
AlphaTablets: A Generic Plane Representation for 3D
Planar Reconstruction from Monocular Videos

Yuze He1, Wang Zhao1, Shaohui Liu2, Yubin Hu1,
Yushi Bai1, Yu-Hui Wen3, Yong-Jin Liu1∗

1Tsinghua University 2 ETH Zurich 3 Beijing Jiaotong University

Abstract

We introduce AlphaTablets, a novel and generic representation of 3D planes that
features continuous 3D surface and precise boundary delineation. By representing
3D planes as rectangles with alpha channels, AlphaTablets combine the advantages
of current 2D and 3D plane representations, enabling accurate, consistent and
flexible modeling of 3D planes. We derive differentiable rasterization on top of
AlphaTablets to efficiently render 3D planes into images, and propose a novel
bottom-up pipeline for 3D planar reconstruction from monocular videos. Starting
with 2D superpixels and geometric cues from pre-trained models, we initialize
3D planes as AlphaTablets and optimize them via differentiable rendering. An
effective merging scheme is introduced to facilitate the growth and refinement of
AlphaTablets. Through iterative optimization and merging, we reconstruct com-
plete and accurate 3D planes with solid surfaces and clear boundaries. Extensive
experiments on the ScanNet dataset demonstrate state-of-the-art performance in
3D planar reconstruction, underscoring the great potential of AlphaTablets as a
generic 3D plane representation for various applications. Project page is available
at: https://hyzcluster.github.io/alphatablets.

1 Introduction

3D planar reconstruction from monocular videos is a crucial aspect of 3D computer vision, dedicated
to the precise detection and reconstruction of underlying 3D planes from consecutive 2D imagery. The
reconstructed 3D planes serve as a flexible representation of surfaces, facilitating various applications
such as scene modeling, mixed reality and robotics.

Traditional methods for 3D planar reconstruction rely heavily on explicit geometric inputs [36, 41],
hand-crafted features [6, 4], strong assumptions [10, 15] and solvers [37, 42, 16] to detect and
reconstruct the planes, thereby imposing limitations on scalability and robustness. Learning-based
methods [27, 26, 2, 28, 48] leverage the power of data-driven training to directly segment the
plane instances and regress the plane parameters from single or sparse-view images. Notably,
PlanarRecon [50], a pioneering monocular video-based learning method, operates within the 3D
volume space to detect and track planes, and has demonstrated promising results in recovering planar
structures. However, it often falls short in detecting complete planar reconstructions and struggles
with generalization across diverse scenes. How to build an accurate, complete and generalizable 3d
planar reconstruction system is still a challenging open problem.

We inspect this problem from the perspective of plane representation. Current methodologies employ
various representations, such as view-based 2D masks [42, 16, 3, 9, 26, 2, 48], 3D points [37, 30],
surfels [36], and voxels [50]. While 2D masks can precisely illustrate plane contours, this 2D plane
representation faces inconsistencies across different views and necessitates complex matching and
fusion processes to reconstruct 3D surfaces. In contrast, 3D representations directly depict 3D planar
surfaces. However, they suffer from discontinous geometry and texture due to discretized sampling,
and struggle to accurately model complex plane boundaries.

∗Corresponding Author.
38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://hyzcluster.github.io/alphatablets

To address above limitations, we propose a novel plane representation termed AlphaTablets. AlphaT-
ablets define 3D planes as rectangles with alpha channels, providing a natural delineation of irregular
plane boundaries and enabling continuous solid 3D surface representation. AlphaTablets combine
the best of 2D and 3D plane presentations: by defining and optimizing in 3D, AlphaTablets ensure
efficiency and consistency across all views; meanwhile, by introducing alpha channels and texture
maps in plane’s canonical coordinates, AlphaTablets can accurately model solid surfaces and complex
irregular plane boundaries. Furthermore, we introduce rasterization formulations for AlphaTablets,
facilitating differentiable rendering into images.

Based on AlphaTablets, we present a bottom-up pipeline for 3D planar reconstruction from posed
monocular videos. Initially, leveraging 2D superpixels [1], we initialize the AlphaTablets using
pre-trained depth and surface normal models [19, 12]. This initialization yields a dense yet noisy
assembly of relatively small and overlapping AlphaTablets. Next, these small planes are optimized via
differentiable rendering with hybrid regularizers to adjust both geometry, texture and alpha channels.
We further introduce an effective merging scheme that facilitates the fusion of neighboring tablets,
thereby promoting the growth of larger, cohesive planes. Through iterative cycles of optimization
and merging, our final reconstructions boast solid surfaces, clear boundaries, and interpolatable
texture maps, delivering accurate 3D planar structures. Moreover, our approach enables flexible
plane-based scene editing. Extensive experiments on ScanNet [11] dataset demonstrate state-of-the-
art performance of 3D planar reconstruction, showing the great potential of being a generic 3D plane
representation for subsequent applications.

In summary, our contributions are threefold:

• We propose AlphaTablets, a novel and generic 3D plane representation which features
effective and flexible modeling of plane geometry, texture and boundaries. We derive the
rasterization formulation for AlphaTablets, enabling differentiable rendering to images.

• We build an accurate and generalizable 3D planar reconstruction system from monocular
videos upon AlphaTablets. The key components are effective initialization from pre-trained
monocular cues, differentiable rendering based optimization, and the proposed merging
mechanism for AlphaTablets.

• The proposed system achieves state-of-the-art performance for 3d planar reconstruction,
while also enabling flexible plane-based scene editing for various applications.

2 Related Works

Classical 3D Plane Reconstruction. Traditional 3D plane reconstruction methods typically fit planes
from geometric inputs like RGB-D images [36, 41, 35, 21] and 3D point cloud [7, 43], using robust
estimators such as RANSAC [14] and its variants [37]. Another line of research approaches utilize
multi-view images as input. Early works [42, 16, 15, 3] detect 3D planes from reconstructed sparse
3D points and lines, and then optimize plane masks as multi-label segmentation through image-based
solvers such as Markov Random Fields (MRF) and Graph Cut [23]. Argiles et al. [3] propose a plane
consistency check to determine plane boundaries using square cells rather than sparse point contours.
Manhattan world assumption is introduced [10, 53] to better reconstruct the dominant planes. While
these methods can segment 2D complex planes, the 2D mask representation of planes causes view
inconsistency, visibility issues and requires additional efforts to reconstruct 3D planes. In contrast,
AlphaTablets directly model and optimize planes in 3D with differentiable rendering, eliminating the
inconsistency and occlusion problems. Given a monocular video as input, DPPTAM [9] reconstructs
both the 3D planar and non-planar structure in a SLAM fashion, and adapt superpixel to group
homogeneous pixels for textureless regions. Our method also uses superpixels as 2D units to initialize
AlphaTablets, but provides greater flexibility in adjusting geometry, texture, and boundaries through
optimization.

Learning-based 3D Plane Reconstruction. Data-driven methods leverage large-scale training data
to learn geometric priors, enabling the reconstruction of 3D planes from single or sparse view images.
PlaneNet [27], PlaneRecover [52] and PlaneRCNN [26] create training datasets for plane detection
and reconstruction, and train deep neural networks to directly segment plane instances and regress
plane parameters from single RGB image. Further enhancements along this line include the use of
transformer architectures [47], multi-task collaboration [40], pairwise plane relations [34], and feature
clustering [54], etc. Due to the highly ill-posed nature of single-image plane reconstruction, many

2

Up Vector

Normal

PositionInitialized from
Keyframe images

RGB Texture

Transparency

3D Properties 2D Properties

Pixel Range
Pixel Range

Distance
Ratios

Volumetric Rendering

Figure 1: Illustration of tablet properties and rendering. Normal and up vector determines the
rotation of a tablet in 3D space, while every tablet maintains a distance ratio between the coordinates
of the 3D field and 2D-pixel space.

works [2, 22, 28, 48] adopt sparse view images as inputs, and explore joint plane detection, association
and optimization to help the final reconstruction. However, these methods can only recover local
3D planar structures from sparse views, and it is challenging to extend them to image sequences.
PlanarRecon [50] proposes a 3D volume-based planar reconstruction system with plane detection
and tracking modules that sequentially process video frames and update 3D planar reconstructions.
While effective in producing clean and consistent 3D planes, PlanarRecon often oversimplifies planar
structures, resulting in incomplete reconstructions. Furthermore, being trained on indoor datasets with
gravity-aligned camera poses, PlanarRecon struggles to generalize to unseen data. On the contrary,
our method optimizes AlphaTablets for each scene, thus can generalize to any video sequence.

3D Planar Surface Representation. While most of current works employ 2D plane representation
for detection and reconstruction, 3D representation is more efficient and consistent by aggregating
2D image information directly in 3D. 3D point cloud [37, 38, 33, 51, 32] is one of the most widely
used 3D surface representation, yet they are discrete samples of a surface and cannot fully capture
continuous geometry and textures. Extending points into planar primitives, surfels [36, 17] and 2D
gaussians [18, 20] represent surface with 2D disks in 3D space, and demonstrate impressive results
for both planar and non-planar surfaces. Unfortunately, both surfels and 2D gaussians only provide
local planar structure within one unit, making it difficult to directly represent large geometric planes.

In terms of continuous surface representation, mesh is the most popular representation with mature
graphic pipelines. Many works [50, 42, 49, 39] convert other 3D surface representations into mesh
for visualization or further optimization. While meshes using 3D triangles or rectangles can represent
3D planes with regular quadrangular shapes, they struggle with irregular complex boundaries and
are difficult to build and optimize from scratch. AlphaTablets inherit the advantages of continuous
geometry and canonical texture modeling from mesh, and further introduce alpha channels to handle
the irregular plane boundaries, acting as "rectangle soup with alpha channels". With the popularity
of implicit neural representation, several works [25, 8] have explored encoding 3D plane primitives
with MLPs. Compared to implicit representations, AlphaTablets offer the advantages of explicit
representation, such as easy editing and fast rendering without network inference.

3 Method

Our proposed AlphaTablets is a novel and generic 3D plane representation, which enables accurate and
generalizable 3D planar reconstruction from monocular video inputs. In Sec.3.1, we first introduce
the data format of AlphaTablets, then discuss the differentiable rasterization of AlphaTablets in
Sec.3.2. Finally, in Sec.3.3, we introduce a bottom-up pipeline based on AlphaTablets to conduct 3D
planar reconstruction from monocular video input.

3.1 AlphaTablets: Representing 3D Planes with Semi-Transparent Rectangular Primitives

As illustrated in Figure 1, our proposed AlphaTablet is shaped as a rectangle with 3D geometry
properties and 2D in-tablet properties. The 3D geometry includes the tablet center point p, normal
vector n, up vector u and right vector r. The normal, up and right vectors are orthogonal. The
2D in-tablet information contains a texture map c, an alpha channel α, and a pixel range (ru, rv)
that indicates the 2D resolution of the texture and transparency map. The alpha channel α ensures
that arbitrary shapes can be modeled by our tablet formation. Since the ratio of unit distance in 3D
space and 2D in-tablet canonical space varies across different tablets, distance ratios λu, λv of two
directions on the texture map is also maintained for every tablet to acquire the tablet size in 3D space.

3

3.2 Differentiable Rasterization

As a generic 3D planar surface representation, efficient projection from 3D to 2D images is highly
demanding for AlphaTablets. Therefore, we introduce the differentiable rasterization of AlphaTablets.
The data format of AlphaTablets is the 3D rectangle soup with alpha channels, allowing us to
easily adapt and utilize existing mesh-based efficient differentiable rendering frameworks, such as
NVDiffrast [24] to composite and render an arbitrary number, shape, and position of tablets in a fully
differentiable manner.

Pseudo Mesh Construction. We can leverage differentiable mesh rendering frameworks like
NVDiffrast [24] by converting the tablets into pseudo meshes before each rendering pass. Note that
this conversion is just used for the adaption of NVDiffrast. Given a single tablet ti, we can convert it
to two mesh triangle faces through the following process:

vi =
[pi − rui/λu,i − rvi/λv,i, pi − rui/λu,i + rvi/λv,i,

pi + rui/λu,i + rvi/λv,i, pi + rui/λu,i − rvi/λv,i]
(1)

fi =[[0, 1, 2], [0, 2, 3]] (2)

Where vi represents the 3D vertex coordinates, and fi denotes the face indices, consistent with the
general mesh definition. The texture and alpha maps of all tablets are tiled onto a global texture map
according to their respective resolutions (rui, rvi). The specific tile location serves as the texture
coordinates for the four vertices of each tablet.

Multi-layer Rasterization. As transparency information is used in AlphaTablets, the rasterization
process in our approach requires rasterizing multiple layers through depth peeling to extract multiple
closest surfaces for each pixel. Given the model-view-projection (MVP) matrix Mk of a specific
view k, the rasterization result of the l-th closest surface for the image pixel (i, j) can be formed as:

Rl(Mk, i, j) = (ui,j , vi,j , trii,j) (3)

where ui,j and vi,j are the barycentric coordinates within a triangle, and trii,j is the triangle index.
The color and alpha values c(i, j) and α(i, j) are then acquired from the texture map using the two
coordinates and the triangle index.

Anti-aliasing for AlphaTablets. Previous anti-aliasing techniques in rasterization predominantly
work on non-transparent primitives without considering learnable alpha values of each face, yet
alpha channel is a crucial component for AlphaTablets. An intuitive approach to incorporate alpha
channels would be to conduct anti-aliasing for both texture and alpha within each rasterization layer.
However, this straight-forward method does not work well on tablets with alpha channels. A simple
counterexample is two overlapping planes with constant alpha values of 0 and 1, respectively. The
rasterization results in two rasterized layers for the intersection pixel of the two planes. And the
anti-aliasing would result in both layers having an alpha value below 1, causing incorrect transparency
and colors at the intersected boundaries in the final alpha blending process.

To address this issue, we propose an anti-aliasing method for the semi-transparent primitives. Given
a pixel through which the boundary lines of two planes pass, with the original colors c1 and c2, and
alpha values a1 and a2, respectively, and anti-aliasing weights w and 1−w, the process to obtain the
anti-aliased color caa is as follows:

caa =
α1c1w + α2c2(1− w)

α1w + α2(1− w)
(4)

And the alpha value is not anti-aliased. The intuitive idea is that the blending weights of anti-aliasing
should not only be determined by overlapping areas, but also take alpha values into consideration.
For each rasterization layer, anti-aliasing can be further expressed using the following formula:

caa =
AA(αc)

AA(α)
, αaa = α (5)

Where α and c are the alpha and color values before anti-aliasing, caa and αaa are the alpha and
color values after anti-aliasing, and AA is the anti-aliasing function. We show an example figure 9 in
appendix to demonstrate the clear improvements after the anti-alias formula correction.

Alpha Composition. Once we have multiple rasterized layers, we can stack them in depth order and
blend them using the alpha compositing process widely employed in volume rendering and neural

4

Texture & Geometry Optimization

Merging Scheme

Tablet Initialization

Iterative Refinement

Video
Keyframes

SuperPixel
Division

Monocular
Normals

Monocular
Depths Back Projection

To 3D Space

with estimated
Camera Pose

Joint
Photometric
Guidance

Normal Position

Texture Transparency

Bottom-Up Merging with arbitrary shapes

Figure 2: Pipeline of our proposed 3D planar reconstruction. Given a monocular video as input,
we first initialize AlphaTablets using off-the-shelf superpixel, depth, and normal estimation models.
The 3D AlphaTablets are then optimized through photometric guidance, followed by the merging
scheme. This iterative process of optimization and merging refines the 3D AlphaTablets, resulting in
accurate and complete 3D planar reconstruction.

radiance fields. The final color of pixel (i, j) can be calculated as:

ci,j =

L∑
l=1

Ti,j,lαi,j,lci,j,l, Ti,j,l =

l−1∏
m=1

(1− αi,j,m) (6)

Where ci,j,l and αi,j,l are the color and alpha values at pixel (i, j) of the l-th rasterization layer. Ti,j,l

represents the accumulated transmittance of the previous l − 1 layers for the given pixel.

3.3 A Bottom-up Planar Reconstruction Pipeline with AlphaTablets

AlphaTablets provide flexible 3D plane modeling and efficient differentiable rendering. Building
on this, we propose a bottom-up 3D planar reconstruction pipeline for monocular video input. As
illustrated in Figure 2, AlphaTablets are first initialized via off-the-shelf geometric estimations, then
the texture and geometry parameters of AlphaTablets are optimized using differentiable rendering.
Tablets are examined and merged towards larger and more complete 3D planes. The optimization and
merging benefit from each other through iterative refinement. By formulating the plane segmentation
as a bottom-up clustering of 3D AlphaTablets and plane parameter estimation as rendering based
optimization, our pipeline can accurately reconstruct detailed planar surfaces.

Initialization. We initialize the AlphaTablets using off-the-shelf geometric prediction models,
including those for depth, surface normal and superpixel. Specifically, for each keyframe of the input
video, we first apply SLIC [1] method to segment images into 2D superpixels based on local color
homogeneity. Next, we utilize pretrained geometric models [19, 12] to estimate depth and surface
normal for each image. To obtain initial depth and surface normal values for each superpixel, we
perform 2D average pooling within each superpixel’s region. These 2D superpixels are then back-
projected into 3D space to form the initial tablet representation. Besides 3D geometry, the texture
maps and alpha channels are initialized using 2D pixel colors and superpixel masks, respectively.
The rectangle bounding box is determined by the minimum and maximum values on each 3D tablet’s
two orthogonal axes: up and right vector.

Optimization. Initialized from 2D view-based depth, surface normal and superpixel estimations,
the initial 3D AlphaTablets may contain errors, overlaps, and inconsistency. We thus perform
differentiable rendering based optimization to update the parameters of 3D AlphaTablets.

Learnable Parameters. While the 3D AlphaTablets offer significant flexibility, directly optimizing
them for unrestricted movement in 3D space can cause instability. To mitigate this, we constrain each
tablet’s center to remain on its initial camera ray. In this way, we thus optimize the normal vector n

5

and distance d, rather than 3D center position p, where d represents the distance between the tablet’s
center and the camera center of the view from which it was initialized. The up vectors of tablets
are updated with normal to keep the rigid transformation characteristics of the tablet. Additionally,
the texture and alpha channel values of each tablet are treated as learnable parameters, enabling
appearance refinement to enhance the fidelity of the reconstructed planar surfaces.

Loss Design. The optimization process is driven by a set of carefully designed loss functions that
collectively refine the tablet parameters to achieve accurate planar reconstruction. Given input
monocular video, we adopt the photometric loss as the mean squared error between the rendered
image c of the tablets and the observed input images cgt: Lpho = ||c − cgt||22. By minimizing the
photometric loss, the 3D AlphaTablets can be optimized to better fit the input images. However, due
to the ambiguity of photometric alignment and the complexity of optimization, updating AlphaTablets
only with photometric loss results in fuzzy reconstructions. We thus introduce several important
losses to help mitigate the ambiguity and regularize the reconstruction.

Specifically, we use alpha inverse loss to prevent the emergence of semi-transparent regions after
alpha composition, which is defined as Lainv =

∏L
l=1(1− αl). Moreover, we observed that multiple

semi-transparency tablets, instead of one solid tablet, may occupy the same surface region to blend
the rendering, which harms the geometric surface reconstruction. Inspired by mip-NeRF-360 [5], we
utilize the distortion loss for AlphaTablets to penalize the multiple semi-transparency surfaces and
promote the merging of tablets that are in close proximity. The distortion loss is defined as below:

Ldist =

L−1∑
i=1

TiTi+1||pi − pi+1||2 (7)

Where Ti is the blending weight of the i-th rasterization layer defined in Sec. 3.2, pi is the 3D
intersection point of the i-th rasterization layer. To further regularize the surface geometry and
smoothness, we render the tablets to get the depths dr and surface normal maps nr, and supervise
them by the input monocular depth and surface normal estimations dm,nm with mean squared error:

dr =

L∑
l=1

Tlαldl, nr =

L∑
l=1

Tlαlnl (8)

d =
dr∏L

l=1(1− αl)
, n =

nr

||nr||2
(9)

Ldepth = ||d− dm||22, Lnormal = ||n− nm||22 (10)

The final objective is defined as:

L = w1Lpho + w2Lainv + w3Ldist + w4Ldepth + w5Lnormal (11)

where w1, w2, w3, w4, w5 are hyperparameters to balance the losses.

Merging Scheme. The optimized 3D AlphaTablets are still describing local 3D planar surface,
bounded by the 2D superpixels. Therefore, to represent the exact 3D planes, we need to coherently
merge the individual tablets into larger tablets. We introduce a hierarchical merging strategy that
considers hybrid information including color, distance, and normal, to prevent the wrong merging.

Specifically, we first construct a KD-tree to find the tablet neighborhoods, and initialize a union-find
data structure for all tablets. Each union-find set dynamically maintains the average color, center,
and normal of all its constituent unit tablets. For each tablet, we search the KD-tree to find the K
nearest tablets and evaluate whether they satisfy the following constraints for merging: (1) The angle
between the normals of the two tablets should be smaller than a threshold θ. (2) The angle between
the average normals of the union-find sets to which the two tablets belong should be smaller than
a threshold θs. (3) The projected distance between the average centers of the union-find sets along
their average normal should be smaller than a threshold d. (4) The difference between the average
colors of the union-find sets should be smaller than a threshold c.

If all these constraints are satisfied, the two tablets are merged into the same union-find set. We
repeat this process for all tablets, continually updating the average color, center, and normal of each
union-find set as merges occur. This iterative merging procedure continues until no further merges
are possible, resulting in a set of coherent planar surfaces represented by the final merged tablets.
More details about merging are included in the appendix.

6

Ours Ground TruthPlanarReconSuGaR + Seq-RANSACMetric3D + Seq-RANSAC

High

Low

High

Low

Figure 3: Qualitative results on ScanNet. Error maps are included. Better viewed when zoomed in.

Table 1: 3D geometry reconstruction results on ScanNet.
Method Comp ↓ Acc ↓ Recall ↑ Prec ↑ F-Score ↑

NeuralRecon [46] + Seq-RANSAC 0.144 0.128 0.296 0.306 0.296
Atlas [31] + Seq-RANSAC 0.102 0.190 0.316 0.348 0.331

ESTDepth [29] + PEAC [13] 0.174 0.135 0.289 0.335 0.304
PlanarRecon [50] 0.154 0.105 0.355 0.398 0.372

Metric3D [19] + Seq-RANSAC 0.074 0.379 0.426 0.161 0.231
SuGaR [18] + Seq-RANSAC 0.121 0.324 0.385 0.296 0.327

Ours 0.108 0.161 0.481 0.447 0.456

4 Experiments

4.1 Evaluation on 3D Plane Detection and Reconstruction

Implementation Details. We use Metric3Dv2 [19] for predicting monocular depths and Om-
nidata [12] for surface normals. We leverage the keyframe selection method in NeuralRecon [46]
to segment the scene into multiple parts. Each part undergoes separate optimization, followed by
joint optimizations. The keyframe number of each part is set to 9. The separate optimization for
each part is performed for 32 epochs, while the joint optimization step is executed for 9 epochs. The
weights for the loss functions are set as follows: [w1, w2, w3, w4, w5] = [1.0, 1.0, 20.0, 4.0, 4.0]. We
use Adam optimizer, and the learning rates for the tablet’s texture, alpha, normal, and distance are
set to 0.01, 0.03, 1e-4, and 5e-4, respectively. After the second merge step, the learning rate for the
distance is reduced to 2e-4. The normal threshold is set to 0.93. The entire reconstruction process for
a single scene takes around 2 hours on average when executed on a single A100 GPU.

Dataset and Evaluation Metrics. We use ScanNetv2 [11] dataset to evaluate the 3D plane detection
and reconstruction performance of our proposed method. Following PlanarRecon [50], our method
is tested on the validation set of Atlas [31] using generated 3D plane ground truth. For evaluation
metrics, we follow previous works [50, 26, 54] to use Murez’s 3D metrics [31] for geometry, and
rand index (RI), variation of information (VOI), segmentation covering (SC) as plane segmentation
metrics. To assess the segmentation performance, the reconstructed plane instances are transferred
onto the ground truth planes using the nearest neighborhood approach, following common practices.

7

Table 2: 3D plane segmentation results on ScanNet.
Method VOI ↓ RI ↑ SC ↑

NeuralRecon [46] + Seq-RANSAC 8.087 0.828 0.066
Atlas [31] + Seq-RANSAC 8.485 0.838 0.057

ESTDepth [29] + PEAC [13] 4.470 0.877 0.163
PlanarRecon [50] 3.622 0.897 0.248

Metric3D [19] + Seq-RANSAC 4.648 0.862 0.209
SuGaR [18] + Seq-RANSAC 5.558 0.775 0.082

Ours 3.468 0.928 0.273

TUM Dataset Replica Dataset

Figure 4: Qualitative results on TUM-RGBD and Replica datasets.

Baselines. We compare our method with different types of representative works. PlanarRecon [50]
is the state-of-the-art method of learning-based 3D planar reconstruction from monocular video.
Following it, we compare with strong baselines that first reconstruct the 3D scene and then fit 3D
planes using RANSAC, including single or multi-view depth-based methods [29, 19], 3D volume-
based methods [46, 31], and the recent 3D gaussian based method [18].

Quantitative Results. The evaluation results for 3D plane geometry and segmentation are pre-
sented in Table 1 and Table 2, respectively. Our proposed method achieves clear improvements
compared to other state-of-the-art approaches across various evaluation metrics. 3D volume-based
reconstruct-then-fit methods suffer from reconstruction errors and noise threshold-sensitive RANSAC,
and exhibit relatively low performance in terms of planes’ geometry and 3D coherence. Depth-based
methods inherently encounter 3D inconsistency, resulting in fragmented and multi-layered predictions.
PlanarRecon [50], which is specially trained on the ScanNet dataset, demonstrates the capability to
predict major planes with high geometric accuracy. However, its performance is hindered by the
limited coverage of the predicted planes and the failure to detect many small plane instances. Ap-
proaches based on 2D Gaussian Splatting [18] tend to be heavily influenced by the poor initialization,
textureless regions and motion blurs in ScanNet, resulting in degraded reconstruction performance.
Compared to other methods, our approach demonstrates much improved overall performance for
both geometry and segmentation.

Qualitative Results. To provide a qualitative assessment of our method’s performance, we follow
PlanarRecon [50] and present the plane reconstruction results in Figure 3, along with the recall
error maps. The SuGaR+Seq-RANSAC method suffers from erroneous geometric reconstructions,
and the Metric3D+Seq-RANSAC is constrained by inconsistent fuzzy points and sub-optimal plane
segmentations. PlanarRecon, while capable of reconstructing large planar surfaces with high geomet-
ric accuracy, struggles to capture and reconstruct smaller plane instances, resulting in incomplete
representations of the scene. Our method benefits from the bottom-up planar reconstruction scheme,
and can accurately predict the 3D plane instances while excelling in detecting and reconstructing
details, particularly for smaller plane instances. This capability significantly outperforms other
methods in handling fine-grained planar structures. To demonstrate the generalization ability of our
method, we further test it on TUM-RGBD [45] and Replica [44] datasets. Qualitative results are
shown in Figure 4. Our method can faithfully reconstruct 3D planar surfaces in various scenarios.

4.2 Ablation Studies

To validate the efficacy of our method’s design, we conducted a series of ablation experiments
exploring the impact of various components, including the loss functions, merge schemes, and tablet
anti-aliasing. The results are presented in Table 3. Tablet distortion loss encourages the planar
surfaces to converge and merge, leading to improved performance. Furthermore, the normal loss and
depth loss significantly contribute to the geometric accuracy of the reconstructed planes, particularly

8

Table 3: Ablation studies. AlphaInv denotes the alpha inverse loss.
Method F-score ↑ VOI ↓ RI ↑ SC ↑
Only Photometric and AlphaInv loss 0.240 4.096 0.936 0.191
+ Tablet Distortion loss 0.271 3.741 0.937 0.253
+ Normal loss 0.425 3.490 0.944 0.263
+ Depth loss 0.456 3.466 0.944 0.284
w/o tablet anti-aliasing 0.415 3.545 0.937 0.280
w/o tablet merge 0.188 6.991 0.939 0.098
Full 0.456 3.466 0.944 0.284

Original Scene 3D Coherent Scene Editings

Figure 5: 3D scene editing examples of our method.

in textureless regions where photometric loss constraints are insufficient. Merging scheme is crucial
for producing appropriate 3D planes. Without merging, the 3D AlphaTablets remain small plane
fragments, and thus can not reconstruct 3D planes, as shown in Table 3. Moreover, tablet antialiasing
contributes to smoother results, leading to enhanced overall performance.

4.3 Example Application: 3D Plane-based Scene Editing

One of the significant advantages of AlphaTablets representation is its ability to perform consistent
3D scene editing by simply modifying the 2D texture maps associated with the reconstructed planes.
As illustrated in Fig. 5, our method can achieve impressive results for editing 3D scenes. The accurate
plane reconstruction allows for precise texture mapping, enabling the seamless application of textures,
text, or other visual elements onto the planar regions within the scene. Furthermore, our method
offers the flexibility to modify the color or perform style transfer on individual planes, providing a
powerful tool for creative scene manipulation.

4.4 Limitations and Future Work

AlphaTablets effectively represent 3D planes, but it may struggle in highly non-planar regions where
the planar assumption for a single superpixel does not hold. Additionally, the current AlphaTablets
representation does not account for view-dependent effects. As a result, the optimization relies on
color consistency across views, which can be compromised by non-Lambertian surfaces or changes in
lighting. In the future, we aim to enhance AlphaTablets with view-dependent modeling, and explore
hybrid scene representation such as AlphaTablets with Gaussians.

5 Conclusion

In this work, we introduce AlphaTablets, a novel and versatile 3D plane representation. AlphaT-
ablets use rectangles with alpha channels to represent 3D planes, allowing for flexible and effective
arbitrary 3D plane modeling. We derive a differentiable rasterization process for AlphaTablets to
enable efficient 3D-to-2D rendering. Building on this, we propose a novel bottom-up 3D planar
reconstruction pipeline from monocular video input. Leveraging the AlphaTablets representation,
along with carefully designed optimization and merging schemes, our pipeline can reconstruct highly
accurate and complete 3D planar surfaces in a generalizable manner. Experiments on the ScanNet
dataset demonstrate significant improvements over baseline methods, highlighting the potential of
AlphaTablets as a general representation for 3D planar surfaces.

9

Acknowledgement

This work was supported by Beijing Science and Technology plan project (Z231100005923029),
the Natural Science Foundation of China (Project Number 62332019) and Beijing Natural Science
Foundation (L222008).

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic

superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and
machine intelligence, 34(11):2274–2282, 2012.

[2] Samir Agarwala, Linyi Jin, Chris Rockwell, and David F Fouhey. Planeformers: From sparse view planes
to 3d reconstruction. In European Conference on Computer Vision, pages 192–209. Springer, 2022.

[3] Alberto Argiles, Javier Civera, and Luis Montesano. Dense multi-planar scene estimation from a sparse
set of images. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
4448–4454. IEEE, 2011.

[4] Caroline Baillard and Andrew Zisserman. Automatic reconstruction of piecewise planar models from
multiple views. In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (Cat. No PR00149), volume 2, pages 559–565. IEEE, 1999.

[5] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360:
Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5470–5479, 2022.

[6] Adrien Bartoli. A random sampling strategy for piecewise planar scene segmentation. Computer Vision
and Image Understanding, 105(1):42–59, 2007.

[7] Dorit Borrmann, Jan Elseberg, Kai Lingemann, and Andreas Nüchter. The 3d hough transform for plane
detection in point clouds: A review and a new accumulator design. 3D Research, 2(2):1–13, 2011.

[8] Zheng Chen, Qingan Yan, Huangying Zhan, Changjiang Cai, Xiangyu Xu, Yuzhong Huang, Weihan Wang,
Ziyue Feng, Lantao Liu, and Yi Xu. Planarnerf: Online learning of planar primitives with neural radiance
fields. arXiv preprint arXiv:2401.00871, 2023.

[9] Alejo Concha and Javier Civera. Dpptam: Dense piecewise planar tracking and mapping from a monocular
sequence. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5686–5693. IEEE, 2015.

[10] Alejo Concha, Muhammad Wajahat Hussain, Luis Montano, and Javier Civera. Manhattan and piecewise-
planar constraints for dense monocular mapping. In Robotics: Science and systems, 2014.

[11] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner.
Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5828–5839, 2017.

[12] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir Zamir. Omnidata: A scalable pipeline for
making multi-task mid-level vision datasets from 3d scans. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 10786–10796, 2021.

[13] Chen Feng, Yuichi Taguchi, and Vineet R Kamat. Fast plane extraction in organized point clouds using
agglomerative hierarchical clustering. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 6218–6225. IEEE, 2014.

[14] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[15] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and Richard Szeliski. Manhattan-world stereo. In
2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 1422–1429. IEEE, 2009.

[16] David Gallup, Jan-Michael Frahm, and Marc Pollefeys. Piecewise planar and non-planar stereo for urban
scene reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1418–1425. IEEE, 2010.

[17] Yiming Gao, Yan-Pei Cao, and Ying Shan. Surfelnerf: Neural surfel radiance fields for online photorealistic
reconstruction of indoor scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 108–118, 2023.

[18] Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d mesh
reconstruction and high-quality mesh rendering. arXiv preprint arXiv:2311.12775, 2023.

[19] Mu Hu, Wei Yin, Chi Zhang, Zhipeng Cai, Xiaoxiao Long, Hao Chen, Kaixuan Wang, Gang Yu, Chunhua
Shen, and Shaojie Shen. Metric3d v2: A versatile monocular geometric foundation model for zero-shot
metric depth and surface normal estimation. arXiv preprint arXiv:2404.15506, 2024.

[20] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for
geometrically accurate radiance fields. arXiv preprint arXiv:2403.17888, 2024.

[21] Jingwei Huang, Angela Dai, Leonidas J Guibas, and Matthias Nießner. 3dlite: towards commodity 3d
scanning for content creation. ACM Trans. Graph., 36(6):203–1, 2017.

[22] Linyi Jin, Shengyi Qian, Andrew Owens, and David F Fouhey. Planar surface reconstruction from sparse
views. In Proc. of the IEEE/CVF International Conference on Computer Vision, pages 12991–13000, 2021.

10

[23] Vladimir Kolmogorov and Ramin Zabin. What energy functions can be minimized via graph cuts? IEEE
transactions on pattern analysis and machine intelligence, 26(2):147–159, 2004.

[24] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular
primitives for high-performance differentiable rendering. ACM Transactions on Graphics (ToG), 39(6):1–
14, 2020.

[25] Zhi-Hao Lin, Wei-Chiu Ma, Hao-Yu Hsu, Yu-Chiang Frank Wang, and Shenlong Wang. Neurmips: Neural
mixture of planar experts for view synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15702–15712, 2022.

[26] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and Jan Kautz. Planercnn: 3d plane detection and
reconstruction from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4450–4459, 2019.

[27] Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, and Yasutaka Furukawa. Planenet: Piece-wise planar
reconstruction from a single rgb image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2579–2588, 2018.

[28] Jiachen Liu, Pan Ji, Nitin Bansal, Changjiang Cai, Qingan Yan, Xiaolei Huang, and Yi Xu. Planemvs: 3d
plane reconstruction from multi-view stereo. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8665–8675, 2022.

[29] Xiaoxiao Long, Lingjie Liu, Wei Li, Christian Theobalt, and Wenping Wang. Multi-view depth estimation
using epipolar spatio-temporal networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8258–8267, 2021.

[30] Hannes Möls, Kailai Li, and Uwe D Hanebeck. Highly parallelizable plane extraction for organized point
clouds using spherical convex hulls. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 7920–7926. IEEE, 2020.

[31] Zak Murez, Tarrence Van As, James Bartolozzi, Ayan Sinha, Vijay Badrinarayanan, and Andrew Rabi-
novich. Atlas: End-to-end 3d scene reconstruction from posed images. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16, pages 414–431.
Springer, 2020.

[32] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A system for
generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751, 2022.

[33] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 652–660, 2017.

[34] Yiming Qian and Yasutaka Furukawa. Learning pairwise inter-plane relations for piecewise planar
reconstruction. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part VII 16, pages 330–345. Springer, 2020.

[35] Carolina Raposo, Miguel Lourenço, Michel Antunes, and Joao Pedro Barreto. Plane-based odometry using
an rgb-d camera. In BMVC, volume 2, page 6, 2013.

[36] Renato F Salas-Moreno, Ben Glocken, Paul HJ Kelly, and Andrew J Davison. Dense planar slam. In 2014
IEEE international symposium on mixed and augmented reality (ISMAR), pages 157–164. IEEE, 2014.

[37] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient ransac for point-cloud shape detection. In
Computer graphics forum, volume 26, pages 214–226. Wiley Online Library, 2007.

[38] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4104–4113, 2016.

[39] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra: a
hybrid representation for high-resolution 3d shape synthesis. Advances in Neural Information Processing
Systems, 34:6087–6101, 2021.

[40] Jingjia Shi, Shuaifeng Zhi, and Kai Xu. Planerectr: Unified query learning for 3d plane recovery from
a single view. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9377–9386, 2023.

[41] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In Computer Vision–ECCV 2012: 12th European Conference on Computer
Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, pages 746–760. Springer, 2012.

[42] Sudipta Sinha, Drew Steedly, and Rick Szeliski. Piecewise planar stereo for image-based rendering. In
2009 International Conference on Computer Vision, pages 1881–1888, 2009.

[43] Christiane Sommer, Yumin Sun, Leonidas Guibas, Daniel Cremers, and Tolga Birdal. From planes to
corners: Multi-purpose primitive detection in unorganized 3d point clouds. IEEE Robotics and Automation
Letters, 5(2):1764–1771, 2020.

[44] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J Engel, Raul
Mur-Artal, Carl Ren, Shobhit Verma, et al. The replica dataset: A digital replica of indoor spaces. arXiv
preprint arXiv:1906.05797, 2019.

[45] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation of rgb-d
slam systems. In Proc. of the International Conference on Intelligent Robot Systems (IROS), Oct. 2012.

[46] Jiaming Sun, Yiming Xie, Linghao Chen, Xiaowei Zhou, and Hujun Bao. Neuralrecon: Real-time coherent
3d reconstruction from monocular video. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 15598–15607, 2021.

[47] Bin Tan, Nan Xue, Song Bai, Tianfu Wu, and Gui-Song Xia. Planetr: Structure-guided transformers for 3d
plane recovery. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

11

4186–4195, 2021.
[48] Bin Tan, Nan Xue, Tianfu Wu, and Gui-Song Xia. Nope-sac: Neural one-plane ransac for sparse-view

planar 3d reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
[49] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:

Learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint
arXiv:2106.10689, 2021.

[50] Yiming Xie, Matheus Gadelha, Fengting Yang, Xiaowei Zhou, and Huaizu Jiang. Planarrecon: Real-time
3d plane detection and reconstruction from posed monocular videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6219–6228, 2022.

[51] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich Neumann.
Point-nerf: Point-based neural radiance fields. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 5438–5448, 2022.

[52] Fengting Yang and Zihan Zhou. Recovering 3d planes from a single image via convolutional neural
networks. In Proceedings of the European Conference on Computer Vision (ECCV), pages 85–100, 2018.

[53] Shichao Yang and Sebastian Scherer. Monocular object and plane slam in structured environments. IEEE
Robotics and Automation Letters, 4(4):3145–3152, 2019.

[54] Zehao Yu, Jia Zheng, Dongze Lian, Zihan Zhou, and Shenghua Gao. Single-image piece-wise planar 3d
reconstruction via associative embedding. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1029–1037, 2019.

12

A Appendix

A.1 More Details of AlphaTablets Optimization

Update of up vector. Note that the tablet’s up vector should not be learned during the optimization
process. By considering the tablet’s motion as a rigid transformation, any in-plane rotation can be
accounted for by optimizing the texture and alpha values. However, we need to establish an update
rule for the up vector to keep the rigid transformation characteristics of the tablet. Our design is to
apply the same rotation to the up vector as the one applied to the normal vector during the update.
Given the normal vectors n and n′ (before and after the update), and the up vector u, we can acquire
the new up vector u′ by:

θr = n · n′, (12)

r = n× n′, (13)

K =

(
0 −r3 r2
r3 0 −r1
−r2 r1 0,

)
(14)

R = I cos θr +K sin θr + rrT (1− cos θr), (15)

u′ = Ru (16)

Merging Scheme. As explained in Section 3.3, we first construct a KD-tree to find the tablet
neighborhoods, and initialize a union-find data structure for all tablets. Here we actually use the unit
tablets, which are defined as the projections of all initial 3D tablets to the current tablets, to build
the KD-tree. In other words, we maintain the affiliations of initial and current tablets, and use the
updated initial tablets to perform the merging. The reason is that using 3D center point distances
among tablets with different 3D sizes is ambiguous. For example, a small tablet can have a smaller
center point distance than a non-adjacent small tablet, compared to a spatially adjacent big tablet.
Using the unit tablets with similar sizes, the neighboring adjacency can be easily determined by
checking the center point distances.

These unit tablets are used only because they have easily defined neighborhoods. Since the unit
tablets of one current tablet come from the projection on this tablet, they share the same surface
normal and adjacent positions. Thus, merging with unit tablets will definitely produce larger (or
the same) tablets than current tablets. After each merging, all the unit tablets are updated by the
projection onto the merged new tablets, and the merged new tablets are fed into the next optimization.

Using SLIC superpixel on ScanNet 1296x968 resolution image results in around 10k superpixels for
each keyframe, leading to a large number of initial tablets. To address the issue, We conduct an initial
merge process after AlphaTablets initialization. In practice, we find it is beneficial to the accuracy
and convergence speed. Table 5 shows the ablations of the initial merge.

Table 4: Ablation studies on initial merge.
Method F-score ↑ VOI ↓ RI ↑ SC ↑
w/o in-training merge and init merge 0.188 6.991 0.939 0.098
w/o in-training merge 0.438 5.171 0.941 0.138
w/o init merge 0.454 3.754 0.944 0.273
w/ all merge schemes 0.456 3.466 0.944 0.284

Weight Check Scheme. During the optimization process, there may be cases where some tablets
are nearly invisible from all viewpoints, yet they have a relatively large transparency value. In such
situations, these tablets should be removed. Additionally, there could be instances where certain
regions of a tablet are not visible from any viewpoint. In these cases, those specific regions of the
tablet should be excluded.

To address these scenarios, we designed a weight check mechanism: We perform a rasterization step
at all viewpoints and extract the points where the alpha blending weight exceeds a certain threshold
(we choose 0.3 in our implementation). We record the tablet index corresponding to each of these
points. Before the merging step, we perform the weight check by removing tablets with an excessively

13

low number of associated points. Furthermore, for each tablet, we recalculate its boundary based on
the texture map coordinate ranges of all the points associated with that tablet.

Tablet-camera assignment. We always maintain affiliations between the initial tablets and the
current (merged) tablets (as stated in Sec A.1), and we keep track of the camera index that initially
generated each initial tablet. When tablets are merged, we count the number of each camera index
corresponding to all affiliated initial tablets and assign the most frequently occurring camera to the
newly merged tablet.

A.2 Additional Implementation Details

Baselines. For 3D volume-based methods including Atlas, NeuralRecon, PlanarRecon, and Metric3D
with TSDF fusion, we followed PlanarRecon to use their enhanced version of Seq-RANSAC. We
refer to PlanarRecon for detailed descriptions. For point-based methods such as SuGaR, since
PlanarRecon’s Seq-RANSAC requires 3D TSDF volume as inputs and cannot be easily adapted to
points or meshes, we use the classical vanilla Seq-RANSAC, which iteratively applies RANSAC
to fit planes. Here we used Open3D plane RANSAC implementation for each iteration. The hyper-
parameters are carefully tuned for optimal performance. For the Metric3D baseline, We used the
official Metric3D v2 implementation and pre-trained weights (v2-g) running on each keyframe to get
depth maps, followed by TSDF fusion to fuse into 3D volume. Finally, PlanarRecon’s Seq-RANSAC
is applied to the 3D TSDF volume to get the planar results. We adopted the original implementation
for the SuGaR baseline, during the COLMAP pre-processing, we feed ground-truth camera poses
into the pipeline, which provides better initial sparse points. After optimization, SuGaR outputs the
mesh model, and we uniformly sampled 100k surface points and applied vanilla Seq-RANSAC on
top of sampled points to get the 3D planar results. Quantitative results for other baselines (Atlas,
NeuralRecon, PEAC, PlanarRecon) were taken from PlanerRecon.

Details of tablet properties. For pixel range (ru, rv), each tablet’s geometry is located in 3D space,
while its texture is stored in 2D. The pixel range represents the resolution at which the texture is
stored: it is derived directly from the range in the source image for initial tablets; for merged tablets,
the pixel range is calculated as the average of all corresponding initial tablets. The distance ratios
(λu, λv) establish the relationship between the 2D texture resolution and the 3D size of the tablet.
For initial tablets, the distance ratio is calculated by dividing the camera’s focal length by the average
initial distance of the tablet. For merged tablets, the distance ratio is the average of all corresponding
initial tablets’ ratios. The alpha channel of tablets is a learnable single-channel map with the same
shape as the texture map.

A.3 Additional Discussions

Different initialization for SuGaR baseline. We further experiment on our ablation subset to
compare the COLMAP initialization with Metric3D’s dense depth-based initialization similar to our
method. For Metric3D init, we use the same keyframes as our method and randomly sample a total
of 100,000 points as initial points. The results are shown in the table:

Table 5: Ablation studies on different initialization of SuGaR.
Method F-score ↑ VOI ↓ RI ↑ SC ↑
SuGaR+COLMAP Initialization 0.300 5.759 0.797 0.090
SuGaR+Metric3D Initialization 0.326 5.670 0.789 0.102
Ours 0.456 3.466 0.944 0.284

The ScanNet dataset presents significant challenges like numerous blurry and textureless regions,
which are especially problematic for Gaussian-based methods like SuGaR when reconstructing clear
geometry. Also, SuGaR heavily relies on COLMAP reconstruction to initialize, but the COLMAP
reconstruction on ScanNet is sometimes noisy, affecting the final performance. The Metric3D
initialization method does indeed enhance the reconstruction quality of SuGaR (as shown in Fig. 6),
but the overall reconstruction quality remains constrained, with noticeable jitter and challenges in
accurately delineating planar regions, leading to an inferior performance to our approach.

14

SuGaR with COLMAP Initialization SuGaR with Metric3D Initialization

Figure 6: Qualitative Comparison of Initialization Methods for SuGaR.

Breakdown of Time Budget. Below is a breakdown of the time budget for the optimization process
of a single scene:

Table 6: Breakdown of the time budget of a single scene.

Stage Task Time (s)
Initialization texture init 1517.38

geometry init 1672.57
Render pseudo mesh 10.39

rasterization 316.62
alpha composition 2.15

Loss Calculation photometric loss 1.07
depth loss 28.28
normal loss 102.44
distortion loss 5.90

Training backward 3347.83
Merge kd-tree,union-find set 96.41

geometric calculation 23.14
tablet projection 22.26
weight check 62.14

The merge and rendering pipeline is relatively efficient, while the initialization process (which
includes converting every superpixel to an initial tablet, and texture initialization) consumes a signifi-
cant amount of time. This is due to the current naive demonstration implementation, where tens of
thousands of Python loops are called, which can be improved to enable parallelized initialization in
future work. Furthermore, the NVDiffRast renders more than ten layers to perform alpha composition
every forward pass, but most of the scene’s structure is single-layered, resulting in a substantial back-
ward computation burden during training. We regard this as another potential area for considerable
optimization in the future work.

3D reconstruction accuracy. The difference in 3D accuracy (termed as Acc in Tab. 1 of the
main paper) between our method and PlanarRecon on the ScanNet dataset can be attributed to
several factors. First is the scope of reconstruction: PlanarRecon often only reconstructs large
planar regions. This allows for easier localization and high accuracy in these specific areas, but it
limits overall coverage and performance. Our method enables more comprehensive reconstruction,
including smaller planar regions, which can impact the accuracy metrics but provide a more complete
representation of the scene. Another is the ground-truth coverage: It is worth noting that the 3D
ground truth planes in ScanNet only partially cover the scene within the camera’s view. Even after

15

Ground-Truth Labels Ours (Accuracy)PlanarRecon

*Red area denotes low accuracy area, including many regions indeed exist but did not appear in the ground-truth.
*Red rectangles show regions reconstructed by our method but did not included by ground-truth.

Original Image

Figure 7: Demonstration of Insufficient Coverage of 3D Ground-Truth Labels: The 3D ground
truth labels only partially cover the range within the camera’s view. Most of the red regions in
the figure highlight this issue. While these uncovered areas reduce accuracy, they should not be
considered a negative outcome.

Training Stage

103

104

105

106

Ta
bl

et
 n

um
be

r (
Lo

g
Sc

al
e)

735157

44243

881 799
496 451

Tablets amount after every merge

Figure 8: Visualization of Tablet Count Evolution.

excluding areas too distant to be relevant using the camera frustum, significant portions remain
uncovered. PlanarRecon learns to exclude distant reconstructions during its training stage, leading to
improved accuracy metrics. Our method, however, is capable of identifying planar regions for all
visible areas (evident in Fig. 7 where most of the red regions highlight this phenomenon). While
these uncovered areas affect the evaluation accuracy, they should not necessarily be considered a
negative outcome. Our method provides a more complete reconstruction of the scene, including areas
not represented in the ground truth data.

Tablet count evolution. We demonstrate the tablet count evolution of a single scene in Fig. 8. The
number of tablets decreases rapidly in the early merging stages and gradually converges into several
hundred. Notably, the final tablets contain a large portion of small tablets representing non-planar
regions, while the primary planar scene structure is adequately represented with fewer tablets.

A.4 Additional Qualitative Results

We provide more qualitative results in Fig. 10 and Fig. 11.

A.5 Broader Impacts

3D planar reconstruction and editing have the potential to revolutionize numerous fields such as
entertainment, media, accessibility, manufacturing, etc, by enhancing visualization, interaction, and

16

Naive Anti-aliasing Our Tablet Anti-aliasing

Figure 9: Qualitative comparison of our tablet anti-aliasing scheme. Naive anti-aliasing will lead
to wrong strip artifacts, while our anti-aliasing scheme effectively mitigates those artifacts.

understanding. However, it may raise concerns about privacy and data security, necessitating robust
policies and safeguards.

17

Ours Ground TruthPlanarReconSuGaR + Seq-RANSACMetric3D + Seq-RANSAC

High

Low

High

Low

High

Low

Figure 10: More qualitative results on ScanNet. Error maps are included. Better viewed when
zoomed in.

Figure 11: More qualitative results on TUM-RGBD and Replica datasets.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 4.4 for limitation discussions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

19

Justification: This paper does not include or claim theoretical contributions or results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4.1 for implementation details about hyperparameters, optimization
settings, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

Answer: [No]
Justification: Our code will be released once the paper is public.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.1 for implementation details about hyperparameters, optimization
settings, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our evaluation is deterministic and too costly to calculate the statistical
significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 4.1 for running time and resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section A.5 for the broader impact discussion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers that produced the code package or dataset are properly
credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Related Works
	Method
	AlphaTablets: Representing 3D Planes with Semi-Transparent Rectangular Primitives
	Differentiable Rasterization
	A Bottom-up Planar Reconstruction Pipeline with AlphaTablets

	Experiments
	Evaluation on 3D Plane Detection and Reconstruction
	Ablation Studies
	Example Application: 3D Plane-based Scene Editing
	Limitations and Future Work

	Conclusion
	Appendix
	More Details of AlphaTablets Optimization
	Additional Implementation Details
	Additional Discussions
	Additional Qualitative Results
	Broader Impacts

