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ABSTRACT

Given a budget on total model size, one must decide whether to train a single,
large neural network or to combine the predictions of many smaller networks. We
study this trade-off for ensembles of random-feature ridge regression models. We
prove that when a fixed number of trainable parameters are partitioned among K
independently trained models,K = 1 achieves optimal performance, provided the
ridge parameter is optimally tuned. We then derive scaling laws which describe
how the test risk of an ensemble of regression models decays with its total size. We
identify conditions on the kernel and task eigenstructure under which ensembles
can achieve near-optimal scaling laws. Training ensembles of deep convolutional
neural networks on CIFAR-10 and a transformer architecture on C4, we find that
a single large network outperforms any ensemble of networks with the same total
number of parameters, provided the weight decay and feature-learning strength
are tuned to their optimal values.

1 INTRODUCTION

Ensembling methods are a well-established tool in machine learning for reducing the variance of
learned predictors. While traditional ensemble approaches like random forests (Breiman, 2001)
and XGBoost (Chen & Guestrin, 2016) combine many weak predictors, the advent of deep neural
networks has shifted the state of the art toward training a single large predictor (LeCun et al., 2015).
However, deep neural networks still suffer from various sources of variance, such as finite datasets
and random initialization (Atanasov et al., 2022; Adlam & Pennington, 2020; Lin & Dobriban, 2021;
Atanasov et al., 2024). As a result, deep ensembles—ensembles of deep neural networks—remain
a popular method for variance reduction (Ganaie et al., 2022; Fort et al., 2020), and uncertainty
estimation (Lakshminarayanan et al., 2017).

A critical consideration in practice is the computational cost associated with ensemble methods.
While increasing the number of predictors in an ensemble improves its accuracy (provided each
ensemble member is “competent” (Theisen et al., 2023)), each additional model incurs significant
computational overhead. Supposing a fixed memory capacity for learned parameters, a more prag-
matic comparison is between an ensemble of neural networks and a single large network with the
same total parameter count. Indeed, recent studies have called into question the utility of an ensem-
ble of deep networks relative to a single network of comparable total parameter count (Abe et al.,
2022; Vyas et al., 2023).

Originally introduced as a fast approximation to Kernel Ridge Regression, random-feature ridge
regression (RFRR) Rahimi & Recht (2007) has emerged as a rich “toy model” for deep learning,
capturing non-trivial effects of dataset size and network width (Canatar et al., 2021; Atanasov et al.,
2023; Mei & Montanari, 2022). While over-fitting effects known as “double-descent” may lead to
non-monotonic behavior of the loss in both deep networks and ridge regression (D’Ascoli et al.,
2020; Nakkiran, 2019; Nakkiran et al., 2019; Adlam & Pennington, 2020; Lin & Dobriban, 2021),
double-descent can be mitigated by optimally tuning the ridge parameter (Nakkiran et al., 2020;
Advani et al., 2020; Canatar et al., 2021; Simon et al., 2023). Specifically, Simon et al. showed
that in RFRR, test risk decreases monotonically with model size and dataset size when the ridge
parameter is optimally chosen.

In this present work, we study the tradeoff between the number of predictors and the size of each
predictor in ensembles of RFRR models. We find that with a fixed total parameter budget, minimal
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error is achieved by a single predictor trained on the full set of features, provided the ridge parameter
is optimally tuned. We analyze the trade-off between ensemble size and model size for tasks with a
power-law eigenstructure, identifying regimes where near-optimal performance can still be achieved
with an ensemble. Finally, we present experiments suggesting that this “no free lunch from ensem-
bles” principle extends to deep feature-learning ensembles when network hyperparameters are finely
tuned. The remainder of this work is organized as follows:

In section 2 we review the necessary background on the theory and practice of RFRR and its exten-
sion to ensembles.

In section 3, we state an omniscient risk estimate for ensembled RFRR and extend the “bigger is
better” theorem of Simon et al. (2023) to the ensembled case.

In Section 4, we prove that, when the total number of features is fixed, the optimal test risk of an
ensemble of RFRR models is achieved when the available features are consolidated into a single
large model, provided that the ridge parameter is tuned to its optimal value. We confirm these
predictions for ReLU RFRR models on binarized CIFAR-10 and MNIST classification tasks.

In Section 5, we derive scaling laws for the test risk of an ensemble of RFRR models under source
and capacity constraints (Cui et al., 2023; Caponnetto & De Vito, 2006; Bordelon et al., 2020;
Defilippis et al., 2024), in the width-bottlenecked regime. We identify regimes where near-optimal
performance can be achieved using an ensemble of smaller predictors. The derived scaling laws
provide a good description of RFRR on the binarized CIFAR-10 and MNIST classification tasks.

In Section 6, we test whether the intuitions provided by random feature models carry over to deep
neural networks in computer vision and natural language processing tasks. We find that for deep
networks in both the lazy and rich feature-learning regimes, a single large network typically out-
performs an ensemble of smaller networks, provided that the weight decay is tuned to its optimal
value.

2 PRELIMINARIES

2.1 RANDOM FEATURES AND THE KERNEL EIGENSPECTRUM

In this section, we describe ensembled RFRR, as well as the spectral decomposition of the kernel on
which our results rely. This framework is described in (Simon et al., 2023) for the single-predictor
case, and reviewed in more rigor in Appendix A.

Kernel Ridge Regression. In standard kernel ridge regression, the goal is to learn a function f(x)
that maps input features x ∈ RD to a target value y ∈ R, given a training set D = {xp, yp}Pp=1. The
learned function can be expressed in terms of the kernel functionH(x,x′) : RD × RD 7→ R as:

f(x) = hx,X (HXX + λI)
−1
y, (1)

where HXX ∈ RP×P is the kernel matrix with entries [HXX ]pp′ = H(xp,xp′), and hx,X =

[H(x,x1), . . . ,H(x,xP )]. The vector y ∈ RP contains the training labels, and λ is the ridge
parameter.

This procedure can be viewed as performing linear regression in the RKHS defined by the ker-
nel. Specifically, the kernel H(x,x′) can be decomposed into its eigenfunctions {ϕt(x)}∞t=1 and
corresponding eigenvalues {ηt}∞t=1:

H(x,x′) =

∞∑
t=1

ηtϕt(x)ϕt(x
′). (2)

In this formulation, f(x) is equivalent to the function learned by linear regression in the infinite-
dimensional feature space with dimensions given by θt(x) ≡

√
ηtϕt(x). Similarly, we will assume

that the target function can be decomposed in this basis as f∗(x) =
∑

t w̄tθt(x). The training labels
are assigned as yp = f∗(xp) + ϵp where ϵp ∼ N (0, σ2

ϵ ) is drawn i.i.d. for each sample.
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Random-Feature Ridge Regression (RFRR). An approximation of kernel ridge regression may
be achieved by mapping the input data into a finite-dimensional feature space, where linear regres-
sion is performed. Consider the “featurization” transformation g : RC × RD 7→ R. Define the
random features ψ(x) ∈ RN by [ψ(x)]n = g(vn,x) for independently drawn vn ∼ µv . The
prediction of the RFRR model is

f(x) = w⊤ψ(x) , (3)
where w is the weight vector learned via ridge regression. The random features model can be
interpreted as kernel ridge regression with a stochastic kernel Ĥ(x,x′), defined as:

Ĥ(x,x′) =
1

N

N∑
n=1

g(vn,x)g(vn,x
′). (4)

AsN → ∞, this stochastic kernel converges to the deterministic kernelH(x,x′). Thus, RFRR pro-
vides an approximation to kernel ridge regression that becomes increasingly accurate as the number
of random features grows.

Gaussian Universality Assumption. Following Simon et al. (2023), we assume that the random
features can be replaced by a Gaussian projection from the RKHS associated with the deterministic
kernel. Specifically, population risk is well described by the error formula obtained when the ran-
dom features are replaced by ψ(x) = Zθ(x) where [θ(x)]t = θt(x), Z ∈ RN×H is a random
Gaussian matrix with entries Zij ∼ N (0, 1), and H is the (infinite) dimensionality of the RKHS.
This assumption is justified rigorously by Defilippis et al. (2024), who provide a multiplicative error
bound on the resulting estimate for population risk. The stochastic kernel Ĥ(x,x′) can be written
as the inner product of the random features:

Ĥ(x,x′) =
1

N
ψ(x)⊤ψ(x′) =

1

N
θ(x)⊤Z⊤Zθ(x′). (5)

As N → ∞, this stochastic kernel approaches the deterministic kernelH(x,x′).

RFRR Ensembles Ensembles of RFRR models can be constructed by averaging the predictions
made by multiple independently trained RFRR models. For ensemble size K, we considerψk(x) ∈
RN , k = 1, . . . ,K to be the features associated with the kth ensemble member. The components[
ψk(x)

]
n

= g(vkn,x) for independently drawn vkn ∼ µv . The ensemble members are trained
independently, and then their predictions averaged at test time:

fens(x) =
1

K

K∑
k=1

fk(x), (6)

where fk(x) = wk⊤ψk(x) is the prediction of the k-th random feature model. Under the
assumption of Gaussian universality, we may compute theoretical learning curves by replacing
ψk(x) = Zkθ(x) ∈ RN×H , where Z1, . . . ,ZK are independently sampled Gaussian random
matrices.

Test Risk The test risk (also known as the generalization error or test error) quantifies the ex-
pected error of the learned function on unseen data. In this work, we define the test error as the
mean squared error (MSE) between the predicted function f(x) and the true target function f(x),
averaged over the data distribution µx:

Eg = Ex∼µx

[
(f(x)− f∗(x))

2
]
+ σ2

ϵ . (7)

For binary classification problems, we might also consider the clasification error rate on held-out
test examples under score-averaging or a majority vote (equations A.6, A.7).

2.2 DEGREES OF FREEDOM

Following notation similar to (Atanasov et al., 2024) and (Bach, 2023), we will write expressions in
terms of the “degrees of freedom” defined as follows:

Dfn(κ) ≡
∑
t

ηnt
(ηt + κ)n

, tfn(κ) ≡
∑
t

w̄2
t η

n
t

(ηt + κ)n
, n ∈ N. (8)
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Intuitively, Dfn(κ) can be understood as a measures of how many modes of the kernel eigenspectrum
are above a threshold κ, with the sharpness of the measurement increasing with n. tfn is a similar
measure with each mode weighted by the corresponding component of the target function.

3 OMNISCIENT RISK ESTIMATES FOR RANDOM FEATURE ENSEMBLES

3.1 THE BIAS-VARIANCE DECOMPOSITION OF Eg

We first review the omniscient risk estimate E1
g (superscript indicates K = 1) for a single RFRR

model. We do not derive this well-known result here, but rather direct the reader to a wealth of
derivations, including references (Atanasov et al., 2024; Canatar et al., 2021; Simon et al., 2023;
Adlam & Pennington, 2020; Rocks & Mehta, 2021; Hastie et al., 2022; Zavatone-Veth et al., 2022).
Translating the risk estimate into our selected notation, we may write:

E1
g ≈ 1

1− γ1

[
−ρκ22 tf

′
1(κ2) + (1− ρ)κ2 tf1(κ2) + σ2

ϵ

]
(9)

where we have defined

ρ ≡ N −Df1(κ2)

N −Df2(κ2)
, γ1 ≡ 1

P
((1− ρ)Df1 +ρDf2) (10)

and κ2 is the solution to the following self-consistent equation:

κ2 =
λN

(P −Df1(κ2))(N −Df1(κ2))
(11)

Assuming concentration of the kernel eigenfunctions, Defilippis et al. et. al. show that a dimension-
free multiplicative error bound of the form |E1

g − E1
g | ≤ Õ(N−1/2 + P−1/2) · E1

g , where E1
g is

the “true” risk and E1
g given in eq. 9, holds with high probability over the input data and random

weights. We find that eq. 9 provides an accurate estimate of risk at finiteN,P . The error formula can
further be decomposed using a bias-variance decomposition with respect to the particular realization
Z of random features:

E1
g = Bias2z +Varz (12)

Bias2z ≡ Ex∼µx

[
(EZ [f(x)]− f∗(x))

2
]
+ σ2

ϵ (13)

Varz ≡ EZEx∼µx

[
(f(x)− EZ [f(x)])2

]
(14)

While the learned function f in the equation above also depends on the particular realization of
the dataset D, we do not include this in the Bias-Variance decomposition because we are explicitly
interested in the variance due to the realization of a finite set of random features. Furthermore, the
Bias and Variance written in equations 13, 14 are expected to concentrate over D (Atanasov et al.,
2024; Adlam & Pennington, 2020; Lin & Dobriban, 2021). Omniscient estimates for the Bias and
Variance are given explicitly in (Simon et al., 2023):

Bias2z =
−κ22
1− γ2

tf ′1(κ2) +
σ2
ϵ

1− γ2
, Varz = E1

g − Bias2z , (15)

where γ2 ≡ 1
P Df2(κ2).

3.2 ENSEMBLING REDUCES VARIANCE OF THE LEARNED ESTIMATOR

Armed with a bias-variance decomposition of a single estimator over the realization of Z, we can
immediately write the risk estimate for an ensemble of K estimators, each with an associated set of
random features encapsulated by an independently drawn random Gaussian projection matrix Zk,
k = 1, . . . ,K. Because the realization Zk of random features is the only parameter distinguishing
the ensemble members, each ensemble member will have the same expected predictor EZf

k(x).
Furthermore, because the draws of Zk are independent for k = 1, . . . ,K, the deviations from this
mean predictor will be independent across ensemble members, so that ensembling overK predictors
reduces the variance of the prediction by a factor of K:

EK
g = Bias2z +

1

K
Varz (16)

4
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3.3 MORE IS BETTER IN RANDOM FEATURE ENSEMBLES

Predictive variance has historically been viewed as a beneficial to ensemble learning. In the case of
random forests, for example, subsampling of data dimensions leads to improved performance, de-
spite reducing the size of each decision tree (Breiman, 2001). In RFRR ensembles, each ensemble
member is distinguished by the particular realization of its random features (i.e. the independently
drawn vkn ∼ µv). As N → ∞, the function learned by each estimator will converge to the same
limiting kernel predictor. One might therefore expect reducing the size N of each ensemble mem-
ber to improve ensemble performance by increasing the diversity of the ensemble’s predictors. This,
however, is not the case as we prove that increasingN is always beneficial to the test risk of a RFRR
ensemble.
Theorem 1. (More is better for RF Ensembles) Let EK

g (P,N, λ) denote EK
g with P training sam-

ples, N random features per ensemble member, ensemble size K, and ridge parameter λ and any
task eigenstructure {ηt}∞t=1, {w̄t}∞t=1, where {ηt}∞t=1 has infinite rank. Let K ′ ≥ K, P ′ ≥ P and
N ′ ≥ N . Then

min
λ
EK′

g (P ′, N ′, λ) ≤ min
λ
EK

g (P,N, λ) (17)

with strict inequality as long as (K ′, N ′, P ′) ̸= (K,N,P ) and
∑

t w̄
2
t ηt > 0.

Remark 1. In the special case K = 1, this reduces to the “more is better” theorem for single models
proven in (Simon et al., 2023) .

Proof of this theorem follows from the omniscient risk estimate 16, and is provided in Appendix B.
This theorem extends the notion that larger models, or models trained with more data, achieve better
performance.

We demonstrate monotonicity with P and N in Fig. 1, where we plot EK
g as a function of both

sample size P and the network size N in ensembles of ReLU random feature models applied to a
binarized CIFAR-10 image classification task (see Appendix D.2). While error may increase with
P or N at a particular ridge value λ, Error decreases monotonically provided that the ridge λ is
tuned to its optimal value. Theoretical learning curves are calculated using eq. 16, with eigenvalues
ηk and target weights w̄k determined by computing the NNGP kernel corresponding to the infinite-
feature limit of the ReLU RF model (see Appendix D.3 for details). Numerically, we verify that
error monotonicity with P and N holds at the level of a 0-1 loss on the predicted classes of held-out
test examples for both score-averaging and majority-vote ensembling over the predictors (see fig.
S3).

We compare ridge-optimized error across ensemble sizesK in fig. S1, finding that increasing sample
size P and network size N are usually more effective than ensembling over multiple networks in
reducing predictor error, indicating that for the binarized CIFAR-10 RFRR classification task, bias
is the dominant contribution to error. Similarly, ensembling over multiple networks gives meager
improvements in performance relative to increasing network size in deep feature-learning ensembles
Vyas et al. (2023).

4 NO FREE LUNCH FROM RANDOM FEATURE ENSEMBLES

It is immediate from eq. 16 that increasing the size of an ensemble reduces the error. However, with
a fixed memory capacity, a machine learning practitioner is faced with the decision of whether to
train a single large model, or to train an ensemble of smaller models and average their predictions.
Here, we prove a “no free lunch” theorem which says that, given a fixed total number of features
M divided evenly among K random feature models, then the lowest possible risk will always be
achieved by K = 1, provided that the ridge is tuned to its optimal value. Furthermore, this ridge-
optimized error increases monotonically with K.
Theorem 2. (No Free Lunch From Random Feature Ensembles) Let EK

g (P,N, λ) denote EK
g with

P training samples, N random features per ensemble member, ridge parameter λ, ensemble size K,
and task eigenstructure {ηt}∞t=1, {w̄t}∞t=1, where {ηt}∞t=1 has infinite rank. Let K ′ < K. Then

min
λ
EK′

g (P,M/K ′, λ) ≤ min
λ
EK

g (P,M/K, λ) (18)

with strict inequality as long as
∑

t w̄
2
t ηt > 0.
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Monotonicity (fixed N)

A

B

Figure 1: “More is better” in random feature ensembles. We perform ReLU RFRR on a binarized
CIFAR-10 classification task and compare the empirical test risk to the omniscient risk estimate
(eq. 16). (A) We fix N = 256 and vary both P and K. Color corresponds to the regularization
λ. Markers show numerical experiments and dotted lines theoretical predictions. Error is monoton-
ically decreasing with P provided that the regularization λ is tuned to its optimal value. (B) Same
as (A) except that P = 256 is fixed and K, N are varied. Markers and error bars show mean and
standard deviation over 50 trials.

The proof follows a similar strategy to the proof of theorem 1, and is provided in appendix B. We
test this prediction by performing ensembled ReLU RFRR on the binarized CIFAR-10 classification
task in figure 2. We find that increasing K while keeping the total number of features M fixed
always degrades the optimal test risk. The strength of this effect, however, depends on the size of
the training set. For larger training sets (P ≫ N ), the width of each ensemble member becomes
the constraining factor in each predictor’s ability to recover the target function. However, when
P ≪ N , the optimal loss is primarily determined by P , so that optimal error only begins increasing
appreciably with K once N =M/K ≲ P (fig. 2 B). We again find similar behavior of the 0-1 loss
under score-average and majority-vote ensembling (see fig. S6). While the ridge-optimized error is
always minimal forK = 1, we notice in fig. 2C that near-optimal performance can be obtained with
K > 1 over a wider range of λ values, suggesting that ensembling may offer improved robustness in
situations where fine-tuning of the ridge parameter is not possible. Further robustness benefits have
been reported for regression ensembles of heterogeneous size (Ruben & Pehlevan, 2023).

Theorems 1 and 2 together guarantee that a larger ensemble of smaller RFRR ensembles can only
outperform a smaller ensemble of larger RFRR models when the total parameter count of the former
exceeds that of the latter. We formalize this fact in the following corollary:
Corollary 1. Let EK

g (N) be the test risk of an ensemble of K RFRR models each with N features
given by eq. 16. Suppose K ′ > K or N ′ < N . It follows from Theorems 1 and 2 that

min
λ
EK′

g (N ′) ≤ min
λ
EK

g (N) ⇒ K ′N ′ ≥ KN. (19)

We demonstrate this result on synthetic tasks with power-law structure and on the binarized CIFAR-
10 classification task in fig. S2. For ensembles in the over-parameterized regime (N ≫ P ), this
bound appears to be tight.

5 WIDTH-BOTTLENECKED SCALING OF RANDOM FEATURE ENSEMBLES

To gain a better understanding of the trade-off between ensemble size K and total feature count M ,
we ask how the errorEK

g scales with total model sizeM under the standard “source” and “capacity”

6
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A

B C

Figure 2: No Free Lunch from 
Ensembles

Figure 2: No Free Lunch from Random Feature Ensembles. We perform kernel RF regression on
a binarized CIFAR 10 classification task. (A) We vary K and N while keeping total parameter
count M = 1024 fixed. The sample size P is indicated above each plot. (B) Error EK

g optimized
over the ridge parameter λ increases monotonically with K provided the total parameter count M is
fixed. Dashed lines show theoretical prediction using eq. 16 and markers and error-bars show mean
and standard deviation of the risk measured in numerical simulations across 10 trials. (C) We show
error as a function of λ for each K value simulated and P = 8192. Dashed lines show theoretical
prediction using eq. 16 and shaded regions show standard deviation of risk measured in numerical
simulations across 10 trials.

constraints on the task eigenstructure (Cui et al., 2023; Caponnetto & De Vito, 2006; Bordelon et al.,
2020; Defilippis et al., 2024). In particular, we assume that the kernel eigenspectrum decays as
ηt ∼ t−α with α > 1 and the target’s power in each mode decays as w̄2

t ηt ∼ t−(1+2αr). We also
assume that N = M/K ≪ P , so that we are in the width-bottlenecked regime (otherwise, error
scaling is dominated by the sample size P ) (Bahri et al., 2024; Maloney et al., 2022; Bordelon et al.,
2024a; Atanasov et al., 2024). To understand the scaling of EK

g with M , we introduce a “growth
exponent” ℓ ∈ [0, 1] which controls the joint scaling of K and N with M :

ℓ ∈ [0, 1] K ∼M1−ℓ N ∼M ℓ , (20)

so that when ℓ = 0 the ensemble grows with M by adding additional ensemble members of a fixed
size, and when ℓ = 1 the ensemble grows by adding parameters to a fixed number of networks.
Under these conditions, we find:

EK
g ∼M−s, s = min

(
2αℓmin(r, 1), 1− ℓ+ 2αℓmin

(
r,
1

2

))
, (21)

with s = 2αℓmin(r, 1) corresponding to the scaling of the bias and s = 1 − ℓ + 2αℓmin (r, 1/2)
corresponding the scaling of the variance (reduced by a factor of 1/K). A full derivation is provided
in appendix C. These results reify the “no free lunch” result, as the optimal scaling law is always
achieved when ℓ = 1. For difficult tasks, defined as having r < 1/2, bias always dominates the
error scaling and the scaling exponent increases linearly with ℓ. However, when r > 1/2, there will
be a certain value ℓ∗ above which error scaling is dominated by the variance term. When r > 1/2,
the scaling exponent of the variance increases from 1 to α over the range ℓ ∈ [0, 1]. If α ≳ 1, this
can approach a flat line, and the dependence of the scaling exponent on ℓ can become weak, so that
near-optimal scaling can be achieved for any ℓ > ℓ∗. When 1/2 < r < 1, this transition occurs at
ℓ∗ = 1/(1 + α(2r − 1)) and when r > 1 it occurs at ℓ∗ = 1/(1 + α).

We plot these scaling laws with α = 1.5 in the regimes where r < 1/2, 1/2 < r < 1, and r > 1 in
fig. 3, along with the results of numerical simulations of linear RF regression on synthetic Gaussian
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datasets. As anticipated, for difficult tasks, where r < 1/2, the scaling law improves linearly with
ℓ. However, for easier tasks (r > 1/2), we see that, a near-optimal scaling law can be achieved as
long as ℓ > ℓ∗ (fig. 3, center and right columns).

Figure 3: Scaling Laws for Gaussian Ensembles

A

B

Figure 3: width-bottlenecked scaling laws of kernel RF regression under source and capacity con-
straints. We fix P = 15, 000, α = 1.5, and r ∈ {0.4, 0.8, 1.2} and calculate EK

g as a function of
M with N =M ℓ and K =M (1−ℓ) using both the omniscient risk estimate (eq. 16) and numerical
simulation of a linear Gaussian random-feature model (eq. A.12). (A) Plots of EK

g vs. M at dif-
ferent ℓ values reveal that ℓ controls the scaling law of the error. (B) We plot the theoretical scaling
exponents (eq. 21): Bias ∼ 2αℓmin(r, 1), Var ∼ 1−ℓ+2αℓmin(r, 12 ) along with the scaling laws
obtained by fitting the risks obtained by numerical simulation.

We also determine the scaling behavior of the ReLU RFRR ensembles on the binarized CIFAR-10
and MNIST classification tasks. For both tasks, we calculate the statistics of the limiting kernel
eigenspectrum {ηt}∞t=1 and target weights {w̄t}∞t=1 and fit their spectral decays to the source and
capacity constraints. We find that for CIFAR-10, α ≈ 1.33, r ≈ 0.038 and for MNIST α ≈
1.46, r ≈ 0.14, which places both tasks squarely in the difficult regime with r < 1/2. In figure 4,
we show that the predicted scaling exponents of eq. 21.

Figure 4: scaling Law description 
of RF Regression for MNIST and 
CIFAR

A BCIFAR 10 MNIST CIFAR 10 MNIST

Figure 4: Scaling laws provide a good description of width-bottlenecked RFRR ensembles.(A) we
plot error as a function of M at optimal ridge value for ReLU random-feature models applied to
the binarized CIFAR-10 (left) and MNIST (right) classification tasks. (B) We plot theoretically
predicted scaling exponents (eq. 21) for the bias and variance contributions to risk, as well as
empirical power-law fits to risk in numerical simulations of RFRR models (see Appendix D.3, fig.
S7)

6 NO FREE LUNCH FROM FEATURE LEARNING ENSEMBLES

Here, ask whether the “no free lunch from ensembles” principle proven for RFRR carries over to
ensembles of deep neural networks. In the lazy training regime, deep neural networks reduce to
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kernel machines, with random features given by the gradients of the loss at initialization (Chizat
et al., 2019). Consequently, random feature models are reliable toy models for lazy training, with
the number of random features as a proxy for the number of parameters in the network (Jacot et al.,
2018; Lee et al., 2019; Chizat et al., 2019; Bordelon et al., 2020; Canatar et al., 2021). For example,
RFRR exhibits overfitting at finite width and sample size Atanasov et al. (2022). Feature learning
can, however, complicate the relationship between network size and performance, if the strength of
feature-learning depends on network width, as in NTK parameterization (Jacot et al., 2018; Aitchi-
son, 2020). To make “fair” comparisons between large models and ensembles of smaller models,
we seek instead a parameterization which keeps training dynamics consistent across widths, with
monotonic improvements in performance as width increases.

Maximal update parameterization (µP ) (Geiger et al., 2020; Mei et al., 2018; Rotskoff & Vanden-
Eijnden, 2022; Yang & Hu, 2021; Bordelon & Pehlevan, 2022) accomplishes this desired width-
consistency (Vyas et al., 2023). µP is the unique parameterization in which the network’s infinite
width limit converges and permits feature learning in finite time (Yang et al., 2022; Bordelon &
Pehlevan, 2022). µP is similar to the NTK parameterization, except we center and scale the output
of the neural network inversely with a richness parameter (Chizat et al., 2019):

f̃(x; θ) =
1

γ

(
f(x; θ)− f(x; θ0)

)
, γ = γ0

√
N, η = η0γ

2 (22)

so that the richness γ0 and learning rate η0 are constants and γ and η scale with network size (Geiger
et al., 2020; Mei et al., 2018; Rotskoff & Vanden-Eijnden, 2022; Yang & Hu, 2021; Bordelon &
Pehlevan, 2022). At small γ, small changes in the weights are sufficient to interpolate the training
data, yielding a model well-approximated as a linear model with the kernel given by the NTK at
initialization. This is known as lazy learning. At large γ, large weight updates are necessary to
change the network’s output, and the model learns task-relevant features. This is known as rich
learning.

We train ensembles of deep convolutional neural networks (CNNs) on the CIFAR-10 image classi-
fication task, sweeping over ensemble size K, richness γ, and weight decay λ. We use a small CNN
architecture with two CNN layers (figs. 5A, S8), as well as a larger ResNet18 architecture (figs. 5A,
S9). The width of the convolutional and MLP layers are varied with K to keep the total parameter
count fixed (details in Appendix E). In the “lazy” regime (γ ≪ 1), we find that accuracy decreases
monotonically with K, provided weight decay is tuned to its optimal value. And, while at some
intermediate values of γ error may increase with K, monotonicity is restored when weight decay
and richness γ are jointly tuned to their optimal values (figs. 5A,B, S8, S9).

We also test the performance of ensembles of transformers trained on the C4 language modeling
task. We train in the online setting where each sample is used no more than once. No weight decay
is used. In agreement with results from (Vyas et al., 2023), we find that across richness parameters
γ, error is monotonically increasing with K (fig. 5B).

To summarize, our findings suggest that “no free lunch from ensembles” holds for deep ensembles
trained with µP parameterization under any of following conditions:

• In the lazy training regime (γ → 0) when the weight decay is tuned to its optimal value.
• When weight decay and richness γ are jointly tuned to their optimal values.
• When richness γ is fixed and training is performed online (i.e. without repeating data).

7 DISCUSSION

An important limitation of our work is the assumption of statistically homogeneous ensembles.
We consider each ensemble member to be trained on the same dataset, and to perform the same
task. However, successes have been achieved using ensembles with functional specialization, where
different sub-networks are trained on different datasets to perform different sub-tasks relevant to
the overall goal of the ensemble. For example, mixture of experts (MoE) models (Jacobs et al.,
1991; Lepikhin et al., 2020; Fedus et al., 2022) might offer a way to cleverly scale model size
using ensembles that outperforms the scaling laws for single large networks. We leave a theory of
ensembled regression which allows for functional specialization as an objective for future work.

9
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Lo
ss

CNNs on CIFAR-10 ResNet18s on CIFAR-10 Transformers on C4
A B C

Figure 5: (A, B) No Free Lunch from deep CNN ensembles on CIFAR-10. At optimal weight decay,
performance decays (decrease in test accuracy) monotonically with ensemble size K when the total
number of parameters M is fixed, for lazy training (γ ≪ 1) and at optimal richness. We test a small
CNN architecture with 2 convolutional layers and one MLP layer (A) and ResNet18 ensembles (B).
(C) No Free Lunch from Transformer ensembles trained online for 5000 steps on the C4 dataset. For
all γ, the performance decays (indicated by an increase in loss) monotonically with the ensemble
size.

Another limitation of our work is the absence of feature-learning in the RFRR toy model, which
prevents a direct application of our theory to deep ensembles in the rich regime. Nevertheless,
we find that when deep networks are trained using µP parameterization, the “no free lunch from
ensembles” principle holds empirically provided the weight decay and richness parameter γ are
tuned to their optimal values. This fact might be proven rigorously by extending a recent analytical
model of feature-learning networks to the ensembled case (Bordelon et al., 2024b).

Our study also connects to recent work on scaling laws in deep learning (Kaplan et al., 2020; Hoff-
mann et al., 2022; Bordelon et al., 2024a;b), which observe that the test error of neural networks
tends to improve predictably as a power-law with the number of parameters and the size of the
dataset used during training. With our scaling-law analysis, we extend the power-laws predicted
using random-feature models (Bahri et al., 2024; Maloney et al., 2022; Bordelon et al., 2020; 2024a;
Defilippis et al., 2024) to the case where model size is scaled up by jointly increasing the ensemble
size K and parameters per ensemble member N according to a “growth exponent” ℓ defined in eq.
20. While optimal scaling is always achieved by fixing K and scaling up network size, for suffi-
ciently easy tasks (r > 1/2), near-optimal scaling laws can be achieved by growing both network
size and ensemble size, provided network size grows quickly enough with total parameter count.
Because feature-learning networks can dynamically align their representations to the target func-
tion Bordelon et al. (2024b), the scaling laws for deep ensembles may be dramatically improved by
feature-learning effects.

8 CONCLUSION

In this work, we analyzed a trade-off between ensemble size and features-per-ensemble-member in
the tractable setting of RFRR. We prove a “no free lunch” theorem which states that optimal perfor-
mance is always achieved by allocating all features to a single, large RFRR model, provided that the
ridge parameter is tuned to its optimal value. A scaling-laws analysis reveals that the sharpness of
this trade-off depends sensitively on the structure of the task. In particular, near-optimal scaling laws
can be achieved by RFRR ensembles, provided the task is sufficiently aligned with the top modes
of the limiting kernel eigenspectrum. We confirm that in deep neural network ensembles with fixed
total parameter count, increasing ensemble size K leads to worse performance in both a computer
vision and language modeling task, provided that both the weight decay and the richness parameters
are tuned to their optimal values. In addition to explaining the general trend from massively en-
sembled predictors to large models with jointly trained parameters in recent years, our results have
practical implications for model design and resource allocation in real-world settings, where model
size is limited.
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Giulio Biroli, Clément Hongler, and Matthieu Wyart. Scaling description of generalization with
number of parameters in deep learning. Journal of Statistical Mechanics: Theory and Experi-
ment, 2020(2):023401, February 2020. ISSN 1742-5468. doi: 10.1088/1742-5468/ab633c. URL
http://dx.doi.org/10.1088/1742-5468/ab633c.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. The Annals of Statistics, 50(2), April 2022.
ISSN 0090-5364. doi: 10.1214/21-aos2133. URL http://dx.doi.org/10.1214/
21-AOS2133.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Tosio Kato. Perturbation theory for linear operators. Springer Berlin Heidelberg, 1966. ISBN
9783662126783. doi: 10.1007/978-3-662-12678-3. URL http://dx.doi.org/10.1007/
978-3-662-12678-3.

12

http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1088/2632-2153/acf041
http://dx.doi.org/10.1088/2632-2153/acf041
https://proceedings.mlr.press/v119/d-ascoli20a.html
https://proceedings.mlr.press/v119/d-ascoli20a.html
https://arxiv.org/abs/2405.15699
https://arxiv.org/abs/2405.15699
https://arxiv.org/abs/1912.02757
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://dx.doi.org/10.1088/1742-5468/ab633c
http://dx.doi.org/10.1214/21-AOS2133
http://dx.doi.org/10.1214/21-AOS2133
http://dx.doi.org/10.1007/978-3-662-12678-3
http://dx.doi.org/10.1007/978-3-662-12678-3


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensembles. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
May 2015. ISSN 1476-4687. doi: 10.1038/nature14539. URL http://dx.doi.org/10.
1038/nature14539.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes, 2018. URL https://arxiv.
org/abs/1711.00165.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Licong Lin and Edgar Dobriban. What causes the test error? going beyond bias-variance via
anova. Journal of Machine Learning Research, 22(155):1–82, 2021. URL http://jmlr.
org/papers/v22/20-1211.html.

Bruno Loureiro, Cedric Gerbelot, Maria Refinetti, Gabriele Sicuro, and Florent Krzakala. Fluc-
tuations, bias, variance &; ensemble of learners: Exact asymptotics for convex losses in high-
dimension. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 14283–14314. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/loureiro22a.html.

Alexander Maloney, Daniel A. Roberts, and James Sully. A solvable model of neural scaling laws,
2022. URL https://arxiv.org/abs/2210.16859.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied Mathematics,
75(4):667–766, 2022.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33), July 2018.
ISSN 1091-6490. doi: 10.1073/pnas.1806579115. URL http://dx.doi.org/10.1073/
pnas.1806579115.

Preetum Nakkiran. More data can hurt for linear regression: Sample-wise double descent. arXiv
preprint arXiv:1912.07242, 2019.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt, 2019. URL https://arxiv.org/
abs/1912.02292.

Preetum Nakkiran, Prayaag Venkat, Sham Kakade, and Tengyu Ma. Optimal regularization can
mitigate double descent. arXiv preprint arXiv:2003.01897, 2020.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein,
and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python,
2019. URL https://arxiv.org/abs/1912.02803.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

13

https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
https://arxiv.org/abs/1711.00165
https://arxiv.org/abs/1711.00165
http://jmlr.org/papers/v22/20-1211.html
http://jmlr.org/papers/v22/20-1211.html
https://proceedings.mlr.press/v162/loureiro22a.html
https://arxiv.org/abs/2210.16859
http://dx.doi.org/10.1073/pnas.1806579115
http://dx.doi.org/10.1073/pnas.1806579115
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1912.02803


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jason W. Rocks and Pankaj Mehta. The geometry of over-parameterized regression and adversarial
perturbations, 2021. URL https://arxiv.org/abs/2103.14108.

Grant Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of artificial neural networks: An
interacting particle system approach. Communications on Pure and Applied Mathematics, 75(9):
1889–1935, July 2022. ISSN 1097-0312. doi: 10.1002/cpa.22074. URL http://dx.doi.
org/10.1002/cpa.22074.

Benjamin S. Ruben and Cengiz Pehlevan. Learning curves for heterogeneous feature-subsampled
ridge ensembles, 2023. URL https://arxiv.org/abs/2307.03176.

James B. Simon, Dhruva Karkada, Nikhil Ghosh, and Mikhail Belkin. More is better in modern
machine learning: when infinite overparameterization is optimal and overfitting is obligatory.
CoRR, abs/2311.14646, 2023. doi: 10.48550/ARXIV.2311.14646. URL https://doi.org/
10.48550/arXiv.2311.14646.

Ryan Theisen, Hyunsuk Kim, Yaoqing Yang, Liam Hodgkinson, and Michael W. Mahoney. When
are ensembles really effective?, 2023. URL https://arxiv.org/abs/2305.12313.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cour-
napeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
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A B

Figure S1: Ek
g at optimal ridge as a function of ensemble size K for binarized CIFAR-10 RFRR

classification. (A) We fix N = 256, P values indicated in legend. (B) We fix P = 256, N values
indicated in legend. Error bars show standard deviation across 10 trials.

Tightness of K = M/N bound

A B C

D E F

Figure S2: (A, B, D, E) We plot theoretical values for Ek
g at optimal ridge as a function of ensemble

size K for RFRR with power-law eigenstructure with source exponent r = 1 and capacity α = 1.2
(A, B) and for the NNGP kernel associated with the binarized CIFAR-10 classification task (D, E)
. Random features per ensemble member N shown in the legend. The dotted black line shows E1

g
for a single RFRR model with N =M = 2048 features. Sample size P is indicated in the title. (C,
F) We plot the ensemble size K∗ for which an ensemble of RFRR models with size N performs at
least as well as single RFRR model with M = 2048 random features. P values indicated in legend.
As predicted by Theorem 2, all curves lie above the dotted line KN =M . This bound appears tight
when P ≪ N .
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Monotonicity for 0-1 Loss  CIFAR
Top two: Error vs. P
Bottom 2: Error vs N

First row of each is Score Average
Last row of each is Majority vote

A

B

C

D

Figure S3: 0-1 Loss for binarized CIFAR-10 RFRR task under score-averaging (A, C) and majority
vote (B, D) ensembling schemes. As in Fig. 1, Errors are shown (A, B) as a function of P for fixed
N = 256 and (B) as a function of N for fixed P = 256. K value indicated in title and λ value in
colorbar. Red line indicates optimal ridge determined by grid search. Markers and error bars show
mean and standard deviation over 50 trials.
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Sample monotonicity MNIST
A

B C

Figure S4: No Free Lunch from Ensembles of Random Feature Models. Eg for kernel RF regression
on an MNIST classification task. (A) Warying K and N while keeping total parameter count M =
1024 fixed. The sample size P is indicated above each plot. (B) Error EK

g optimized over the ridge
parameter λ increases monotonically with K provided the total parameter count M is fixed. Dashed
lines show theoretical prediction using eq. 16 and markers and error-bars show mean and standard
deviation of the risk measured in numerical simulations across 10 trials. (C) We show error as a
function of λ for each K value simulated and P = 8192. Dashed lines show theoretical prediction
using eq. 16 and shaded regions show standard deviation of risk measured in numerical simulations
across 10 trials.

Bias Variance Decomposition vs K.
Top row CIFAR 10.  Bottom row MNIST

A B

ED

C

F

Figure S5: Bias-Variance decomposition of error at optimal ridge for binarized CIFAR-10 (A, B,
C) and MNIST (D, E, F) RFRR tasks. We vary K and N while keeping total parameter M =
1024 fixed. Bias2z (A, D), single-predictor variance Varz (B, E), and ensemble-predictor variance
Var2z /K (C, F) are calculated from theoretical expressions 15.
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No Free Lunch for 0/1 Loss.
Top two: CIFAR.  Bottom two: MNIST.  Top row is score average and bottom row is majority vote.

A

B

C

D

Figure S6: 0-1 loss for binarized CIFAR-10 (A, B) and MNIST (C, D) RFRR classification tasks
under score-average (A, C) and majority vote (B, D) ensembling. We sweep K and N keeping
M = KN = 1024 fixed. Sample size P indicated in titles. Colorbar indicates ridge parameter. Red
indicates optimal ridge determined by grid search.
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Advanced Fitting of Spectra

CIFAR 10

MNIST

CIFAR 10

MNIST

A B

C D

Figure S7: We measure the eigenspectrum of the NNGP kernel applied to the CIFAR-10 and MNIST
datasets, as well as the target weights for the binarized classification tasks described in Appendix
D.2. Estimates for the source and capacity exponents are obtained by fitting the “trace metric”[
tr [Hp]

−1
]−1

and the MSE loss of kernel ridge regression with the limiting NNGP kernel to power
laws (see Appendix D.4 for details).
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Figure S8: CNNs on CIFAR-10 for varying richness γ and weight decay λ. Total parameter count
is held fixed while ensemble size K is varied.
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Figure S9: ResNet18s on CIFAR-10 for varying richness γ and weight decay λ. Total parameter
count is held fixed while ensemble size K is varied.
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A EXTENDING THE RANDOM-FEATURE EIGENFRAMEWORK TO ENSEMBLES

We consider the RFRR setting as described by (Simon et al., 2023), extended to ensembles of pre-
dictors. A detailed description of this extended framework is Let D = {xp, yp}Pi=1 be a training set
of P examples, where xp ∈ RD are input features and yp ∈ R are target values generated by a noisy

ground-truth function yp = f∗(xp) + ϵp and the label noise ϵp
i.i.d.∼ N (0, σ2

ϵ ).

We consider an ensemble of K random feature models, each with N features. The total number
of features is thus M = K · N . For each model k = 1, . . . ,K, we sample N feature vectors
{wk

n}Nn=1 i.i.d. from a measure µv over RB (we will use upper indices to represent the index of
the ensemble member, and lower indices to represent indices of the training examples and features).
An ensemble of K featurization transformations are defined as ψk : x 7→ (g(vkn,x))

N
n=1 where

g : RB × RD → R is square-integrable with respect to µx and µv . The predictions of the ridge
regression models are then given as fk(x) = wk·ψ(x), where the weight vectorswk are determined
by standard linear ridge regression with a ridge parameter λ:

ŵk =

(
1

N
Ψk⊤Ψk + λI

)−1
Ψk⊤y

N
(A.1)

Where the matrices Ψk ∈ RN×P have columns [ψk(x1), · · · ,ψk(xP )] and the vector y ∈ RP has
[y]p = yp. For each ensemble member, this is equivalent to the kernel ridge regression predictor:

fk(x) = ĥx,X

(
ĤXX + λIN

)−1

y (A.2)

Where the matrix [ĤXX ]pp′ = Ĥk(xp,xp′) and the vector [ĥx,X ]p = Ĥk(x,xp) with the stochas-
tic finite-feature kernel

Ĥk(x,x′) =
1

N

N∑
n=1

g(wk
n,x)g(w

k
n,x

′) k = 1, . . . ,K (A.3)

In the limit of infinite features, this stochastic kernel converges to a deterministic limit Ĥk(x,x′) →
H(x,x′). Because we consider the feature function g to be shared across ensemble members, this
limit is independent of k. The ensemble prediction is the average of individual model predictions:

fens(x) =
1

K

K∑
k=1

fk(x) (A.4)

Finally, we measure the test error as the mean-squared error of the ensemble as the mean-squared
error on a held out-test sample:

Eg ≡ Ex∼µx

[
(fens(x)− f∗(x))

2
]
+ σ2

ϵ (A.5)

For binary classification problems, we may be more interested in the classification error rate for
the learned predictor. Given an ensemble of scalar output “scores” f1(x), . . . , fKx, two possible
schemes to assign the class of the test example x are score-averaging and majority-vote ensembling
(Loureiro et al., 2022):

fSA
ens (x) = Sign

(
K∑

k=1

fk(x)

)
(Score-Average) (A.6)

fMV
ens (x) = Sign

(
K∑

k=1

Sign
(
fk(x)

))
(Majority-Vote) (A.7)

The classification error rate is then given as the probability of mislabeling a held-out test example.

A.1 SPECTRAL DECOMPOSITION OF THE KERNEL

The feature function g permits a spectral decomposition as follows:. Let T : L2(µv) → L2(µx) be
the linear operator defined by:

(Tr)(x) =

∫
RB

r(v)g(v,x)dµv(v) (A.8)
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The singular value decomposition of T ((Kato, 1966)) yields orthonormal bases {ζn}∞n=1 of
Ker⊥(T ) ⊂ L2(µv) and {ϕn}∞n=1 of L2(µn), where {ηt}∞t=1 are the eigenvalues (in decreasing
order) and {ζt}∞t=1 the corresponding eigenvectors integral operator Σ : L2 (µx) → L2 (µx) given
by

(Σu)(x) =

∫
RD

u(x′)H(x′,x)dµx(x
′) (A.9)

We can write Σ = TT ⋆, where T ⋆ : L2 (µx) 7→ L2 (µv) denotes the adjoint of T . The feature
function g can then be decomposed as g(v,x) =

∑∞
t=1

√
ηtζt(v)ϕt(x).

Under these conditions, we may write the stochastic finite-feature kernel functions as:

Ĥk(x,x′) =
1

N

N∑
n=1

∞∑
t,t′=1

√
ηtηt′ζt(v

k
n)ζt′(v

k
n)ϕt(x)ϕ

′
t(x

′) (A.10)

Using the orthonormality of the bases, the deterministic limit of the kernel function can then be
expanded as

H(x,x′) =
∑
t

ηtϕt(x)ϕt(x
′) =

∑
t

θt(x)θt(x
′) (A.11)

where we have defined θt(x) ≡
√
ηtϕt(x). We see that that the singular values {ηt} of the operator

T double as the eigenvalues of the limiting kernel operatorH . We will assume that the ground truth
function f∗(x) can then be decomposed as: f∗(x) =

∑
t w̄tθt(x). Any component of f∗ which

does not lie in the RKHS of the kernel could, in principle, be absorbed into the noise σ2
ϵ (Canatar

et al., 2021).

A.2 GAUSSIAN UNIVERSALITY ANSATZ AND THE CONNECTION TO LINEAR RANDOM
FEATURE RIDGE REGRESSION

As in (Simon et al., 2023; Atanasov et al., 2022), we adopt the Gaussian universality ansatz, which
states that the expected train and test errors are unchanged if we replace {ζt} and {ϕt} with random
Gaussian functions {ζ̃t} and {ϕ̃t} such that ζ̃t(v) ∼ N (0, 1) and ϕ̃t(x) ∼ N (0, 1) for v ∼ µv and
x ∼ µx, respectively.

The finite-feature stochastic kernels can then be written Ĥk(x,x′) = θ̃k(x)·θ̃k(x′) where θ̃k(x) ≡
Zkθ(x) and the entries of Zk ∈ RN×H are drawn i.i.d. as N (0, 1/N) and we have defined H to
be the (possibly infinite) dimensionality of the reproducing kernel Hilbert space (RKHS) ofH . The
learned functions can then be written as

fk(x) = ŵk ·ψ(x) , wk = Zk⊤ (ZkΘ⊤ΘZk⊤ + λI
)−1

ZkΘ⊤y (A.12)

Where Θ = [θ(x1), · · · ,θ(xP )], and the vectors θ(xp) ∼ N (0,Λ), with Λ a diagonal matrix with
λtt = ηt. This is precisely the setting of a linear random-feature model with data covariance spec-
trum {η1, η2, ...} (Atanasov et al., 2024). Under the Gaussian universality ansatz, we can therefore
re-cast RFRR as linear RFRR with the role of the spectrum of the “data” played by the spectrum
{ηt}∞t=1 of the limiting deterministic kernelH .

B PROOF OF THEOREMS 1 AND 2

In this section, we will refer to the condition that
∑

t w̄
2
t ηt > 0 as the task having a “learnable

component.” It can be shown from eq. 11 that Df1 ≤ min(N,P ). Because N and P are finite and
rank({ηt}∞t=1) is infinite, it follows that κ2 > 0. The following inequalities then hold strictly:

Df2 < Df2 γ2 < γ1 0 < ρ < 1 (B.1)

Furthermore, the inequality tf2(κ) ≤ tf1(κ) holds, with strict inequality when the target has a
learnable component.
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B.1 “BIGGER IS BETTER” THEOREMS

We begin by proving theorem 1. We note that it suffices to prove that EK
g decreases monotonically

with K, N , and P separately, since any transformation (K,N,P ) → (K ′, N ′, P ′) can be taken in
steps K → K ′, N → N ′, P → P ′.

Monotonicity with K The fact that when K ′ > K and all other variables are held fixed, EK
g

decreases is immediately evident from the form of eq. 16, because Bias2z and Varz are independent
of K. Furthermore, the inequality is strict as long as Varz > 0, which is valid as long as the task
has a learnable component.

Monotonicity with P Consider a transformation P → P ′ with P ′ > P . Examining eq. 11, we
see that it is always possible to increase the ridge λ such that κ2 remains fixed. We then rewrite EK

g
as:

EK
g = (1− 1

K
) Bias2z +

1

K
E1

g (B.2)

With κ2 and N fixed, we see that only the prefactor of 1
1−γ2

in E1
g will be affected, so that E1

g

decreases with P . Note also that γ1 is a decreasing function of P . With κ2 and N fixed, it follows
that E1

g decreases with P . Finally, because K is fixed, EK
g will decrease with P .

Monotonicity with N Consider a transformation N → N ′ with N ′ > N . Examining eq. 11, we
see that it is always possible to increase the ridge λ so that κ2 remains constant. With κ2, P fixed,
Bias2z is fixed as well. From eq. B.2, it then suffices to show that E1

g decreases. To see this, recall
that ρ is an increasing function of N , and γ1 is a decreasing function of ρ. We then have that γ1 is a
decreasing function of N , so that the prefactor of 1

1−γ1
in eq. 9 is decreasing with N .

B.2 “NO FREE LUNCH” FROM ENSEMBLES THEOREM

We now prove theorem 2. We first recall the form of the error to be:

EK
g = Bias2z +

1

K

(
E1

g − Bias2z
)

(B.3)

We define the variable ν ≡ 1
K . By analytical continuation, it suffices to show that test risk decreases

as ν increases. Rewriting the self-consistent equation in terms of ν, we have;

κ2 =
λN

(P −Df1(κ2))(νM −Df1(κ2))
(B.4)

Consider a transformation ν → ν′ where ν′ > ν. We se that it is always possible to increase λ so
that κ2 remains fixed. Note that Bias2z depends only on κ2 and P , so that as ν (and therefore N )
vary, Bias2z remains fixed. From eq. 16, it therefore suffices to show that ν(E1

g − Bias2z) decreases
with ν. Rearranging terms, we have:

ν(E1
g − Bias2z) =ν

[
−ρκ22 tf

′
1(κ2) + (1− ρ)κ2 tf1(κ2)

1− γ1
− −κ22 tf

′
1(κ2)

1− γ2

]
(B.5)

+ν

[
1

1− γ1
− 1

1− γ2

]
σ2
ϵ (B.6)

We first show that

d

dν

[
ν

(
1

1− γ1
− 1

1− γ2

)]
< 0, (B.7)
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To see this, recall that ρ = (νM −Df1)/(νM −Df2). Because Df1 > Df2, this is a monotonically
increasing function of ν. We may write γ1 = 1

P [(1− ρ)Df1 +ρDf2]. From this equation it is clear
that γ1 > γ2. Differentiating with respect to ν, we get

dρ

dν
=M

(Df1 −Df2)

(νM −Df2)2
(B.8)

dγ2
dν

= − 1

P
(Df1 −Df2)

dρ

dν
= −M

P

(Df1 −Df2)
2

(νM −Df2)2
(B.9)

Using these, we have:

d

dν

[
ν

(
1

1− γ1
− 1

1− γ2

)]
(B.10)

=

(
1

1− γ1
− 1

1− γ2

)
+

ν dγ1

dν

(1− γ1)2
(B.11)

=
(Df1 −Df2)

2

(1− γ1)(νM −Df2)

[
1

P (1− γ2)
− Mν

P (1− γ1)(νM −Df2)

]
(B.12)

< 0 (B.13)

where in the last line, we have used the facts that γ1 > γ2 and Df2 ≤ νM . To show that

d

dν

[
ν

(
−ρκ22 tf

′
1(κ2) + (1− ρ)κ2 tf1(κ2)

1− γ1
− −κ22 tf

′
1(κ2)

1− γ2

)]
≤ 0, (B.14)

we first note that −ρκ22 tf
′
1(κ2) + (1 − ρ)κ2 tf1(κ2) can be equivalently written as −κ22 tf

′
1(κ2) +

(1− ρ)κ2 tf2(κ2). The above derivative can then be broken into two parts:

−κ22 tf
′
1

d

dν

[
ν

(
1

1− γ1
− 1

1− γ2

)]
+ κ2 tf2

d

dν

[
ν(1− ρ)

1− γ1

]
(B.15)

We have already shown that the derivative in the first term is negative. Furthermore, −κ22 tf
′
1 ≥ 0,

with strict equality holding when the task has a learnable component. To see that the derivative in
the second term is negative, note that ρ is an increasing function of ν. Because γ1 is a decreasing
function of ρ, γ1 is therefore an decreasing function of ν. The denominator 1− γ1 inside the deriva-
tive increases with ν. Furthermore, the numerator ν(1− ρ) can be written as (Df1 −Df2)

ν
νM−Df2

.
With κ2 fixed (so that Df1 −Df2 > 0 is fixed), this is a strictly decreasing function of ν. It follows
that

κ2 tf2
d

dν

[
ν(1− ρ)

1− γ1

]
≤ 0, (B.16)

with strict inequality holding as long as tf2 > 0, which is true whenever the task has a learnable
component.

C DERIVATION OF SCALING LAWS

In this section, we derive the width-bottlenecked scaling laws given in section 5, using methods
described in (Atanasov et al., 2024). We assume that the kernel eigenspectrum decays as ηt ∼ t−α

and the power of the target function in the modes decays as w̄2
t ηt ∼ t−(1+2αr), and examine the

regime where P ≫ N , so that the width of the ensemble members is the bottleneck to signal
recovery. We begin by analyzing the self-consistent equation for κ2, reproduced here for clarity:

κ2 =
λN

(P −Df1(κ2)(N −Df1(κ2)))
(C.1)
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Because Df1(κ2) < min(N,P ) and N ≪ P , it follows that P ≫ Df1(κ2). We can therefore
approximate the fixed-point equation as

Pκ2 ≈ λ

1− 1
N Df1(κ2))

(C.2)

We approximate Df1 using an integral:

Df1(κ2) ≈
∫ ∞

1

t−α

t−α + κ2
dt (C.3)

Making the change of variables u = tκ
1/α
2 , we get

Df1(κ2) ≈ κ
−1/α
2

∫ ∞

κ
1/α
2

du

1 + uα
(C.4)

Plugging back into the fixed-point equation, we arrive at

κ2P ≈ λ

1− κ
−1/α
2

N

∫∞
κ
1/α
2

du
1+uα

(C.5)

Next, we make the ansatz that κ2 ∼ N−q . The fixed point equation becomes

PN−q ∼ λ

1−N
q
α−1

∫∞
N−q/α

du
1+uα

(C.6)

The left size of this equation will be very large, due to the separation of scales P ≫ N . The only
feasible way for the right side to scale with P is for the denominator to become very small as N
grows. This is only possible if Nq/α ∼ N , so that q = α. We therefore have κ2 ∼ N−α.

With this scaling for κ2, we have Df1,Df2 ∼ N . It is then clear that γ2 → 0 for P ≫ N .
Furthermore, because ρ ∈ [0, 1], γ1 → 0 for P ≫ N . The prefactors of 1

1−γ2
and 1

1−γ1
can

therefore be ignored.

We may then write

κ2 tf1(κ2) ∼
∫ ∞

1

t−(1+2αr)

1 + t−α/κ2
dt ∼ N−2αr

∫ ∞

1/N

u−(1+2αr)

1 + u−α
du (C.7)

where u = tκ1/α and we have made the substitution κ ∼ N−α. We get two contributions to the
integral: when u is near 1/N , we get a contribution (including the prefactor) which scales as N−α.
When u is away from 1/N , the integral contributes a constant factor and we get a contribution that
scales as the prefactor N−2αr.

Similarly, we may write:

−κ22 tf
′
1(κ2) ∼

∫ ∞

1

t−(1+2αr)

(1 + t−α/κ2)2
dt ∼ N−2αr

∫ ∞

1/N

u−(1+2αr)

(1 + u−α)2
du (C.8)

The contributions from the component of the integral near 1/N will now scale as N−2α, and the
contribution away from 1/N will remain N−2αr. Combining these results, we arrive at separate
scaling laws for the bias and variance terms of the error:

Bias2z ∼ N−2αmin(r,1) (C.9)

Var2z ∼ N−2αmin(r, 12 ) (C.10)

Finally, to obtain eq. 21, we put N ∼ M ℓ and K ∼ M1−ℓ and substitute into eq. 16. We find that,
in terms of M , the bias and variance scale as:
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Bias2z ∼M−2ℓαmin(r,1) (C.11)
1

K
Varz ∼M−(1−ℓ+2αℓmin(r, 12 )) (C.12)

The scaling of the total loss for an ensemble will be dominated by the more slowly-decaying of these
two terms.

C.1 SAMPLE-BOTTLENECKED SCALING

We next examine the case where P ≪ N . Here, we find that Df1(κ2),Df2(κ2) ≪ N so that ρ→ 1,
Varz → 0. The only significant contribution to the error will come from Bias2z , which will scale as
(Atanasov et al., 2024):

EK
g ∼ P−2αmin(r,1) (λ≪ P 1−α) (C.13)

EK
g ∼ (λ/P )2min(r,1) (λ≫ P 1−α) (C.14)

We therefore see that the ensemble size K and network size N have no effect on the scaling law in
P provided P ≪ N .

D RFRR ON REAL DATASETS

D.1 NUMERICAL EXPERIMENTS WITH SYNTHETIC GAUSSIAN DATA

For a given value of α and r, we fix a large valueD ≫ P,M and generate eigenvalues ηt ∝ t−α and
target weights w̄t ∼ t−

1
2 (1−α+2αr). The ηt are normalized so that

∑
t ηt = 1 and

∑
t w̄

2
t ηt = 1.

We generate random features as Θ = ΣX ∈ RD×P , where Xij ∼ N (0, 1) and Σ is the diagonal
matrix with entry Σtt = ηt. Labels are assigned as y = Ψ⊤w̄ ∈ RP . For each k = 1, . . . ,K,
we perform linear RFRR (eq. A.12) with an independently drawn projection matrix Zk with entries
drawn from N (0, 1/N). The prediction of the ensemble is then given as the mean over the K
learned predictors.

D.2 NUMERICAL EXPERIMENTS ON BINARIZED MNIST AND CIFAR-10 WITH RELU
FEATURES

We perform RFRR on CIFAR-10 and MNIST datasets. To construct the dataset, we sort the images
into two classes. For CIFAR-10, we assign a label y = +1 to images of “things one could ride”
together (airplane, automobile, horse, ship, truck) and a label y = −1 for “things one ought not to
ride” (bird, cat, deer, dog, frog) (Simon et al., 2023). For MNIST, we assign a label y = +1 to digits
0−4, and a label −1 to digits 5−9. We constructK feature maps as ψ(kx) = 1√

N
ReLU

(
V k⊤x

)
,

where V k
ij ∼ N (0, 2/D). Here, D is the data dimensionality (D = 3072 for CIFAR-10 and 784

for MNIST). Then, for each ensemble member k = 1, . . . ,K, we train a linear regression model on
the features ψk. In the infinite-feature limit, the finite-feature kernels will converge to the “NNGP
kernel” for a single-hidden-layer Relu network (Leeet al., 2018).

D.3 THEORETICAL PREDICTIONS

We evaluate the omniscient risk estimate 16 numerically using vectors storing the values of {ηt}∞t=1
and {w̄t}∞t=1. In the case of synthetic data, these vectors are readily available. For the MNIST
and CIFAR-10 tasks, we approximate these vectors by evaluating the infinite-width neural net-
work gaussian process (NNGP) kernel using the neural tangents library (Novak et al., 2019). For
30,000 images from the training sets of both MNIST and CIFAR 10, we evaluate the kernel matrix
[H]p,p′ = H(xp,xp′), and diagonalize the kernel matrix to determine the eigenvectors and eigen-
values. To be precise, with P = 30, 000, we calculate the eigenvalues {η1, η2, . . . , ηP } and eigen-
vectors {u1, . . . ,uP } of the sample-normalized kernel matrix 1

PH . We then assign the weights of
the target function as w̄t = 1√

Pηt
u⊤
t y, where y ∈ RP is the vector of labels associated to our P

samples.
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We then solved the self-consistent equation (eq. 11) using the Bisection method of the scipy library
(Virtanen et al., 2020), and evaluate eq. 16 to determine the predicted risk.

D.4 MEASURING POWER LAW EXPONENTS OF KERNEL RIDGE REGRESSION TASKS

In fig. 4B, we plot theoretical predictions for the scaling exponents of the bias and variance contribu-
tions to error for the binarized CIFAR-10 and MNIST classification tasks. To calculate these expo-
nents, we need access to the “ground truth” source and capacity exponents α̂ and r̂ characterizing the
kernel eigenstructure of the dataset and the target function, such that the eigenvalues {η1, η2, . . . } of
the NNGP kernel decay as ηt ∼ t−α̂ and the weights of the target function {w̄1, w̄2, . . . } decay as
ηtw̄

2
t ∼ t−(1+2α̂r̂). To estimate α̂, we calculate the “trace metric”

[
tr
[
H−1

p

]]−1
α̂ is then obtained

by fitting to the relationship
[
tr
[
H−1

p

]]−1 ∼ p−α, whereHp ∈ Rp×p is the empirical NNGP kernel
for p randomly drawn samples from the dataset (Wei et al., 2022; Simon et al., 2023) (figs. S7.A,C).
To estimate the source exponent r, we use the scaling law for Kernel Ridge Regression (with the
limiting infinite-feature NNGP kernel) which dictates that for small ridge, Eg ∼ p−2αmin(r,1) (see
Appendix C.1). Following Simon et al., we fit the MSE loss for Kernel Ridge Regression with the
limiting NNGP kernel to a power law decay Eg ∼ p−β (figs. S7.B,D), and assign r̂ = β/2/α̂.

E DEEP ENSEMBLE EXPERIMENTAL DETAILS

E.1 NATURAL LANGUAGE PROCESSING TASKS

The transformers used for the WikiText2 experiments are implemented in the maximal update pa-
rameterization following the setup in (Bordelon et al., 2024c). We fix depth L = 6, number of heads
H = 12, and vary widthN such that k

√
N ≈ 60 to keep the parameter count between ensembles ap-

proximately the same since parameters scale quadratically with width. The transformer is composed
of alternating blocks of causal multiheaded attention and a 2-layer MLP. We make sure to center the
models’ outputs and vary feature learning in the models by dividing the output by γ = γ0

√
N .

E.2 CNN RESULTS ON CIFAR-10

The CNNs used for the CIFAR-10 experiments consist of two CNN layers and an MLP layer. To
compare ensembles of different sizes fairly while keeping the total number of parameters fixed, we
adopt a fixed ratio between layer sizes in each CNN. If the first CNN layer has width (channels) c,
then the second CNN layer has width 2c, and the MLP has width 5c. The value of c is varied such
that the total ensemble maintains approximately the same number of parameters M across varying
numbers of ensemble members K.

We employ standard data augmentation techniques during training. All training images are randomly
cropped, resized, and flipped horizontally. Our models are trained using SGD with base learning rate
0.1 and early stopping, with a patience of five epochs.

28


	Introduction
	Preliminaries
	Random Features and the Kernel Eigenspectrum
	Degrees of Freedom

	Omniscient Risk Estimates for Random Feature Ensembles
	The Bias-Variance Decomposition of Eg
	Ensembling Reduces Variance of the Learned Estimator
	More is Better in Random Feature Ensembles

	No Free Lunch from Random Feature Ensembles
	Width-Bottlenecked Scaling of Random Feature Ensembles
	No Free Lunch From Feature Learning Ensembles
	Discussion
	Conclusion
	Extending the Random-Feature Eigenframework to Ensembles
	Spectral Decomposition of the Kernel
	Gaussian Universality Ansatz and the connection to Linear Random Feature Ridge Regression

	Proof of Theorems 1 and 2 
	``Bigger is Better'' Theorems
	``No Free Lunch'' from Ensembles Theorem

	Derivation of Scaling Laws
	Sample-Bottlenecked Scaling

	RFRR on Real Datasets
	Numerical Experiments with Synthetic Gaussian Data
	Numerical Experiments on Binarized MNIST and CIFAR-10 with ReLU Features
	Theoretical Predictions
	Measuring Power Law Exponents of Kernel Ridge Regression Tasks

	Deep Ensemble Experimental Details
	Natural Language Processing Tasks
	CNN results on CIFAR-10


