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Abstract

A recent study by De et al. (2022) shows that
large-scale representation learning through pre-
training on a public dataset significantly enhances
differentially private (DP) learning in downstream
tasks. To explain this, we consider a layer-peeled
model in representation learning, resulting in Neu-
ral Collapse (NC) phenomena. Within NC, we
establish that the misclassification error is inde-
pendent of dimension when the distance between
actual and ideal features is below a threshold. We
empirically evaluate feature quality in the last
layer under different pre-trained models, showing
that a more powerful pre-trained model improves
feature representation. Moreover, we show that
DP fine-tuning is less robust compared to non-DP
fine-tuning, especially with perturbations. Sup-
ported by theoretical analyses and experiments,
we suggest strategies like feature normalization
and dimension reduction methods such as PCA to
enhance DP fine-tuning robustness. Conducting
PCA on last-layer features significantly improves
testing accuracy.

1. Introduction
Recently, privately fine-tuning a publicly pre-trained model
with differential privacy (DP) has become the workhorse
of private deep learning. For example, De et al. (2022)
demonstrates that fine-tuning the last-layer of an ImageNet
pre-trained Wide-ResNet achieves an accuracy of 95.4%
on CIFAR-10 with (ϵ = 2.0, δ = 10−5)-DP, surpassing
the 67.0% accuracy from private training from scratch with
a three-layer convolutional neural network (Abadi et al.,
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2016). Additionally, Li et al. (2021); Yu et al. (2021) show
that pre-trained BERT (Devlin et al., 2018) and GPT-2 (Rad-
ford et al., 2018) models achieve near no-privacy utility
trade-off when fine-tuned for sentence classification and
generation tasks.

However, the empirical success of privately fine-tuning pre-
trained large models appears to defy the worst-case dimen-
sionality dependence in private learning problems — noisy
stochastic gradient descent (NoisySGD) requires adding
noise scaled to

√
p to each coordinate of the gradient in a

model with p parameters, rendering it infeasible for large
models with millions of parameters. This suggests that the
benefits of pre-training may help mitigate the dimension
dependency in NoisySGD. A recent work (Li et al., 2022)
makes a first attempt on this problem — they show that if
gradient magnitudes projected onto subspaces decay rapidly,
the empirical loss of NoisySGD becomes independent to the
model dimension. However, the exact behaviors of gradients
remain intractable to analyze theoretically, and it remains
uncertain whether the “dimension independence” property
is robust across different fine-tuning applications.

In this work, we explore private fine-tuning behaviors from
an alternative direction — we employ an representation of
pre-trained models using the Neural Collapse (NC) theory
(Papyan et al., 2020) and study the dimension dependence
in a specific private fine-tuning setup — fine-tuning only
the last layer of the pre-trained model, a benchmark method
in private fine-tuning.

Figure 1. The figure depicts the evolution of the feature layer out-
puts of a VGG-13 neural network when trained on CIFAR-10 with
three randomly selected classes. Each class is represented by a dis-
tinct color in the small blue sphere. As the training progresses, the
last-layer feature means collapse onto their corresponding classes.
Credit to Papyan et al. (2020).

To elaborate, Neural Collapse (Papyan et al., 2020; Fang
et al., 2021; He & Su, 2023) is a phenomenon observed in
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the late stage of training deep classifier neural networks. At
a high level, NC suggests that when a deep neural network is
trained on a K-class classification task, the last-layer feature
converges to K distinct points (see Figure 1 for K = 3).
This insight provides a novel characterization of deep model
behaviors, sparking numerous subsequent studies that delve
into this phenomenon (Masarczyk et al., 2023; Li et al.,
2023a).

To summarize, we aim to answer the following questions
about private learning under Neural Collapse.

1. When fine-tuning the last layer, what specific property
of the features of that layer is important to make private
learning dimension-independent?

2. How robust is this dimension-independence property
against perturbations?

1.1. Contributions of this paper

In essence, our contribution lies in correlating the perfor-
mance and robustness of privately fine-tuning with the re-
cently proposed Neural Collapse theory.

Theoretically, we identify a key structure of the last-layer
feature that leads to a dimension-independent misclassi-
fication error (using 0-1 loss) in noisy gradient descent
(NoisyGD). We formalize this structure through the feature
shift parameter β, which measures the ℓ∞-distance between
the actual last-layer features obtained from the pre-trained
model on a private set, and the ideal maximally separable
features posited by Neural Collapse theory. A smaller value
of β indicates a better representation of the last-layer feature.
We show that if the feature shift parameter β remains below
a certain threshold related to the model dimension p, the
sample complexity bound of achieving a γ misclassification
error is dimension-independent.

Empirically, we evaluate the feature shift vector β when fine-
tuning different transformers on CIFAR-10. Figure 2 plots
the distribution of per-class β when the pre-trained trans-
former is either the Vision Transformer (ViT) or ResNet-50.
Blue and green scatter plots represent the β values for each
sample from the two models, while purple and yellow scatter
plots denote the median β within each class. The median β
is centered around 0.10 for ViT and around 0.20 for ResNet-
50. The pre-trained ViT model is known to have better
feature representations than the ResNet-50 model. Our re-
sults show that: (1) β is bounded for the two pre-trained
models, with very few outliers, and (2) the better the pre-
trained model, the smaller the β. For example, ViT (with
β ≈ 0.1) outperforms ResNet-50 (with β ≈ 0.2) due to
its smaller shift parameter. We postpone the details of our
experiments to Section A.

Moreover, we study the robustness of the “dimension-
independence” property against various types of perturba-
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Figure 2. CIFAR-10. A figure depicting the feature shift parameter
β when fine-tuning different pre-trained models on CIFAR-10.
As observed, ViT performs better than ResNet-50, as the shift
parameter is much smaller. The feature shift vectors are quite
stochastic.

tions, including stochastic, adversarial, and offset pertur-
bations. Each perturbation type will alter the feature pre-
sentations, increasing β and potentially making the sample
complexity bound dimension-dependent. Notably, we find
that the adversarial perturbations impose a stricter limitation
on β, lowering the acceptable upper-bound threshold for β
from p−

1
2 to p−1, meaning that adversarial perturbations

are more fragile compared to other types of perturbations.

Moving forward, to mitigate the “non-robustness of
dimension-independency” issue under perturbations, we
propose solutions to enhance the robustness of NoisyGD.
We find out that releasing the mean of feature embeddings
effectively neutralizes offset perturbation (detailed in Sec-
tion 4.2), and dimension reduction techniques like PCA
(detailed in Section 4.1) reduce the constraint on the feature
shift parameter β, thus improve NoisyGD’s robustness. Our
theoretical results shed light on the recent success of private
fine-tuning. Specifically, our analysis on PCA provides a
plausible explanation for the effectiveness of employing
DP-PCA in the first private deep learning work (Abadi et al.,
2016).

We summarize our contributions below:

• We present a direct analysis of the misclassification
error (on population) under 0-1 loss. Existing analyses
of the excess risk on population (Bassily et al., 2014;
2019; 2020; Feldman et al., 2020) mainly focus on
the excess risk under convex surrogate loss, leading to
sample complexity bounds (inverse) polynomial in the
required excess risk. We show that Neural Collapse
theory allows us to directly bound 0-1 loss, which
results in a logarithmic sample complexity bound in
the misclassification error γ.
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• We introduce a feature shift parameter β to measure
the discrepancy between actual and ideal last-layer
features. Our theoretical findings show that this feature
structure is crucial to guarantee NoisyGD’s resistance
to dimension dependence. In particular, when β ≤
p−

1
2 , the sample complexity for NoisyGD becomes

O(log(1/γ)), which is dimension-independent. We
also provide an empirical evaluation of this feature shift
parameter β on CIFAR-10 using ImageNet pre-trained
vision transformer and ResNet-50, which shows that
the vision transformer outperforms ResNet-50 as it
leads to a smaller β.

• We theoretically analyze the misclassification error and
robustness of NoisyGD against several types of pertur-
bations and class-imbalanced scenarios, with sample
complexity bounds summarized in Table 1.

• We empirically validate our theoretical findings on
private fine-tuning vision models. We show that pri-
vately fine-tuning an ImageNet pre-trained vision trans-
former is not affected by the last-layer dimension on
CIFAR-10. However, we observe a degradation in the
utility-dimension trade-off when a minor perturbation
is introduced, aligning with our theoretical results.

• We propose two solutions to address the non-robustness
challenges in DP fine-tuning with theoretical insights.
In particular, we empirically apply PCA on the per-
turbed last-layer feature before private fine-tuning,
demonstrating that the utility of NoisySGD remains un-
affected by the original feature dimension. We believe
these results will provide new insights into enhancing
the robustness of private fine-tuning.

Feature Sample Complexity

Perfect Neural Collapse 2
√

log(1/γ)
√
ρ

GD pβ2 log 1
γ

NoisyGD pβ2 log 1
γ +

pβ2
√

log(1/γ)√
2ρ

stochastic (test) max{√pβ,1}
√

log(1/γ)√
2ρ

adversarial (test) max{pβ,1}
√

log(1/γ)√
2ρ

offset (training) max{√pβ,1}
√

log(1/γ)√
2ρ

offset + Class imbalance max{√pβ,1}
√

log(1/γ)

(1−β+2βα)
√
2ρ

Table 1. Summary of the sample complexity of achieving a misclas-
sification error γ of private learning under ρ-zCDP. We consider
perfect features, actual features (GD and NoisyGD), and perturbed
features (stochastic, adversarial, offset perturbations). For the ac-
tual features, we assume that the feature shift vectors of traing
and testing features are from the same distribution. We have also
considered the effects of α-class imbalance. The full version can
be found in Table 2 in Appendix.

2. Preliminaries and Problem Setup
In this section, we review the private fine-tuning literature,
introduce the Neural Collapse phenomenon, and formally
describe the private fine-tuning problem under (approxi-
mate) Neural Collapse.

Symbols and notations. Let the data space be Z . A
dataset D is a set of individual data points {z1, z2, ...} where
zi ∈ Z . Unless otherwise specified, the size of the data
|D| := n. Z = X × Y where X is the feature space and
Y the label space with X ⊂ Rp and Y = {1, 2, ...,K}. A
data point zi is a feature-label pair (xi, yi). Occasionally,
we overload yi to also denote the one-hot representation of
the label. We use standard probability notations, e.g., Pr[·]
and E[·] for probabilities and expectations. Other notations
will be introduced when they first appear.

Differentially private learning. The general setting of
interest is differentially private learning where the goal is to
train a classifier while satisfying a mathematical definition
of privacy known as differential privacy (Dwork, 2006). DP
ensures that any individual training data point cannot be
identified using the trained model and any additional side
information. More formally, we adopt the popular mod-
ern variant called zero-centered Concentrated Differential
Privacy (zCDP), as defined below.

Definition 2.1 (Zero-Concentrated Differential Privacy,
zCDP, Bun & Steinke (2016)). Two datasets D0,D1 are
neighbors if they can be constructed from each other by
adding or removing one data point. A randomized mech-
anism A satisfies ρ-zero-concentrated differentially pri-
vate (ρ-zCDP) if, for all neighboring datasets D0 and D1,
we have Rα(A(D0)∥A(D1)) ≤ ρα, where Rα(P∥Q) =

1
α−1 log

∫ (p(x)
q(x)

)α
q(x)dx is the Rényi divergence between

two distributions P and Q.

In the above definition, ρ ≥ 0 is the privacy loss parameter
that measures the strength of the protection. ρ = 0 indicates
perfect privacy, ρ = ∞ means no protection at all.

The goal of differentially private learning is to come up with
a differentially private (ρ-zCDP) algorithms that outputs
a classifier f : X → Y such that the misclassification
error Err(f) = E(x,y)∼P [1(f(x) ̸= y)] is minimized (in
expectation or with high probability), where P is the data
distribution under which the training data is sampled from
i.i.d. For reasons that will become clear soon, we will focus
on linear classifiers parameterized by W ∈ RK×p of the
form fW (x) = argmaxy∈[K][Wx]y.

Noisy gradient descent. Noisy Gradient Descent or its
stochastic version Noisy Stochastic Gradient Descent (Song
et al., 2013; Abadi et al., 2016) is a fundamental algorithm
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in DP deep learning. To minimize the loss function L(θ) :=∑n
i=1 ℓ(θ, zi), the NoisyGD algorithm updates the model

parameter θt by combining the gradient with an isotropic
Gaussian.

θt+1 = θt − ηt

(
n∑

i=1

∇ℓ(θt, zi) +N
(
0,

G2

2ρ
Ip

))
. (1)

Here G is the ℓ2-sensitivity of the gradient, and the algo-
rithm runs for T iterations that satisfy Tρ-zCDP.

However, the excess risk on population of NoisySGD must
grow as

√
p/ϵ (Bassily et al., 2014; 2019), which limits pri-

vate deep learning benefit from model scales. To overcome
this, DP fine-tuning (De et al., 2022; Li et al., 2021; Bu
et al., 2022) is emerging as a promising approach to train
large models with privacy guarantee.

Private fine-tuning. In DP fine-tuning, we begin by pre-
training a model on a public dataset and then privately fine-
tuning the pre-trained model on the private dataset. Our
focus is on fine-tuning the last layer of pre-trained models
using the NoisySGD/NoisyGD algorithm, which has con-
sistently achieved state-of-the-art results across both vision
and language classification tasks (De et al., 2022; Tramer
& Boneh, 2020; Bao et al., 2023). However, we acknowl-
edge that in some scenarios, fine-tuning all layers under
DP can result in better performance, as demonstrated in the
CIFAR-10 task by De et al. (2022). The comprehensive anal-
ysis of dimension-dependence in other private fine-tuning
benchmarks remains an area for future investigation.

Theoretical setup for private fine-tuning. For a K-class
classification task, we rewrite each data point z as z = (x, y)
with x ∈ Rp being the feature and y = (y1, · · · , yK) ∈
{0, 1}K being the corresponding label generated by the one-
hot encoding, that is y belongs to the k-th class if yk = 1
and yj = 0 for j ̸= k.

When applying NoisyGD for fine-tuning the last-layer pa-
rameters, the model is in a linear form. Thus, we consider
the linear model fW (x) = Wx with W ∈ RK×p being
the last-layer parameter to be trained and x is the last layer
feature of a data point. The parameter θt in NoisyGD is
the vectorization of W . Let ℓ : RK × RK → R be a
loss function that maps fW (x) ∈ RK and the label y to
ℓ(fW (x), y). For example, for the cross-entropy loss, we
have ℓ(fW (x), y) = −

∑K
i=1 yi log[(fW (x))i].

Misclassification error. For an output Ŵ and a testing
data point (x, y), the misclassification error we considered is
defined as Pr

[
y ̸= f

Ŵ
(x)
]
, where the probability is taken

with respect to the randomness of Ŵ and (x, y) ∼ P.

Beyond the distribution-free theory. Distribution-free
learning with differential privacy is however known to be
statistically intractable even for linear classification in 1-
dimension (Chaudhuri & Hsu, 2011; Bun et al., 2015; Wang
et al., 2016). Existing work resorts to either proving re-
sults about (convex and Lipschitz) surrogate losses (Bassily
et al., 2014) or making assumptions on the data distribution
(Chaudhuri & Hsu, 2011; Bun et al., 2020). For example,
Chaudhuri & Hsu (2011) assumes bounded density, and
Bun et al. (2020) shows that linear classifiers are privately
learnable if the distribution satisfies a large-margin condi-
tion. Our setting, as detailed in Section 3.1.1, can be viewed
as a new family of distributional assumptions motivated by
the recent discovery of the Neural Collapse phenomenon.
As we will see, these assumptions not only make private
learning statistically and computationally tractable (using
NoisyGD), but also produce sample complexity bounds that
are dimension-free and exponentially faster than existing
results that are applicable to our setting.

Neural Collapse. Neural Collapse (Papyan et al., 2020;
Fang et al., 2021; He & Su, 2023) describes a phenomenon
about the last-layer feature structure obtained when a deep
classifier neural network converges. It demonstrates that the
last-layer feature converges to the column of an equiangular
tight frame (ETF). Mathematically, an ETF is a matrix

M =

√
K

K − 1
P

(
IK − 1

K
1K1T

K

)
∈ Rp×K , (2)

where P = [P1, · · · , PK ] ∈ Rp×K is a partial orthogonal
matrix such that PTP = IK . For a given dimension d = p
or K, we denote Id ∈ Rd the identity matrix and denote
1d = [1, · · · , 1]T ∈ Rd. Rewrite M = [M1, · · · ,MK ]
with Mk being the k-th column of M , that is, the ideal
feature of the data belonging to class k.

We adopt the Neural Collapse theory to describe an ideal
feature representation of applying the pre-trained model
on the private set. However, achieving perfect collapse on
the private set is an ambitious assumption, as in practice,
the private feature of a given class is distributed around
Mk. Therefore, we introduce a feature shift parameter β to
measure the discrepancy between the actual feature and the
perfect feature Mk.
Definition 2.2 (Feature shift parameter β). For any 1 ≤
k ≤ K, given a feature x belonging to the k-th class and
the perfect feature Mk, we define β = ||x−Mk||∞ as the
feature shift parameter of x that measures the ℓ∞ distance
between x and Mk.

Here, we use the ℓ∞ norm since it is related to adversarial
attacks, which are important in our study of the robustness
of NoisyGD. Our numerical results in Figure 2 show that
β is bounded on CIFAR-10 if the pretrained model is the
vision transformer or ResNet-50.
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3. Bounds on misclassification errors and
robustness in private fine-tuning

In this section, we establish bounds on the misclassification
error for both GD and the NoisyGD .

Section 3.1 aims to delineate the connection between the
feature shift parameter β and the misclassification error.
Additionally, we derive a threshold for β below which the
misclassification error is dimension-independent.

In Section 3.2, our focus is the robustness of private fine-
tuning. Specifically, we elucidate how various perturbations
impact both β and the misclassification error.

3.1. Bounds on misclassification errors

We consider a binary classification problem with a training
set {(xi, yi)}ni=1, where xi represents features and yi ∈
{±1} are the labels. For the broader multi-class scenarios,
we state our theory for the perfect case in Section F.1. The
rest theory can be extended to the multi-class case similarly.

For binary classification problems, the ETF M = [M1,M2]
satisfies M1 = −M2, which is equivalent to M1 = e1 and
M2 = −e1 up to some rotation map (detailed in Appendix
B). For a data point (x, y) with y = 1, recall the feature
shift parameter β = ∥x− e1∥∞, which is the infinity norm
of v = x − e1. We call v a feature shift vector since it
is the difference between an actual feature and the perfect
one. Similarly, if y = −1, the feature shift vector is v =
x + e1. For a training set {(xi, yi)}ni=1, let {vi = xi −
perfect feature}ni=1 be a sequence of feature shift vectors.

We first consider the scenario where the shift vectors vi’s are
i.i.d. copies of a symmetric centered random vector v with
∥v∥∞ ≤ β in Section 3.1.1. This setting is quite practical
as can be seen from Figure 1. Furthermore, acknowledging
that at times, the feature may be influenced by a fixed vector,
such as an offset shift vector which will not change the
margin and angles between features, we also investigated
the case where vi is deterministic in Section 3.1.2.

3.1.1. STOCHASTIC SHIFT VECTORS

For conciseness, we mainly focus on the results for 1-
iteration NoisyGD, which is sufficient to ensure the con-
vergence. As presented in Theorem C.1, our theory can be
extended to multi-iteration projected NoisyGD. However,
the dimension dependency can not be mitigated using mul-
tiple iterations. The proofs of all results in this section are
given in Appendix C.

For 1-iteration GD without DP guarantee, the output is
θ̂GD = η

∑n
i=1 yixi. Moreover, the 1-iteration NoisyGD

outputs θ̂NoisyGD = η
∑n

i=1 yixi + N (0, η2σ2). For the
private learning problem, the sensitivity of the gradient is

G = supxi
∥xi∥2 =

√
1 + β2p, which is dimension depen-

dent. If we still want G to be dimension independent, then
every data point needs to be shrunk to (e1+v)/

√
1 + ∥v∥22.

In both cases, the error bounds remain the same. In the test-
ing procedure, we consider a testing point (x, y) ∼ P.

For an estimate θ̂ whose randomness is from a
training dataset drawn independently from P and
a randomized algorithm A, the misclassification er-
ror EA,data∼Pn [ErrP(A(data))] can be rewritten as

EA,data∼Pn [ErrP(A(data))] = Pr
[
yθ̂Tx < 0

]
, where the

probability is taken with respect to the randomness of both
(x, y) ∼ P and θ̂.

Theorem 3.1 (misclassification error for GD). Let θ̂GD be
a predictor trained by GD under the cross entropy loss with
zero initialization. Then, we have the following error bound
on the misclassification error.

• If we assume that β2p ≤ 1, then it holds Pr[yθ̂TGDx <
0] = 0 for n greater than the number of classes. As
a result, to achieve a misclassification error γ, the
sample complexity is constant.

• In general, if we assume that the sample is i.i.d., then
the misclassification error is bounded as Pr[yθ̂TGDx <

0] ≤ exp

(
− n

2(β4p2+ 1
3β

2p)

)
. Therefore, to achieve

a misclassification error γ, the sample complexity is
O
(
pβ2 log(1/γ)

)
. If we further assume that all p com-

ponents of v are independent of each other, then, it

holds Pr[yθ̂TGDx < 0] ≤ exp

(
− n

2(β4p+ 1
3β

2)

)
. Thus,

to achieve a misclassification error γ, the sample com-
plexity is O

(
pβ4 log(1/γ)

)
.

Theorem 3.2 (misclassification error for NoisyGD). Let
θ̂NoisyGD be a predictor trained by NoisyGD under the cross
entropy loss with zero initialization. Then, we have the
following error bound on the misclassification error.

Pr
[
yθ̂TNoisyGDx < 0

]
≤ exp

(
− n2ρ

2(1 + β2p)2

)
+exp

(
− n

8
(
β4p2 + 1

3β
2p
)) . (3)

As a result, to achieve a misclassification error γ, the sample

complexity is O

(
(1+β2p)2

√
log 1

γ

2ρ + pβ2 log(1/γ)

)
. If we

further assume that all p components of v are independent
of each other, then, it holds

Pr
[
yθ̂TNoisyGDx < 0

]
≤ exp

(
− n2ρ

2(1 + β2p)2

)
+exp

(
− n

8
(
β4p+ 1

3β
2
)) .
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To achieve a misclassification error γ, the sample complexity

is O

(
(1+β2p)2

√
log 1

γ

2ρ + 4pβ4 log 1
γ

)
.

Remark. Note that with further assumptions on feature
separability, the second term in Equation 3 (which aligns
with GD in Theorem 3.1) can be improved from β2p to β4p.
However, the first term, caused by DP, remains unchanged
by this assumption. Thus, NoisyGD has a stricter require-
ment on feature quality due to the added random noise. The-
orems 3.1 and 3.2 indicate that the error bound is exponen-
tially close to 0 under the following conditions: β ≤ p−1/2

for both NoisyGD and GD and β ≤ p−1/4 for GD under
stronger assumptions. This result is dimension-independent
when β satisfies the above conditions. Moreover, GD has ro-
bustness against larger shift vectors compared to NoisyGD.
This aligns with the observations from our experiments de-
tailed in Section 5, where we note a significant decrease in
accuracy with increasing dimensionality. In addition, when
β ≤ p−1/2, the misclassification error for GD is always 0
while that for NoisyGD is exp

(
− nρ

1+β2p

)
.

Promising properties for perfect collapse. In the special
case β = 0, all features are equivalent to the perfect feature.
For this perfect scenario, numerous promising properties
are outlined as follows. The details are discussed in Section
F.1.

1. The error bound is exponentially close to 0 if ρ ≫
G2/n2 — very strong privacy and very strong utility
at the same time.

2. The result is dimension independent — it doesn’t de-
pend on the dimension p.

3. The result is robust to class imbalance for binary clas-
sification tasks.

4. The result is independent of the shape of the loss func-
tions. Logistic loss works, while square losses also
works.

5. The result does not require careful choice of learning
rate. Any learning rate works equally well.

3.1.2. DETERMINISTIC SHIFT VECTORS

We consider the case where each vi is a fixed vector with
∥vi∥∞ ≤ β. Recall that the 1-iteration NoisyGD outputs
θ̂NoisyGD = η (ne1 +

∑n
i=1 vi) +N (0, σ2).

Theorem 3.3 (misclassification error for NoisyGD). Let
θ̂NoisyGD be a predictor trained by NoisyGD under the
cross entropy loss with zero initialization. Then, for β
such that 1 − β2p > 0, we have Pr[yθ̂TNoisyGDx < 0] ≤

exp
(
−n2(1−β2p)2

(1+β2p)σ2

)
. As a result, to make the misclassifi-

cation error less than γ, the sample complexity for n is

O

(
(1+β2p) log 1

γ

2ρ(1−β2p)2

)
.

This misclassification error also corresponds to β2p, which
is similar to the stochastic case. When β2p < 1, the mis-
classification error decays exponentially and the misclassifi-
cation error is dimension-independent.

3.2. Robustness of NoisyGD under perturbations

In this section, we explore the robustness of NoisyGD
against various perturbation types. For the sake of brevity,
we focus on perturbations of the perfect feature (β = 0)
by different attackers. The theoretical framework can eas-
ily be extended to include perturbations of actual features,
following the same proof structure as outlined in Theorem
3.1 and Theorem 3.2. Our findings indicate that each men-
tioned perturbation type affects the feature shift parameter
β, potentially increasing NoisyGD’s dimension dependency.

3.2.1. STOCHASTIC ATTACKERS

Non-robustness to perturbations in the training time.
If the training feature is perturbed by some stochastic pertur-
bation (while the testing feature is perfect), then, the misclas-
sification error for GD is exp

(
−n2

β̃2

)
, which is dimension-

independent for any β̃ > 0. However, the sample com-

plexity for NoisyGD is O
(√

max{β̃2p,1} log(1/γ)
ρ

)
. Thus,

the NoisyGD is non-robust even when we only perturb the
training feature with attackers that make β̃ > p−1/2. We
postpone the details to Appendix D.2

Non-robustness to perturbations in the testing time. If
we only perturb the testing feature, then we still require

O

(
max{√pβ̃,1}

√
log(1/γ)√

2ρ

)
samples to achieve a misclassi-

fication error γ, which is still non-robust when β̃ > p−1/2.
The technical detail is similar to the proof of Theorem 3.2.

3.2.2. DETERMINISTIC ATTACKERS

Non robustness to offset perturbations in the training
time. Even if we just shift the training feature vectors
away by a constant offset (while keeping the same margin
and angle between features), it makes DP learning a lot
harder. Precisely, for some vector v ∈ Rp, we consider
vi = v for yi = 1 and vi = −v for yi = −1. Moreover,
this makes absolutely no difference to the gradient, when
we start from 0 because

∇L(θ) = n

2
· 0.5 · −(−e1 + v)+

n

2
· 0.5 · (e1 + v) =

n

2
e1.
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Thus, for GD, the misclassification error is always 0. If
all we know is that ∥v∥∞ ≤ β̃, the sample complex-
ity for making the classification error less than γ will be

O

(
max{pβ̃2,1}

√
log(1/γ)

√
ρ

)
. The details are given in Ap-

pendix D.1.

Non-robustness to class imbalance. Note that in the
above case, it is quite a coincidence that v gets cancelled out
in the non-private gradient. When the class is not balanced,
the offset v will be part of the gradient that overwhelms the
signal. Consider the case where we have αn data points
with label −1 and (1 − α)n data points with label 1 for
α ̸= 0.5, and we start at 0, then ∇L(θ) = n

2 e1+
(1−2α)n

2 v.
If we allow the perturbation v to be adversarially chosen,
then there exists v satisfying ∥v∥∞ ≤ β̃ such that the sam-
ple complexity bound to achieve a misclassification error γ

is O

(
max{√pβ̃,1}

√
log 1

γ√
(1−β̃+2β̃α)2·ρ

)
.

Non-robustness to adversarial perturbations in the test-
ing time. When vi = 0 and ∥v∥∞ ≤ β, that is, we
only consider perturbations in the testing time, if we al-
low the perturbation v to be adversarially chosen, then
there exists v satisfying ∥v∥∞ ≤ β̃ such that the sam-
ple complexity bound to achieve misclassification rate γ

is O
(

Gmax{pβ̃,1}
√

log(1/γ)√
2ρ

)
. One may refer to Appendix

E.2 for the detail.

4. Solutions for non-robustness issues
In this section, we will explore various solutions for en-
hancing the robustness of NoisyGD. To deal with random
perturbations, we suggest performing dimension reduction
to reduce the feature shift parameter β, as detailed in Sec-
tion 4.1. For offset perturbations, we will consider feature
normalization to cancel out the perturbation, as discussed
in Section 4.2. The proof of this section can be found in
Appendix G.

4.1. Mitigating random perturbation: dimension
reduction

In Abadi et al. (2016), dimension reduction methods, such
as DP-PCA, were employed to enhance the performance of
deep models. In this section, we demonstrate that applying
PCA to the private features effectively improves robust-
ness against random perturbations. Since we have a public
dataset for pre-training a model, we consider performing
dimension reduction with this public dataset. Similar to
the PCA method, Pinto et al. (2024); Nguyen et al. (2020)
demonstrate that DP learning also achieves dimension-free
learning bounds on 0-1 losses by applying random projec-

tions or a transformation matrix to the features.

To perform dimension reduction, our goal is to generate a
projection matrix P̂ = [P̂1, . . . , P̂K−1] ∈ Rp×(K−1) and
train with the dataset (x̃i = P̂ xi, yi)

n

i=1. It is obvious that
the “best projection” is one where the space spanned by P̂
matches the space spanned by {Mi}Ki=1, with Mi being the
perfect feature of the i-th class (the i-th column of an ETF).

In practice, it is not possible to obtain {Mi}Ki=1 directly, and
P̂ needs to be generated using another dataset {(x̂i, ŷi)}mi=1.

Recalling the binary classification problem with a training
set {(xi, yi)}ni=1 and vi as the feature shift vector of xi, as
discussed in Section 3.2, even in the case of class balance,
the accuracy is not robust when β2 ≥ 1/p. Consider a pro-
jection vector P̂ = e1 +∆ with ∆ satisfying ∥∆∥∞ ≤ β0.
The following theorem shows that for ββ0 < 1

p , the mis-
classification error decays exponentially and is dimension-
independent.
Theorem 4.1. For the NoisyGD trained with {(x̃i, yi)}ni=1,
the sample complexity to achieve a misclassification error

γ is n = O

(√
G2

β,β0,p log 2
γ

Mβ,β0,pρ

)
with Gβ,β0,p = 1 + β(1 +

β0+pβ0) and Mβ,β0,p = (1−β0)
2−pββ0− (1+β0)(β+

β0p)− (β + β0p)(1 + β + β0 + ββ0p).

Theorem 4.1 suggests that dimension reduction can relax the
requirement from β2p ≤ 1 to ββ0p ≤ 1. Thus, dimension
reduction can enhance robustness whenever β0 < β. Typ-
ically, β0 is relatively small and tends to 0 as m increases.
The next question is how to construct the projection ma-
trix P̂ = [P̂1, · · · , P̂K−1] ∈ Rp×(K−1). We introduce the
follwoing two methods.

Principle component analysis. Let {P̂j}K−1
j=1 be the the

eigenvectors corresponding to K − 1 largest eigenvalues of
Σ̂ = 1

m

∑m
i=1 x̂ix̂

T
i . For the binary case (K = 2), we have

Σ̂ converges to Σ = e1e
T
1 + β̂2Ip for some constant β̂. Note

that the eigenvector corresponding to the largest eigenvalue
of Σ is the perfect feature e1. As β0 is the infinity norm
of ∆, we use a bound on the infinity norm of eigenvectors
(Fan et al., 2017). We state the results for K = 2 that can
be extended to K > 2. Precisely, for K = 2, let P̂ be the
eigenvector of 1

m

∑m
i=1 x̂ix̂

T
i that corresponds to the largest

eigenvalue. Then, it holds β0 = ∥P̂ − e1∥∞ ≤ O
(

1√
m

)
with probability O

(
pe−m2

)
.

Releasing the mean of features. Let Xk = {x̂i :

ŷi belongs to the k-th class}. Let P̂k = 1
mk

∑
x̂i∈Xk

x̂i

with mk being the size of Xk. Then, we have ∆ =
P̂k −Mk = 1

mk

∑
x̂i∈Xk

x̂i. By the concentration inequal-

ity, we have β0 ≤ O
(

β̃√
mk

)
with probability pe−m2

k .
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4.2. Addressing offset perturbations: normalization

Recall the shift perturbation where, for xi ∈ Xk, we have
xi = M̃k := Mk + v with some fixed vector v.

To deal with the offset perturbation v, we pre-process the
feature as x̃i = xi − 1

n

∑n
j=1 xj . Then, if the class is

balanced, it holds x̃i = M̃k − 1
K

∑K
j=1 M̃j = Mk for

xi ∈ Xk. That is, the perturbations canceled out.

We still need to bound the sensitivity of the gradient when
training with {(x̃i, yi)}ni=1. If we delete arbitrary (xj , yj)
from the dataset, then for the case K = 2 with data balance,
the sensitivity of the gradient is G = n

n−1 ≤ 2, which is
upper bounded by a dimension-independent constant. The
sample complexity to achieve the misclassification error γ

is O
(√

log(1/γ)
√
ρ

)
, which is dimension independent.

Note that this normalization method is not robust to class
imbalance. In fact, if we consider the class imbalanced case
with which we have αn data points with label +1 and the
rest (1 − α)n data points with label −1 for some α > 0,
then we have x̃i = 2(1− α)e1 for yi = 1 and x̃i = −2αe1
for yi = −1. In this class-imbalance case, one can recover
the feature embedding e1 and −e1 by considering x̃i

∥x̃i∥2
.

However, in this case, the sensitivity remains a constant Gα

which, although independent of the dimension p, still relies
on α.

5. Experiments
In this section, we will conduct three sets of experiments
to validate our theoretical analysis in Section 3 and Section
4. The first experiment, outlined in Section 5.1, focuses
on the synthetic perfect neural collapse scenario. In the
second experiment, detailed in Section 5.2, we empirically
investigate the behavior of NoisySGD (with fine-tuning the
last layer) under different robustness settings and demon-
strate that NoisySGD is “almost” dimension-independent,
but this “dimension-independency” is not robust to minor
perturbations in the last-layer feature. In the last experiment,
discussed in Section 5.3, we demonstrate that dimension
reduction methods such as PCA effectively enhance the
robustness of NoisySGD.

5.1. Fine-tune NoisyGD with synthetic neural collapse
feature

We first generate a synthetic data matrix X ∈ Rn×d with
feature dimension d under perfect neural collapse. The
number of classes K is 10 and the sample size is n = 104.
In the default setting, we assume each class draws n/K
data from a column of K-ETF, the training starts from a
zero weight θ and the testing data are drawn from the same
distribution as X . The Gaussian noise is selected such that

the NoisyGD is (1, 10−4)-DP.

In Figure 3(a), we observe that an imbalanced class alone
does not affect the utility. However, NoisyGD becomes non-
robust to class imbalance when combined with a private
feature offset with ||ν||∞ = 0.1. Additionally, it is non-
robust to perturbed test data with ||ν||∞ = 0.1.

5.2. Fine-tune NoisySGD with real datasets

In this section, we empirically investigate the non-
robustness of neural collapse using real datatsets.

Precisely, we fine-tune NoisySGD with the ImageNet pre-
trained vision transformer (Dosovitskiy et al., 2020) on
CIFAR-10 for 10 epochs. Test features in the perturb setting
are subjected to Gaussian noise with a variance of 0.1. The
vision transformer produces a 768-dimensional feature for
each image. To simulate different feature dimensions, we
randomly sample a subset of coordinates or make copies of
the entire feature space.

In Figure 3(b), we observe that while perturbing the test-
ing features degrades the utility of both Linear SGD and
NoisySGD, Linear SGD is generally unaffected by the in-
creasing dimension. On the other hand, the accuracy of
NoisySGD deteriorates significantly as the dimension in-
creases.

5.3. Enhance NoisySGD’s robustness with PCA

In this experiment, we replicate the set up from Exp 5.2,
simulating different feature dimensions and injecting Gaus-
sian noise with a variance of 0.1 to perturb all dimensions of
both training and testing features. For simplicity, we apply
PCA to the covariance matrix of private feature instead of a
DP-PCA, followed by principal component projections on
both private and testing features prior to feed them into the
neural network. As discussed in Section 4.1, choosing K−1
largest eigenvalues is sufficient to improve the robustness
of NoisyGD. Therefore, we consider projecting features
onto the top k ∈ {10, 50, 100} components. Figure 4 shows
that the best utility of NoisyGD is achieved when k = 10,
aligning with our theoretical findings. Moreover, a larger
k = 100 fails to improve robustness, likely because the ad-
ditional 90 principal vectors contribute minimal information
and introduce further randomness to the training.

6. Discussions and future work
Most existing theory of DP-learning focuses on suboptimal-
ity in surrogate loss of testing data. Our paper studies 0-1
loss directly and observed very different behaviors under
perfect and near-perfect neural collapse. In particular, we
have log(1/error) sample complexity rather than 1/error
sample complexity. Our theoretical findings shed on light
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(a) Synthetic perfect NC feature X ∈ Rn×d with K =
10, n = 104 and (1.0, 10−4)-DP. In the default setting, we
assume each class draws |n/K| data from a column of K-ETF,
the training starts from a zero weight w and the testing data are
drawn from the same distribution as X .
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Linear SGD + perturbed test
NoisySGD ( = 2.0, = 10 5)
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(b) CIFAR-10: Test features in the perturb setting are sub-
jected to Gaussian noise with a variance of 0.1. The vision
transformer produces a 768-dimensional feature for each im-
age. To simulate different feature dimensions, we randomly
sample a subset of coordinates or make copies of the entire
feature space.

Figure 3. Empirical behaviors of NoisyGD under various robust-
ness setting.

that privacy theorists should look into structures of data and
how one can adapt to them. Additionally, our result suggests
a number of practical mitigations to make DP-learning more
robust in nearly neural collapse settings. It will be useful
to investigate whether the same tricks are useful for private
learning in general even without neural collapse. Moreover,
our results suggest that under neural collapse, choice of
loss functions (square loss vs CE loss) do not matter very
much for private learning. Square loss has the advantage of
having a fixed Hessian independent to the parameter, thus
making it easier to adapt to strong convexity parameters like
in AdaSSP (Wang, 2018). This is worth exploring.

NoisyGD and NoisySGD theory suggests that one needs
Ω(n2) time complexity to achieve optimal privacy-utility-
trade off in DP-ERM (faster algorithms exist but more com-
plex and they handle only some of the settings). Our results

102 103 104

 dimension d

70

75

80

85

90

95

Ac
c 

%

PCA project dim=10
PCA project dim=50
PCA project dim=100
original perturbed data

Figure 4. CIFAR-10. Apply PCA on both training and testing
features before NoisySGD: setting K − 1 principal components
improves NoisySGD’s robustness.

on the other hand, suggest that when there are structures
in the data, e.g., near-perfect neural collapse, the choice of
number of iterations is no longer important, thus making
computation easier.

Another perspective in our future study is to investigate
when NC will occur in transfer learning. The presence of
low-rank structures such as NC in representation learning
depends on the pre-trained dataset and the downstream task.
Based on our experiments, if the downstream task is CIFAR-
10, then ViT performs better than ResNet-50. As NC may
not consistently occur, we speculate that the collapse level
is more significant when the classes of the downstream task
closely resemble those of the pre-trained dataset. For in-
stance, NC may manifest when a model is pre-trained on a
broad category such as all animals, and the downstream task
involves classifying more specific sub-classes (e.g., differ-
ent breeds of dogs). This intuition needs further empirical
investigation with ample computational resources.

There is another important future topic to consider: what
if NC does not occur? When NC cannot be observed, we
conjecture that fine-tuning all layers under DP may lead to
some low-rank structure of the last layer (potentially induc-
ing some minor collapse phenomenon due to the random
noise introduced by DP). Whether NC can be observed af-
ter fine-tuning all layers under DP will be validated in our
future study.
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ential privacy. In Chaudhuri, K. and Salakhutdinov, R.
(eds.), Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 7634–7642. PMLR, 2019.

Zhu, Y., Dong, J., and Wang, Y. Optimal accounting of
differential privacy via characteristic function. In Camps-
Valls, G., Ruiz, F. J. R., and Valera, I. (eds.), International
Conference on Artificial Intelligence and Statistics, AIS-
TATS 2022, 28-30 March 2022, Virtual Event, volume
151 of Proceedings of Machine Learning Research, pp.
4782–4817. PMLR, 2022.

12



Neural Collapse meets Differential Privacy

A. Evaluate the feature shift vector
In this section, we empirically investigate the feature shift parameter β if the pre-trained transformer is the Vision Transformer
(ViT) or ResNet-50 and the fine-tuned dataset is CIFAR-10. The results are displayed in Figure 2 in the Introduction section.

Recall the feature shift parameter β = ∥x−Mk∥∞ that is the ℓ∞ distance between the feature x and the perfect feature
feature mean Mk of the class k. The perfect feature Mk is unknown, thus, we cannot compute the feature shift parameter
β = ∥x−Mk∥∞ exactly. However, we can approximate Mk by the empirical feature mean M̂k, which is the average of all
features in the k-th class. We use the following steps to evaluate β numerically.

• If cos(M̂i, M̂j) ≈ 1
K−1 for all 1 ≤ i, j ≤ K, then we may claim that NC happens and M̂k can be regarded as the

perfect feature (as implied by the maximal-equiangularity in equation 2).

• Suppose we have n data points with features {xi}ni=1. For xi in the k-th class, we empirically calculate ∥xi − M̂k∥∞
and plot their distribution.

To instantiate various β distributions, we consider two ImageNet pre-trained models (ResNet-50 and the vision transformer
(ViT) model). We apply two models to extract training features, applying standard feature normalizations (||x||2 = 1) and
evaluate their empirical β across all training samples.

Specifically, we first calculate the training feature mean per class M̂i for i ∈ [K] and evaluate the cosine matrix of
cos(M̂i, M̂j) for 1 ≤ i, j ≤ K. We found that all entries of the cosine matrix are close to 1/(K − 1) (roughly all entries
between [−0.2, 0.2] and the cosine median is 0.082 for the ViT model and 0.112 for the ResNet-50 model). Therefore, we
next evaluate ||x− M̂k||∞ for all training samples.

B. Additional preliminaries
Definition B.1 (Sample complexity for private D-learnability). For a set of distributions D, the sample complexity of
private D-learning a hypothesis class H under ρ-zCDP is defined to be

nH,D,ρ(γ) = min

{
n ∈ N

∣∣∣∣ inf
A satisfies ρ−zCDP

sup
P∈D

EA,data∼Pn

[
ErrP(A(data))− inf

h∈H
ErrP(h)

]
≤ γ

}

i.e., the smallest integer such that the minimax excess risk is smaller than γ.

We say D is learnable under ρ-zCDP if nH,D,ρ is finite, meaning there exists an algorithm A such that the expected excess
risk is smaller than γ with finitely many training data. It is obvious that the misclassification error defined above can be
written as EA,data∼Pn [ErrP(A(data))] as the randomness of Ŵ comes from the randomized algorithm A and the training
data. Since the second term infh∈H ErrP(h), which is the misclassification error of the optimal classifier, is non-negative,
the misclassification error is always larger than the excess risk. Thus, in Section 3, we investigate the convergence of the
misclassification error, which implies an upper bound on the excess risk as well.

NC for binary classification. For the binary classification problem, we have M1 = P1−P2√
2

, according to the definition of

an ETF in Eq. 2. Similarly, it holds that M2 = P2−P1√
2

. Thus, we have M1 = −M2 and ∥M1∥2 = ∥M2∥2 = 1. Since our
theory depends only on the norm of the feature means M1 and M2, and the angle between M1 and M2, while the rotation
matrix P will not change the misclassification error, without loss of generality, we assume that M1 = e1 and M2 = −e1.

C. Additional content about sample complexity in Section 3.1
In this section, we provide additional results for sample complexity in Section 3.1. We first provide a full version of the
sample complexity table in Table 2. Then, we discussed the extension of our results to multiple iterations in Section C.4.
We also provide the proofs of Section 3.1. Without loss of generality, we let vTi e1 = 0. Otherwise, by the orthogonal
decomposition, there is a constant c > 0 and a shift vector vi such that yixi = c(e1 + vi) and it is obvious that a scalar c
will not change the misclassification error based on our proof details.
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Setting Assumption Sample complexity
Non-private
learning with
GD

Perfect NC or β-approximate NC with β2p ≤ 1 No. of classes
β-approximate NC pβ2 log 1

γ

β-approximate NC (separability) pβ4 log 1
γ

Private
learning
(ρ-zCDP)
with
NoisyGD

Perfect NC 2
√

log(1/γ)
√
ρ

β-approximate NC pβ2 log 1
γ +

max{pβ2,1}
√

log(1/γ)√
2ρ

β-approximate NC (separability) pβ4 log 1
γ +

max{pβ2,1}
√

log(1/γ)√
2ρ

β̃-stochastic perturbation (test) max{√pβ̃,1}
√

log(1/γ)√
2ρ

β̃-adversarial perturbation (test) max{pβ̃,1}
√

log(1/γ)√
2ρ

β̃-offset perturbation (training) max{√pβ̃,1}
√

log(1/γ)√
2ρ

β̃-offset perturbation + α-Class imbalance max{√pβ̃,1}
√

log(1/γ)

(1−β̃+2β̃α)
√
2ρ

Table 2. Summary of the sample complexity of achieving a misclassification error γ of private learning under ρ-zCDP. We consider perfect
features, actual features (GD and NoisyGD), and perturbed features (stochastic, adversarial, offset perturbations). For the actual features,
we assume that the feature shift vectors of traing and testing features are from the same distribution. The separability assumption here is
that all p components of the feature shift vectors are independent. We have also considered the effects of α-class imbalance.

C.1. Proof of Theorem 3.1

The output of linear GD without DP guarantee is given by

θ̂ = η

n∑
i=1

yixi.

For a testing data point (x, y), without loss of generality, we consider y = 1 and x = e1 + v for some vector v. When v is
fixed, then, the misclassification error is 0 if 1− β2p > 0.

For vi being symmetric i.i.d. random vectors, since vTi e1 = 0 and vT e1 = 0, we have the misclassification error is given by

Pr
v,vi

−(ne1 − n∑
i=1

vi

)T

(e1 + v) > 0

 ≤ Pr

[
n∑

i=1

vTi v > n

]
.

Since |vTi v| ≤ β2p and E[(vTi v)2] ≤ β4p2, by a Bernstein-type inequality, we have

Pr

[
n∑

i=1

vTi v > n

]
= Ev Pr

[
n∑

i=1

vTi v > n

∣∣∣∣∣ v
]
≤ exp

(
− n2

2
(
β4np2 + 1

3β
2pn
)) .

Rewrite vi = (vji )
p
j=1 and v = (vj)pj=1 for vji , v

j ∈ [−β, β]. Note that |vji vj | ≤ β2 and E[(vji vj)2|vj ] ≤ β4. If we further
assume that and vji , 1 ≤ i ≤ n, 1 ≤ j ≤ p are independent random variables, then , by a Bernstein-type inequality, we have

Pr

[
n∑

i=1

vTi v > n

]
= Ev Pr

[
n∑

i=1

vTi v > n

∣∣∣∣∣ v
]
= Ev Pr

 n∑
i=1

p∑
j=1

vji v
j > n

∣∣∣∣∣∣ v


≤ exp

(
− n2

2
(
β4np+ 1

3β
2n
)) .
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C.2. Proof of Theorem 3.2

The output of NoisyGD is given by

θ̂NoisyGD = η

(
n∑

i=1

yixi +N (0, σ2I)

)
.

For a testing data x = e1 + v, we have

yθ̂TNoisyGDx = µn +N (0, η2∥x∥22σ2),

where µn = η(n+
∑n

i=1 v
T
i v).

By the law of total probability, we have

Pr[yθ̂TNoisyGDx < 0] =Pr
[
µn +N (0, η2∥x∥22σ2) < 0

]
=Pr

[
µn +N (0, η2∥x∥22σ2) < 0

∣∣∣∣ n∑
i=1

vTi v ≤ −n

2

]
· Pr

[
n∑

i=1

vTi v ≤ −n

2

]

+ Pr

[
µn +N (0, ∥x∥22σ2) < 0

∣∣∣∣ n∑
i=1

vTi v > −n

2

]
· Pr

[
n∑

i=1

vTi v > −n

2

]
.

For the first term, if
∑n

i=1 v
T
i v > −n

2 , we have µn ≥ ηn
2 . As a result, it holds

Pr

[
µn +N (0, ∥x∥22σ2) < 0

∣∣∣∣ n∑
i=1

vTi v > −n

2

]
≤ Pr

[
N (0, ∥x∥22σ2) < −n

2

∣∣∣∣ n∑
i=1

vTi v > −n

2

]

≤ exp

(
− n2

4∥x∥22σ2

)
≤ exp

(
− n2

4(1 + β2p)σ2

)
.

Thus, we have

Pr

[
µn +N (0, ∥x∥22σ2) < 0

∣∣∣∣ n∑
i=1

vTi v > −n

2

]
· Pr

[
n∑

i=1

vTi v > −n

2

]
≤ exp

(
− n2

4(1 + β2p)σ2

)
.

For the second term, similarly to the proof in Section C.1, we have

Pr

[
n∑

i=1

vTi v ≤ −n

2

]
≤ exp

(
− n2

2
(
β4np2 + 1

3β
2np
)) ,

or, under i.i.d. assumptions on the components of v, we have

Pr

[
n∑

i=1

vTi v ≤ −n

2

]
≤ exp

(
−n2

2
(
β4np+ 1

3β
2n
)) .

As a result, it holds

Pr

[
µn +N (0, ∥x∥22σ2) < 0

∣∣∣∣ n∑
i=1

vTi v ≤ −n

2

]
· Pr

[
n∑

i=1

vTi v ≤ −n

2

]
≤ exp

(
− n2

2
(
β4np2 + 1

3β
2np
)) ,

or, under further i.i.d. assumptions on the components of v, it holds

Pr

[
µn +N (0, ∥x∥22σ2) < 0

∣∣∣∣ n∑
i=1

vTi v ≤ −n

2

]
· Pr

[
n∑

i=1

vTi v ≤ −n

2

]
≤ exp

(
− n2

2
(
β4np+ 1

3β
2n
)) .
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Over all, we obtain

Pr[yθ̂TNoisyGDx < 0] ≤ exp

(
− n2

4(1 + β2p)σ2

)
+ exp

(
− −n2

2
(
β4np2 + 1

3β
2np
)) ,

or, under further i.i.d. assumptions on all p components of v, we obtain

Pr[yθ̂TNoisyGDx < 0] ≤ exp

(
− n2

4(1 + β2p)σ2

)
+ exp

(
− −n2

2
(
β4np+ 1

3β
2n
)) .

We finish the proof by noting that σ2 = (1 + β2p)/2ρ.

Let the misclassification error less than γ and we have

n = O

(
(1 + β2p)2 log 1

γ

2ρ
+ 4pβ2 log

1

γ

)
,

or, under further i.i.d. assumptions on all p components of v, we have

n = O

(
(1 + β2p)2 log 1

γ

2ρ
+ 4pβ4 log

1

γ

)
.

C.3. Proof of Theorem 3.3

The output of NoisyGD is given by

θ̂NoisyGD = η

(
n∑

i=1

yixi +N (0, σ2I)

)
.

For a testing data x = e1 + v, we have

yθ̂TNoisyGDx = η(µn + (e1 + v)T ξ),

where µn = n+
∑n

i=1 v
T
i v and ξ ∼ N (0, σ2I).

Since β2p < 1, we have

µn ≥ n(1− β2p) > 0.

Thus, we have

Pr
[
yθ̂TNoisyGDx < 0

]
≤ Pr

[
N (0, ∥x∥22σ2) > n(1− β2p)

]
≤ exp

(
−n2(1− β2p)2

(1 + β2p)σ2

)
.

C.4. Multiple iterations

For the multi-iteration case, we consider the projected NoisyGD to bound the parameters. Precisely, the output is defined
iteratively as

θk+1 = PBp
2 (0,R) (θk − η (gn(θk) + ξk)) , (4)

where Bp
2(0, R) ⊂ Rp is an ℓ2-norm ball with radius R, ξk ∼ N (0, σ2Ip), and PA is the projection onto a convex set A

w.r.t. the Euclidean inner product. Here we take σ2 = (1 + β2p)/2ρ and the overall privacy budget is kρ.

16



Neural Collapse meets Differential Privacy

Theorem C.1 (Multiple iterations). Let θk+1 be the output of projected NoisyGD defined in equation 4. For any t > 0, if we
take η = R

n(1+β2p)+(p+
√
pt+t)

, then, the misclassification error is

Pr
[
θTk+1(e1 + v) < 0

]
≤ exp

(
− n2

C2
p,kσ

2(1 + β2p)

)
+ ke−t,

where Cp,k = 1+2−k

1−2−k · 1−1/2
1+1/2 ·

(
1+eR(1+β2p)

)2

(1−β2p)2 and σ2 = (1 + β2p)/2ρ. Specifically, for t = n2 + log 1/k, we have

Pr
[
θTk+1(e1 + v) < 0

]
≤ O

(
e
− ρn2

(1+β2p)2

)
.

Remark. To make the projected NoisyGD converge exponentially, we still require β2 < 1
p .

Proof of Theorem C.1. Recall the loss function ℓ(θ, (x, y)) = log(1 + e−y·θT x). The gradient is then given by

g(θ, (x, y)) =
e−y·θT x

1 + e−y·θT x
(−yx).

Note that yx = e1 + v for y = 1 and yx = e1 − v for y = −1. For α = 1/2, we have

−gn(θ) := ∇L(θ) = n

2

[
1

1 + eθT (e1+v)
(e1 + v) +

1

1 + eθT (e1−v)
(e1 − v)

]
.

and

0 ≤ −gn(θ)
T e1 ≤ n(1− β)

2

for any θ ∈ Rp. To make the multi-iterations work, we need lower bound −gn(θ)
T e1 by a positive constant. Now we

consider the two-iteration GD.

θ2 = θ1 − η(gn(θ1) + ξ1), ξ1 ∼ N (0, σ2Ip).

Here θ1 = n
2 e1 + ξ0. Then, it holds

gn(θ1) =
n

2

[
e1 + v

1 + en/2+ξ0,1
+

e1 − v

1 + en/2−ξ0,1

]
To lower bound the gradient, we consider the projected iteration defined as

θk+1 = PBp
2 (0,R) (θk − η (gn(θk) + ξk)) ,

where Bp
2(0, R) ⊂ Rp is an ℓ2-norm ball with radius R, ξk ∼ N (0, σ2), and PA is the projection onto a convex set A w.r.t.

the Euclidean inner product.

Then we have

θTk+1(e1 + v) = cR,k (θk − η (gn(θk) + ξk))
T
(e1 + v),

where cR,k = min{R,∥θk−η(gn(θk)+ξk)∥2}
∥θk−η(gn(θk)+ξk)∥2

. Since

η ∥(gn(θk) + ξk)∥2 ≤ ηn(1 + β2p) + η∥ξk∥2,

it is enough to bound ∥ξk∥2. Note that ∥ξk∥22 is a χ2(p) distribution and one (cf., Laurent & Massart (2000)) has the tail
bound

Pr
[
η2∥ξk∥22 > η2(p+

√
pt+ t)

]
≤ e−t
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for any t > 0. Thus, by the union bound, we have

CR,k ≥ CR,p,t,η,n =
R

R+ ηn(1 + β2p) + η(p+
√
pt+ t)1/2

for any k ≥ 0 with probability ke−t. Since −gn(θk)
T (e1 + v) ≥ n 1−β2p

1+eR(1+β2p)
, it holds

θTk+1(e1 + v) ≥ CR,p,t,η,n

(
θTk (e1 + v) + nη

1− β2p

1 + eR(1+β2p)
− ηξTk (e1 + v)

)
≥ nη

1− β2p

1 + eR(1+β2p)

k∑
j=1

Ck−j+1
R,p,t,η,n + η

k∑
j=1

Ck−j+1
R,p,t,η,nξ

T
j (e1 + v).

Since
∑k

j=1 C
k−j+1
R,p,t,η,nξ

T
j (e1 + v) ∼ N (0,

∑k
j=1 C

2(k−j+1)
R,p,t,η,n σ2∥e1 + v∥22), we have

Pr
[
θTk+1(e1 + v) < 0

]
≤ Pr

N
n

1− β2p

1 + eR(1+β2p)
,

∑k
j=1 C

2(k−j+1)
R,p,t,η,n(∑k

j=1 C
k−j+1
R,p,t,η,n

)2σ2(1 + β2p)

 < 0

+ ke−t.

Since
∑k

j=1 C
2(k−j+1)
R,p,t,η,n =

C2
R,p,t,η,n(1−C2k

R,p,t,η,n)

1−C2
R,p,t,η,n

and
∑k

j=1 C
(k−j+1)
R,p,t,η,n =

CR,p,t,η,n(1−Ck
R,p,t,η,n)

1−CR,p,t,η,n
, we have

∑k
j=1 C

2(k−j+1)
R,p,t,η,n(∑k

j=1 C
(k−j+1)
R,p,t,η,n

)2 =
1 + Ck

R,p,t,η,n

1− Ck
R,p,t,η,n

· 1− CR,p,t,η,n

1 + CR,p,t,η,n
.

By taking η = R
n(1+β2p)+(p+

√
pt+t)

, we get CR,p,t,η,n = 1
2 and

1 + Ck
R,p,t,η,n

1− Ck
R,p,t,η,n

· 1− CR,p,t,η,n

1 + CR,p,t,η,n
=

1 + 2−k

1− 2−k
· 1− 1/2

1 + 1/2
=: Ck.

Thus, it holds

Pr
[
θTk+1(e1 + v) < 0

]
≤ exp

(
− n2

C2
p,kσ

2(1 + β2p)

)
+ ke−t

with C2
p,k = Ck

(
1 + eR(1+β2p)

)2
/(1− β2p)2.

D. Results for perturbing only the training data
D.1. Fixed perturbation

Without loss of generality, we assume 0 < α < 1/2. Consider the class imbalanced case with n−1 = αn and n+1 =
(1− α)n. The gradient for θ0 = 0 is

∇L(θ0) = αn · 0.5 · −(−e1 + v) + (1− α)n · 0.5 · (e1 + v) =
n

2
e1 +

(1− 2α)n

2
v.

Thus, the output is

θ̂ = −η

(
n

2
e1 +

(1− 2α)n

2
v +N (0, σ2)

)
The sensitivity is G =

√
1 + ∥v∥22 and σ2 is taken to be G2/2ρ to achieve ρ-zCDP. Moreover, we have

θ̂T e1 = −n

2
− (1− 2α)n

2
v1 +N (0, σ2).
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Thus, the misclassification error is

Pr[θ̂e1 > 0] = Φ

(
n [1− (1− 2α) v1]

2σ

)
≤ e−

n2(1−β+2αβ)2ρ

4G2 .

As a result, the sample complexity to achieve 1− γ accuracy is

n = O

√ 4G2 log 1
δ

(1− β + 2βα)2 · ρ


The sensitivity G =

√
1 + β2p here is dimension-dependent.

D.2. Random perturbation

Now we consider the random perturbation. Denote {vi}ni=1 ⊆ Rp a sequence of i.i.d. copies of a random vector v. Consider
the binary classification problem with training set {(xi, yi)}ni=1. Here xi = e1 + vi if yi = 1 and xi = −e1 + vi if yi = −1.

Then, the loss function is L(θ) = 1
n

∑n
i=1 log

(
1 + e−yiθ

T xi

)
. The one-step iterate of DP-GD from 0 outputs

θ̂ = −η

n∑
i=1

(−yixi) +N (0, σ2Ip)

with σ2 = G2/2ρ and G = supvi
√

1 + ∥vi∥2. Assume that vi is symmetric, that is yivi has the same distribution as −yivi.
Then, it holds

n∑
i=1

yixi = ne1 +

n∑
i=1

vi =: µn.

The misclassification error is now given by

Pr[θ̂T e1 < 0] = Pr[N (µT
ne1, σ

2) < 0].

Assume that ∥vi∥∞ = β < 1. Then, we have µT
ne1 ≥ n − βn and the sample complexity is O

(√
4G2 log(1/δ)

(1−β)2ρ

)
with

G =
√
1 + β2p.

E. Results for perturbing only the testing data
For simplicity, we only consider perturbing the perfect feature. Our results can be extended naturally to the case of actual
features.

E.1. Fixed (offset) perturbation

Recall that the output of DP-GD has the form θ̂ = N (−ηn
2 , σ2). One has

θ̂T (e+ v) =
n

2
+N

(
0,

G2(pβ2 + 1)

2ρ

)
.

The sample complexity can be derived similarly as previous sections, which is dimension dependent.

E.2. Adversarial perturbation

Let’s say in prediction time, the input data point can be perturbed by a small value in ℓ∞. If we allow the perturbation to be
adversarial chosen, then there exits v satisfying ∥v∥∞ ≤ β such that

θ̂T (x+ v) =
n

2
+

G√
2ρ

Z1 −
p∑

i=1

|Zi|
Gβ√
2ρ

,
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where Z1, ..., Zp ∼ N (0, 1) i.i.d. Note that the additional term scales as O(pGβ√
ρ ), which can alter the prediction if p ≍ n

even if ρ is a constant (weak privacy).

The number of data points needed to achieve 1− δ robust classification under neural collapse is O
(

Gmax{pβ,1}
√

log(1/δ)√
2ρ

)
.

F. Proofs of Section F.1
F.1. Omitted details for perfect features

In this section, we explore the theoretical scenario of an ideal, perfect neural collapse, where β equals to zero. Although
achieving a perfect neural collapse is practically elusive, examining this idealized case is beneficial due to the promising
properties it exhibits. However, as we have noted in the previous sections, these advantageous properties are highly fragile
to any perturbations in the features. The details of this section is given in Appendix F.

Consider the multi-class classification problem with K classes. Under perfect neural collapse, we have Pr[x = Mk|yk =

1] = 1. Let θ̂ ∈ RKp be the 1-step output of the NoisyGD algorithm defined in Equation (1) with 0-initialization and let
Ŵ ∈ RK×p be the matrix derived from θ̂. Denote ŷ = OneHot(Ŵx) ∈ {0, 1}K the predictor after the one-hot encoding,
that is ŷi = 1 if i = argmaxj{(Ŵx)j}, otherwise ŷi = 0.

Theorem F.1. Let ŷ be a predictor trained by NoisyGD under the cross entropy loss with zero initialization. Assume that
the training dataset is balanced, that is, the sample size of each class is n/K. For classification problems under neural
collapse with K classes, if we take G ≥ 1, then the misclassification error is

Pr[ŷ ̸= y] = (K − 1)Φ

(
− n

Kσ

(
1 +

K − 2

K(K − 1)

))
≤ (K − 1)e−

CKn2

Kσ2

with σ2 = G2

2ρ and CK =
(
1 + K−2

K(K−1)

)2
. As a result, to make the misclassification error less than γ, the sample

complexity for n is GK
√

log((K−1)/γ)

CK
√
2ρ

.

The theorem offers several insights, we have

1. The error bound is exponentially close to 0 if ρ ≫ G2/n2 — very strong privacy and very strong utility at the same
time.

2. The result is dimension independent — it doesn’t depend on the dimension p.

3. Even though here we assume that the training dataset is class-balanced, the result is robust to class imbalance for
K = 2, if we apply a re-parameterization of private data (see, Section 3.1).

4. The result is independent of the shape of the loss functions. Logistic loss works, while square losses also works.

5. The result does not require careful choice of learning rate. Any learning rate works equally well.

Our theory can be extended to the domain adaptation context, where the model is initially pre-trained on an extensive dataset
with K0 classes, and is subsequently fine-tuned for a downstream task with a smaller number of classes K ≤ K0. One may
refer to Appendix F.4.

F.2. Proof of Theorem F.1 and corresponding results

Recall an ETF defined by

M =

√
K

K − 1
P

(
IK − 1

K
1K1T

K

)
=

√
K

K − 1

(
P − 1

K

K∑
k=1

Pk1
T
K

)
,
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where P = [P1, · · · , PK ] ∈ Rp×K is a partial orthogonal matrix with PTP = IK . Rewrite M = [M1, · · · ,MK ] . Let the
label y = (y1, · · · , yK)T ∈ {0, 1}K be represented by the one-hot encoding, that is, yk = 1 and yj = 0 for j ̸= k if y
belongs to the k-th class.

Definition F.2 (Classification problem under Neural Collapse). Let there be K classes. The distribution P[x = Mk|yk =
1] = 1 for k = 1, ...,K.

Proof of Theorem F.1. Let W = [W1, · · · ,WK ]T ∈ RK×p. Consider the output function fW (x) = Wx ∈ RK . Suppost
that yk = 1. Then, the cross-entropy loss is defined by

ℓ(fW (x), y) = − log

(
eW

T
k x∑K

k′=1 e
WT

k′x

)
.

The corresponding empirical risk is

Rn(M,W ) =

K∑
k=1

−nk log

(
eW

T
k Mk∑K

k′=1 e
WT

k′Mk

)
.

Note that

∇W ℓ(fW (x), y) = (SoftMax(fW (x))− y)xT ,

where SoftMax : RK → RK is the SoftMax function defined by

SoftMax(z)i =
ezi∑K
j=1 e

zj
, for all z ∈ RK .

We obtain

∇WRn(M,W ) =

K∑
k=1

nk

(
SoftMax(fW (Mk))− yk

)
MT

k ,

where yk is the label of the k-th class. For zero initialization, we have

SoftMax(f0(Mk)) =
1

K
1K

and

∇W (Rn(M,W ))
∣∣∣
W=0

=

K∑
k=1

nk

(
1

K
1K − yk

)
MT

k . (5)

Now we consider one step NoisyGD from 0 with learning rate η = 1:

Ŵ = −
K∑

k=1

nk

(
1

K
1K − yk

)
MT

k + Ξ,

where Ξ ∈ RK×p with Ξij drawn independently from a normal distribution N (0, σ2).

Consider x = Mk. It holds

f
Ŵ
(x) = ŴMk = −

K∑
k′=1

nk′

(
1

K
1K − yk

′
)
MT

k′Mk + ΞMk.

Since

ΞMk ∼ N
(
0, σ2∥Mk∥22IK

)
and ∥Mk∥22 = 1,
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we have

ŴMk ∼ N
(
µn,K , σ2IK

)
,

where µn,K = −
∑K

k′=1 nk′

(
1
K1K − yk

′
)
MT

k′Mk. Note that

MT
k′Mk =

K

K − 1

(
δk,k′ − 1

K

)
.

We obtain

(µn,K)j =

{
n/K, j = k,

− n(K−2)
K2(K−1) , j ̸= k,

for nk′ = n/K (balanced data). By the union bound, the misclassification error is

(K − 1)Pr

[
N (n/K, σ2) < N (− n(K − 2)

K2(K − 1)
, σ2)

]
= (K − 1)Φ

(
− n

Kσ

(
1 +

K − 2

K(K − 1)

))
.

Proof sketches of the insights. Note that in Equation equation 5, the gradient is a linear function of the feature map
thanks to the zero-initialization while for least-squares loss, one can derive a similar gradient as Equation 5. Thus, the proof
can be extended to the least squares loss directly. Moreover, by replacing nk with nkη in equation 5, one can extend the
results to any η.

F.3. Omited details for binary classification

Recall the re-parameterization for K = 2. Precisely, an equivalent neural collapse case gives M = [−e1, e1] with
e1 = [1, 0, . . . , 0]T . Furthermore, we consider the re-parameterization with y ∈ {−1, 1}, θ ∈ Rp and the decision rule
being ŷ = sign(θTx). Then, the logistic loss is log(1 + e−y·θT x).

Theorem F.3. For the case K = 2, under perfect neural collapse, using the aforementioned re-parameterization, the
misclassification error is

Pr[ŷ ̸= y] = Φ
(
− n

2σ

)
≤ e−

n2

2σ2 .

Moreover, to make the misclassification error less than γ, the sample complexity is O
(√

log(1/γ)
√
ρ

)
.

Remark. The bound derived here is optimal up to a log n term. In fact, we have

Pr[ŷ ̸= y] = Φ
(
− n

2σ

)
≥ 2σ

n
e−

n2

2σ = e−
n2

2σ2 +log 2σ
n .

Proof. According to the re-parameterization, for the class imbalanced case, we have

θ̂ = −η

n

2
· 0.5 · (−


−1
0
...
0

) + n

2
· 0.5 ·


1
0
...
0

+N (0,
G2

2ρ
Ip)

 = −η



n/2
0
...
0

+N (0,
G2

2ρ
Ip)

 .

The rest of the proof is similar to that of Theorem F.1.
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For the class-imbalanced case, assume that we have αn data points have with label +1 while the rest (1− α)n points have
label −1. Then, the gradient is

θ̂ = −η

nα

2
· ·(−


−1
0
...
0

) + n(1− α)

2
· ·


1
0
...
0

+N (0,
G2

2ρ
Ip)

 = −η



n/2
0
...
0

+N (0,
G2

2ρ
Ip)

 .

Thus, the same conclusion holds.

F.4. Domain adaption

Neural collapse in domain adaptation: In many private fine-tuning scenarios, the model is initially pre-trained on an
extensive dataset with thousands of classes (e.g., ImageNet), denoted as K0 class, and is subsequently fine-tuned for a
downstream task with a smaller number of classes, denotes as K ≤ K0. We formalize it under the neural collapse setting as
follows.

Let P = [P1, · · · , PK0
] ∈ Rp×K0 be a partial orthogonal matrix with PTP = IK0

. Let M̃ = [M̃1, · · · , M̃K ] be a matrix
where each M̃i is a column of an ETF M ∈ Rp×K0 . With prefect neural collapse, we assume Pr[x = M̃k|yk = 1] = 1.
The following theorem shows that the dimension-independent property still holds when private dataset has a subset classes
of the pre-training dataset.

Theorem F.4. Let ŷ be a predictor trained by NoisyGD under the cross entropy loss with zero initialization. Assume that
the training dataset is balanced. For multi-class classification problems under neural collapse with K classes, subset of a
gigantic dataset with K0 ≥ K classes, the misclassification error is

Pr[ŷ ̸= y] ≤ (K − 1)Φ

(
nCK,K0

σ

)
≤ (K − 1)e−

n2C2
K,K0

2σ2

with CK,K0 = 1
K

[
K·K0−2

K2(K0−1)

]
and σ2 = G2

2ρ .

Proof. Let

M0 =

√
K0

K0 − 1
P

(
IK0 −

1

K0
1K01

T
K0

)
=

√
K0

K0 − 1

(
P − 1

K0

K0∑
k=1

Pk1
T
K0

)
.

Denote M = [M1, · · · ,MK ] with each Mk being a column of M0. Note that

MT
k′Mk =

K0

K0 − 1

(
δk,k′ − 1

K0

)
.

We have

µn,K : = −
K∑

k′=1

nk′

(
1

K
1K − yk

′
)
MT

k′Mk.

For j ̸= k, we have

(µn,K)j = − n

K

[
1

K
+

K − 1

K(K0 − 1)
− K − 2

K(K0 − 1)

]
= − n(K0 − 2)

K2(K0 − 1)
.

For j = k, it holds
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(µn,K)j = − n

K

[
1

K
− 1− K − 1

K(K0 − 1)

]
=

n(K − 1)K0

K2(K0 − 1)
.

By the union bound, the misclassification error is

(K − 1)Pr
[
N ((µn,K)k, σ

2) < N ((µn,K)1, σ
2)
]
= (K − 1)Φ

(
nCK,K0

σ

)
with CK,K0

= 1
K

[
K·K0−2

K2(K0−1)

]
.

G. Proofs of Section 4
G.1. Details of the normalization

Consider the case where the feature is shifted by a constant offset v. The feature of the k-th class is

x̃i = xi −
1

n

n∑
i=1

xi = M̃k = Mk + v

with Mk being the k-th column of the ETF M .

The offset v can be canceled out by considering the differences between the features. That is, we train with the feature
M̃k − 1

K

∑K
j=1 M̃j for the k-th class. In fact, let Pk be the k-th column of P and we have

M̃k − 1

K

K∑
j=1

M̃j = Mk − 1

K

K∑
j=1

Mj

=

√
K

K − 1

(Pk − 1

K

K∑
i=1

Pi

)
− 1

K

K∑
j=1

(
Pj −

1

K

K∑
i=1

Pi

)
=

√
K

K − 1

Pk − 1

K

K∑
j=1

Pj

 = Mk.

G.2. Proof of Theorem 4.1

Proof of Theorem 4.1. Consider the case with K = 2 and a projection vector P̂ = (e1 + ∆) with some perturbation
∆ = (∆1, · · · ,∆p) such that ∥∆∥∞ ≤ β0 for some 0 < β0 ≪ p. P̂ can be generated by the pre-training dataset or the
testing dataset. Consider training with features x̃i = P̂ xi. Then, the sensitivity of the NoisyGD is G = supv |P̂T (e1+v)| =
1 + β + β|∆1|+ β(

∑p
j=1 |∆j |) ≤ 1 + β(1 + β0 + pβ0). The output of Noisy-GD is then given by

θ̂ = −P̂ ·

(
n∑

i=1

yix̃i

)
+N (0, σ2).

Moreover, for any testing data point e1 + v, define

µ̂n = −

(
n∑

i=1

yix̃i

)
P̂T (e1 + v) = (e1 + V )

T
P̂ P̂T (e1 + v)

with V = 1
n

∑n
i=1 vi =: (V1, · · · , Vp).

We now divide µ̂n into four terms and bound each term separately.

For the first term eT1 P̂ P̂T e1, it holds

eT1 P̂ P̂T e1 = (1 + eT1 ∆1)
2 ≤ (1− β0)

2.

24



Neural Collapse meets Differential Privacy

For the second term V T P̂ P̂T e1, we have

V T P̂ P̂T e1 = (V1 + V T∆)(1 + ∆1) ≤ |V1 + V T∆|(1 + β0)

Note that V1 is the average of n i.i.d. random variables bounded by β. By Hoeffding’s inequality, we obtain

|V1| ≤
β log 2

γ√
n

, with probability at least 1− γ.

Similarly, with confidence 1− γ, it holds

|V T∆| ≤
pββ0 log

2
γ√

n
.

The third term eT1 P̂ P̂T v can be bounded as

|eT1 P̂ P̂T v| = (1 +∆1)

 p∑
j=1

vi (1 + ∆i)

 ≤ (1 + β0)

(
β + β0

√
p log

2

γ

)
,

where the last inequality is a result of the Hoeffding’s inequality by assuming that each coordinate of v are independent of
each others. Moreover, without further assumptions on the independence of each coordinate of v, we have

|eT1 P̂ P̂T v| = (1 +∆1)

 p∑
j=1

vi (1 + ∆i)

 ≤ (1 + β0) (β + β0p) .

Using the Hoeffding’s inequality again, for the last term V T P̂ P̂T (e1 + v), it holds

|V T P̂ P̂T (e1 + v)| ≤
(β + β0

√
p)(1 + β + β0 + ββ0

√
p) log 4

γ√
n

with confidence 1− γ if we assume that all coordinates of v are independent of each other. Without further assumptions on
the independence of each coordinate of v, we have

|V T P̂ P̂T (e1 + v)| ≤
(β + β0p)(1 + β + β0 + ββ0p) log

2
γ√

n
.

H. Some calculations on random Initialization
In machine learning, training a deep neural network using (stochastic) gradient descent combined with random initialization
is widely adopted (Sutskever et al., 2013). The significance of random initialization on differential privacy in noisy gradient
descent is also emphasized by (Ye et al., 2023; Wang et al., 2023). Extending our theory from zero initialization to random
initialization is non-trivial and we discuss some details in this section.

H.1. Gaussian initialization without offset

For Gaussian initialization ξ = (ξ1, · · · , ξp) ∼ N (0, Ip), we have

θ̂ = ξ − η

n

2
· −e−ξ1

1 + e−ξ1
· (−


−1
0
...
0

) + n

2
· −e−ξ1

1 + e−ξ1
·


1
0
...
0

+N (0,
G2

2ρ
Ip)



= ξ + η

 e−ξ1

1 + e−ξ1
·


n
0
...
0

+N (0,
G2

2ρ
Ip)


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The sensitivity is e−ξ1

1+e−ξ1
< 1. Consider x = (−1, 0, · · · , 0)T . We have

θ̂Tx = −ξ1 + η

(
− ne−ξ1

1 + e−ξ1

)
+N (0,

G2

2ρ
) =: µξ1,n +N (0,

G2

2ρ
).

The misclassification error is

Pr[θ̂Tx > 0] = Eξ1∼N (0,1) Pr

[
N
(
µξ1,n,

G2

2ρ

)
> 0

∣∣∣∣ ξ1]
= Eξ1∼N (0,1)

[
Φ

(√
2ρµξ1,n

G

)]

H.2. Gaussian initialization with off-set

Denote x1 = −e1 + v and x2 = e1 + v with ∥v∥∞ ≤ β. For the logistic loss ℓ(y, θTx) = log(1 + e−yθT x), we have

g(θ, y · x) := ∇θℓ(y, θ
Tx) =

e−yθT x

1 + e−yθT x
(−yx).

Denote

g1(θ) = g(θ,−1 · x1) =
eθ

T x1

1 + eθT x1
x1

and

g2(θ) = g(θ, 1 · x2) =
e−θT x2

1 + e−θT x2
(−x2).

If we shift the feature by some vector v, then the loss function is

Rn =
n

2
log(1 + eθ

T x1) +
n

2
log(1 + e−θT x2).

And the gradient is

∇θRn(θ) =
n

2
(g1(θ) + g2(θ)) .

Thus, the output of one-step NoiseGD is given by

θ̂ = θ0 −
ηn

2

[
g1(θ0) + g2(θ0) +N (0, σ2)

]
.

Let µξ = ξ − ηn
2 [g1(ξ) + g2(ξ)] . Then, we have

µT
ξ e1 = ξ1 −

ηneξ
T x1

2 + 2eξT x1
(−1 + v1) +

ηneξ
T x2

2 + 2eξT x2
(1 + v1).

And the misclassification error is

Eξ

(
Φ

(
−
√
2ρµT

ξ e1

G

))
.
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I. Further discussions on Gaussian DP, synthetic data, and DP-SGD
It is obvious that our theory for NoisyGD can be further generalized using Gaussian differential privacy (Dong et al., 2022),
which leads to better utility analysis of our theory. However, extending our theory to NoisySGD is not straightforward, as the
privacy accounting becomes complicated when considering sub-sampling due to mini-batches (Zhu & Wang, 2019; Wang
et al., 2020; Balle et al., 2018). If we further consider multiple iterations, the joint effects of sub-sampling and composition
on the privacy budget is another challenge (Zhu et al., 2022). Besides using composition and the central limit theorem
for Gaussian DP (Bu et al., 2020; Wang et al., 2022), incorporating recently developed privacy analyses of last-iteration
output of Noisy(S)GD in terms of the training dynamic (Ye & Shokri, 2022; Altschuler & Talwar, 2022; Bok et al., 2024)
to obtain refined privacy analyses is another potential future topic. Existing privacy analyses of the last-iteration output
are applied to strongly convex loss functions or convex functions with bounded domain, which is applicable to our setting
when fine-tuning the last layer. If we further consider the privacy of NoisySGD under random initialization, the privacy
analysis becomes much more complicated, as studied by (Ye et al., 2023; Wang et al., 2023). Moreover, in Appendix H, we
discussed some extensions of our utility theory to the random initialization case, which shows that the utility theory is much
more sophisticated than in the 0-initialization case.

In addition to DP-ERM, there has been notable recent interest in using public data to enhance the accuracy of DP synthetic
data (Ghalebikesabi et al., 2023; Liu et al., 2021). The incorporation of public data, either for traditional query-based
synthetic data methods (McKenna et al., 2021; Li et al., 2023b) or more recent techniques such as DP generative adversarial
networks or diffusion models (Goodfellow et al., 2020; Ho et al., 2020), has shown promise. The possibility of extending
our perspective from Neural Collapse on DP-ERM to DP synthetic data in future research is intriguing.
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