Under review as a conference paper at ICLR 2026

JEPA-REASONER: GENERATIVE LATENT SPACE REA-
SONER

Anonymous authors
Paper under double-blind review

ABSTRACT

While Joint-Embedding Predictive Architecture (JEPA) has emerged as a pow-
erful architecture for learning rich latent representations, it fundamentally lacks
generative abilities. Meanwhile, latent space reasoning attempts for Transformer
models like COCONUT do improve performance, but they ultimately rely on
token-by-token generation, which still accumulates compounding error and relies
on context information to gain reasoning insights. To address these limitations,
we propose JEPA-Reasoner, a novel JEPA model enhanced with generative ability
that reasons in latent space. We augment it with a separate action-taker model,
Talker, to produce human-readable sentences. Our approach demonstrates that
decoupling latent space reasoning and token generation enables JEPA-Reasoner
to produce mixed latent vectors that might lay the foundation for multi-threaded
reasoning, while performing autoregressive generation with superior robustness to
compounding error.

1 INTRODUCTION

The Joint-Embedding Predictive Architecture (JEPA) (Assran et al., [2023)) has demonstrated strong
performance in learning semantic world representations, exhibiting superior world understanding
ability compared with traditional end-to-end generative models that work in pixel or token space.
By predicting abstract representations in latent space, the JEPA architecture is able to filter irrelevant
details and preserve essential information needed for prediction (Assran et al., |2023). Such archi-
tecture has been proven to be a viable approach for representation learning and foundation model
development. Various JEPA implementations, including I-JEPA (Assran et al.,2023)), V-JEPA2 (As-
sran et al., [2025)), and M3-JEPA (Lei et al.,|2025)), have shown success across various modalities and
downstream tasks.

However, JEPA models are inherently non-generative (Lei et al., 2025)) because of their objective:
filling missing information in the current state (Assran et al., 2023), rather than generating new
content. Besides, the predictor often requires a detailed, predetermined target state or task instruction
(e.g., V-JEPA 2-AC (Assran et al.|[2025)), which is often unavailable in tasks demanding long-term
planning and step-by-step reasoning. This feature limits the application of the broad knowledge in
JEPA models to generative tasks.

Furthermore, while traditional token-level autoregressive models have sequential reasoning capabil-
ities, their token-by-token generation process is prone to compounding errors. Even if the predicted
probabilities of tokens are weighted and combined, LLMs still cannot go beyond single-threaded
reasoners (Wu et al.,[2025). Although several previous research have explored latent space reason-
ing for Transformer models, the end-to-end generation goal of a single coupled model limited the
full potential of latent space reasoning, while also making training complex and inefficient (Hao
et al.l [2024).

To address these limitations, we propose JEPA-Reasoner, a novel decoupled architecture that uti-
lizes separate models for reasoning and token generation. The reasoning model, JEPA-Reasoner,
transforms the JEPA framework from a target-conditioned system into an autoregressive generative
model. Operating entirely within the continuous, normalized latent space, JEPA-Reasoner focuses
solely on latent space reasoning, offloading the token generation task to its action-taker module:
Talker. In contrast to existing latent space reasoning solutions like COCONUT, the division of ob-
jective frees the reasoner from expression burden and enables continuous latent guidance (compared

Under review as a conference paper at ICLR 2026

with non-continuous latent guidance that relies on context information to retrieve latent reasoning
results (Hao et al.,2024))) during the token generation process.

Our key insight is that performing pure reasoning in an abstract, continuous, and normalized latent
space without token generation burden allows for the construction of high-level reasoning chains
that carry rich semantic information throughout the autoregressive process while correctly ignoring
irrelevant details or distracting information. Our empirical experiments show further improved abil-
ities beyond that: by operating in the latent space, JEPA-Reasoner can maintain multiple hypotheses
during the reasoning process simultaneously and mitigate the catastrophic error propagation associ-
ated with discrete token sampling.

2 RELATED WORK

Joint-Embedding Predictive Architectures (JEPA). JEPA (Assran et al. 2023) introduced a
framework that makes predictions in representation space. It utilizes self-supervised training to
learn latent states that are not directly human-readable. A predictor module was trained to predict the
target state based on encoded inputs. Multiple variants of this architecture have extended the JEPA
family to various modalities and downstream tasks (Assran et al.,2023). However, these models are
non-generative. Attempts to make JEPA generative, such as D-JEPA (Chen et al., 2025), utilize the
learned representations to condition diffusion models for data generation (e.g., text to images, text to
audio) but still failed to enable sequential reasoning or planning within the JEPA framework itself.
In contrast, our key innovation is to adapt the core JEPA objective for autoregressive latent-space
generation.

Latent Space Reasoning. Previous work on latent space reasoning mainly focuses on looping
hidden states (Hao et al., [2024). However, previous paradigms utilize a single model for both latent
space reasoning and token generation, ignoring the mismatch between the two tasks: one requires
high-level planning, decision-making, choice tracing and fallback handling, while the other requires
correctness in grammar, fluency between sentences, and context-aware tone adjustments. Consider-
ing these differences, our key innovation is to decouple latent space reasoning and token generation,
by doing which we enable the model to produce a latent reasoning chain with higher quality and
less prone to being affected by mistakes made in a single step. Additionally, the decoupling design
enables efficient optimization with a single forward pass in latent space, unlike coupled models like
COCONUT (Hao et al.;[2024), which require multiple forward passes.

Autoregressive Models and Robustness. Modern Transformer models conduct token-level pre-
diction in an autoregressive manner. While proven powerful on various tasks, this approach is known
to suffer from compounding errors in long-horizon tasks. Techniques like Chain-of-Thought (Wei
et al.,[2022)) improve reasoning by generating intermediate steps, but still operate at the token level.
JEPA-Reasoner aims to improve robustness of autoregressive generation by moving the reasoning
process into a continuous, abstract latent space, reducing the impact of localized errors.

3 MODEL ARCHITECTURE

JEPA-Reasoner decouples the reasoning process from output generation, making next-state pre-
dictions completely dependent on previously generated, semantic-rich, lossless latent states. The
architecture consists of:

* JEPA-Reasoner: Generate sequential latent space reasoning chains independently.

e Talker: Translates the latent states into tokens. Note that the Talker is not able to make
predictions. Its task is to reconstruct tokens based entirely on the latent output from JEPA-
Reasoner.

3.1 JEPA-REASONER

Model Components. JEPA-Reasoner follows the JEPA philosophy, containing an embedding
layer as a textual token encoder and modified Transformer blocks for the predictor, since Trans-
former has proven its strong ability in sequence modeling. After the modified Transformer blocks,

Under review as a conference paper at ICLR 2026

o “\ Loss [T
tokens
target

reasoning—
tokens

Prediction
Loss

Embedding

- .

Action Filter Talker

l Action: talk J

1
1 Extensible actions

RMS & L2 Norm
Transformer Block
Transformer Block

EMA

Autoregressive Generation

I]:I] Independent model

Transformer Block
Model showing internal structure

Transformer Block S

------ / .7 Data path
k JEPA-Reasoner J : R

Figure 1: Architecture of JEPA-Reasoner and its action taker (Talker). The Reasoner consists of an
embedding layer as token encoder and Transformer blocks as predictor. The embedding layer for
input tokens always uses the latest weights, while the weight of embedding layer for target tokens is
the exponential moving average of the historical weights of input embedding layer.

Embedding

tokens

 Weight generation process

we applied a hybrid normalization layer (RMS and L2 normalization). We utilize L2 normalization
to prevent exploding magnitude caused by residual connection. In the modified Transformer block,
we apply a non-learnable QK-Norm (Dehghani et al.|, 2023)) to make it more numerically stable.

Latent Space Generation. Unlike traditional JEPA models, in which the predictor is aimed at
filling missing information in the current state (Assran et al., [2023)), the predictor of JEPA-Reasoner
generates the next latent matrix representing the subsequent reasoning steps. Crucially, this gen-
erated latent matrix is not projected into vocabulary probabilities via an LM head. Instead, it is
normalized by the hybrid normalization layer to the unit hypersphere and looped back as the input
of the first Transformer block for the next round of autoregressive generation in the latent space.

Training Objective and Target Encoder. The model is trained to predict latent representations
provided by a target encoder. Following standard JEPA methodology, the target encoder weights
are an exponential moving average (EMA) of the data encoder weights, providing stable and rich
training targets. Given the normalized nature of our latent space, we use scaled cosine similarity loss
computed entirely in latent space, ensuring the predictor learns consistent feature representations and
dynamics (refer to Section for more detail).

3.2 ACTION-TAKER MODEL

In this experiment, there is only one action-taker model: Talker. The Talker model is a standard
Transformer-based model trained independently. We designed two variants of Talker: Mono-Talker
and Dual-Talker. Detailed information about the components of the two Talkers is shown in Table[I]
Mono-Talker does not have an embedding layer or encoders, it only has decoders. Mono-Talker is
designed for reconstruction tasks that do not require context information, receiving latent vectors
from JEPA-Reasoner and constructs the complete token sequence in one forward pass. Dual-Talker
is designed for context-aware reconstruction, usually necessary in natural language tasks. It has an
embedding layer, encoders and decoders. The embedding layer is used for encoding previously de-
termined outputs of JEPA-Reasoner that contain contextual information, while the encoder blocks

Under review as a conference paper at ICLR 2026

receive latent vectors from JEPA-Reasoner as input. The decoders generate tokens autoregressively
conditioned on previous tokens, with continuous latent guidance from the output of encoders. How-
ever, Dual-Talker was trained for reconstruction rather than generation, as our ablation study (Ap-
pendix [C) showed that Talker is critically dependent on the Reasoner’s output. During training, the
JEPA-Reasoner is frozen. Talker receives the sequence of latent vectors and is trained to reconstruct
the corresponding token sequence using standard cross-entropy loss.

Embedding Layer Standard Encoder Standard Decoder LM Head
Mono-Talker No No Yes Yes
Dual-Talker Yes Yes Yes Yes

Table 1: Components of Mono-Talker and Dual-Talker

3.3 ACTION FILTER

In scenarios requiring interaction with different modalities or tools, the JEPA-Reasoner can generate
specific “action latent vectors” that signal the need to invoke a specific action module. The Action
Filter detects these markers and routes the subsequent latent vectors to the appropriate module.
While this detection could be handled by a trained MLP classifier, our experiments focus solely on
text generation, utilizing hard-coded action filters based on the training data structure to simplify
evaluation.

4 TRAINING PROCEDURE

The training process of JEPA-Reasoner consists of two main phases. The first stage is pretraining
that teaches basic knowledge (e.g., grammar and commonsense) to the model. The second stage is
self-supervised training (SST), which adapts the model to perform consistent latent space reasoning.

4.1 PRETRAINING

We apply established Transformer training methods to provide the model with basic knowledge and
language understanding capabilities.

Objective and Methodology. The model is trained as a standard decoder-only Transformer on
the next-token prediction task in a teacher-forcing way. We employ tied word embeddings which
shares the weight of embedding layer with a temporary LM head. The LM head is only used in
pretraining and is removed after pretraining is finished. The L2 normalization layer is disabled
in the pretraining phase to enable simple and direct reuse of current Transformer training recipes.
Considering that tied word embedding encourages Wgpeq - ngbed = I and Vpred - Vembed =
lvpredll || Vempeal|-cos(6), the tied-embedding approach will indirectly encourage angular alignment
between predicted vectors and embedding vectors, which facilitates the subsequent transition from
token-level to latent-level prediction.

4.2 SELF-SUPERVISED TRAINING

The SST phase adapts the pretrained model for making consistent predictions in the continuous la-
tent space. Since the model is fully transforming into a latent space reasoner instead of a token
generator, the ability to produce correct logits no longer matters. Considering this, we apply sim-
ilar self-supervised training as Meta’s JEPA series (Assran et al., [2023)) in this stage. Without the
need for autoregressively generating final token outputs to compute a loss, self-supervised training
enables efficient parallel training compared with COCONUT (Hao et al., 2024).

Objective and Methodology. The temporary LM head in the pretraining stage was discarded and
L2 normalization layer was restored. The model is now optimized to predict the latent representation
of the next sequence segment, with a consistent dimensional semantics as what the embedding layer

Under review as a conference paper at ICLR 2026

produces. We switch to scaled cosine distance loss, aligning with the L2 normalization strategy used
to ensure stability during autoregressive looping and focusing the learning on angular differences:

L£(0,0") =k — k- cos(hpred(0), Muarget (8")) (1)

where k is the scalar, hpq is the predicted latent vector by the Reasoner (parameters), and Rarger
is the target latent vector from the EMA encoder (parameters #’). In our empirical tests, we find that
normal cosine distance loss failed to support enough optimization when the loss is small. We tested
a series of k values, and chose k& = 4 in our experiments (Refer to Appendix D] for more detail).

Target Generation. The weight updating method of the target embedding layer is different from
input embedding layer. The input embedding layer always applies the latest weights, while the target
embedding layer utilizes exponential moving average to generate its weights from the historical
weights of input embedding layer. We applied a high momentum value of 0.98 to prevent rank
collapse in the embedding layer while ensuring enough space to adjust for angular alignment.

5 LATENT SPACE PROPERTIES

We analyze the property of JEPA-Reasoner’s latent representation on two synthetic tasks designed
to probe specific capabilities in controlled environments: mixed latent vector generation via a tree-
search problem, and robustness to error propagation via a Context-Free Grammar (CFG) generation
task.

5.1 CONTINUOUS REPRESENTATION OF UNCERTAINTY

Within a reasoning process, JEPA-Reasoner is able to produce mixed latent vectors that are not lim-
ited to the discrete representations in the embedding layers. The mixed latent vectors approximate a
linear combination of more than one vocabulary latent (latent vectors that correspond to individual
vocabulary tokens). To systematically examine this behavior, we trained a smaller JEPA-Reasoner
(42M) to search routes from the root to specific leaves in a binary tree.

5.1.1 DATA PREPARATION

Training data consists of randomly generated binary trees with depth limited to 4. Each tree node
was represented by a character with a unique token, making up the vocabulary along with other
special tokens. In the generation process, we randomly pick node names to prevent the model from
memorizing relationships based on names. Refer to Appendix [A]for an example.

5.1.2 MODEL CONFIGURATION

The JEPA-Reasoner model and Mono-Talker model were built with specifications stated in Table[2]
We chose the combination of JEPA-Reasoner with Mono-Talker because this task does not require
context-aware reconstruction.

Latent Dim. Attention Dim. FFN Dim. Head Count Decoder Count
JEPA-Reasoner 384 768 1536 16 18
Mono-Talker 384 768 1536 8 6

Table 2: Model configurations in tree-search experiment

5.1.3 TRAINING

The pretraining and SST process are completely the same as stated in Section] except for loss
masking. In the pretraining stage, loss was computed on all positions, while in SST, loss was only
computed on the positions that define the desired route. When training the Talker model, we only
passed latent vectors that describe the route to Talker to ensure it had no access to the tree structure
or the target leaf, which guaranteed the Talker could not solve the task on its own.

Under review as a conference paper at ICLR 2026

5.1.4 RESULTS AND CONCLUSIONS

The final combination of the JEPA-Reasoner and Mono-Talker models achieved 99.87% accuracy
(exact match) in searching routes from the tree root to specific leaves. Given the restricted context
window of the Mono-Talker model, we could confirm that only JEPA-Reasoner was responsible for
reasoning. Based on this result, we examine the generated latent vectors to probe the reasoning
behavior of JEPA-Reasoner.

We calculated the distance from the predicted latent vector to the plane spanned by any two vocab-
ulary vectors and sorted them from closest to farthest. In the sorted list, the plane spanned by latent
vectors of sibling nodes frequently exhibits lower distances to the predicted latent vector, with an
average ranking of top 1.72% in the ordered list. Also, we figured out all coefficient sets, « and 3,
that satisfy a - lg + 8 - I1 = 1,05, Where Iy and [are latent vectors of sibling nodes and 1,,,; is
the projection of the predicted latent vector on the spanned plane. After comparing « and /3, we find
that for 99.89% of the times, the latent vector of the node on the correct route contributes more than
the other sibling node. This discovery demonstrated that JEPA-Reasoner could make correct choices
without completely discarding the other information that contains potentially correct choices. Ac-
cording to the previous COCONUT study (Hao et al., 2024), this behavior might lay the foundation
for breadth-first multi-threaded reasoning.

5.2 ROBUSTNESS TO ERROR PERTURBATION

In the following sections, we demonstrate that decoupling reasoning chain generation from token
production enables superior robustness under noisy conditions. We assume that while coupled mod-
els must simultaneously maintain reasoning coherence and produce correct tokens, our decoupled
approach allows the reasoning model to focus solely on maintaining logical consistency in latent
space, exhibiting promising potential in generation quality. We evaluate robustness under two com-
plementary error sources: token-level corruption and noise in latent space.

5.2.1 DATA PREPARATION

Considering that the compounding error caused by different faulty tokens differs significantly, it
is difficult to quantitatively analyze the model’s behavior under token-level errors (e.g., replac-
ing keywords in the sentence will decrease the quality more considerably than replacing a word
that functions as a connector). We followed previous work by [Allen-Zhu & Li| (2023)) and utilized
Context-Free Grammar (CFG) to create a controllable experiment setting.

Our custom CFG production rule features three terminal symbols with rule lengths of 3 or 4. With
this rule, we generated long (approximately 600 to 700 symbols) and complex sequences that require
non-trivial work to solve. The complexity of the grammar ensures that high accuracy relies on
learning the underlying structure of the CFG sequence rather than memorizing specific sequences
(refer to Appendix [B.1|for full CFG specifications and production methods).

5.2.2 MODEL CONFIGURATIONS AND TRAINING METHODS

We denote the vanilla Transformer model as 7', the COCONUT-style coupled latent space reasoning
model as C, and the decoupled model as R (both JEPA-Reasoner and Talker are included). We made
variants of these models in three scales: small, middle, and large. Table [3| shows more detailed
model configurations:

We apply identical hyperparameters (with learning rate of 1 x 10~4, effective batch size of 128,
and context length of 1024) to train all models until their loss stabilizes, then checkpoints of best
performance were chosen as the representative. We first pretrain the Transformer models on CFG
data using cross-entropy loss in token space. Since the pretraining methods of Transformer, CO-
CONUT, and JEPA-Reasoner are identical, subsequent trainings are based on the same pretraining
checkpointﬂ We conduct posttraining to obtain Transformer models: T,q11, Trniddie, and Tigrge.
COCONUT models are trained to first predict 4 hidden states, then generate 4 tokens. Cross-entropy

"Due to architectural differences, we initialize JEPA-Reasoner models using only the first N blocks from
the pretrained Transformer, where N matches the JEPA-Reasoner’s block count.

Under review as a conference paper at ICLR 2026

Rlarge T/Clarge Rmiddle T/Cmiddle Rsm.all T/Csmall

Total Parameters 315M 338M 209M 229M 132M 157M
Latent Dimension 960 960 960 960 960 960
Attention Dimension 960 960 960 960 960 960
FFN Dimension 3840 3840 3840 3840 3840 3840
Head Count 16 16 16 16 16 16
Talker Block Count 4+4 - 242 - 242 -
Reasoner Block Count 16 - 12 - 6 -
Transformer Block Count - 24 - 16 - 10
Total Blocks 24 24 16 16 10 10

Table 3: Model Configurations for CFG Task. Talker Block Count format (E+D) refers to Encoder
and Decoder blocks in the Dual-Talker model. COCONUT models and Transformer models are put
in the same column, since they share the same architecture.

loss is computed between the output logits and the target sequence, excluding the hidden state posi-
tions. We follow the training method mentioned in Section [to train the JEPA-Reasoner and Dual
Talker models until their loss stabilizes.

5.2.3 EXPERIMENT METHODS

Robustness Test for Token Level Error To evaluate the robustness of the decoupled model on
token-level errors in the input sequence, we compare the performance of JEPA-Reasoner and tradi-
tional Transformer models on multi-step CFG completion tasksE] using the exact match metric (1 to
4 steps with 0% to 30% random token corruption in the model input).

Robustness Test for Latent Space Error To evaluate the robustness of JEPA-Reasoner model on
perturbations in latent space, we compare the performance of JEPA-Reasoner and the coupled con-
tinuous reasoning model COCONUT on multi-step CFG completion tasks. In this experiment, we
let the COCONUT model autoregressively generate 4 latent vectors first, followed by 4 tokens. For
JEPA-Reasoner we simply let it generate 8 latent vectors and use the Talker module to reconstruct
8 tokens. For both models, we add Gaussian noise to the generated latent vector at each step with
p = 0 and o ranging from 0% to 15% of the maximum value in the model’s output. Accuracy is
calculated across the last 4 tokens with the exact match metric.

5.2.4 RESULTS AND CONCLUSIONS

Our robustness evaluation demonstrates the advantages of the decoupled architecture. In the token-
level corruption experiment, JEPA-Reasoner showed less performance degradation across different
model scales when facing input noise during multi-step CFG completion tasks (Figure [2). Large
variant of JEPA-Reasoner also exhibits higher performance across different magnitudes of Gaussian
noise in the latent space perturbation experiment (Table f), providing more empirical evidence for
its robustness advantage.

0=00 o0=0.05xmax(h;) o=0.10xmax(h) o =0.15x max(h)
Riarge 0.4588 0.4681 0.4643 0.4468
Clarge 0.3740 0.3688 0.3650 0.3629
Ryniddie | 0.2973 0.3039 0.3049 0.3023
Chiddte | 0.3792 0.3802 0.3798 0.3761
Rsmall 0.3342 0.3315 0.3318 0.3312
Csman | 0.3864 0.3773 0.3677 0.3550

Table 4: Performance of JEPA-Reasoner R and COCONUT C under different noise levels.

These results demonstrate that JEPA-Reasoner has the potential to address the limitations of existing
paradigms in Section[2] By operating in a normalized latent space and offloading token generation to

2All scores obtained in these two tests are by testing the model across 5248 samples randomly chosen from
test dataset containing 100000 samples to minimize the bias introduced by randomness.

Under review as a conference paper at ICLR 2026

Large, 1 steps Large, 2 steps Large, 3 steps Large, 4 steps

[
=)

Relative Performance
e o 2o
N o ©

o

Loy

o

Relative Performance
o o
® ©
Relative Performance
e o
® ©

o

Relative Performance
e o 9
9 o ©

e
9
e
S

—e— T-model —e— T-model —e— T-model —e— T-model
0.6] == Rmodel 0.6] == Rmodel \‘\‘\‘ 0.6] == Rmodel 0.6] == Rmodel
0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
Noise Fraction Noise Fraction Noise Fraction Noise Fraction
Middle, 1 steps Middle, 2 steps Middle, 3 steps Middle, 4 steps
21.0 21.0 21.0 2 1.0
=] = =] =
g g -———l\./l\'\. £ 2 -\'——l\'/.\-
EO.Q-\-\‘\-—-—-\ §0~9 50.9 §09
5 5 5 5
0.8 ~ 0.8 ~ 0.8 0.8
o o © ©
H H 2 H
s07 =07 507 =07
£ —e— Tmodel £ —e— Tmodel £ —e— Tmodel £ —e— Tmodel
0.6 —=— Rmodel 0.6| —=— R-model \\‘\. 0.6 —=— Rmodel 0.6 —=— Rmodel
0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
Noise Fraction Noise Fraction Noise Fraction Noise Fraction
Small, 1 steps Small, 2 steps Small, 3 steps Small, 4 steps

[
o

Relative Performance
e o e
N o ©

=

o

Iy

o

o

o
©

Relative Performance
4
©

e

N

—e— Tmodel

—=— R-model \\\‘

0.1 0.2 0. 0.1 0.2 0.3 0.1 0.2 0. 0.1 0.2 0.
Noise Fraction Noise Fraction Noise Fraction Noise Fraction

o
©

4
®
4
®
4
®

o
S
o
S
o
S

—e— T-model
—=— R-model

—e— T-model
—=— R-model

—e— T-model
—=— R-model

Relative Performance
Relative Performance

4
Y
4
Y
4
o
4
Y

w
w
w

Figure 2: Relative performance of coupled token-level (1) models and decoupled (R) models across
configurations.

the Talker module, subsequent reasoning outputs do not condition on previous decisions, thus miti-
gating error accumulation in the autoregressive process, enabling more robust sequential generation
under noisy conditions.

6 THEORETICAL ADVANTAGE OF DECOUPLED ARCHITECTURE

The robustness of our decoupled architecture stems from its ability to decouple the high-level rea-
soning process from low-level token generation. We can formalize this advantage by analyzing the
probabilistic assumptions and information flow within the coupled and decoupled paradigms.

6.1 MODEL DYNAMICS AND PROBABILISTIC FACTORIZATION

Let R = (r1,72,...,7r) be the sequence of latent reasoning states and X = (&1, &2,...,%Z7) be
the sequence of generated tokens.

Classical Transformer Model. A standard Transformer model M,, implicitly defines a joint
probability distribution that is factorized sequentially. The generation of the state and token at step
t depends on both the state and the sampled token from step ¢t — 1:

T
P(R,X) =[] P(re,&lre-1,81-1)

t=1

In this formulation, the distribution for the next reasoning state r; is directly conditioned on the
previously sampled token Z;_;. Consequently, a sampling error at step ¢t — 1 (i.e., £t—1 # x}_;)
introduces a persistent error into the reasoning state trajectory. This error corrupts the foundation
for all subsequent reasoning and generation steps, leading to compounding error.

COCONUT Model. The COCONUT model M_. is a coupled model with latent generation abil-
ity. It generates latent reasoning tokens before producing final tokens (Hao et al., [2024). Lim-
ited by the coupled architecture, latent vectors and tokens are arranged in the same sequence
Z = (z1,29,...,2nN), where each element z; can be either a continuous latent vector r or a discrete

Under review as a conference paper at ICLR 2026

token ;. Despite the different output types, the model follows the same autoregressive principle:
every new element is conditioned on all prior elements.

N
(2) = [I P(atlo<t)

Let’s consider a generation length of 77 for latent reasoning, followed by 75 tokens. The process
unfolds as follows:

* For the latent reasoning steps (¢ = 1,...,71), the model generates z; = 74, conditioning
on the previous latent vectors z<; = (r1,...,7¢—1).

* For the token generation steps (¢t = T1 + 1,...,7T1 + T5»), the model generates z; =
Z¢—7,, conditioning on the full history of all preceding latent vectors and tokens, z«; =
(7‘1, e ,TTN.’f}l, e 7-%t7T17

The unified sequence is the model’s critical limitation. Suppose the model has finished generating
its reasoning chain (ry, ..., 77,) and the first error appeared at the n* token, #,, # = . For the very
next step, t =711 +n+1, the model make prediction based on the history (71, ...,77,, &1, ..., Zn).
The erroneous token Z,, is now an immutable part of the model’s context, corruptmg every subse-
quent decision. The error propagation is direct and unavoidable because reasoning and generation
are inextricably linked in the same autoregressive sequence.

Decoupled Model M,;: In contrast, our JEPA-Reasoner architecture imposes a structural con-
straint on the generative process, yielding a more robust factorization where the reasoning chain is
generated independently of the token sampling:

T
P(R,X)=P(R)-P(X|R) = (HP Te|re—1) : (H P(it|R7i"1:t—1)>

t=1
This factorization reveals two key theoretical advantages.

1. Error Containment: The reasoning trajectory’s probability, P(R), is independent of the
token generation process P(X|R). An error in sampling a token Z;_1 has no mathematical
pathway to influence the reasoning trajectory K. The high-level plan remains intact and sta-
ble. Furthermore, the normalization of reasoning vectors r; to the unit hypersphere ensures
this trajectory is inherently bounded, preventing error amplification within the reasoning
dynamics itself.

2. Mechanism for Recovery: At every step ¢, the token generator P(Z;|-) is conditioned on
the entire, lossless reasoning chain R. This provides a strong, stable signal that allows the
Talker to potentially recover from a local token error in its own history (£1.:—1), an effect
empirically validated in our ablation study (Appendix [C).

This inherent error containment and recovery mechanism explains the superior robustness observed
in our CFG experiments (Section[5.2).

7 SUMMARY

We introduce JEPA-Reasoner, a novel architecture that decouples latent space reasoning from token
generation. Our approach enables continuous latent reasoning guidance while mitigating step-by-
step error propagation. Efficient parallel training was also made possible without sacrificing la-
tent reasoning performance compared with COCONUT. Our experiments on synthetic tasks suggest
that by decoupling the high-level latent space reasoning process from low-level token generation,
JEPA-Reasoner produced promising potential for multi-threaded reasoning and exhibited enhanced
robustness to input noise and error accumulation when generating structured sequences.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
e-prints, pp. arXiv—2305, 2023.

Under review as a conference paper at ICLR 2026

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619-15629, 2023.

Mahmoud Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili,
Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Ar-
naud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil
Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xi-
aodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, and Nicolas Ballas.
V-jepa 2: Self-supervised video models enable understanding, prediction and planning. arXiv
preprint arXiv:2506.09985, 2025.

Dengsheng Chen, Jie Hu, Xiaoming Wei, and Enhua Wu. Denoising with a joint-embedding predic-
tive architecture. In The Thirteenth International Conference on Learning Representations, 2025.
URLhttps://openreview.net/forum?id=d4njmzM7 jfl

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International conference on machine learning,
pp. 7480-7512. PMLR, 2023.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Hongyang Lei, Xiaolong Cheng, Qi Qin, Dan Wang, Huazhen Huang, Qingqing Gu, Yetao Wu,
and Luo Ji. M3-jepa: Multimodal alignment via multi-gate moe based on the joint-embedding
predictive architecture. In Forty-second International Conference on Machine Learning, 2025.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Chiinhung Wu, Jinliang Lu, Zixuan Ren, Gangqiang Hu, Zhi Wu, Dai Dai, and Hua Wu. Llms are
single-threaded reasoners: Demystifying the working mechanism of soft thinking. arXiv preprint
arXiv:2508.03440, 2025. URL https://arxiv.org/abs/2508.03440.

A DATA FOR TREE SEARCH EXPERIMENT

The following is an example of data used in the tree-search experiment:

NL,NO,LJ, LI, Oa,OM, JB, JH, IG, IF,AD, A
E, MK, MC [ROOT] N [TARGET] K [ROUTE] NOMK

Visualization of the example can be seen in Figure[3] In the sequence, each character pair represents
a parent-child node pair, with the former one being the parent node and the later one being the child.
All pairs are separated by a comma. The searching task is specified after the tree-structure definition,
with special token [ROOT] indicating the tree root, [TARGET] indicating which leaf to search for,
and [ROUTE] states the correct searching route. All characters, comma, [ROOT], [TARGET] and
[ROUTE] have a corresponding token, making up the whole vocabulary for the model along with
the padding token and the end-of-sentence token.

10

https://openreview.net/forum?id=d4njmzM7jf
https://arxiv.org/abs/2508.03440

Under review as a conference paper at ICLR 2026

Figure 3: Visualization of the tree structure in the given example.

B FURTHER DETAILS FOR CFG EXPERIMENTS

B.1 CFG RULES AND SAMPLE

CFG can hierarchically produce highly structured expressions by replacing non-terminal symbols at
each level with next-level symbols following a production rule, as shown in Figure] A sequence
of terminal symbols is considered to be valid if it can be transformed back to the root symbol with
dynamic programming and the given production rule. The recursive structure and local ambiguity of
CFG sequences enable them to model the rich and recursive structure in languages, including gram-
mar and logic. We designed our own CFG following the method used by |Allen-Zhu & Li| (2023)).
The production rule used in our experiments is a five-level CFG production rule set featuring three
terminal symbols with 3 or 4 rule lengths at each level, which typically generates long (typically 600
to 700 symbols per sample) and locally ambiguous sequences. A visualization of the production rule
used in this experiment can be seen in Figure 3]

Since even a S-level CFG production rule that allows each non-terminal symbol to produce 2 to
3 symbols in the next level (simpler than our 5-level production rule that allows each non-terminal
symbol to produce 3 to 4 symbols in the next level) is capable of producing more than 4 x 10 distinc-
tive sequences, we conclude that the models in the CFG experiments does not rely on memorizing
possible sequences during training to achieve high accuracy on completion tasks.

Previous research (Allen-Zhu & Lil, [2023) shows that Transformer blocks can encode the structure
of CFG rules within parameters. We assume that a robust model should be able to recognize the
high-level structure of the input sequence, thus ignoring faulty tokens in the input. Since each high-
level element in our CFG sequence produces 3 to 4 tokens, the model should be able to maintain
relatively stable performance across at least 4 generation steps.

LEVEL 1 1(NT, non-terminal symbol) 1(NT, non-terminal symbol)
LEVEL 2 4(NT) o) B B E) &
LEVEL 3 : : : g £ :

&2 B EB &2 B

tevers [1a | (5] [] [] coeeeiiiiiiii (1a]) (5] [1a] [1a

(The final level consists of terminal symbols, and is used as model input)

Figure 4: A picture demonstrating how CFG sequence is generated. It involves replacing non-
terminal symbols at each level with symbols from the next level with a given rule.

B.2 A SAMPLE CFG SEQUENCE

We demonstrate a sample CFG sequence from the training dataset: 15 16 16 14...... 14 16
14 (666 terminal symbols in total). It consists of three kinds of terminal symbols.

11

Under review as a conference paper at ICLR 2026

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5

1->4 4 4 3 2->6 56 5->9 9 10 8->13 12 11 11->15 16 16

1->2 222 2->7 6 55 5->10 10 8 8->13 12 11 11->14 16 14
3->7 57 6->8 9 10 8 9->11 13 12 11->15 16 16 14
3->6 6 7 6->9 8 9 10 9->12 12 13 13 11->15 15 16 14
3->6 57 7->9 9 8 10 9->13 12 12 12->15 15 14 14
3->6 6 6 5 7->9 9 10 9 10->12 13 12 12 12->15 14 14 15
4->57 6 10->13 12 12 13->15 16 14
4->6 56 5 10->11 13 12 13->14 15 14 15
4->6 6 7 13->15 16 16
4->7 6 6

Figure 5: CFG production rule used to generate training and test samples in Section[5.2] This rule
gives sequence lengths ranging from about 600 symbols to 700 symbols.

B.3 DETAILED EXPERIMENT RESULTS

We provide detailed results for the accuracy of different models and configurations on different noise
levels here in Table[5] Note that the accuracy is the total correct symbols generated divided by the
total symbols needed in the generation task.

B.4 PARAMETER EFFICIENCY COMPARISON

As demonstrated in Appendix [C} the Talker

does not participate in the construction of the 5515

reasoning chain, letting JEPA-Reasoner han- £6 i
dle all reasoning alone, which means the effec- ¢ T small

tive parameter count for reasoning is actually =4 3.8880 : if:irgsle
smaller than the total parameter count. Also, g BB s R small

the total number of parameters of the reasoner- &

talker pair is always a bit smaller than the corre- §

sponding Transformer or COCONUT counter- <

part because it is not possible to make it exactly
the same in good practice (e.g., it is not ideal
to use an odd number as embedding dimension
size). Considering this, JEPA-Reasoner is at a
disadvantage in model size, which may resultin Figure 6: The parameter efficiency of JEPA-
the drop of absolute performance seen in small Reasoner and Transformer models at different
and medium-sized models. To make the com- scales.

parison of absolute performance fair, we calcu-

lated the parameter efficiency, using the formula %, where § is the average absolute performance and

p is the parameter count of JEPA-Reasoner, and gained Figure [6}

In the parameter efficiency comparison, decoupled JEPA-Reasoners consistently show advantages
compared with their coupled Transformer counterparts, proving that for every million parameters,
the reasoning component (JEPA-Reasoner) in the decoupled architecture gains more performance
compared with traditional coupled Transformer models.

C ABLATION STUDY OF TALKER MODEL

We conduct an ablation study to verify that the Talker acts primarily as a “translator” that translates
JEPA-Reasoner’s output latent vectors to token sequences and does not perform non-trivial reasoning
tasks independently. We test this by corrupting the output of Reasoner in different ways and see if
Talker can still produce meaningful sequences. Our empirical experiments show strong evidence
that the Talker model can’t work on its own, and the output of Reasoner is a definitive factor in
Talker’s generated content.

12

Under review as a conference paper at ICLR 2026

Noise Model T models R models
Stepl Step2 Step3 Stepd4 | Stepl Step2 Step3 Step4
Small(abs) 92.4 92.0 62.3 67.5 78.0 51.5 44.6 52.1
0.00 Middle(abs) | 92.9 92.8 63.3 67.9 73.1 479 354 46.3
Large(abs) 92.3 91.8 61.9 68.6 91.9 74.1 57.2 66.5
Small(rel) 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
0.00 Middle(rel) | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
Large(rel) 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
Small(abs) 85.6 78.6 53.2 61.1 73.8 48.6 42.5 49.6
0.05 Middle(abs) | 86.8 79.8 54.5 61.5 70.9 46.8 36.4 45.4
Large(abs) 87.5 78.7 52.8 61.4 85.1 67.0 52.4 61.3
Small(rel) 92.6 85.4 85.4 90.5 94.6 94.4 95.3 95.2
0.05 Middle(rel) 93.4 86.0 86.1 90.6 97.0 97.7 102.8 98.1
Large(rel) 94.8 85.7 85.3 89.5 92.6 90.4 91.6 92.2
Small(abs) 79.5 69.7 49.1 55.0 70.7 48.8 40.8 47.1
0.10 Middle(abs) | 81.2 71.5 50.2 56.8 68.9 46.9 36.6 439
Large(abs) 80.0 69.6 48.6 56.0 76.9 61.1 48.0 57.1
Small(rel) 86.0 75.8 78.8 81.5 90.6 94.8 91.5 90.4
0.10 Middle(rel) 87.4 77.0 79.3 83.7 94.3 97.9 103.4 94.8
Large(rel) 86.7 75.8 78.5 81.6 83.7 82.5 83.9 85.9
Small(abs) 74.7 62.7 45.0 50.9 69.3 47.8 39.5 46.0
0.15 Middle(abs) | 76.1 64.3 46.7 524 67.7 46.2 37.5 43.6
Large(abs) 75.4 62.7 45.1 52.7 72.6 56.8 45.8 54.5
Small(rel) 80.8 68.2 72.2 75.4 88.8 92.8 88.6 88.3
0.15 Middle(rel) 81.9 69.3 73.8 77.2 92.6 96.5 105.9 94.2
Large(rel) 81.7 68.3 72.9 76.8 79.0 76.7 80.1 82.0
Small(abs) 70.8 58.9 41.9 49.1 66.7 46.4 38.8 44.1
0.20 Middle(abs) | 71.9 59.7 432 49.9 65.8 47.0 37.5 42.4
Large(abs) 70.9 58.7 432 50.0 68.0 534 443 51.9
Small(rel) 76.6 64.0 67.3 72.7 85.5 90.1 87.0 84.6
0.20 Middle(rel) 77.4 64.3 68.2 73.5 90.0 98.1 105.9 91.6
Large(rel) 76.8 63.9 69.8 72.9 74.0 72.1 77.4 78.0
Small(abs) 67.8 55.6 40.8 45.1 65.2 449 384 434
0.25 Middle(abs) | 69.0 57.5 42.0 471 65.2 45.9 37.7 43.0
Large(abs) 67.4 56.4 41.3 47.0 64.3 50.2 41.5 50.4
Small(rel) 73.4 60.4 65.5 66.8 83.6 87.2 86.1 83.3
0.25 Middle(rel) 74.3 62.0 66.4 69.4 89.2 95.8 106.5 92.9
Large(rel) 73.0 614 66.7 68.5 70.0 67.7 72.6 75.8
Small(abs) 63.9 53.6 39.7 425 62.2 44.6 38.0 427
0.30 Middle(abs) | 64.9 55.9 41.3 45.5 62.7 44.6 37.3 41.8
Large(abs) 64.0 54.4 40.1 452 60.6 49.2 42.0 48.6
Small(rel) 69.2 58.3 63.7 63.0 79.7 86.6 85.2 82.0
0.30 Middle(rel) 69.9 60.2 65.2 67.0 85.8 93.1 105.4 90.3
Large(rel) 69.3 59.3 64.8 65.9 65.9 66.4 73.4 73.1

Table 5: Robustness Comparison: Accuracy (%) across different noise fractions and generation steps
(e.g., “Step k” in the table means the average accuracy across k generation steps). “abs” is absolute
performance, while “rel” is the model’s relative accuracy compared with clean data input.

C.1 EXPERIMENT SETUP

Using the training method mentioned in Section[d], we use the JEPA-Reasoner model initialized with
Transformer blocks trained on C4 and Wikitext(Merity et al., 2016)) dataset in this experiment setup
to produce a human-readable result. We conducted controlled experiments using two sample inputs
from the training dataset to evaluate the dependency of the Talker model on the Reasoner’s output:

The first sample is: “Francis Bacon was an English philosopher and statesman who served as Attor-
ney General and Lord Chancellor of England under King James I. Bacon argued for the importance
of natural philosophy, guided by the scientific, his works remained influential”. This sample is used

13

Under review as a conference paper at ICLR 2026

as JEPA-Reasoner and Talker’s input unless mentioned otherwise. The second sample is “Jean-Paul
Sartre was a French philosopher, political activist, biographer, and literary critic. Sartre was one
of the key figures in the philosophy of existentialism (and phenomenology).”, which is used in the
“Semantic Mismatch” experiment

We systematically corrupted different components of the input to isolate the contribution of each
part:

* Baseline: Normal operation with clean Reasoner output

* Random String Replacement: Replace Reasoner output with a random string

* Initial Token Corruption: Keep Reasoner output clean, but replace Talker’s initial input
string (decoder input) with a random string.

* Gaussian Noise: Replace Reasoner output with Gaussian noise (1 = 0, o0 = 1)

* Semantic Mismatch: Use Reasoner output from a different sentence

C.2 RESULTS

Table [6] presents the results of our ablation experiments. The Talker’s initial input tokens were
the first 10 tokens of the Francis Bacon sample (Francis Bacon was an English philosopher and
statesman who in natural language) across most experiments unless mentioned otherwise.

Condition Talker OQutput

Baseline Bacon was an English philosopher and statesman
who served as Attorney General and Lord
Chancellor of England under King James I.

Bacon argued for the importance of natural
philosophy, guided by the scientific; his works
remained influential

Random String as Rea- | Francis Bacon was an English philosopher and

soner Input statesman whoTGvIUujapaUYDIUbIyuTviuiYtvU
Random Initial Tokens | SsDXicoundfdfiyx served as Attorney General and
for Talker Lord Chancellor of England under King James I.

Richardson argued for the importance of natural
philosophy, guided by the scientific, his works
remained influential

Gaussian Noise in Rea- | Francis Bacon was an English philosopher

soner Output and statesman who 0 not deathsardumn
technicalipt’/tputalase2006 (ightsringst Og
virtually lowesteral 1 new date 2007 0 results;
Semantic Mismatch Francis Bacon was an English philosopher and
statesman who, political activist, biographer,
and literary critic. Zartre was one of the

key figures in the philosophy of existentialism
(and phenomenology) .

Table 6: Ablation Study Results: Talker Model Output Under Different Input Corruptions.

Reasoner Dependency. When the Reasoner output is replaced with Gaussian noise, the Talker
produces incoherent output. This demonstrates that the Talker cannot generate meaningful content
without proper latent representations.

Initial Token Robustness. When only the initial input tokens are corrupted, the Talker can still
produce largely coherent content, guided by the clean Reasoner output, although some localized
errors occur (e.g., “Richardson” appears). This suggests the Reasoner’s latent representations carry
the primary semantic information.

Semantic Transfer. When using the Reasoner output from the Jean-Paul Sartre sample as Dual-
Talker’s input latent. Although the first 10 tokens from the Francis Bacon sample are used as the

14

Under review as a conference paper at ICLR 2026

initial input tokens of decoder blocks in Dual-Talker, it rapidly shifts to generating the Jean-Paul
Sartre content. This provides strong evidence that the Talker genuinely utilizes the semantic content
encoded by the JEPA-Reasoner.

These results validate our architectural design choice, confirming the decoupling of reasoning and
generation.

D K VALUE IN SCALED COSINE DISTANCE LOSS
We tested £ from 1 to 6. All these k£ values could produce a basic SST outcome that exhibits
reasoning behaviors stated in all previous sections. With a careful tuning of k, we observed a stable

improvement in the tree-search problem as shown in Figure

Model Performance Across Different k Values

1.0 1 E—
-2 0.9 A
5]
o~
g
5
2 084
=
o
Q
207
=
S 064

0.5

0 5 10 15 20 25 30

Training Steps (%x200)

Figure 7: Changes of correct major contributor rate with training steps. Zoom in to see details.

We choose the correct major contributor (the correct next-step latent vector plays the most important
role in current-step mixed latent vectors) rate as the metric since it directly relates to the correctness
of future predictions. Considering that when & = 4, the model gains the highest correct major
contributor rate (zoom in to distinguish the line of £ = 4 from the line of £ = 5), we choose to
continue our experiment with k = 4.

E VISUALIZATION OF MIXED LATENT VECTORS

To visualize that JEPA-Reasoner can produce mixed latent vectors, we gathered the embedding
vectors and model predictions from our tree-search experiments in this section. We extracted em-

0.6 ¢ + Predigted Latents
@ Vocabulary Latents
04 ¢ &
]
g .é“,.
g 02 ¢ P A &
L o Ty
B L JTA ."Jz;: <. 2
~ ° !%i-: ‘¢ 5
c e
8 0.0 P -%g’c". P
-9 *F LY . G
a® . L 4
s o
B
-0.2 ¢ ¢
o
¢ ¢
-0.4 -0.2 0.0 0.2 0.4

PC1 (8.7% variance)

Figure 8: Visualization of the tree structure in the given example.

15

Under review as a conference paper at ICLR 2026

bedding vectors from distinct tree leaves alongside the model’s output latent representations after
one forward pass. Principal Component Analysis (PCA) was applied to the collected embeddings
and model predictions, and the visualization focuses on the first two principal components (PC1 and
PC2).

As demonstrated in the Figure [8| predicted latent vectors (blue points in the figure) form a con-
tinuous cloud within the space spanned by discrete vocabulary embeddings (red diamond shapes).
This distribution supports the experiment results that they are the linear combinations of vocabulary
embeddings. Also, the predicted vectors do not converge to singular vocabulary points, providing
empirical evidence for the hypothesis that JEPA-Reasoner is capable of maintaining information
from multiple possible choices rather than committing to a single answer.

16

	Introduction
	Related Work
	Model Architecture
	JEPA-Reasoner
	Action-Taker Model
	Action Filter

	Training Procedure
	Pretraining
	Self-Supervised Training

	Latent Space Properties
	Continuous Representation of Uncertainty
	Data Preparation
	Model Configuration
	Training
	Results and Conclusions

	Robustness to Error Perturbation
	Data Preparation
	Model Configurations and Training Methods
	Experiment Methods
	Results and Conclusions

	Theoretical Advantage of Decoupled Architecture
	Model Dynamics and Probabilistic Factorization

	Summary
	Data for Tree Search Experiment
	Further Details for CFG Experiments
	CFG Rules and Sample
	A Sample CFG Sequence
	Detailed Experiment Results
	Parameter Efficiency Comparison

	Ablation Study of Talker Model
	Experiment Setup
	Results

	K Value in Scaled Cosine Distance Loss
	Visualization of Mixed Latent Vectors

