr 661 107 1.0 0.1619 16 254 24 1.0 0.0945
Twitch ru 1075 85 1.0 0.0791 17 1572 79 1.0 0.0503

Deezer 12538 32 1.0 0.0026 100 387 51 1.0 0.1318
Github 9739 186 1.0 0.0191

Twitter 11355 156 1.0 0.0137

In the experiments presented in Table 7, we set the target fairness level α = |S∩Sp|
|S| = 1 in FADSG-I to extract

the densest protected subset, and examined what fraction of the entire protected set it constitutes; i.e., if S
is the densest protected subset obtained using FADSG-I, we evaluate the value of |S∩Sp|

|Sp| . As we can see from
these tables, there are many cases where the solution comprises a small proportion of protected vertices (it
can be even less than 5% - see Github). Note that this stems from the structure of the protected set, since
the solution that we get is always the densest subset of the protected set. Hence, FADSG-I may not be able
to extract a dense subgraph that contains even 50% of the protected set - motivating the need, in some cases,
for FADSG-II.

34

	Introduction
	Related Work
	Problem Statement
	Selecting the Regularization Parameter lambda
	Selection of Target Fairness Level

	Quantifying the Price of Fairness
	Algorithmic Approach
	Experimental Evaluation
	Evaluation of FADSG-I
	Evaluation of FADSG-II

	Conclusions
	Lemmas
	Proof of Lemma 4
	Proof and Intuition of Lemma 5

	Tractability details
	Exact solutions via max-flow
	Applying max-flow on FADSG-I
	Applying max-flow on FADSG-II

	Upper bound on the number of binary search iterations for FADSG-I and II
	For FADSG-I
	For FADSG-II

	Identifying the end of the regularization path
	FADSG-I
	FADSG-II

	Analyzing the Price of Fairness
	Proof of Proposition 7
	Equivalence of and

	Super-Greedy++
	Analytical Expressions of F.

	Dataset details.
	Details of Experiments
	Additional Experimental Results
	FADSG-I:
	FADSG-II:
	Resulting proportions of protected vertices in FADSG-I solution

