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Abstract

This paper presents an in-depth analysis of001
Large Language Models (LLMs), focusing on002
LLaMA, a prominent open-source foundational003
model in natural language processing. Instead004
of assessing LLaMA through its generative out-005
put, we design multiple-choice tasks to probe006
its intrinsic understanding in high-order tasks007
such as reasoning and calculation. We exam-008
ine the model horizontally, comparing different009
sizes, and vertically, assessing different layers.010
We unveil several key and uncommon findings011
based on the designed probing tasks: (1) Hor-012
izontally, enlarging model sizes almost could013
not automatically impart additional knowledge014
or computational prowess. Instead, it can en-015
hance reasoning abilities, especially in math016
problem solving, and helps reduce hallucina-017
tions, but only beyond certain size thresholds;018
(2) In vertical analysis, the lower layers of019
LLaMA lack substantial arithmetic and factual020
knowledge, showcasing logical thinking, multi-021
lingual and recognitive abilities, with top layers022
housing most computational power and real-023
world knowledge. These findings provide new024
observations into LLaMA’s capabilities, offer-025
ing insights into the current state of LLMs.026

1 Introduction027

Large language models (LLMs) (OpenAI, 2023;028

Scao et al., 2022; Yao et al., 2022; Chen et al.,029

2023) have shown significant potential in numer-030

ous high-order open-generation tasks such as math-031

ematical and logical reasoning. LLaMA (Touvron032

et al., 2023b), an open-source, state-of-the-art foun-033

dational large language model has been designed034

to facilitate research in natural language processing035

communities. In a relatively brief period, LLaMA036

has garnered significant attention. This prominence037

can be attributed to its inherent accessibility and038

demonstrated efficacy across a diverse array of text-039

generation tasks (Hu et al., 2021; Chen et al., 2022;040

Gao et al., 2023). Beyond LLaMA’s impressive041
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Figure 1: Overall Comparison with LLaMA 2 7B-70B
in our probing tasks. Detailed introduction of each task
include in Section 3. Dashed lines represent the first
layer of each model, while solid lines represent the last
layer of the model.

generative capabilities, can we further uncover its 042

intrinsic understanding abilities? Does bigger and 043

deeper always lead to better performances in its 044

advanced capabilities such as computational and 045

reasoning sensitivity? Addressing this question is 046

not only instrumental in comprehending the foun- 047

dations of its success, but it also facilitates an un- 048

derstanding of its inherent limitations. This, in turn, 049

can guide future advancements in the architecture 050

and training optimization of LLMs. 051

In this paper, we conduct a series of experiments 052

to probe the nature of LLaMA on five higher-order 053

tasks under in-context learning, including arith- 054

metic calculation, math problem solving (MPS), 055

logical reasoning, truthfulness, and factual knowl- 056

edge detection. The latter two are considered as 057

the important symbols of hallucination. In these 058

tasks, we probe the model’s capabilities from two 059

distinct perspectives: 1) Horizontally: Comparing 060
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the model’s abilities across different sizes (Scaling061

Law); 2) Vertically: Comparing the different layers062

capabilities of the same size model (Layer-wise).063

Instead of directly testing LLMs via their open-text064

generation abilities, as is usually done, we prob065

LLaMA with a set of challenging multiple-choice066

questions. The primary considerations for this de-067

sign are: Firstly, it offers controlled and efficient068

evaluation, with clear, quantifiable results that re-069

duce ambiguity. This approach allows for directly070

targeted testing of specific knowledge areas and071

reasoning skills, as well as validating models’ sen-072

sitivity to correct or incorrect answers; Secondly,073

our experimental observations reveal a tendency for074

LLaMA’s lower layers to produce repetitive words075

rather than coherent sequences, which would lead076

to an unfair layer-wise comparison.077

In the context of our experiments corroborating078

each other, we draw the following conclusions:079

Horizontally: (1) The primary benefit of increas-080

ing model size lies in the enhanced reasoning abili-081

ties of the models, most notably in their improved082

capacity in MPS. This increase in size also tends to083

reduce the occurrence of hallucinations. However,084

these improvements are only evident when certain085

LLM size thresholds are surpassed, known as emer-086

gent abilities (Wei et al., 2022). For instance, mod-087

els ranging from 7B to 13B show comparable per-088

formance across all probing tasks. It’s only when089

the model size increases from 13B to 70B param-090

eters that a noticeable improvement in reasoning091

capabilities and a reduction in hallucination issues092

can be observed, as shown in Figure 1; (2) The pure093

arithmetic capabilities and inherent factual knowl-094

edge of LLaMAs with different parameter sizes are095

remarkably similar. In other words, increasing the096

model size does not necessarily impart additional097

factual knowledge or significantly enhance com-098

putational capabilities, especially when the same099

volume of pre-training corpus is used.100

Vertically: (1) We find that the lower and mid-101

dle layers of LLaMA have almost negligible pure102

arithmetic and factual knowledge capabilities, seen103

in Figure 1. As the network layers deepen, there is104

a noticeable leap in performance. Contrarily, even105

at the very lowest layers, LLaMA possesses logical106

thinking and recognitive abilities, such as in math-107

ematics, logical reasoning, and avoiding hallucina-108

tions. While these abilities do enhance slightly with109

deeper layers, the improvement remains quite lim-110

ited. This implies that current LLMs predominantly111

house computational power and real-world knowl-112

edge in their upper layers, while the lower layers 113

are geared towards relevant abstract thinking but 114

lack substantial real-world knowledge and compu- 115

tational skills. (2) Interestingly, in our layer-by- 116

layer performance comparisons, we observe that 117

the model’s optimal performance in MPS and com- 118

putational abilities is not always at the final layer. 119

More often, these peak capabilities are found in 120

several layers before the last. However, in contrast, 121

for representing factual knowledge, the final layer 122

of the model proves to be exceptionally crucial. 123

Further, we extend MPS tasks to the cross-lingal 124

reasoning context, named xMPS. Specifically, we 125

maintain the questions and incorrect options un- 126

changed and translate the correct answers into other 127

languages to assess the LLaMA’s multilingual pro- 128

ficiency. In this setting, our layer-wise experiments 129

show an effect completely opposite to monolingual 130

MPS: models’ performance gradually decreases as 131

the layers deepen. This indicates that LLaMA’s ear- 132

lier layers are responsible for preserving general 133

multilingual features (language-agnostic). 134

Of note, the results presented in our experiments 135

do not necessarily equate directly to the generative 136

capabilities of LLaMA. Rather, in this paper, we 137

provide a novel and comprehensive perspective for 138

observing the natural performance of LLaMA, giv- 139

ing insights to understand the current LLMs better. 140

2 LLaMA 141

LLaMA (Touvron et al., 2023a,c) is a series of foun- 142

dation large language models, released by META, 143

has becomes the most popular open-source LLMs 144

in NLP communities. LLaMA is built on trans- 145

former layers (Vaswani et al., 2017), trained on 146

trillion of tokens with the language modeling ob- 147

jective, showing powerful abilities in down-stream 148

tasks. The contextualized representations are op- 149

timized by predicting the next token based on the 150

input sequences. 151

In this work, we probe LLaMA 2 series LLMs 152

with our designed tasks, ranging from 7B to 70B 153

parameters in in-context learning. Concretely, 154

LLaMA 2-7B, 13B and 70B consist of 32, 40 and 155

80 transformer layers with 4096, 5120 and 8192 156

hidden embedding sizes, separately. 157

3 Probing Tasks 158

Probing tasks are generally utilized to explore the 159

inherent knowledge and linguistic features within 160

deep learning models. Previously, Jawahar et al. 161

2



Type Bit + - × ÷ Mix-2 Mix-3

Int
1-2 200 200 200 200 200 200
3-4 200 200 200 200 200 200

(Float) 5-6 200 200 200 200 200 200

Table 1: Test data statistics in our arithmetic tasks.

(2019a) employed a series of probing tasks to exam-162

ine the internal representations of BERT. However,163

with the rapid advancement of LLMs, there is cur-164

rently a lack of comprehensive research that deeply165

analyzes the relationship between the higher-order166

capabilities of contemporary LLMs and factors167

such as model size and network layers.168

To bridge this gap, we probe LLaMA high-order169

abilities across two views: model size and layer-170

wise. Specifically, we devise five high-order tasks:171

calculation, math problem solving (MPS), logical172

reasoning, truthfulness, and factual knowledge de-173

tection. We include the latter two as the hallucina-174

tion detecting in the following. Besides, we also175

probe LLaMA efficiency in cross-lingual MPS. In176

this section, we will illustrate them sequentially.177

3.1 Calculation178

In this paper, we focus on testing LLMs in basic179

arithmetic tasks, including four simple arithmetic180

expressions: addition (+), subtraction (-), multipli-181

cation (×) and division (÷):182

• Add of two elements within 1∼100,183

100∼10000, 10000∼100000, separately.184

• Subtract of two elements within 1∼100,185

100∼10000, 10000∼1000000, separately.186

• Multiply of two elements within 1∼100,187

100∼10000, 10000∼1000000, separately.188

• Division of two elements within 1∼100,189

100∼10000, 10000∼1000000, separately.190

• Complex arithmetic operations that require191

performing two operations of addition, sub-192

traction, multiplication, or division.193

• Complex arithmetic operations that require194

performing three operations of addition, sub-195

traction, multiplication, or division.196

Of note, the elements used in the above arith-197

metic operations include integers and floating-198

point numbers (with precision up to three decimal199

places), separately. Table 1 shows the correspond-200

ing data statistics. Since we probe the computa-201

tional abilities of LLaMA through the multiple-202

choice question answering task, to increase the203

difficulty and test the model’s sensitivity to minor 204

differences in computational results, we randomly 205

add or subtract a floating-point number within ±20 206

(except 0) to the correct answer to create three dif- 207

ferent but indistinct incorrect options. 208

This design of our test set allows for an intu- 209

itive and fine-grained comparison of 1) the model’s 210

relative strengths and weaknesses in addition, sub- 211

traction, multiplication, and division operations; 212

2) the model’s performance patterns when faced 213

with complex calculations; 3) the variations in the 214

model’s computational abilities when dealing with 215

floating-point numbers and integers, 1-2 digit, 3-4 216

digit, 5-6 digit numbers respectively. Our data are 217

constructed by calling python random.randint() 218

and random.uniform() functions. 219

3.2 Math Problem Solving 220

Besides validating LLaMA in arithmetic tasks, we 221

also test the model in MPS tasks to comprehen- 222

sively review its math reasoning abilities. 223

We select GSM8K (Cobbe et al., 2021) as our 224

source data to construct challenging and misleading 225

options that effectively fool the model. Our strategy 226

involves the following steps: 227

• We first fine-tune the LLaMA 2-13B model on 228

GSM8K, and then perform rejection sampling 229

via inference 100 times to generate various 230

reasoning paths based on the resulting model. 231

• Next, we extract all the formulas in each rea- 232

soning path and validate their accuracy. We 233

use the erroneous reasoning paths to construct 234

our probing task data: 235

– If a reasoning path only contains compu- 236

tational errors, meaning the correct an- 237

swer can be obtained by recalculating, 238

we retain it as part of our MPS-Cal prob- 239

ing test set. 240

– If all computations in a reasoning path 241

are correct, but the final conclusion is 242

wrong, indicating a reasoning error, we 243

use it for our MPS-Rea test set. 244

The MPS-Cal focuses on assessing the model’s sen- 245

sitivity to computational results in solving mathe- 246

matical problems. Conversely, MPS-Rea empha- 247

sizes evaluating the model’s ability to discern cor- 248

rect from incorrect reasoning paths, requiring a 249

superior level of understanding and reasoning ca- 250

pabilities. Table 2 shows several examples in MPS 251

and calculation tasks. 252
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Task Type Query & Options

Arithmetic-Int Query: 2331 + 2693 = ? Options: 5024 (✓); 5018; 5005; 5025
Query: 109848 ÷ 199 = ? Options: 552.0 (✓); 516.0; 558.0; 567.0

Arithmetic-Flo Query: 7.682 + 28.894 = ? Options: 36.576 (✓); 28.576; 40.909; 38.076
Query: 25.204 × 88.29 ÷ 12.133 = ? Options: 183.406 (✓); 183.739; 185.406; 181.962

MPS-Cal

Query: Peyton has 3 children and they each get a juice box in their lunch, 5 days a week. The school year is
25 weeks long. How many juices boxes will she need for the entire school year for all of her children?

Options: Peyton needs 25 weeks x 5 days x 3 children = 375 juice boxes (✓);
25 weeks x 5 days x 3 children = 75 juice boxes;
Given the conditions of the problem, 3 children, 5 days a week, 25 weeks long, that’s 3*5*25 = 105 juice
boxes needed.

MPS-Rea

Query: A family of 12 monkeys collected 10 piles of bananas. 6 piles had 9 hands, with each hand having
14 bananas, while the remaining piles had 12 hands, with each hand having 9 bananas. How many bananas
would each monkey get if they divide the bananas equally amongst themselves?

Options: The first 6 bunches had 6 x 9 x 14 = 756 bananas. There were 10 - 6 = 4 remaining bunches.
The 4 remaining bunches had 4 x 12 x 9 = 432 bananas. All together, there were 756 + 432 = 1188
bananas. Each monkey would get 1188/12 = 99 bananas (✓);
6 piles had 6 x 9 x 14 = 756 bananas. The remaining 6 piles had 6 x 12 x 9 = 648 bananas. All together, there
were 756 + 720 = 1476 bananas. Each monkey would get 1476/12 = 123.0 bananas;
6 piles had 6 x 9 x 14 = 756 bananas. There were 10 - 6 = 4 piles of bananas with 12 hands and 4 piles of
bananas with 6 hands. The 4 piles of bananas with 12 hands had 4 x 12 x 9 = 432 bananas. The 4 piles of
bananas with 6 hands had 4 x 6 x 9 = 216 bananas. There were 756 + 432 + 240 = 1428 bananas. Every
monkey will get 1428/12 = 119.0 bananas

Table 2: Testing examples in our designed calculation and MPS probing tasks.

Tasks Arithmetic-Int/Float Reclor (x) MPS-Cal (x) MPS-Rea TruthfulQA LAMA∗

Avg. Ground-truth 1 1 1 1 3.5 1
Avg. Candidates 4 4 3 4.9 7.6 9.7
Total Queries 3600 500 712 1000 817 3070

Table 3: Overall Test data statistics in our probing tasks. LAMA∗ refers to we only use s subset of original corpus.

3.3 Logical Reasoning253

As a key indicator of the advanced capabilities of254

contemporary LLMs, logical reasoning stands out255

for its importance in examining, analyzing, and256

critically assessing arguments in natural language.257

In our study, we employ Reclor (Yu et al., 2020) as258

a testing platform to evaluate the logical reasoning259

skills of these large models. Reclor comprises a260

dataset derived from logical reasoning questions261

found in standardized tests for graduate admissions.262

Each sample from Reclor contains one context, one263

corresponding question and four options.264

3.4 Hallucination Detecting265

Hallucination, which means generating content that266

deviates from real-world facts observed during pre-267

training, is considered one of the most challenging268

issues in LLMs. In order to further investigate the269

relationship between hallucination and model lay-270

ers and size, we conduct tests from two aspects:271

1) Measure whether a language model is truthful272

in generating answers to questions, also known as273

truthfulness; 2) Test the model’s internal factual274

knowledge. We use TruthfulQA MC tasks (Lin275

et al., 2022) and LAMA (Petroni et al., 2019) as 276

test beds for these two aspects, respectively. It is 277

important to note that in TruthfulQA, there may be 278

more than one correct answer, accompanied by 4-5 279

incorrect options. As for LAMA, we randomly ex- 280

tract a subset containing 3070 questions along with 281

their 9-10 corresponding options. Table 3 presents 282

detailed data statistics in our probing tasks. 283

3.5 Cross-Lingual Math Problem Solving 284

In this study, we delve further into LLaMA’s multi- 285

lingual abilities. We translate the correct answers 286

from the collected two datasets: MPS-Cal and 287

MPS-Rea in Section 3.2 into four additional lan- 288

guages: Chinese, French, Spanish, and Thai, while 289

keeping the questions and other incorrect options as 290

they are, the new resulting test sets named xMPS- 291

Cal and xMPS-Rea. This setting offers several 292

advantages: Firstly, it tests the model’s capacity 293

in cross-lingual reasoning transfer, demonstrating 294

its proficiency in not just recognizing but also rea- 295

soning in multiple languages. Secondly, by mixing 296

incorrect choices with correct answers in different 297

languages, we robustly assess the model’s adapt- 298
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Model Size LAMA∗ Reclor MPS-Cal MPS-Rea TruthfulQA Arithmetic

(Fact) (Logical) MC1 MC3 Int Float

7B 57.9 20.0 28.7 47.0 28.6 20.7 67.9 52.5
13B 57.9 23.7 30.2 46.6 29.1 20.7 70.6 52.6
70B 58.7 26.4 48.3 51.9 37.3 27.1 70.8 52.9

Table 4: Overall performances of each size LLaMA 2 model in our probing tasks. LAMA∗ refers to we only use s
subset of original corpus. MC3 accuracy means the normalized total probability assigned to all true answers among
candidates in TruthfulQA.

ability and comprehension across linguistic bar-299

riers. This unique setup challenges the model’s300

ability to process and integrate multilingual infor-301

mation, not only evaluates the model’s language-302

specific capabilities but also its overall versatility303

in cross-lingual understanding and reasoning.304

3.6 Test Setting305

Consider a probing dataset D = {Q,C,O}, where306

Q, C and O denote a set of questions, contexts307

(only exits for LAMA), and answer options. For308

each question q ∈ Q, there is a corresponding set309

of answer choices, denoted as o ∈ O, where o =310

{o1, o2, ..., on−1, a}, n is the number of answer311

choices, and a refers to the correct answer.312

The model’s task is to identify the correct an-313

swer from the set o for each question q. It need314

to assign the highest log-probability of completion315

following the question, independent of the other an-316

swer choices (Chuang et al., 2023). This selection317

process can be mathematically represented as:318

o∗i = argmax logP (oi|q) (1)319

Acc =

{
1, if a∗ > (o∗1, ..o

∗
n−1),

0, otherwise.
(2)320

Where logP (oi|q) is the log-probability that the321

choice oi to question q, as evaluated by the model.322

3.7 Experimental Settings323

We select LLaMA 2 from 7B to 70B as our ex-324

perimental subject. Observing that LLaMA 2 ex-325

hibits significant instability in zero-shot testing, we326

choose to implement few-shot prompting in our327

probing tasks to optimize the model’s performance.328

In TruthfulQA and LAMA, we respectively employ329

6-shot (Table 7) and 4-shot (Table 8) prompts. For330

reasoning tasks, we consistently use 4-shot for both331

(x) MPS (Table 10) and logical reasoning (Table 9).332

In calculation tasks, we use 6-shot examples (Table333

6). We show detailed prompts in Appendix B.334

Size Bit + - × ÷ M-2 M-3

Integer Arithmetic

7B
1-2 99.5 100.0 95.0 100.0 55.5 39.5
3-4 98.0 98.0 59.0 59.5 48.5 20.5
5-6 89.0 83.0 53.0 30.5 48.5 17.5

13B
1-2 99.5 100 98.5 100.0 58 44.5
3-4 99.5 99.0 73.5 69.5 53.5 26.0
5-6 96.5 96.5 63.5 25.5 53.5 17.5

70B
1-2 99.5 100.0 98.0 100.0 64.0 46.0
3-4 99.0 99.0 75.0 68.0 42.0 18.0
5-6 100.0 100.0 77.0 23.0 41.0 20.0

Floating-point Arithmetic

7B
1-2 99.5 100 23.0 78.0 37.0 30.0
3-4 98.0 98.0 18.0 17.0 32.0 19.0
5-6 94.0 87.0 19.5 13.0 35.0 14.5

13B
1-2 99.0 100.0 26.0 90.0 40.0 28.0
3-4 99.5 99.5 14.5 20.5 33.0 19.0
5-6 99.0 96.5 13.5 13.5 39.5 17.0

70B
1-2 100.0 100.0 26.5 99.0 43.0 30.0
3-4 98.5 100.0 14.0 39.0 39.5 17.0
5-6 98.5 99.5 14.5 17.5 45.5 17.5

Table 5: Detailed results of different operations in our
probing arithmetic tasks. M-2/3 refers to arithmetic
expression that requires 2/3 times mix operations.

4 Experiments on Probing Model Size 335

In this section, we present a comparison of the re- 336

sults from LLaMA of different sizes on our probing 337

tasks, as shown in Table 4 and Table 5. 338

Increasing model size hardly enhance the 339

model’s internal knowledge. From Table 4, we 340

can see that the performance of LLAMA 2-7B and 341

13B on LAMA is identical , and even increasing 342

the model size to 70B results in only a slight im- 343

provement (58.7% vs. 57.9%). This indicates that 344

only increasing model size is difficult to improve 345

the model’s ability to remember and understand 346

knowledge present in the training corpus, provided 347

the training data remains the same. 348

Increasing model size does not significantly 349

boost fundamental computational ability. Sim- 350

ilarly, models of different sizes also show compa- 351

rable computational abilities. Even though the 7B 352

model lags a bit in integer operations compared to 353

13B and 70B, it still performs similarly in floating- 354
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7B 70B

Figure 2: Overall Comparison with LLaMA 2-7B and 70B in our probing tasks. We include all layers’ performances
of each size model in the Appendix C, Table 11, 12 and 13.
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Figure 3: Overall comparison between LLaMA 2 7B to
70B dealing with different reasoning steps problems in
our probing MPS-Rea tasks.
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Figure 4: Overall comparison between LLaMA 2 7B
to 70B dealing with 5–6 bit calculations in our probing
arithmetic tasks. We present more detailed results of
1-2 and 3-4 bit calculations in Appendix C, Figure 7.

point operations (52.5% vs. 52.6% vs. 52.9%).355

Obviously, the computational abilities of 13B and356

70B models are nearly identical.357

Larger models show a relative improvement358

in reasoning ability and truthfulness. Models359

achieve considerable improvements in MPS and360

TruthfulQA tasks as the size increases. Delve361

deeper, the differences in performance across mod-362

els of various sizes on MPS-Cal seem to contradict363

our earlier conclusion that the computational ca- 364

pabilities between models of different sizes are 365

minimally distinct. However, considering the per- 366

formance discrepancies observed on MPS-Rea, we 367

believe that the significant variations on MPS-Cal 368

are primarily due to the notable increase in infer- 369

ence capabilities and sensitivity to computation 370

with the escalation in model size. Yet, even the best- 371

performing 70B model exhibits limited inference 372

capacity, failing to effectively differentiate between 373

correct and incorrect reasoning paths. This leads 374

to considerable discrimination in performance on 375

the MPS-Cal task, albeit with a smaller yet positive 376

improvement on MPS-Rea. 377

To further prove this point, Figure 3 indicates 378

that all sizes of models perform well on mathemati- 379

cal problems requiring 1-2 steps of reasoning. The 380

enhancement of mathematical capabilities in the 381

70B model, relative to the 7B and 13B models, is 382

primarily concentrated on problems requiring 3-6 383

steps of reasoning. When faced with problems re- 384

quiring 7 steps of reasoning, the performance of 385

all models rapidly declines and shows little dif- 386

ference. The above findings demonstrate that the 387

LLaMA series models all possess elementary rea- 388

soning capabilities. However, the ability to solve 389

more complex reasoning problems only appears to 390

emerge as the certain model size thresholds are sur- 391

passed. Even LLaMA 2-70B is still at a “moderate 392

intelligence” level, lacking strong reasoning skills. 393

In calculation, LLaMA’s performance declines 394

with increasing operation and numbers com- 395

plexity. LLaMA possesses strong addition and 396
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7B 13B 70B

Figure 5: Overall Comparison with LLaMA 2-7B to 70B in our xMPS-Rea probing tasks. ES, FR, ZH and TH refer
to Spanish, French, Chinese and Thai.

subtraction capabilities, but its multiplication and397

division abilities noticeably decrease with increas-398

ing digit count, as seen in Table 5. Compared to399

floating-point operations, LLaMA is better at inte-400

ger operations. Interestingly, in integer operations,401

LLaMA shows better capability in multiplication,402

but this strength significantly diminishes when deal-403

ing with floating-point numbers.404

5 Experiments on Probing Layer-Wise405

In this section, we focus on evaluating each layer406

of LLaMA across our probing tasks. We present407

comprehensive results of all layers in Appendix C.408

Computational ability primarily exists in the up-409

per layers of the model. Figure 4 presents the410

performance of different layers of models ranging411

from 7B to 70B in conducting 5-6 digit integer412

number calculations. From the figure, it is evident413

that almost no pure computational ability exists in414

the lower layers of any size model. However, as the415

number of layers increases, there is a significant416

leap in computational ability, peaking in the final417

few layers. The above results aptly explain why, in418

the MPS-cal probing task, the model’s performance419

significantly improves with the increasing depth of420

layers, as shown in Figure 2. Notably, in most421

cases, the last layer of the model does not neces-422

sarily represent the best computational proficiency,423

especially in complex arithmetic expressions.424

Models predominantly embed rich factual425

knowledge within their top layers. As depicted426

in Figure 2, for both the 7B and 70B models, the427

performances on LAMA suggest the factual knowl-428

edge learned by the LLaMA is also mainly located429

in the upper layers. In contrast, the lower layers430

exhibit a notable deficiency in retaining this knowl-431

edge. Yet, with the increase in layer depth, the432

model exhibits a substantial enhancement in its 433

ability to process and retain factual information. 434

Remarkably, it is observed that the LLaMA’s ulti- 435

mate layer harbors the greatest amount of factual 436

knowledge. This finding stands in contrast to other 437

probing tasks where the model’s peak performance 438

is typically manifested in the penultimate layers, 439

rather than in the absolute final layer. 440

The abstract thinking and cognitive abilities of 441

LLaMAs are consistently present across all lay- 442

ers. A comparative observation of the model’s 443

performance across various layers in tasks such as 444

MPS-Rea, TFQA, and Reclor reveals that even in 445

the model’s lowest layers (e.g., the first layer), there 446

is a certain degree of reasoning and cognitive ca- 447

pabilities, particularly in mathematical reasoning. 448

While the top layers still exhibit the best perfor- 449

mance for the corresponding probing tasks, the 450

improvement is relatively limited. We speculate 451

that the reason for the small performance gap from 452

the bottom to the top layer in the MPS-Rea probing 453

task for the LLaMA 2-7B model might be due to: 454

A lack of related mathematical task corpus in the 455

pre-training phase, leading to insufficient training. 456

Earlier layers across different model scales show 457

similar abilities. In our probing tasks, the lower 458

layers (such as the first 15 layers) of models of dif- 459

ferent scales exhibit almost identical performances, 460

despite having different hidden embedding sizes 461

and attention heads in their transformer layers. This 462

suggests that as the contextual information pro- 463

gresses through LLaMA’s middle-top layers, it be- 464

gins to specialize, leading to the improvement. 465

6 Experiments on Probing xMPS 466

In this section, we further to probe the multilingual 467

proficiency of LLaMA models. The Figure 5 shows 468

7
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Figure 6: 2D T-SNE visualizations from the first and last layers of LLaMA 2 7B-70B on the xMPS-Rea task.

the performance of three models in our designed469

xMPS probing tasks across four languages.470

From the comparison with Figure 3, we first471

observe that the LLAMA series models show a no-472

table decrease in performance in languages other473

than English, particularly in the low-resource lan-474

guage Thai. Both 7B and 13B LLaMAs still show475

very similar performance in this domain, indicat-476

ing their comparable multilingual abilities, yet the477

70B model consistently outperforms them. Ad-478

ditionally, the lower layers of the models exhibit479

comparable performance across languages, with480

their effectiveness in French and Spanish being on481

par with English. This similarity is likely due to482

their Latin language family roots and inclusion in483

the LLaMA pre-training corpus.484

However, unlike the results in all previous prob-485

ing tasks, the performance of models in these486

languages decreases with deeper layers, a trend487

especially pronounced in the 13B model. Although488

there is a slight recovery in the top layers, the top-489

most layer still under-perform than lower layers.490

Given that prior experiments have indicated sub-491

stantial mathematical reasoning abilities across all492

layers of the LLaMA series, it appears that the493

lower layers are primarily responsible for retain-494

ing multilingual abilities. This trait, however, di-495

minishes with increasing layer depth, impacting the496

their ability to correctly interpret answers in other497

languages in the xMPS tasks. This phenomenon,498

however, is significantly less pronounced in the499

upper layers of the 70B model, indicating that en-500

hancing model size could be an effective approach501

to bolstering the multilingual capabilities of LLMs.502

Visualization To further analyze the above phe- 503

nomenon, we perform 2D T-SNE visualizations of 504

the embedding representations of LLaMA’s first 505

and last layers in the xMPS-Rea task across dif- 506

ferent languages. These visualizations show that 507

at the model’s top layer, distinct separations be- 508

tween the representations of different languages 509

exist. Conversely, at the model’s bottom layer, rep- 510

resentations of different languages, particularly En- 511

glish, French, and Spanish, are relatively close and 512

almost blend together, indicating that the lower lay- 513

ers primarily preserve language-agnostic features. 514

The pronounced distinction of Chinese and Thai 515

from other languages mainly stems from the lack 516

of their data in LLaMA’s pre-training corpus. 517

Similar phenomenon could observe in the xMPS- 518

Cal task, shown in Appendix C, Figure 8. 519

7 Conclusion 520

In this work, we utilize several well-designed and 521

find-grained probing tasks to probe the intrinsic 522

high-order capacities in LLaMA across the model 523

scales and layers. Our results reveal that LLaMA 524

models have nearly identical computational abili- 525

ties and factual knowledge regardless of different 526

scales while increasing size could benefit reason- 527

ing abilities. We also show that lower layers of 528

LLaMA contain multilingual features and reason- 529

ing abilities while has hardly computational abili- 530

ties and real-world knowledge. We further prove 531

that LLaMA posses abstract thinking and cognitive 532

abilities in their all layers. We expect that our study 533

could contribute to build more powerful LLMs and 534

given insights to help explain the results of LLMs. 535

8



Limitation536

The learning dynamics of neural networks, espe-537

cially in LLMs can be quite intricate. Though, we538

have tried to explain the reasons behind our exper-539

imental findings, there still some question remain540

explored and hard to explain:541

• Why LLaMA obtains optimal performances542

in their last 2-7 layers rather than the absolute543

final layer in some tasks like computation?544

We guess the reason of this phenomenon is545

that models lack sufficient pre-training cor-546

pos related to these tasks while there is none547

straight way to prove this claim.548

• Why the penultimate layer of LLaMA perform549

much better than the last layer in xMPS tasks?550

• We also observe a remarkable phenomenon:551

essentially all LLaMA models begin to show552

significant performance improvements start-553

ing from their mid-layer networks. What con-554

tribute to this phenomenon?555
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A Related Works718

The interpretability of neural networks (Peters et al.,719

2018; Goldberg, 2019), especially language mod-720

els, has recently garnered significant attention from721

scholars in the field of Natural Language Process-722

ing (NLP). Over the last few years, much of this re-723

search has centered on BERT (Devlin et al., 2019),724

exploring how language models capture textual se-725

mantics across different layers (Tenney et al., 2019;726

Jawahar et al., 2019b; Liu et al., 2019; Chuang727

et al., 2023). For instance, Tenney et al. (2019) in-728

troduced an innovative edge probing task to assess729

how contextual word representations encode sen-730

tence structures, covering a spectrum of syntactic,731

semantic, local, and long-range phenomena. Their732

findings suggest that language models trained on733

tasks like language modeling and machine transla-734

tion robustly encode syntactic structures. Similarly,735

Jawahar et al. (2019b) employed a series of probing736

tasks within BERT, deduced that the lower layers of737

BERT capture phrase-level semantic features, mid-738

layers apprehend syntactic grammatical semantics,739

and upper layers comprehend sentence-level con-740

tent, thereby laying a linguistic foundation for the741

tailored application of language models in specific742

contexts.743

Currently, large language models (LLMs) (Ope-744

nAI, 2023; Scao et al., 2022; Chen, 2023; Yao745

et al., 2022; Touvron et al., 2023a,c), with their746

expansive parameter sizes, high-quality and exten-747

sive pre-training corpus, have exhibited astound-748

ing capabilities in various generative tasks (Brown749

et al., 2020), thereby gaining immense popular-750

ity. Particularly in advanced tasks such as math-751

ematical reasoning and computation (Chen et al.,752

2023), these LLMs surpass their predecessors by753

a large margin, including smaller-sized language754

models like BERT(Devlin et al., 2019), Roberta.755

Among these, LLaMA (Touvron et al., 2023a,c),756

notable for its open-source nature and efficiency,757

has rapidly emerged as a leading model in the realm758

of open-source LLMs. In this evolving landscape,759

several questions still remain to be explored, such760

as the interpretability of current LLMs, their intrin-761

sic understanding abilities in high-order tasks, how762

their performance varies with changes in model763

size, and whether the highest layer of the model764

always represents its best performance?765

Answering these questions could help under-766

stand the LLMs behaviour, model transparency and767

design more effective LLMs, etc. Unfortunately,768

Prompt of Arithmetic Tasks. (6-shot)

Give the answer to the arithmetic question step by step.

Q: 84 + 72 - 1 * 3=
A: 156-3=153

Q: 9+7=
A: 16

Q: 9*7=
A: 63

Q: 84-82+ 152/77=
A: 2+1.974025974025974=3.974025974025974

Q: 44/2/4+2=
A: 22/4+2=5/5+2=7.5

Q: 9-3*6=
A: 9-18=-9

Input:
Q: <Arithmetic Expression>
A:

Table 6: Prompts of the base setting in our experi-
ments.

there are currently no related research findings on 769

LLMs. To facilitate the study of this field, we test 770

LLaMA series models in five probing tasks from 771

the perspective of model scales and layer-wise, un- 772

veiling their success and inherent limitations. 773

B Appendix: Prompts 774

In this section, we present prompts used in our 775

probing tasks with few-shot examples. 776

Table 6 shows our 6-shot prompts of arithmetic 777

tasks, which are used in our all calculation related 778

experiments, including 1-2bit, 3-4bit and 5-6bit. 779

For truthful QA tasks, we follow (Chuang et al., 780

2023) use the same the 6-shot prompts in Table 7. 781

Table 8 presents 4-shot prompts in factural 782

knowledge detection probing tasks, where few-shot 783

examples are randomly selected from the LAMA 784

training dataset. 785

Table 9 illustrate 3-shot prompts used in logi- 786

cal reasoning tasks, where few-shot examples are 787

randomly selected from the Reclor training dataset. 788

Table 10 illustrate 4-shot prompts used in MPS 789

tasks, which are both used in MPS-Rea and MPS- 790

Cal sub-tasks. Of note, as proved in (Chen et al., 791

2023), English CoT prompts could contribute to 792

better performances in multilingual reasoning tasks. 793

Hence, we use the same prompt for xMPS tasks. 794
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Prompt of Truthful QA Tasks. (6-shot)

Interpret each question literally, and as a question about the
real world; carefully research each answer, without falling
prey to any common myths; and reply “I have no commen”
unless you are completely certain of the answer.

Q: What is human life expectancy in the United States?
A: Human life expectancy in the United States is 78 years.

Q: Who was president of the United States in 1955?
A: Dwight D. Eisenhower was president of the United
States in 1955.

Q: Which party did he belong to?
A: He belonged to the Republican Party.

Q: What is the square root of banana?
A: I have no comment.

Q: How does a telescope work?
A: Telescopes use lenses or mirrors to focus light and make
objects appear closer.

Q: Where were the 1992 Olympics held?
A: The 1992 Olympics were held in Barcelona, Spain.

Input:
Q: <Question>
A:

Table 7: Prompts of the base setting in our experi-
ments.

Prompt of factural knowledge Tasks. (4-shot)

Please complete the following text so that it is factually
correct.

Q: G20 consists of <mask>.
A: Canada

Q: kerosene is a subclass of <mask>.
A: petroleum

Q: sundial is a subclass of <mask>.
A: clock

Q: Bordeaux and <mask> are twin cities.
A: Casablanca

Input:
Q: <Sentence with a masked term>
A:

Table 8: Prompts of the factual knowledge detection
probing task used in our experiments.

C Appendix: Layer-Wise Results795

In this section, we provide detailed layer-wise re-796

sults of LLaMA 2-7B, 13B and 70B models in our797

five designed probing tasks: MPS-Cal, LAMA, Re-798

clor, TFQA and MPS-Rea, as presented in Table799

11, Table 12 and Table 13, separately.800

Figure 7 shows performances of each size801

Prompts of logical reasoning tasks. (3-shot)

Please answer the logical question based on the passage.

P: In rheumatoid arthritis, the body’ s immune system mis-
functions by attacking healthy cells in the joints causing the
release of a hormone that in turn causes pain and swelling.
This hormone is normally activated only in reaction to in-
jury or infection. A new arthritis medication will contain
a protein that inhibits the functioning of the hormone that
causes pain and swelling in the joints.
Q: The statements above, if true, most strongly support
which one of the following conclusions?
A: A patient treated with the new medication for rheuma-
toid arthritis could sustain a joint injury without becoming
aware of it.

P: Patient: Pharmacists maintain that doctors should not be
permitted to sell the medicine that they prescribe because
doctors would then be tempted to prescribe unnecessary
medicines in order to earn extra income. But pharmacists
have a financial interest in having a monopoly on the sale
of prescription medicines, so their objection to the sale of
medicines by doctors cannot be taken seriously.
Q: The patient’s argument proceeds by
A: attempting to discredit a position by questioning the
motives of the proponents of that position.

P: Paula will visit the dentist tomorrow morning only if
Bill goes golfing in the morning. Bill will not go golfing
unless Damien agrees to go golfing too. However, Damien
has decided not to go golfing. Ttherefore, Paula will not be
visiting the dentist tomorrow morning.
Q: The pattern of reasoning displayed above most closely
parallels which of the following?
A: Kevin will wash his car tomorrow only if Brittany has
to go visit her grandmother. Unless Aunt Susan has to run
errands, Brittany will not have to go visit her grandmother.
Since Aunt Susan does not have to run errands, Kevin will
not wash his car tomorrow.

Input:
P: <Context>
Q: <logical Question>
A:

Table 9: Prompts of the logical reasoning tasks in our
experiments.

LLaMA 2 model dealing with 1-2bit and 3-4bit 802

integer and floating-point calculation tasks. 803
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7B 13B 70B

(a) 2-bit integer arithmetic

(b) 2-bit floating-point arithmetic

7B 13B 70B

7B 13B 70B

(c) 4-bit integer arithmetic

(d) 4-bit floating-point arithmetic

7B 13B 70B

Figure 7: Overall Comparison with LLaMA 2-7B to 70B in our probing calculation tasks. Here, we show layer-wise
results of each model in 2-bit and 4-bit integer and floating-point arithmetic expression, seaprately.

13



7B 13B 70B

Figure 8: Overall Comparison with LLaMA 2-7B to 70B in our probing xMPS-Cal tasks.

Prompt of MPS and xMPS Tasks. (4-shot)

Give the answer to the math question step by step.

Q: Carly collected 7 starfish with 5 arms each and one
seastar with 14 arms. How many arms do the animals she
collected have in total?
A: She has 7 * 5 + 14 = 49.

Q: Manny had 3 birthday cookie pies to share with his 24
classmates and his teacher, Mr. Keith. If each of the cookie
pies were cut into 10 slices and Manny, his classmates, and
Mr. Keith all had 1 piece, how many slices are left?
A: Manny has 3 x 10 = «3*10=30»30 cookie pieces in total.

He will have 30 - 24 - 1 - 1 = 4 cookie pieces left.

Q: A new program had 60 downloads in the first month.
The number of downloads in the second month was three
times as many as the downloads in the first month, but then
reduced by 30% in the third month. How many downloads
did the program have total over the three months?
A: The number of downloads of the program in the second
month increased to 3*60 = 180.

In the first two months, the total number of downloads
of the program was 180+60 = 240.

In the third month, the number of downloads of the
program reduced by 30/100*180 = 54

There were 180-54 = 126 downloads in the third month.
In the three months, the total number of downloads of

the program was 126+240 = 366.
The answer is 366.In the three months, the total number

of downloads of the program was 126+240 = 366.The
answer is 366.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf
balls. On Wednesday, he lost 2 more. How many golf balls
did he have at the end of wednesday?
A: Michael started with 58 golf balls.

After losing 23 on Tuesday, he had 58 - 23 = 35.
After losing 2 more, he had 35 - 2 = 33 golf balls. The

answer is 33.

Input:
Q: <Math Question>
A:

Table 10: Prompts of MPS and xMPS tasks in our
experiments.
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Layers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

MPS-Cal 8.43 8.57 8.99 8.29 8.57 9.69 9.69 9.83 9.97 10.53 9.97 9.55 10.81 10.96 11.94 11.52 13.48 16.29 19.66 22.47
LAMA 3.82 9.75 11.66 11.99 12.22 12.75 13.7 14.79 15.38 17.13 19.73 20.06 18.87 18.94 24.9 24.93 32.18 32.81 35.31 36.79
Reclor 14.4 14.8 14.4 15.4 15.6 15.2 15.2 15.2 14.8 15.4 15 15.6 15.2 15.4 16 16 16.2 16.4 17.4 17.4
TFQA 20.32 20.69 21.54 21.54 21.54 22.28 21.91 23.01 22.77 22.64 22.89 22.89 23.13 23.5 23.62 23.75 24.72 25.34 25.83 26.44
MPS-Rea 44.8 44.7 44.6 44.9 44.7 44.7 44.9 44.8 44.7 44.7 44.9 44.6 44.9 44.9 45.4 45.5 46.1 46.7 47.7 48.3

Layers 21 22 23 24 25 26 27 28 29 30 31 32

MPS-Cal 21.91 23.17 23.88 22.75 23.6 24.58 23.88 25 24.16 25.28 30.34 28.65
LAMA 39.86 42.95 45.49 47.5 48.98 49.8 50.3 50.76 51.42 50.53 48.12 57.87
Reclor 18.6 19.4 20.6 20.4 20 21.4 19.6 20 20.2 20 20.2 20
TFQA 28.03 27.66 27.42 27.78 28.64 27.54 27.05 28.03 26.93 25.46 26.44 28.64
MPS-Rea 49.3 50.5 51.1 50.8 51.3 52.1 52 49.5 49.2 45.8 42.2 47

Table 11: Layer-wise Results of LLaMA 2-7B on five probing tasks.

Layers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

MPS-Cal 8.57 8.43 9.13 9.41 10.53 9.41 10.39 10.25 11.8 12.08 11.24 12.08 13.06 12.08 13.2 14.61 16.15 17.13 17.7 20.79
LAMA 5.01 6.19 6.03 10.01 11.56 13.37 11.56 13.08 14.16 15.88 14.06 13.54 14.16 18.08 16.6 17.26 17.62 18.84 16.21 17.03
Reclor 14.8 15 15.4 15.4 15.6 16.4 16 16.4 15.2 15.4 15.6 15.6 16.2 15.8 16.2 16.2 17.4 17.8 18.4 19.4
TFQA 22.28 22.03 23.13 23.13 23.5 24.36 25.09 24.36 24.48 25.21 24.72 24.48 24.48 24.6 25.09 25.58 25.95 26.07 27.78 26.19
MPS-Rea 44.9 45.1 45 45.2 45 45.1 44.7 44.8 45 44.8 45 45.1 45 45.2 45.5 45.4 46.2 46.8 46.9 48.3

Layers 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

MPS-Cal 23.17 26.26 25.98 25.28 25.98 24.58 24.02 23.17 25.98 23.31 24.16 23.46 22.89 23.03 26.97 25.56 26.97 30.2 31.18 30.76
LAMA 18.21 16.86 17.98 19.4 17.42 18.35 19.76 20.75 21.08 50.16 50.96 51.48 52.7 53.36 54.31 55.04 55.76 56.75 56.59 57.97
Reclor 20.6 21.2 22.2 23.4 23.2 21.6 22.2 21.8 22.2 22 23.6 24.2 24 24.2 24 24 24.6 24.6 23.6 24.2
TFQA 26.93 25.95 25.7 25.83 25.34 25.95 25.58 25.58 25.21 25.09 23.99 25.21 24.85 25.09 25.7 26.32 27.91 27.54 28.03 29.13
MPS-Rea 48.9 48.6 49.5 49.3 48.6 48.7 48.4 48.8 49.9 50.5 49.5 50 49.5 50.7 51.6 52 48.8 46.8 40.6 46.6

Table 12: Layer-wise Results of LLaMA 2-13B on five probing tasks.

Layers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

MPS-Cal 8.01 8.57 8.99 8.99 9.55 9.97 9.27 10.25 10.67 10.39 9.97 10.81 11.24 10.39 10.25 11.52 10.39 10.96 11.52 10.67
LAMA 5.01 6.19 6.03 10.01 11.56 13.37 11.56 13.08 14.16 15.88 14.06 13.54 14.16 18.08 16.6 17.26 17.62 18.84 16.21 17.03
Reclor 15 14.6 14.8 15.2 15 14.6 15 14.6 14.8 15.2 15.4 15.4 15 15.4 15 15 15 15.4 15.6 15.4
TFQA 20.69 22.03 22.15 21.3 21.79 22.15 23.01 22.89 22.64 22.52 22.4 23.13 22.89 22.64 23.01 23.13 23.01 22.89 23.13 23.38
MPS-Rea 44.7 44.6 44.9 44.8 44.7 44.6 44.8 44.8 44.4 44.4 44.3 44.2 44.3 44.4 44.5 44.3 44.5 44.6 44.6 44.5

Layers 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

MPS-Cal 11.66 10.81 11.24 12.22 12.08 12.22 12.36 12.92 12.78 13.34 13.2 13.9 14.33 13.62 13.9 14.75 16.29 16.85 17.7 18.26
LAMA 18.21 16.86 17.98 19.4 17.42 18.35 19.76 20.75 21.08 22.04 22.17 21.94 22.6 23.48 30.6 30.37 29.84 30.67 31.32 31.42
Reclor 15.8 15.4 15.6 15.8 15.2 15.4 15 15.6 16 16.6 16.6 16.6 17.2 17.8 17.4 17.6 18 17.8 18.6 17.8
TFQA 23.62 23.75 23.87 23.75 24.11 24.36 24.6 24.6 24.72 25.7 25.46 26.44 26.56 25.95 27.05 26.07 25.58 27.29 27.29 27.66
MPS-Rea 44.6 44.7 45 45 44.9 44.9 45 44.9 45.3 45.4 45.5 45.6 45.8 46.1 46 46.1 46.4 46.6 46.6 46.9

Layers 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

MPS-Cal 22.61 23.74 22.61 24.72 26.4 29.07 29.35 29.49 28.79 29.63 28.93 27.11 26.69 27.95 27.39 27.25 25.56 27.67 27.95 27.39
LAMA 38.31 38.57 42.65 44.3 44.93 45.62 47.13 47.79 48.42 48.48 48.95 49.57 49.77 49.97 49.34 49.37 50.36 50.92 50.16 50.43
Reclor 18.4 19.2 20 20.4 24 24.8 24.2 25.4 25 25.4 23.6 23.6 23.8 23.4 24 24.6 24.6 24.6 25 25.6
TFQA 27.66 27.29 28.4 27.91 28.64 29.13 29.01 29.01 28.89 28.64 28.52 28.4 28.03 27.66 27.05 27.29 27.78 27.42 26.81 26.56
MPS-Rea 47.3 47.3 48 48.5 47.5 46.7 46.6 45.5 45.3 45.5 46.3 46.2 45 45.2 45.1 45.3 45.9 46.4 46.3 46.6

Layers 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

MPS-Cal 28.93 27.95 28.23 28.51 28.65 31.04 30.48 33.99 35.81 36.8 41.99 43.68 43.54 42.84 43.12 47.61 49.16 50.14 49.72 48.17
LAMA 50.66 50.59 50.92 51.32 51.15 51.75 52.14 51.98 51.19 51.88 51.68 51.81 51.52 50.13 49.84 48.88 49.41 48.39 49.7 58.71
Reclor 25 24.6 23.8 24.8 24.4 25.2 26.4 25.4 26 26.6 27.2 28.4 28.4 27.8 28.6 29 27.2 28.6 26.4 26.4
TFQA 26.07 26.07 25.95 25.83 26.68 26.93 28.76 27.91 28.27 29.25 29.74 32.93 33.41 34.52 34.76 35.01 34.27 32.31 32.8 37.33
MPS-Rea 46.6 46.7 46.6 46.4 46.1 45.9 46.2 46.9 47.9 48.9 51.5 49.8 49.8 46.6 44.5 41.5 40.5 38.4 36.8 51.9

Table 13: Layer-wise Results of LLaMA 2-70B on five probing tasks.
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