
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VERIFYING GNNS WITH READOUT IS INTRACTABLE

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a logical language for reasoning about quantized aggregate-combine
graph neural networks with global readout (ACR-GNNs). We provide a logical
characterization and use it to prove that verification tasks for quantized GNNs with
readout are (co)NEXPTIME-complete. This result implies that the verification of
quantized GNNs is computationally intractable, prompting substantial research
efforts toward ensuring the safety of GNN-based systems. We also experimentally
demonstrate that quantized ACR-GNN models are lightweight while maintaining
good accuracy and generalization capabilities with respect to non-quantized models.

1 INTRODUCTION

Graph neural networks (GNNs) are models used for classification and regression tasks on graph-
structured data, including node-level and graph-level tasks. GNNs are applied to recommendation in
social network (Salamat et al., 2021), knowledge graphs (Ye et al., 2022), chemistry (Reiser et al.,
2022), drug discovery (Xiong et al., 2021), etc. Like several other machine learning models, GNNs
are difficult to interpret, understand and verify. This is a major issue for their adoption, morally and
legally, with the enforcement of regulatory policies like the EU AI Act (European Parliament, 2024).
Previous work paves the way for analyzing them using formal logic, Barceló et al. (2020), Nunn
et al. (2024) or Benedikt et al. (2025). But many of these approaches consider idealised GNNs in
which numbers are either arbitrary large integers or rationals, while in real implementations GNNs
are quantized: numbers are Standard IEEE 754 64-bit floats, INT8, or FP8 (Micikevicius et al., 2022).
Verifying quantized GNNs without global readout has been addressed by Sälzer et al. (2025). But
global readout is an essential element of GNNs, especially for graph classification (Xu et al., 2019).

Contribution. The contribution is threefold. First, we show that verifying Aggregate-Combine
Graph Neural Networks with global Readout (ACR-GNNs) is decidable and (co)NEXPTIME-
complete, where NEXPTIME is the class of problems decidable by a non-deterministic algorithm
running in polynomial time in the size of its input. This contrasts with the PSPACE-completeness
without global readout from Sälzer et al. (2025). To sum up, it means that global readout makes
quantized GNN verification highly intractable. To this aim, we define logic qL extending the one
from Sälzer et al. (2025) for capturing global readout. It is expressive enough to capture quantized
ACR-GNNs with arbitrary activation functions. Moreover, qL can serve as a flexible graph property
specification language reminiscent of modal logics (Blackburn et al., 2001). The following example
explains the use of qL for expressing graph properties.

Example 1. Assume a class of knowledge graphs (KGs) representing communities of people and
animals, where each node corresponds to an individual. Each individual can be Animal, Human, Leg,
Fur, White, Black, etc. These concepts can be encoded with features x0, x1, . . . , x5, . . . respectively,
taking values 0 or 1. Edges in a KG represent a generic ‘has’ relationship: a human can have an
animal (pet); an animal can have a human (owner), a leg, a fur; a fur can have a color; etc. Suppose
that A is a GNN processing those KGs and is trained to supposedly recognize dogs. We can verify
that the nodes recognized by A are animals—arguably a critical property of the domain—by checking
the validity (i.e., the non-satisfiability of the negation) of φA → x0 = 1 where φA is a qL-formula
corresponding to A’s computation, true in exactly the pointed graphs accepted by A. Ideally, A
should not overfit the concept of dog as a perfect prototypical animal. For instance, three-legged
dogs do exist. We can verify that A lets it be a possibility by checking the satisfiability of the formula
φA ∧ ♢≤3(x2 = 1).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

More complex qL formulas can be written to express graph properties to be evaluated against an
ACR-GNN, that will be formalized later in Example 1: 1. Has a human owner, whose pets are all
two-legged. 2. A human in a community that has more than twice as many animals as humans, and
more than five animals without an owner1. 3. An animal in a community where some animals have
white and black fur.

Interestingly, to prove the (co)NEXPTIME upper bound, we reuse the concept of mathematical logic
called Hintikka sets (Blackburn et al., 2001) which are complete sets of subformulas that can be
true at a given vertex of a graph. We then introduce a quantized variant of Quantifier-Free Boolean
algebra Presburger Arithmetic (QFBAPA) logic (Kuncak & Rinard, 2007), denoted by QFBAPA𝕂,
and prove that it is in NP as the original QFBAPA on integers. We then reduce the satisfiability
problem of qL to the one of QFBAPA𝕂. On the other hand, (co)NEXPTIME-hardness is proven by
reduction from an adequate tiling problem. In a similar way, we also add global counting to the logic
K♯ previously introduced by Nunn et al. (2024). We show that it corresponds to AC-GNNs over ℤ
with global readout and truncated ReLU activation functions. We prove that the satisfiability problem
is NEXPTIME-complete, partially addressing a problem left open in the literature—that is, for the
case of integer values and truncated ReLU activation functions (Benedikt et al., 2024; 2025). Details
are in the appendix to keep the main text concise.

Secondly, as NEXPTIME is highly intractable (it is provably different from NP (Seiferas et al., 1978)),
we relax the satisfiability problem of qL and ACR-GNNs, searching graph counterexamples whose
number of vertices is bounded. This problem is NP-complete, and an implementation is provided to
serve as a proof of concept and a baseline for future research.

Finally, we experimentally show in Section 7 that quantization of GNNs provide minimal accuracy
degradation. Our results confirm that the quantized models retain strong predictive performance while
achieving substantial reductions in model size and inference cost. These findings demonstrate the
practical viability of quantized ACR-GNNs for deployment in resource-constrained environments.

Outline. In Section 3, we define logic qL, discuss its expressivity, and define formally ACR-
GNN verification tasks. Section 4 provides the (co)NEXPTIME membership of the satisfiability
problem of qL and the ACR-GNN verification tasks. In Section 5, we show that these problems are
(co)NEXPTIME-complete. Section 6 is about the relaxation making the problems (co)NP-complete.
Section 7 presents experimental results justifying the practical utility of quantized ACR-GNNs.

Related work. Barceló et al. (2020) showed that ACR-GNNs have the expressive power of FOC2,
that is, two-variable first-order logic with counting. Recent work has explored the logical expres-
siveness of GNN variants in more detail. Notably, Nunn et al. (2024) and Benedikt et al. (2024)
introduced logics to exactly characterize the capabilities of different forms of GNNs. Similarly,
Cucala & Grau (2024) analyzed Max-Sum-GNNs through the lens of Datalog. Sälzer et al. (2025)
considered the expressivity of GNN with quantized parameters but without global readout. Ahvonen
et al. (2024) offered several logical characterizations of recurrent GNNs over floats and real numbers.

On the verification side, Henzinger et al. (2021) studied the complexity of verification of quantized
feedforward neural networks (FNNs), while Sälzer & Lange (2021); Sälzer & Lange (2023) investi-
gated reachability and reasoning problems for general FNNs and GNNs. Approaches to verification
are proposed via integer linear programming (ILP) by Huang et al. (2024) and Zhang et al. (2023),
and via model checking by Sena et al. (2021).

From a logical perspective, reasoning over structures involving arithmetic constraints is closely tied
to several well-studied logics. Relevant work includes Kuncak and Rinard’s decision procedures for
QFBAPA (Kuncak & Rinard (2007)), as well as developments by Demri & Lugiez (2010), Baader
et al. (2020), Bednarczyk et al. (2021), and Galliani et al. (2023). These logics form the basis for the
characterizations established in Nunn et al. (2024); Benedikt et al. (2024).

Quantization techniques in neural networks exist, with surveys such as Gholami et al. (2022);
Nagel et al. (2021) providing comprehensive overviews focused on maintaining model accuracy.
Although most practical advancements target convolutional neural networks (CNNs), many of the

1Interestingly, qL goes beyond graded modal logic and even first-order logic (FOL). The property of item 2
in Example 1 cannot be expressed in FOL.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

underlying principles extend to GNNs as well (Zhou et al. (2020)). NVIDIA has demonstrated
hardware-ready quantization strategies (Wu et al. (2020)), and frameworks like PyTorch (Ansel et al.
(2024)) support both post-training quantization and quantization-aware training (QAT), the latter
simulating quantization effects during training to improve low-precision performance. QAT has been
particularly effective in closing the gap between quantized and full-precision models, especially for
highly compressed or edge-deployed systems (Jacob et al. (2018)). In the context of GNNs, Tailor
et al. (2021) proposed Degree-Quant, incorporating node degree information to mitigate quantization-
related issues. Based on this, Zhu et al. (2023) introduced A2Q, a mixed-precision framework that
adapts bitwidths on graph topology to achieve high compression with minimal performance loss.

2 BACKGROUND

Let 𝕂 be a set of quantized numbers, and let n denote the bitwidth of 𝕂, that is, the number of bits
required to represent a number in 𝕂. The bitwidth n is written in unary; this is motivated by the fact
that n is small and that we would in any case need to allocate n-bit consecutive memory for storing a
number. Formally, we consider a sequence 𝕂1,𝕂2, . . . corresponding to bitwidths 1, 2, etc., but we
retain the notation 𝕂 for simplicity. We suppose that 𝕂 saturates: e.g., if x ≥ 0, y ≥ 0, x+ y ≥ 0
(i.e., no modulo behavior like in int in C for instance). We suppose that 1 ∈ 𝕂.

We consider Aggregate-Combine Graph Neural Networks with global Readout (ACR-GNNs), a
standard class of message-passing GNNs (Barceló et al., 2020; Gilmer et al., 2017). An ACR-GNN
layer with input dimension m and output dimension m′ is defined by a triple (comb, agg , aggg),
where comb : 𝕂3m → 𝕂m′

is a combination function, and agg , aggg are local and global aggregation
functions that map multisets of vectors in 𝕂m to a single vector in 𝕂m.

An ACR-GNN is composed of a sequence of such layers (L(1), . . . ,L(L)) followed by a final
classification function cls : 𝕂m → {0, 1}. Given a graph G = (V,E) and an initial vertex labelling
x0 : V → {0, 1}k, the state of a vertex u in layer i is recursively defined as:

xi(u) = comb(xi−1(u), agg({{xi−1(v) | uv ∈ E}}), aggg({{xi−1(v) | v ∈ V }}))
The final output of the GNN for a pointed graph (G, u) is A(G, u) = cls(xL(u)).

We concentrate on a specific subclass where both agg and aggg perform summation over vectors,
and where comb(x, y, z) = σ⃗(xC + yA1 + zA2 + b), using m×m′-matrices C,A1, A2 and a bias
1×m′-vector b, all with entries from 𝕂, with the componentwise application of an activation function
σ. The classification function is a linear threshold: cls(x) =

∑
i aixi ≥ 1 with weights ai ∈ 𝕂.

Moreover, we assume that all arithmetic operations are executed according to the arithmetic related to
𝕂. It is assumed that the context makes clear the 𝕂 and arithmetic being used. We note [[A]] the set
of pointed graphs (G, u) such that A(G, u) = 1. An ACR-GNN A is satisfiable if [[A]] is non-empty.
The satisfiability problem for ACR-GNNs is: Given a ACR-GNN A, decide whether A is satisfiable.

3 LOGIC qL

We set up a logical framework called qL extending the logic in Sälzer et al. (2025) with global
aggregation: it is a lingua franca to represent GNN computations and properties on graphs.

Syntax. Let F be a finite set of features and 𝕂 be some finite-width arithmetic. We consider a set
of expressions defined by the following grammar in Backus-Naur form:

ϑ ::= c | xi | α(ϑ) | agg(ϑ) | agg∀(ϑ) | ϑ+ ϑ | c× ϑ

where c is a number in 𝕂, xi is a feature in F , α is a symbol for denoting the activation function, and
agg and agg∀ denote the aggregation function for local and global readout respectively. A formula is
a construction of the formula ϑ ≥ k where ϑ is an expression and k is an element of 𝕂. If −1 ∈ 𝕂,
and −ϑ is not, we can write −ϑ instead of (−1)× ϑ. Other standard abbreviations can be used.

Formulas are represented as direct acyclic graphs, aka circuits, meaning that we do not repeat the same
expressions several times. For instance, the formula agg(x1+x2)+(x1+x2) ≥ 3 can be represented
as the DAG given in Figure 1. Formulas can also be represented by a sequence of assignments via
new fresh intermediate variables. For instance: y := x1 + x2, z := agg(y) + y, res := z ≥ 3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

≥ 3

+ agg

+

x1

x2

·

Figure 1: DAG data structure for the formula agg(x1 + x2) + (x1 + x2) ≥ 3.

Semantics. Consider a graph G = (V,E), where vertices in V are labeled via a labeling function
ℓ : V → 𝕂n with feature values. The value of an expression ϑ in a vertex u ∈ V is denoted by
[[ϑ]]G,u and is defined by induction on ϑ:

[[c]]G,u = c,

[[xi]]G,u = ℓ(u)i,

[[ϑ+ ϑ′]]G,u = [[ϑ]]G,u +𝕂 [[ϑ′]]G,u,

[[c× ϑ]]G,u = c×𝕂 [[ϑ]]G,u,

[[α(ϑ)]]G,u = [[α]]([[ϑ]]G,u),

[[agg(ϑ)]]G,u = Σv|uEv[[ϑ]]G,v,

[[agg∀(ϑ)]]G,u = Σv∈V [[ϑ]]G,v,

We define [[ϑ ≥ k]] = {G, u | [[ϑ]]G,u ≥𝕂 [[k]]G,u} (we write ≥ for the symbol in the syntax and
≥𝕂 for the comparison in 𝕂). A formula φ is satisfiable if [[φ]] is non-empty. The satisfiability
problem for qL is: Given a qL-formula φ, decide whether φ is satisfiable.

ACR-GNN verification tasks. We are interested in the following decision problems. Given a GNN
A, and a qL formula φ: (VT1, sufficiency) Do we have [[φ]] ⊆ [[A]]? (VT2, necessity) Do we have
[[A]] ⊆ [[φ]]? (VT3, consistency) Do we have [[φ]] ∩ [[A]] ̸= ∅?

Representing a GNN computation. To reason formally about ACR-GNNs, we represent their
computations using qL. Logic qL facilitates the modeling of the acceptance condition of ACR-GNNs.

We explain this via example. Consider an ACR-GNN A with with two layers of input and
output dimension 2, using summation for aggregation, truncated ReLU as activation σ(x) =
max(0,min(1, x)) = [[α]](x), and a classification function 2x1 − x2 ≥ 1. The combination
functions are:

comb1((x1, x2), (y1, y2), (z1, z2)) :=

(
σ(2x1 + x2 + 5y1 − 3y2 + 1)
σ(−x1 + 4x2 + 2y1 + 6y2 − 2)

)T

,

comb2((x1, x2), (y1, y2), (z1, z2)) :=

(
σ(3x1 − y1 + 2z2)
σ(−2x1 + 5y2 + 4z1)

)T

.

Note that this assumes that A operates over 𝕂 with at least three bits. Then, the corresponding
qL formula φA is given by: ψ1 = α(2x1 + x2 + 5agg(x1) − 3agg(x2) + 1), ψ2 := α(−x1 +
4x2 + 2agg(x1) + 6agg(x2) − 2), χ1 := α(3ψ1 − agg(ψ1) + 2(agg∀(ψ2))), χ2 := α(−2ψ1 +
5(agg(ψ2)) + 4agg∀(ψ1)), φA := 2(χ1) − χ2 ≥ 1. To sum up, given a GNN A, we compute
qL-formula in poly-time in the size of A with [[A]] = [[φA]] (as done in Sälzer et al. (2025)).

Simulating a modal logic in the logic qL. We show that extending qL with modal operators
Blackburn et al. (2001) does not increase the expressivity. We can even compute an equivalent qL
without Boolean connectives and without modal operators in poly-time. It means that formulas like
φA1

→ x0 = 1 or φA1
∧ ♢≤3(x2 = 1) have poly-size equivalent formulas in qL.

Assume that α is ReLU. Let Atm0 be the set of atomic formulas of qL of the form ϑ ≥ 0. We
suppose that ϑ takes integer values. In general, ϑ ≥ k is an atomic formula equivalent to ϑ− k ≥ 0.
Without loss of generality, we thus assume that formulas of qL are over Atm0. Let modal qL be the
propositional logic on Atm0 extended with modalities and a restricted variant of graded modalities
where number k in 𝕂.

[[□φ]] = {G, u | G, v ∈ [[φ]] for every v s.t. uEv}
[[□gφ]] = {G, u | G, v ∈ [[φ]] for every v in V }

[[♢≥kφ]] = {G, u | |{G, v | uEv and G, v ∈ [[φ]]}| ≥𝕂 k} [[♢≥k
g φ]] = {G, u | |[[φ]]| ≥𝕂 k}

and modalities ♢≤kφ and ♢≤k
g φ defined the same way but with ≤𝕂. We can turn back to the graph

properties mentioned in Example 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Example 1 (continuing from p. 1). We first define a few simple formulas to characterize the concepts
of the domain. Let φA := x0 = 1 (Animal), φH := x1 = 1 (Human), φL := x2 = 1 (Leg),
φF := x3 = 1 (Fur), φW := x4 = 1 (White), and φB := x5 = 1 (Black).

1. Has a human owner, whose all pets are two-legged: ♢(φH ∧□(φA → ♢=2φL)).
2. A human in a community that has more than twice as many animals as humans, and more

than five animals without an owner: φH ∧ (agg∀(x0)− 2× agg∀(x1) ≥ 0) ∧ ♢≥5
g (φA ∧

□(¬φH)).
3. An animal in a community where some animals have white and black fur:
φA ∧ ♢g(♢(φF ∧ ♢φW) ∧ ♢(φF ∧ ♢φB)).

We can see the boolean operator ¬, and the various modalities as functions from Atm0 to Atm0, and
the boolean operator ∨ as a function from Atm0 ×Atm0 to Atm0.

f¬(ϑ ≥ 0) := −ϑ− 1 ≥ 0 f∨(ϑ1 ≥ 0, ϑ2 ≥ 0) := ϑ1 +ReLU(ϑ2 − ϑ1) ≥ 0

f□(ϑ ≥ 0) := agg(−ReLU(−ϑ)) ≥ 0

f♢≥k(ϑ ≥ 0) := agg(ReLU(ϑ+ 1)−ReLU(ϑ))− k ≥ 0

f♢≤k(ϑ ≥ 0) := k − agg(ReLU(ϑ+ 1)−ReLU(ϑ)) ≥ 0

For the corresponding global modalities (f□g
(ϑ ≥ 0), f♢≥k(ϑ ≥ 0), and f♢≤k(ϑ ≥ 0)), it suffices to

use agg∀ in place of agg. The previous transformations can be generalized to arbitrary formulas of
modal qL as follows.

mod2expr(ϑ ≥ 0) := ϑ ≥ 0 mod2expr(¬φ) := f¬(mod2expr(φ))

mod2expr(φ1 ∨ φ2) := f∨(mod2expr(φ1),mod2expr(φ2))

mod2expr(⊞φ) := f⊞(mod2expr(φ)), ⊞ ∈ {□,□g,♢≥k,♢≥k
g ,♢≤k,♢≤k

g }
We can show that formulas of modal qL can be captured by a single expression ϑ ≥ 0. This is a
consequence of the following lemma 2.
Lemma 2. Let φ be a formula of modal qL. The formulas φ and mod2expr(φ) are equivalent.

Now, ACR-GNN verification tasks can be solved by reduction to the satisfiability problem of qL.
VT1 by checking that φ ∧ ¬φA is not satisfiable; VT2 by checking that ¬φ ∧ φA is not satisfiable;
VT3 by checking that φ ∧ φA is satisfiable.

4 COMPLEXITY UPPER BOUND OF THE VERIFICATION TASKS

In this section, we prove the NEXPTIME membership of reasoning in modal quantized logic, and also
of solving of ACR-GNN verification tasks (by reduction to the former). Remember that the activation
function α can be arbitrary in our setting. Our result holds with the loose restriction that [[α]] is
computable in exponential-time in the bit-width n of 𝕂.
Theorem 3. The satisfiability problem of qL is decidable and in NEXPTIME, and so is VT3. VT1
and VT2 are in coNEXPTIME.

In order to prove Theorem 3, we adapt the NEXPTIME membership of the description logic
ALCSCC++ from Baader et al. (2020) to logic qL. The difference resides in the definition of
Hintikka sets and the treatment of quantization. The idea is to encode the constraints of a qL-formula
φ in a formula of exponential length of a quantized version of QFBAPA, that we prove to be in NP.

4.1 HINTIKKA SETS

Consider qL-formula φ. Let E(φ) be the set of subexpressions in φ. For instance, if φ is agg(α(x2+
agg∀(x1))) ≥ 5 then E(φ) := {agg(α(x2+agg∀(x1)), α(x2+agg∀(x1), x2, agg∀(x1), x1}. From
now on, we consider equality subformulas that are of the form ϑ=k where ϑ is a subexpression of φ
and k ∈ 𝕂.

2For simplicity, we do not present how to handle ϑ ≥ 0 when ϑ is not an integer. We could introduce several
activation functions α in qL, one of them could be interpreted as the Heavyside step function. In the sequel
Definition 4, Point 4 is just repeated for each α.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 4. A Hintikka set H for φ is a subset of subformulas of φ such that:

1. For all ϑ ∈ E(φ), there is a unique value k ∈ 𝕂 such that ϑ = k ∈ H
2. For all ϑ1+ϑ2 ∈ E(φ), if ϑ1=k1, ϑ2=k2 ∈ H then ϑ1+ϑ2=k1+k2 ∈ H
3. For all c× ϑ ∈ E(φ), if ϑ = k ∈ H then c× ϑ=k′ ∈ H where k′ = c×𝕂 k
4. For all α(ϑ) ∈ E(φ), ϑ=k ∈ H and α(ϑ)=k′ ∈ H implies k′ = [[α]](k)

Informally, a Hintikka set contains equality subformulas obtained from a choice of a value for each
subexpression of φ (point 1), provided that the set is consistent at the current vertex (points 2–4). The
notion of Hintikka set does not take any constraints about agg and agg∀ into account since checking
consistency of aggregation would require information about the neighbor or the whole graph.
Example 5. If φ is agg(α(x2 + agg∀(x1))) ≥ 5, then an example of Hintikka set is: {agg(α(x2 +
agg∀(x1)) = 8, α(x2 + agg∀(x1)) = 9, x2 + agg∀(x1) = 9, x2 = 7, agg∀(x1) = 2, x1 = 5}.

Proposition 6. The number of Hintikka sets is bounded by 2n|φ| where |φ| is the size of φ, and n is
the bitwidth of 𝕂.

4.2 QUANTIZED VERSION OF QFBABA (QUANTIFIER-FREE BOOLEAN ALGEBRA AND
PRESBURGER ARITHMETICS)

A QFBAPA formula is a propositional formula where each atom is either an inclusion of sets or
equality of sets or linear constraints (Kuncak & Rinard (2007), and Appendix E.2.1). Sets are
denoted by Boolean algebra expressions, e.g., (S ∪ S′) \ S′′, or U where U denotes the set of all
points in some domain. Here S, S′, etc. are set variables. Linear constraints are over |S| denoting
the cardinality of the set denoted by the set expression S. For instance, the QFBAPA-formula
(pianist ⊆ happy) ∧ (|happy| + |U \ pianist| ≥ 6) ∧ (|happy| < 2) is read as ‘all pianists are
happy and the number of happy persons plus the number of persons that are not pianists is greater
than 6 and the number of happy persons is smaller than 2’.

We now introduce a quantized version QFBAPA𝕂 of QFBAPA. It has the same syntax as QFBAPA
except that numbers in expressions are in 𝕂. Semantically, every numerical expression is interpreted
in 𝕂. For each set expression S, the interpretation of |S| is not the cardinality c of the interpretation
of S, but the result of the computation 1 + 1 + . . .+ 1 in 𝕂 with c occurrences of 1 in the sum.

We consider that 𝕂 that saturates, meaning that if x+ y exceed the upper bound limit of 𝕂, there is a
special value denoted by +∞ such that x+ y = +∞.
Proposition 7. If bitwidth n is in unary, and if 𝕂 saturates, then satisfiability in QFBAPA𝕂 is in NP.

4.3 REDUCTION TO QFBAPA𝕂

Let φ be a formula of qL. For each Hintikka set H , we introduce the set variable XH that intuitively
represents theH-vertices, i.e., the vertices in which subformulas ofH hold. The following QFBAPA𝕂-
formulas say that the interpretation of XH form a partition of the universe. For each subformula
ϑ′ = k, we introduce the set variable Xϑ′=k that intuitively represents the vertices in which ϑ′ = k
holds. Equation (1) expresses that {XH}H form a partition of the universe. Equation (2) makes the
bridge between variables Xϑ′=k and XH .

(
∧

H ̸=H′

XH∩XH′=∅) ∧ (
⋃
H

XH=U) (1)
∧

ϑ′∈E(φ)

∧
k∈𝕂

(Xϑ′=k =
⋃

H|ϑ′=k∈H

XH) (2)

We introduce also a variable SH that denotes the set of all successors of some H-vertex. If there is
no H-vertex then the variable SH is just irrelevant.

The following QFBAPA𝕂-formula (Equation (3)) encodes the semantics of agg(ϑ). More precisely,
it says that for all subexpressions agg(ϑ), for all values k, for all Hintikka sets H containing formula
agg(ϑ)=k, if there is some H-vertex (i.e., some vertex in XH), then the aggregation obtained by
summing over the successors of some H-vertex is k.∧

agg(ϑ)∈E(φ)

∧
k∈𝕂

∧
Hintikka set H

| agg(ϑ)=k ∈ H

[(XH ̸= ∅) →
∑
k′∈𝕂

|SH ∩Xϑ=k′ | × k′ = k] (3)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

In the previous sum, we partition SH into subsets SH ∩ Xϑ=k′ for all possible values k′. Each
contribution for a successor in SH∩Xϑ=k′ is k′. We rely here on the fact3 that (1+1+. . .+1)×k′ =
k′ + k′ + . . .+ k′. We also fix a specific order over values k′ in the summation (it means that agg(ϑ)
is computed as follows: first order the successors according to the taken values of ϑ in that specific
order, then perform the summation). Finally, the semantics of agg∀ is captured by the formula:∧

agg∀(ϑ)∈E(φ)

∧
k∈𝕂

Xagg∀(ϑ)=k ̸= ∅ →
∑
k′∈𝕂

|Xϑ=k′ | × k′ = k (4)

Note that intuitively Equation (4) implies that for Xagg∀(ϑ)=k is interpreted as the universe, for the
value k which equals the semantics of

∑
k′∈𝕂 |Xϑ=k′ | × k′.

Given φ = ϑ ≥ k, we define tr(φ) := ψ ∧
∨
k′≥kXϑ=k′ ̸= ∅ where ψ the conjunction of Formulas

1–4. The function tr requires to compute all the Hintikka sets. So we need in particular to check
Point 4 of Definition 4 and we get the following when [[α]] is computable in exponential time in n.
Proposition 8. tr(φ) is computable in exponential-time in |φ| and n.

Proposition 9. Let φ be a formula of qL. φ is satisfiable iff tr(φ) is QFBAPA𝕂 satisfiable.

Finally, in order to check whether a qL-formula φ is satisfiable, we construct a QFBAPA𝕂-formula
tr(φ) in exponential time. As the satisfiability problem of QFBAPA𝕂 is in NP, we obtain that the
satisfiability problem of qL is in NEXPTIME. We proved Theorem 3,
Remark 10. Our methodology can be generalized to reason in subclasses of graphs. For instance,
we may tackle the problem of satisfiability in a graph where vertices are of bounded degree bounded
by d. To do so, we add the constraint

∧
H |SH | ≤ d.

5 COMPLEXITY LOWER BOUND OF THE VERIFICATION TASKS

The NEXPTIME upper-bound is tight. Having defined modalities in qL and stated Lemma 2,
Theorem 11 is proven by adapting the proof of NEXPTIME-hardness of deciding the consistency of
ALCQ-TCBoxes presented in Tobies (2000). So we already have the hardness result for ReLU.

NEXPTIME-hardness is proven via a reduction from the tiling problem by Wang tiles of a torus
of size 2n × 2n. A Wang tile is a square with colors, e.g., , , etc. That problem takes as input
a number n in unary, and Wang tile types, and an initial condition – let say the bottom row is
already given. The objective is to decide whether the torus of 2n × 2n can be tiled while colors of
adjacent Wang tiles match. A slight difficulty resides in adequately capturing a two-dimensional grid
structure—as in Figure 2—with only a single relation. To do that, we introduce special formulas φE
and φN to indicate the direction (east or north). In the formula computed by the reduction, we also
need to bound the number of vertices corresponding to tile locations by 2n × 2n. Thus 𝕂 needs to
encode 2n × 2n. We need a bit-width of at least 2n.
Theorem 11. The satisfiability problem in qL is NEXPTIME-hard, and so is the ACR-GNN verifica-
tion task VT3. The ACR-GNN verification tasks VT1 and VT2 are coNEXPTIME-hard.

Remark 12. It turns out that the verification task only needs the fragment of qL where agg is applied
directly on an expression α(..). Indeed, this is the case when we represent a GNN in qL or when we
translate logical formulas in qL (Lemma 2). Reasoning about qL when 𝕂 = ℤ and the activation
function is truncated ReLU is also NEXPTIME-complete (see Appendix F).

6 BOUNDING THE NUMBER OF VERTICES

The satisfiability problem is NEXPTIME-complete, thus far from tractable. The complexity comes
essentially because counterexamples can be arbitrary large graphs. However, one usually look for
small counterexamples. Let G≤N be the set of pointed graphs with at most N vertices. We consider
the qL and ACR-GNN satisfiability problem with a bound on the number of vertices and ACR-GNNs
verification tasks: given a number N given in unary, 1. given a qL-formula φ, is it the case that

3This is true for some fixed-point arithmetics but not for floating-point arthmetics. See Appendix B.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

u0,0

u0,1

u1,0

u1,1

u2n−1,2n−1u0,2n−1

u2n−1,0

uN

uE

uN

uE

uN uN

uE

uE

Figure 2: Encoding a torus of exponential size with (modal) qL formulas. Vertices ux,y correspond
to locations (x, y) in the torus while uN and uE denote intermediate vertices indicating the direction
(resp., north and east).

[[φ]] ∩ G≤N ̸= ∅, 2. given an ACR-GNN A, is it the case that [[A]] ∩ G≤N ̸= ∅. In the same way,
we introduction the following verification tasks. Given a GNN A, a qL formula φ, and a number N
in unary: (VT’1, sufficiency) Do we have [[φ]] ∩ G≤N ⊆ [[A]] ∩ G≤N? (VT’2, necessity) Do we
have [[A]] ∩ G≤N ⊆ [[φ]] ∩ G≤N? (VT’3, consistency) Do we have [[φ]] ∩ [[A]] ∩ G≤N ̸= ∅?
Theorem 13. The satisfiability problems with bounded number of vertices are NP-complete, so is
ACR-GNN verification task VT’3, while the verification tasks VT’1 and VT’2 are coNP-complete.

It is then possible to extend the methodology of Sena et al. (2021) but for verifying GNNs. An
efficient SMT encoding of GNN verification tasks would be a contribution of its own. We merely
propose a proof of concept and a baseline for future research. See Appendix B.1 for details. Our im-
plementation proposal is a Python program that takes a quantized GNN A as an input, a precondition,
a postcondition and a bound N . It then produces a C program that mimics the execution of A on an
arbitrary graph with at most N vertices, and embeds the pre/postcondition. We then apply ESBMC
(SMT-based context-bounded model checker) (Menezes et al., 2024) on the C program.

7 QUANTIZATION EFFECTS ON ACCURACY, PERFORMANCE AND MODEL SIZE

We now investigate the application of dynamic Post-Training Quantization (PTQ) to ACR-GNNs.
As a reference, we used the models described and analyzed in Barceló et al. (2020), using their
implementation (Barceló et al., 2021) as the baseline. Experiments used two datasets: one synthetic
(Erdös–Rényi model) and one real-world dataset (Protein-Protein Interactions (PPI) benchmark
by Zitnik & Leskovec (2017)). In the original work, experiments were made with two activation
functions: Rectified Linear Unit (ReLU) and truncated ReLU. Since the models of Section 2 can
handle arbitrary activation functions, in our experiments, we used several types of activation function:
Piecewise linear (ReLU, ReLU6, and trReLU), Smooth unbounded (GELU and SiLU), Smooth
bounded (Sigmoid), and Smooth ReLU-like (Softplus and ELU). The quantization method is imple-
mented in PyTorch (Ansel et al., 2024; PyTorch Team, 2024a), dynamic PTQ transforms a pre-trained
floating-point model into a quantized version without requiring retraining. In this approach, model
weights are statically quantized to INT8, while activations remain in floating-point format until they
are dynamically quantized at compute time. This hybrid representation enables efficient low-precision
computation using INT8-based matrix operations, thereby reducing the memory footprint and improv-
ing the inference speed. The PyTorch implementation applies per-tensor quantization to the weights
and stores the activations as floating-point values between operations to strike a balance between
accuracy and performance.

Synthetic graphs (Table 3 of Appendix G) were generated using the dense Erdös–Rényi model, a
classical approach to constructing random graphs. Each graph includes five initial node colors,
encoded as one-hot feature vectors. Following Barceló et al. (2020), labels were assigned using
formulas from the logic fragment FOC2. Specifically, a hierarchy of classifiers αi(x) was defined
as follows: α0(x) := Blue(x) and αi+1(x) := ∃[N,M]y (αi(y) ∧ ¬E(x, y)) , where ∃[N,M] denotes
the quantifier “there exist between N and M nodes" satisfying a given condition. Each classifier
αi(x) can be expressed within FOC2, as the bounded quantifier can be rewritten using ∃≥N and
¬∃≥M+1. Each property pi corresponds to a classifier αi with i ∈ {1, 2, 3}. For the analysis, we
collected training time, model size, and accuracy for both datasets. We list the principal findings of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the analysis. More detailed statistics can be found in the Appendix G. According to our experimental
flow, we first examine the training time. For both datasets, we found that piecewise-linear activation
functions consistently achieve the shortest training time (Table 5 and Table 22 of Appendix G).
Moreover, for computational efficiency, we found that the model with the Softplus activation function
was consistently the slowest, regardless of the datasets (Table 6 and Table 23 of Appendix G). We
computed the Reduction (in percentage) of the model size: ≈ 60% for Erdös–Rényi (Table 9) and
≈ 74% for PPI (Table 26). We calculated the mean speed-up of models after dynamic PTQ, defined
as the ratio of the non-quantized execution time to the quantized one. We observed that dynamic
PTQ does not accelerate inference for both datasets (Figures 6 (for Erdös–Rényi) and 9 (for PPI)
in Appendix G). We performed a detailed analysis of the accuracy of both data (Tables 10–19 and
Tables 27–36 in Appendix G). We observed a drop in the accuracy of the baseline models after two
layers. In Table 1, we report the accuracy and difference (∆acc) wrt. the baseline of the two-layer
quantized models, for the activation function that performs best for each family.

Table 1: Accuracy with accuracy difference (∆acc) after dynamic PTQ for two-layer ACR-GNNs
across datasets. For each activation family, the best-performing activation function (A/F) is shown.

p1 p2

Family A/F Train Test1 Test2 A/F Train Test1 Test2

Piecewise-linear ReLU6 99.99% (-0.002) 99.99% (0.000) 99.91% (+0.058) trReLU 68.23% (+0.614) 68.31% (+0.615) 63.58% (+0.313)
Smooth unbounded SiLU 100.00% (0.000) 100.00% (0.000) 99.63% (+0.086) GELU 84.22% (+0.373) 84.98% (+0.045) 76.34% (+1.160)
Smooth bounded Sigmoid 99.99% (-0.004) 99.98% (0.009) 95.90% (+0.789) Sigmoid 71.43% (+0.103) 73.04% (-0.312) 44.78% (+0.342)
Smooth ReLU-like ELU 100.00% (+0.004) 99.99% (+0.009) 84.37% (+0.101) Softplus 84.65% (+0.166) 85.05% (+0.406) 77.10% (-0.313)

p3 PPI

A/F Train Test1 Test2 A/F Train Test Validation

Piecewise-linear ReLU 76.49% (+0.085) 76.56% (+0.342) 76.93% (+0.025) ReLU6 54.20% (-0.001) 38.10% (+0.004) 39.00% (-0.009)
Smooth unbounded SiLU 76.28% (+0.149) 75.85% (+0.328) 76.94% (+0.011) GELU 61.10% (+0.003) 41.70% (+0.011) 44.20% (+0.009)
Smooth bounded Sigmoid 69.22% (-0.107) 66.79% (+0.391) 73.25% (+0.563) Sigmoid 51.60% (+0.001) 38.40% (+0.004) 38.00% (0.000)
Smooth ReLU-like ELU 76.28% (+0.071) 76.12% (+0.417) 76.97% (+0.029) ELU 61.00% (+0.008) 43.70% (-0.003) 44.00% (+0.008)

As shown in Table 1, dynamic PTQ has minimal impact on accuracy. Across all activation families,
the observed ∆acc values are generally within ±1%, with one exception being GELU on Test2 of p2.
These findings highlight the advantages of quantized ACR-GNN models of Section 2 with respect to
non-quantized models, striking a remarkable balance between model size and accuracy.

8 CONCLUSION AND FUTURE WORK

The main result is the (co)NEXPTIME-completeness of verification tasks for GNNs with global
readout. It helps to understand the inherent complexity, and demonstrates that the verification of
ACR-GNNs is highly intractable. As a mere baseline for future research, we provide a prototype for
verifying GNNs over a set of graphs with a bounded number of vertices. Finally some experiments
the practical utility of quantized GNNs. This prompts significant efforts of the research community
towards ensuring the safety of GNN-based systems.

There are many directions to go. First, characterizing the modal flavor of qL—a powerful graph
property specification language—for other activation functions than ReLU. New extensions of qL
could also be proposed to tackle other classes of GNNs. Verification of neural networks is challenging
and is currently tackled by the verification community (Cordeiro et al., 2025). So it will be for
GNNs as well. Our verification tool with a bound on the number of vertices is still preliminary and a
mere baseline for future research. One obvious path would be to improve it, to compare different
approaches (bounded model checking vs. linear programming as in Huang et al. (2024)) and to apply
it to real GNN verification scenarios. Designing a practical verification procedure in the general case
(without any bound on the number of vertices) and overcoming the high computational complexity is
an exciting challenge for future research towards the verification of GNNs.

Limitations. Section 4 and 5 reflect theoretical results. Some practical implementations of GNNs
may not fully align with them. In particular, the order in the (non-associative) summation over
values in 𝕂 is fixed in formulas (3) and (4). It means that we suppose that the aggregation agg(ϑ) is
computed in that order too (we sort the successors of a vertex according to the values of ϑ and then
perform the summation).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research poses no significant ethical concerns. But it warns the research community that the
safety of GNN-based systems is hard to ensure, and prompts further research.

REPRODUCIBILITY STATEMENT

Full proofs are in the appendix.

The code of the verification prototype is located in the folder ‘src_verificationtool’.

The reproducibility package for the experimental evaluation of ACR-GNN quantization is provided in
the folder ‘code_notebooks_csv’. The ‘Code’ subfolder contains the Python implementation,
along with a ‘README.md’ file that provides a detailed description of the files and step-by-step
instructions for reproducing the experiments. The ‘Notebooks’ subfolder includes the analysis
scripts, all corresponding ‘.csv’ files, and an additional file with usage instructions and descriptions.

REFERENCES

Veeti Ahvonen, Damian Heiman, Antti Kuusisto, and Carsten Lutz. Logical characterizations
of recurrent graph neural networks with reals and floats. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
bca7a9a0dd85e2a68420e5cae27eccfb-Abstract-Conference.html.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin
Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable,
Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian
Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano,
Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch,
Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan
Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit
Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. Pytorch 2: Faster machine learning
through dynamic python bytecode transformation and graph compilation. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366.
URL https://pytorch.org/assets/pytorch2-2.pdf.

Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. Introduction to Description Logic.
Cambridge University Press, 2017.

Franz Baader, Bartosz Bednarczyk, and Sebastian Rudolph. Satisfiability and query answering
in description logics with global and local cardinality constraints. In Giuseppe De Giacomo,
Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugarín, and Jérôme Lang
(eds.), ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September
2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PAIS 2020), volume 325 of Frontiers in
Artificial Intelligence and Applications, pp. 616–623. IOS Press, 2020. doi: 10.3233/FAIA200146.
URL https://doi.org/10.3233/FAIA200146.

Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=r1lZ7AEKvB.

Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
Gnn-logic. https://github.com/juanpablos/GNN-logic.git, 2021.

10

http://papers.nips.cc/paper_files/paper/2024/hash/bca7a9a0dd85e2a68420e5cae27eccfb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/bca7a9a0dd85e2a68420e5cae27eccfb-Abstract-Conference.html
https://pytorch.org/assets/pytorch2-2.pdf
https://doi.org/10.3233/FAIA200146
https://openreview.net/forum?id=r1lZ7AEKvB
https://github.com/juanpablos/GNN-logic.git

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bartosz Bednarczyk, Maja Orlowska, Anna Pacanowska, and Tony Tan. On classical decidable
logics extended with percentage quantifiers and arithmetics. In Mikolaj Bojanczyk and Chandra
Chekuri (eds.), 41st IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021, Virtual Conference, volume
213 of LIPIcs, pp. 36:1–36:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPICS.FSTTCS.2021.36. URL https://doi.org/10.4230/LIPIcs.FSTTCS.
2021.36.

Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of graph neural
networks via logical characterizations. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and
Ola Svensson (eds.), 51st International Colloquium on Automata, Languages, and Programming,
ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pp. 127:1–127:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024. doi: 10.4230/LIPICS.ICALP.2024.127. URL
https://doi.org/10.4230/LIPIcs.ICALP.2024.127.

Michael Benedikt, Chia-Hsuan Lu, and Tony Tan. Decidability of graph neural networks via logical
characterizations. CoRR, abs/2404.18151v4, 2025. URL https://arxiv.org/abs/2404.
18151v4.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2001. ISBN 978-1-10705088-4. doi:
10.1017/CBO9781107050884. URL https://doi.org/10.1017/CBO9781107050884.

Lucas C. Cordeiro, Matthew L. Daggitt, Julien Girard-Satabin, Omri Isac, Taylor T. Johnson, Guy
Katz, Ekaterina Komendantskaya, Augustin Lemesle, Edoardo Manino, Artjoms Sinkarovs,
and Haoze Wu. Neural network verification is a programming language challenge. CoRR,
abs/2501.05867, 2025. doi: 10.48550/ARXIV.2501.05867. URL https://doi.org/10.
48550/arXiv.2501.05867.

David J. Tena Cucala and Bernardo Cuenca Grau. Bridging max graph neural networks and Datalog
with negation. In Pierre Marquis, Magdalena Ortiz, and Maurice Pagnucco (eds.), Proceedings
of the 21st International Conference on Principles of Knowledge Representation and Reasoning,
KR 2024, Hanoi, Vietnam. November 2-8, 2024, 2024. doi: 10.24963/KR.2024/89. URL https:
//doi.org/10.24963/kr.2024/89.

Stéphane Demri and Denis Lugiez. Complexity of modal logics with presburger constraints. J. Appl.
Log., 8(3):233–252, 2010. doi: 10.1016/J.JAL.2010.03.001. URL https://doi.org/10.
1016/j.jal.2010.03.001.

European Parliament. Artificial Intelligence Act, 2024. URL https://www.europarl.
europa.eu/doceo/document/TA-9-2024-0138_EN.pdf.

Pietro Galliani, Oliver Kutz, and Nicolas Troquard. Succinctness and complexity of ALC with
counting perceptrons. In Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner (eds.),
Proceedings of the 20th International Conference on Principles of Knowledge Representation and
Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023, pp. 291–300, 2023. doi: 10.24963/
KR.2023/29. URL https://doi.org/10.24963/kr.2023/29.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 1263–1272.
PMLR, 2017.

Thomas A. Henzinger, Mathias Lechner, and Dorde Zikelic. Scalable verification of quantized
neural networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February

11

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.36
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.36
https://doi.org/10.4230/LIPIcs.ICALP.2024.127
https://arxiv.org/abs/2404.18151v4
https://arxiv.org/abs/2404.18151v4
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.48550/arXiv.2501.05867
https://doi.org/10.48550/arXiv.2501.05867
https://doi.org/10.24963/kr.2024/89
https://doi.org/10.24963/kr.2024/89
https://doi.org/10.1016/j.jal.2010.03.001
https://doi.org/10.1016/j.jal.2010.03.001
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf
https://doi.org/10.24963/kr.2023/29

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

2-9, 2021, pp. 3787–3795. AAAI Press, 2021. doi: 10.1609/AAAI.V35I5.16496. URL https:
//doi.org/10.1609/aaai.v35i5.16496.

Pei Huang, Haoze Wu, Yuting Yang, Ieva Daukantas, Min Wu, Yedi Zhang, and Clark W. Barrett.
Towards efficient verification of quantized neural networks. In Michael J. Wooldridge, Jennifer G.
Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI
2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024,
Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February
20-27, 2024, Vancouver, Canada, pp. 21152–21160. AAAI Press, 2024. doi: 10.1609/AAAI.
V38I19.30108. URL https://doi.org/10.1609/aaai.v38i19.30108.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2704–2713, 2018. doi: 10.1109/CVPR.2018.00286.

Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for boolean algebra with
presburger arithmetic. In Frank Pfenning (ed.), Automated Deduction – CADE-21, pp. 215–230,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-73595-3.

Rafael Menezes, Mohannad Aldughaim, Bruno Farias, Xianzhiyu Li, Edoardo Manino, Fedor
Shmarov, Kunjian Song, Franz Brauße, Mikhail R. Gadelha, Norbert Tihanyi, Konstantin Korovin,
and Lucas C. Cordeiro. ESBMC 7.4: Harnessing the Power of Intervals. In 30th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’24),
volume 14572 of Lecture Notes in Computer Science, pp. 376–380. Springer, 2024. doi: https:
//doi.org/10.1007/978-3-031-57256-2_24.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisen-
thwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellem-
pudi, Stuart F. Oberman, Mohammad Shoeybi, Michael Y. Siu, and Hao Wu. FP8 formats
for deep learning. CoRR, abs/2209.05433, 2022. doi: 10.48550/ARXIV.2209.05433. URL
https://doi.org/10.48550/arXiv.2209.05433.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
Tijmen Blankevoort. A white paper on neural network quantization. ArXiv, abs/2106.08295, 2021.
URL https://api.semanticscholar.org/CorpusID:235435934.

Pierre Nunn, Marco Sälzer, François Schwarzentruber, and Nicolas Troquard. A logic for reasoning
about aggregate-combine graph neural networks. In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence, IJCAI 2024, pp. 3532–3540. ijcai.org, 2024. URL
https://www.ijcai.org/proceedings/2024/391.

PyTorch Team. Quantization — PyTorch 2.x Documentation. https://pytorch.org/docs/
stable/quantization.html, 2024a. Accessed: 2025-05-16.

PyTorch Team. torch.quantize_per_tensor — pytorch 2.x documentation. https:
//pytorch.org/docs/stable/generated/torch.quantize_per_tensor.
html#torch-quantize-per-tensor, 2024b. Accessed: 2025-05-16.

PyTorch Team. torch.tensor — pytorch 2.x documentation. https://pytorch.org/docs/
stable/tensors.html#torch.Tensor, 2024c. Accessed: 2025-05-16.

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam
Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, and Pascal Friederich. Graph neural
networks for materials science and chemistry. Communications Materials, 3(93), 2022.

Amirreza Salamat, Xiao Luo, and Ali Jafari. Heterographrec: A heterogeneous graph-based neural
networks for social recommendations. Knowl. Based Syst., 217:106817, 2021. doi: 10.1016/j.
knosys.2021.106817. URL https://doi.org/10.1016/j.knosys.2021.106817.

Marco Sälzer and Martin Lange. Reachability is NP-complete even for the simplest neural networks.
In Paul C. Bell, Patrick Totzke, and Igor Potapov (eds.), Reachability Problems - 15th International
Conference, RP 2021, Liverpool, UK, October 25-27, 2021, Proceedings, volume 13035 of Lecture
Notes in Computer Science, pp. 149–164. Springer, 2021. doi: 10.1007/978-3-030-89716-1_10.

12

https://doi.org/10.1609/aaai.v35i5.16496
https://doi.org/10.1609/aaai.v35i5.16496
https://doi.org/10.1609/aaai.v38i19.30108
https://doi.org/10.48550/arXiv.2209.05433
https://api.semanticscholar.org/CorpusID:235435934
https://www.ijcai.org/proceedings/2024/391
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://doi.org/10.1016/j.knosys.2021.106817

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Marco Sälzer, François Schwarzentruber, and Nicolas Troquard. Verifying quantized graph neural
networks is pspace-complete. In Proceedings of the Thirty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2025, pp. 4660–4668. ijcai.org, 2025. URL https://www.
ijcai.org/proceedings/2025/519.

Joel I. Seiferas, Michael J. Fischer, and Albert R. Meyer. Separating nondeterministic time complexity
classes. J. ACM, 25(1):146–167, January 1978. ISSN 0004-5411. doi: 10.1145/322047.322061.
URL https://doi.org/10.1145/322047.322061.

Luiz H. Sena, Xidan Song, Erickson H. da S. Alves, Iury Bessa, Edoardo Manino, and Lucas C.
Cordeiro. Verifying Quantized Neural Networks using SMT-Based Model Checking. CoRR,
abs/2106.05997, 2021. URL https://arxiv.org/abs/2106.05997.

Marco Sälzer and Martin Lange. Fundamental limits in formal verification of message-passing neural
networks. In ICLR, 2023. URL https://openreview.net/forum?id=WlbG820mRH-.

Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant:
Quantization-aware training for graph neural networks. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=NSBrFgJAHg.

Stephan Tobies. The complexity of reasoning with cardinality restrictions and nominals in expressive
description logics. J. Artif. Intell. Res., 12:199–217, 2000. doi: 10.1613/JAIR.705. URL
https://doi.org/10.1613/jair.705.

G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pp. 466–483. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1983. ISBN 978-3-642-81955-1. doi: 10.1007/
978-3-642-81955-1_28. URL https://doi.org/10.1007/978-3-642-81955-1_
28.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quantization
for deep learning inference: Principles and empirical evaluation. CoRR, abs/2004.09602, 2020.
URL https://arxiv.org/abs/2004.09602.

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph
neural networks for automated de novo drug design. Drug Discovery Today, 26(6):1382–1393,
2021. ISSN 1359-6446. doi: https://doi.org/10.1016/j.drudis.2021.02.011. URL https://www.
sciencedirect.com/science/article/pii/S1359644621000787.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=ryGs6iA5Km.

Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan Song, and Junsong Wang. A comprehensive
survey of graph neural networks for knowledge graphs. IEEE Access, 10:75729–75741, 2022. doi:
10.1109/ACCESS.2022.3191784.

Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, Min Zhang, Taolue Chen, and Jun Sun. Qvip:
An ILP-based formal verification approach for quantized neural networks. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software Engineering, ASE ’22,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394758. doi:
10.1145/3551349.3556916. URL https://doi.org/10.1145/3551349.3556916.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

Zeyu Zhu, Fanrong Li, Zitao Mo, Qinghao Hu, Gang Li, Zejian Liu, Xiaoyao Liang, and Jian Cheng.
A2Q: Aggregation-aware quantization for graph neural networks. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=7L2mgi0TNEP.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

13

https://www.ijcai.org/proceedings/2025/519
https://www.ijcai.org/proceedings/2025/519
https://doi.org/10.1145/322047.322061
https://arxiv.org/abs/2106.05997
https://openreview.net/forum?id=WlbG820mRH-
https://openreview.net/forum?id=NSBrFgJAHg
https://doi.org/10.1613/jair.705
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://arxiv.org/abs/2004.09602
https://www.sciencedirect.com/science/article/pii/S1359644621000787
https://www.sciencedirect.com/science/article/pii/S1359644621000787
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/3551349.3556916
https://openreview.net/forum?id=7L2mgi0TNEP
https://openreview.net/forum?id=7L2mgi0TNEP

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS OF STATEMENTS IN THE MAIN TEXT

Lemma 2. Let φ be a formula of modal qL. The formulas φ and mod2expr(φ) are equivalent.

Proof. We have to prove that for all G, u, we have G, u |= φ iff G, u |= mod2expr(φ). We proceed
by induction on φ.

• The base case is obvious: G, u |= φ iff G, u |= mod2expr(φ) is G, u |= φ iff G, u |=
mod2expr(φ).

• G, u |= ¬φ iff G, u ̸|= φ

iff (by induction) G, u ̸|= mod2expr(φ)

iff (by writing mod2expr(φ) = ϑ ≥ 0) G, u ̸|= ϑ ≥ 0

iff G, u |= ϑ < 0

iff G, u |= ϑ ≤ −1 (because we suppose that ϑ takes its value in the integers

iff G, u |= ϑ+ 1 ≤ 0

iff G, u |= −ϑ− 1 ≥ 0.

• G, u |= (φ1 ∨ φ2)

iff G, u |= φ1 or G, u |= φ2

iff G, u |= (ϑ1 ≥ 0) or G, u |= (ϑ2 ≥ 0)

iff G, u |= ϑ1 +ReLU(ϑ2 − ϑ1) ≥ 0

Indeed, (⇒) if G, u |= (ϑ1 ≥ 0) then G, u |= ϑ1 +ReLU(ϑ2 − ϑ1) ≥ ϑ1 ≥ 0.

If G, u |= (ϑ2 ≥ 0) and G, u |= (ϑ1 < 0) then G, u |= ϑ1 + ReLU(ϑ2 − ϑ1) =
ϑ1 + ϑ2 − ϑ1 = ϑ2 ≥ 0.

(⇐) Conversely, by contrapositive, if G, u |= (ϑ2 < 0) and G, u |= (ϑ1 < 0), then
G, u |= ϑ1+ReLU(ϑ2−ϑ1) = ϑ1+ϑ2−ϑ1 = ϑ2 < 0 orG, u |= ϑ1+ReLU(ϑ2−ϑ1) =
ϑ1 + 0 = ϑ1 < 0. In the two cases, G, u |= ϑ1 +ReLU(ϑ2 − ϑ1) < 0.

• G, u |= ♢≥kφ iff the number of vertices v that are successors of u and with G, v |= φ is
greater than k

iff the number of vertices v that are successors of u and with G, v |= mod2expr(φ) is
greater than k

iff (written ϑ ≥ 0) iff the number of vertices v that are successors of u and with G, v |=
ϑ ≥ 0 is greater than k

iff the number of vertices v that are successors of u and with G, v |= ReLU(ϑ + 1) −
ReLU(ϑ) = 1 is greater than k (since we know by defining of modal qL that ϑ takes its
value in integers)

iff G, u |= agg(ReLU(ϑ+ 1)−ReLU(ϑ) ≥ k

iff G, u |= mod2expr(♢≥kφ)

• Other cases are similar.

Proposition 6. The number of Hintikka sets is bounded by 2n|φ| where |φ| is the size of φ, and n is
the bitwidth of 𝕂.

Proof. For each expression ϑ, we choose a number in 𝕂. There is 2n different numbers. There are
|φ| number of expressions. So we get (2n)|φ| = 2n|φ| possible choices for a Hintikka set.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proposition 7. If bitwidth n is in unary, and if 𝕂 saturates, then satisfiability in QFBAPA𝕂 is in NP.

Proof. Here is a non-deterministic algorithm for the satisfiability problem in QFBAPA𝕂.

1. Let χ be a QFBAPA𝕂 formula.

2. For each set expression B appearing in some |B|, guess a non-negative integer number kB
in 𝕂.

3. Let χ′ be a (grounded) formula in which we replaced |B| by kB .

4. Check that χ′ is true (can be done in poly-time since χ′ is a grounded formula, it is a
Boolean formula on variable-free equations and inequations in 𝕂).

5. If not we reject.

6. We now build a standard QFBAPA formula δ =
∧
B constraint(B) where:

constraint(B) =

{
|B| = kB if kB <∞𝕂
|B| ≥ limit if kB = +∞𝕂

where limit is the maximum number that is considered as infinity in 𝕂.

7. Run a non-deterministic poly-time algorithm for the QFBAPA satisfiability on δ. Accepts if
it accepts. Otherwise reject.

The algorithm runs in poly-time. Guessing a number nB is in poly-time since it consists in guessing
n bits (n in unary). Step 4 is just doing the computations in 𝕂. In Step 6, δ can be computed in
poly-time.

If χ is QFBAPA𝕂 satisfiable, then there is a solution σ such that σ |= χ. At step 2, we guess
nB = |σ(B)|𝕂. The algorithm accepts the input.

Conversely, if the algorithm accepts its input, χ′ is true for the chosen values nB . δ is satisfiable. So
there is a solution σ such that σ |= δ. By the definition of constraint, σ |= χ.

Remark 14. If the number n of bits to represent 𝕂 is given in unary and if 𝕂 is "modulo",
then the satisfiability problem in QFBAPA𝕂 is also in NP. The proof is similar except than now
constraint(B) = (|B| = kB + LdB) where dB is a new variable.

Proposition 8. tr(φ) is computable in exponential-time in |φ| and n.

Proof. In order to create tr(φ), we write an algorithm where each big conjunction, big disjunction,
big union and big sum is replaced by a loop. For instance,

∧
H ̸=H′ is replaced by two inner loops

over Hintikka sets. Note that we create check whether a candidate H is a Hintikka set in exponential
time in n since Point 4 can be checked in exponential time in n (thanks to our loose assumption on
the computability of [[α]] in exponential time in n. There are 2n|φ| many of them. In the same way,∧
k∈𝕂 is a loop over 2n values. There is a constant number of nested loops, each of them iterating

over an exponential number (in n and |φ| of elements. QED.

Proposition 9. Let φ be a formula of qL. φ is satisfiable iff tr(φ) is QFBAPA𝕂 satisfiable.

Proof. ⇒ Let G, u such that G, u |= φ. We set σ(Xϑ′=k) := {v | [[ϑ′]]G,v = k} and σ(XH) =
{v | G, v |= H} where G, u |= H means that for all ϑ′ = k ∈ H , we have [[ϑ′]]G,v = k. For all
Hintikka sets H such that there is v such that G, v |= H , we set: σ(SH) := {w | vEw}.
We check that σ |= tr(φ). First, σ satisfies Formulas 1 and 2 by definition of σ. Now, σ also satisfies
Formula 3. Indeed, if agg(ϑ′) = k ∈ H , then if there is no H-vertex in G then the implication is
true. Otherwise, consider the H-vertex v. But, then by definition of Xagg(ϑ′)=k, [[agg(ϑ′)]]G,v = k.
But then the semantics of agg exactly corresponds to

∑
k′∈𝕂 |SH ∩Xϑ=k′ | × k′ = k. Indeed, each

SH ∩ Xϑ=k′-successor contributes with k′. Thus, the contribution of successors where ϑ is k′ is
|SH ∩Xϑ=k′ | × k′.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Formula 4 is also satisfied by σ. Actually, let k such that σ |= Xagg∀(ϑ)=k = U . This means that
the value of agg∀(ϑ) (which does not depend on a specific vertex u but only on G) is k. The sum∑
k′∈𝕂 |Xϑ=k′ | × k′ = k is the semantics of agg∀(ϑ) = k.

Finally, as G, u |= φ, and φ is of the form ϑ ≥ k, there is k′ ≥ k such that [[ϑ]]G,u = k′. So
Xϑ=k′ ̸= ∅.

⇐ Conversely, consider a solution σ of tr(φ). We construct a graph G = (V,E) as follows.

V := σ(U)
E := {(u, v) | for some H , u ∈ σ(XH) and v ∈ σ(SH)}

ℓ(v)i := k where v ∈ Xxi=k

i.e., the set of vertices is the universe, and we add an edge between any H-vertex u and a vertex
v ∈ σ(SH), and the labeling for features is directly given Xxi=k. Note that the labeling is well-
defined because of formulas 1 and 2.

As σ |= |Xφ| ≥ 1, there exists u ∈ σ(Xφ). Let us prove that G, u |= φ. By induction on ϑ′, we
prove that u ∈ Xϑ′=k implies [[ϑ′]]G,u = k. The base case is obtained via the definition of ℓ. Cases
for +, × and α are obtained because each vertices is in some σ(XH) for some H . As the definition of
Hintikka set takes care of the semantics of +, × and α, we have [[ϑ1+ϑ2]]G,u = [[ϑ1]]G,u+[[ϑ2]]G,u,
etc.

[[agg(ϑ)]]G,u = Σv|uEv[[ϑ]]G,v and [[agg∀(ϑ)]]G,u = Σv∈V [[ϑ]]G,v hold because of σ satisfies
respectively formula 3 and 4.

Theorem 11. The satisfiability problem in qL is NEXPTIME-hard, and so is the ACR-GNN verifica-
tion task VT3. The ACR-GNN verification tasks VT1 and VT2 are coNEXPTIME-hard.

Proof. We reduce the NEXPTIME-hard problem of deciding whether a domino system D =
(D,V,H), given an initial condition w0 . . . wn−1 ∈ Dn, can tile an exponential torus Tobies (2000).
In the domino system, D is the set of tile types, and V and H respectively are the respectively vertical
and horizontal color compatibility relations. We are going to write a set of modal qL formulas that
characterize the torus ℤ2n+1 × ℤ2n+1 and the domino system. We use 2n + 2 features. We use
x0, . . . xn−1, and y0, . . . , yn−1, to hold the (binary-encoded) coordinates of vertices ux,y in the torus.
We use the feature xN to denote a vertex uN ‘on the way north’ (when xN = 1) and xE to denote a
vertex uE ‘on the way east’ (when xE = 1), with abbreviations φN := xN = 1, and φE := xE = 1.
See Figure 2.

For every n ∈ ℕ, we define the following set of formulas. Tn =

{ □g(xN = 1 ∨ xN = 0) , □g(xE = 1 ∨ xE = 0),

□g(
∧n−1
k=0(xi = 1 ∨ xi = 0)) , □g(

∧n−1
k=0(yi = 1 ∨ yi = 0)),

□g(¬(xN = 1 ∧ xE = 1)) , □g(¬(φN ∨ φE) → agg(1) = 2),
□g(¬(φN ∨ φE) → (agg(xN) = 1)) , □g(¬(φN ∨ φE) → (agg(xE) = 1)),
□g(φN → agg(1) = 1) , □g(φE = 1 → agg(1) = 1),
♢=1
g φ(0,0) , ♢=1

g φ(2n−1,2n−1),
□g(¬(φN ∨ φE) → φeast) , □g(¬(φN ∨ φE) → φnorth),
♢≤2n×2n

g ¬(φN ∨ φE), ♢≤2n×2n

g φN , ♢≤2n×2n

g φE }

where φ(0,0) :=
∧n−1
k=0 xi = 0 ∧

∧n−1
k=0 yi = 0, and φ(2n−1,2n−1) :=

∧n−1
k=0 xi = 1 ∧

∧n−1
k=0 yi = 1

represent two nodes, namely those at coordinates (0, 0) and (2n−1, 2n−1). The formulas φnorth and
φeast enforce constraints on the coordinates of states, such that going north increases the coordinate
encoding using the xi features by one, leaving the yi features unchanged, and going east increases
coordinate encoding using the yi features by one, leaving the xi features unchanged. For every

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

formula φ, ∀east.φ stands for □(φE → □φ) and ∀north.φ stands for □(φN → □φ).

φnorth :=

n−1∧
k=0

(

k−1∧
j=0

(xj = 1)) → (((xk = 1) → ∀north.(xk = 0)) ∧ ((xk = 0) → ∀north.(xk = 1)))∧

n−1∧
k=0

(

k−1∨
j=0

(xj = 0)) → (((xk = 1) → ∀north.(xk = 1)) ∧ ((xk = 0) → ∀north.(xk = 0)))∧

n−1∧
k=0

(((yk = 1) → ∀north.(yk = 1)) ∧ ((yk = 0) → ∀north.(yk = 0)))

φeast :=

n−1∧
k=0

(

k−1∧
j=0

(yj = 1)) → (((yk = 1) → ∀east.(yk = 0)) ∧ ((yk = 0) → ∀east.(yk = 1)))∧

n−1∧
k=0

(

k−1∨
j=0

(yj = 0)) → (((yk = 1) → ∀east.(yk = 1)) ∧ ((yk = 0) → ∀east.(yk = 0)))∧

n−1∧
k=0

(((xk = 1) → ∀east.(xk = 1)) ∧ ((xk = 0) → ∀east.(xk = 0)))

The problem of deciding whether a domino system D = (D,V,H), given an initial condition
w0 . . . wn−1 ∈ Dn, can tile a torus of exponential size can be reduced to the problem satisfiability in
qL, checking the satisfiability of the set of formulas T (n,D, w) = Tn ∪ TD ∪ Tw, where Tn is as
above, TD encodes the domino system, and Tw encodes the initial condition as follows. We define

TD = { □g(
∧
d∈D(xd = 1 ∨ xd = 0)),

□g(¬(φN ∨ φE) → (
∨
d∈D φd)),

□g(¬(φN ∨ φE) → (
∧
d∈D

∧
d′∈D\{d} ¬(φd ∧ φd′))),

□g(
∧
d∈D(φd → (∀east.

∨
(d,d′)∈H φd′))),

□g(
∧
d∈D(φd → (∀north.

∨
(d,d′)∈V φd′))) }

where for every d ∈ D, there is a feature xd and φd := xd = 1. Finally, we define

Tw = { □g(φ(0,0) → φw0
), . . . ,□g(φ(n−1,0) → φwn−1

) }

The size of T (n,D, w) is polynomial in the size of the tiling problem instance, that is in |D| +
|H|+ |V |+ n. The rest of the proof is analogous to the proof of (Tobies, 2000, Corollary 3.9). The
NEXPTIME-hardness of qL follows from Lemma 2 and (Tobies, 2000, Corollary 3.3) stating the
NEXPTIME-hardness of deciding whether a domino system with initial condition can tile a torus of
exponential size.

For the complexity of ACR-GNN verification tasks, we observe the following.

1. We reduce the satisfiability problem in (modal) qL (restricted to graded modal logic + graded
universal modality, because it is sufficient to encode the tiling problem) to VT3 in poly-time
as follows. Let φ be a qL. We build in poly-time an ACR-GNN A that recognizes all
pointed graphs. We have φ is satisfiable iff [[φ]] ∩ [[A]] ̸= ∅ So VT3 is NEXPTIME-hard.

2. The validity problem of qL (dual problem of the satisfiability problem, i.e., given a formula
φ, is φ true in all pointed graphs G, u?) is coNEXPTIME-hard. We reduce the validity
problem of qL to VT2. Let φ be a qL formula. We construct an ACR-GNN A that accepts
all pointed graphs. We have φ is valid iff [[A]] ⊆ [[φ]]. So VT2 is coNEXPTIME-hard.

3. We reduce the validity problem of qL to VT1. Let ψ be a qL formula. (again restricted to
graded modal logic + graded global modalities as for point 1). So following Barceló et al.
(2020), we can construct in poly-time an ACR-GNN A that is equivalent to ψ (by Barceló
et al. (2020)). We have ψ is valid iff [[⊤]] ⊆ [[A]]. So VT1 is coNEXPTIME-hard.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem 13. The satisfiability problems with bounded number of vertices are NP-complete, so is
ACR-GNN verification task VT’3, while the verification tasks VT’1 and VT’2 are coNP-complete.

Proof. NP upper bound is obtained by guessing a graph with at mostN vertices and then check that φ
holds. The obtained algorithm is non-deterministic, runs in poly-time and decides the satisfiability
problem with bounded number of vertices. NP-hardness already holds for agg-free formulas by
reduction from SAT for propositional logic (the reduction is mod2expr, see Lemma 2).

For the complexity of the bounded ACR-GNN verification tasks, we observe the following.

1. NP upper bound is also obtained by guessing a graph with at most N vertices and then
check. For the lower bound, we reduce (propositional) SAT to VT’3 in poly-time as follows.
Let φ be a propositional formula. We build in poly-time an ACR-GNN A that recognizes all
pointed graphs. We have φ is satisfiable iff [[φ]] ∩ [[A]] ̸= ∅ So VT’3 is NP-hard.

2. coNP upper bound corresponds to a NP upper bound for the dual problem: guessing a
graph with at most N vertices which is recognizes by A but in which φ does not hold.
The validity problem of propositional logic (dual problem of the satisfiability problem,
i.e., given a formula φ, is φ true for all valuations) is coNP-hard. We reduce the validity
problem of propositional logic to VT’2. Let φ be a propositional formula. We construct an
ACR-GNN A that accepts all pointed graphs. We have φ is valid iff [[A]] ⊆ [[φ]]. So VT’2
is coNP-hard.

3. coNP upper bound is obtained similarly. For the lower bound, we reduce the validity
problem of propositional logic to VT’1. Let ψ be a propositional formula. So following
Barceló et al. (2020), we can construct in poly-time an ACR-GNN A that is equivalent to ψ
(by Barceló et al. (2020)). We have ψ is valid iff [[⊤]] ⊆ [[A]]. So VT’1 is coNP-hard.

B PROTOTYPE VERIFICATION OF ACR-GNNS

B.1 PERFORMANCE

We propose the first implementation to serve as a proof of concept, and a baseline for future research.
The prototype directly transforms an instance of a ACR-GNN satisfiability problem into a C program.
The C program is then verified by the model checker ESBMC (Menezes et al., 2024).

We report in Table 2 the performance of our prototype on a very small GNN Atest (three layers
of input and output dimensions of three). The implementation can be found in the supplementary
material.

Number of vertices Time (s)

1 0.089
2 0.103
3 0.845
4 2.576
5 10.406
6 32.667

1 2 3 4 5 6
0

10

20

30

Number of vertices

Ti
m

e
(s

)

Table 2: Time for solving the ACR-GNN satisfiability problem on the ACR-GNN Atest, with varying
number of vertices.

Expectedly, the experimental results reveal a bad scalability. Efficient encoding into Satisfiability
Modulo Theory (SMT) is a research area of its own, and we hope that the machine learning and
verification research communities will find interesting the challenge of making GNN verification
practical.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2 CHECKING DISTRIBUTIVITY

We provide C source code for checking distributivity. The reader may run the model checker ESBMC
on it to see whether distributivity holds or not.

C EXTENSION OF LOGIC K♯ AND ACR-GNNS OVER ℤ

A (labeled directed) graph G is a tuple (V,E, ℓ) such that V is a finite set of vertices, E ⊆ V × V a
set of directed edges and ℓ is a mapping from V to a valuation over a set of atomic propositions. We
write ℓ(u)(p) = 1 when atomic proposition p is true in u, and ℓ(u)(p) = 0 otherwise. Given a graph
G and vertex u ∈ V , we call (G, u) a pointed graph.

C.1 LOGIC

Consider a countable set Ap of propositions. We define the language of logic K♯,♯g as the set of
formulas generated by the following BNF:

φ ::= p | ¬φ | φ ∨ φ | ξ ≥ 0

ξ ::= c | 𝟙φ | ♯φ | ♯gφ | ξ + ξ | c× ξ

where p ranges over Ap, and c ranges over ℤ. We assume that all formulas φ are represented as
directed acyclic graph (DAG) and refer by the size of φ to the size of its DAG representation.

Atomic formulas are propositions p, inequalities and equalities of linear expressions. We consider
linear expressions over 𝟙φ and ♯φ and ♯gφ. The number 𝟙φ is equal to 1 if φ holds in the current
world and equal 0 otherwise. The number ♯φ is the number of successors in which φ hold. The
number ♯gφ is the number of worlds in the model in which φ hold. The language seems strict but we
write ξ1 ≤ ξ2 for ξ2 − ξ1 ≥ 0, ξ = 0 for (ξ ≥ 0) ∧ (−ξ ≥ 0), etc.

As in modal logic, a formula φ is evaluated in a pointed graph (G, u) (also known as pointed Kripke
model). We define the truth conditions (G, u) |= φ (φ is true in u) by

(G, u) |= p if ℓ(u)(p) = 1,
(G, u) |= ¬φ if it is not the case that (G, u) |= φ,
(G, u) |= φ ∧ ψ if (G, u) |= φ and (G, u) |= ψ,
(G, u) |= ξ ≥ 0 if [[ξ]]G,u ≥ 0,

and the semantics [[ξ]]G,u (the value of ξ in u) of an expression ξ by mutual induction on φ and ξ as
follows.

[[c]]G,u = c,
[[ξ1 + ξ2]]G,u = [[ξ1]]G,u + [[ξ2]]G,u,
[[c× ξ]]G,u = c× [[ξ]]G,u,

[[𝟙φ]]G,u =

{
1 if (G, u) |= φ

0 otherwise,
[[♯φ]]G,u = |{v ∈ V | (u, v) ∈ E and (G, v) |= φ}|
[[♯gφ]]G,u = |{v ∈ V | (G, v) |= φ}|.

A local modality □φ can be defined as □φ := (−1) × ♯(¬φ) ≥ 0. That is, to say that φ holds
in all successors, we say that the number of successors in which ¬φ holds is zero. Similarly, a
global/universal modality can be defined as □gφ := (−1)× ♯g(¬φ) ≥ 0.

C.2 AGGREGATE-COMBINE GRAPH NEURAL NETWORKS

In this section, we consider a detailed definition of quantized (global) Aggregate-Combine GNNs
(ACR-GNN) Barceló et al. (2020), also called message passing neural networks Gilmer et al. (2017).

A (global) ACR-GNN layer L = (comb, agg , aggg) is a tuple where comb : 𝕂3m → 𝕂m′
is a

so-called combination function, agg is a so-called local aggregation function, mapping multisets
of vectors from ℝm to a single vector from 𝕂m′

, aggg is a so-called global aggregation function,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

also mapping multisets of vectors from 𝕂m to a single vector from 𝕂n. We call m the input
dimension of layer L and m′ the output dimension of layer L. Then, a (global) ACR-GNN is a
tuple (L(1), . . . ,L(L), cls) where L(1), . . . ,L(L) are L ACR-GNN layers and cls : 𝕂m → {0, 1} is a
classification function. We assume that all GNNs are well-formed in the sense that output dimension
of layer L(i) matches input dimension of layer L(i+1) as well as output dimension of L(L) matches
input dimension of cls .

Let G = (V,E) be a graph with atomic propositions p1, . . . , pk and A = (L(1), . . . ,L(L), cls)
an ACR-GNN. We define x0 : V → {0, 1}k, called the initial state of G, as x0(u) :=
(ℓ(u)(p1), . . . , ℓ(u)(pk)) for all u ∈ V . Then, the i-th layer of A computes an updated state of
G by

xi(u) := comb(xi−1(u), agg({{xi−1(v) | uv ∈ E}}), aggg({{xi−1(v) | v ∈ V }}))

where agg , aggg , and comb are respectively the local aggregation, global aggregation and combination
function of the i-th layer. Let (G, u) be a pointed graph. We write A(G, u) to denote the application
of A to (G, u), which is formally defined as A(G, u) = cls(xL(u)) where xL is the state of G
computed by A after layer L. Informally, this corresponds to a binary classification of vertex u.

We consider the following form of ACR-GNN A: all local and global aggregation functions are given
by the sum of all vectors in the input multiset, all combination functions are given by comb(x, y, z) =
σ⃗(xC + yA1 + zA2 + b) where σ⃗(x) is the componentwise application of the activation function
σ(x) with matrices C, A1 and A2 and vector b of 𝕂 parameters, and where the classification function
is cls(x) =

∑
i aixi ≥ 1, where ai are from 𝕂 as well.

We note [[A]] the set of pointed graphs (G, u) such that A(G, u) = 1. An ACR-GNN A is satisfiable
if [[A]] is non-empty. The satisfiability problem for ACR-GNNs is: Given a ACR-GNN A, decide
whether A is satisfiable.

D CAPTURING GNNS WITH K♯,♯g

In this section, we exclusively consider ACR-GNNs where 𝕂 = ℤ and σ is truncated ReLU
σ(x) = max(0,min(1, x)).

We demonstrate that the expressive power of (global) ACR-GNNs over ℤ, with truncated ReLU
activation functions, and K♯,♯g , is equivalent. Informally, this means that for every formula φ of
K♯,♯g , there exists an ACR-GNNs A that expresses the same query, and vice-versa. To achieve this,
we define a translation of one into the other and substantiate that this translation is efficient. This
enables ways to employ K♯,♯g for reasoning about ACR-GNN.

We begin by showing that global ACR-GNNs are at least as expressive as K♯,♯g . We remark that the
arguments are similar to the proof of Theorem 1 in Nunn et al. (2024).

Theorem 15. Let φ ∈ K♯,♯g be a formula. There is an ACR-GNN Aφ such that for all pointed
graphs (G, u) we have (G, u) |= φ if and only if Aφ(G, u) = 1. Furthermore, Aφ can be built in
polynomial time regarding the size of φ.

Proof sketch. We construct a GNN Aφ that evaluates the semantics of a given K♯,♯g formula φ for
some given pointed graph (G, v). The network consists of n layers, one for each of the n subformulas
φi of φ, ordered so that the subformulas are evaluated based on subformula inclusion. The first
layer evaluates atomic propositions, and each subsequent messages passing layer li uses a fixed
combination and fixed aggregation function to evaluate the semantics of φi.

The correctness follows by induction on the layers: the i-th layer correctly evaluates φi at each
vertex of G, assuming all its subformulas are correctly evaluated in previous layers. Finally, the
classifying function cls checks whether the n-th dimension of the vector after layer ln, corresponding
to the semantics of φn for the respective vertex v, indicates that φn = φ is satisfied by (G, v). The
network size is polynomial in the size of φ due to the fact that the total number of layers and their
width is polynomially bounded by the number of subformulas of φ. A full formal proof is given in
Appendix D.1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Theorem 16. Let A be a GNN. We can compute in polynomial time wrt. |A| a K♯,♯g -formula φA,
represented as a DAG, such that [[A]] = [[φA]].

Proof sketch. We construct a K♯,♯g -formula φA that simulates the computation of a given GNN
A. For each layer li of the GNN, we define a set of formulas φi,j , one per output dimension, that
encode the corresponding node features using linear threshold expressions over the formulas from
the previous layer. At the base, the input features are the atomic propositions p1, . . . , pm1

.

Each formula φi,j mirrors the computation of the GNN layer, including combination, local aggre-
gation, and global aggregation. The final classification formula φA encodes the output of the linear
classifier on the top layer features. Correctness follows from the fact that all intermediate node
features remain Boolean under message passing layers with integer parameters and truncated ReLU
activations. This allows expressing each output as a Boolean formula over the input propositions.
The construction is efficient: by reusing shared subformulas via a DAG representation, the total size
remains polynomial in the size of A. A more complete proof is given in Appendix D.2.

D.1 PROOF OF THEOREM 15

Proof of Theorem 15. Let φ be a K♯,♯g formula over the set of atomic propositions p1, . . . , pm. Let
φ1, . . . , φn denote an enumeration of the subformulas of φ such that φi = pi for i ≤ m, φn = φ,
and whenever φi is a subformula of φj , it holds that i ≤ j. Without loss of generality, we assume
that all subformulas of the form ξ ≥ 0 are written as∑

j∈J
kj · 𝟙φj +

∑
j′∈J′

kj′ · ♯φj′ +
∑
j′′∈J′′

kj′′ · ♯gφj′′ − c ≥ 0,

for some index sets J, J ′, J ′′ ⊆ {1, . . . , n}.

We construct the GNN Aφ in a layered manner. Note that Aφ is fully specified by defining the
combination function combi, including its local and global aggregation, for each layer li with i ∈
{1, . . . , n} and the final classification function cls . Each combi produces output vectors of dimension
n. The first layer has input dimension m, and comb1 is defined by comb1(x, y, z) = (x, 0, . . . , 0),
ensuring that the first m dimensions correspond to the truth values of the atomic propositions
p1, . . . , pm, while the remaining entries are initialized to zero. Note that comb1 is easily realized by
an FNN with trReLU activations. For i > 1, the combination function combi is defined as

combi(x, y, z) = σ⃗(xC + yA1 + zA2 + b),

where C, A1, A2 are n× n matrices corresponding to self, local (neighbor), and global aggregation
respectively, and b ∈ ℤn is a bias vector. The parameters are defined sparsely as follows:

• Cii = 1 for all i ≤ m (preserving the atomic propositions),

• If φi = ¬φj , then Cji = −1 and bi = 1,

• If φi = φj ∨ φl, then Cji = Cli = 1, and

• If φi =
∑
j∈J kj · 1φj

+
∑
j′∈J′ kj′ · ♯φj′ +

∑
j′′∈J′′ kj′′ · ♯gφj′′ − c ≥ 0, then

Cji = kj , A1,j′i = kj′ , A2,j′i = kj′′ , bi = −c+ 1.

Note that each combi has the same functional form, differing only in the non-zero entries of its
parameters. The classification function is defined by cls(x) = xn ≥ 1.

Let li denote the ith layer of Aφ, and fix a vertex v in some input graph. We show, by induction
on i, that the following invariant holds: for all j ≤ i, (xi(v))j = 1 if and only if v |= φj , and
(xi(v))j = 0 otherwise. Assume that i = 1. By construction, x1(v) contains the truth values of
the atomic propositions p1, . . . , pm in its first m coordinates. Thus, the statement holds at layer 1.
Next, assume the statement holds for layer xi−1. Let j < i. By assumption, the semantics of φj are
already correctly encoded in xj−1 and preserved by combi due to the fixed structure of C, A1, A2,
and b. Now consider j = i. The semantics of all subformulas of φi are captured in xi−1, either at
the current vertex or its neighbors. By the design of combi, which depends only on the values of

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

relevant subformulas, we conclude that φi is correctly evaluated. This holds regardless of whether φi
is a negation, disjunction, or numeric threshold formula. Thus, the statement holds for all i, and in
particular for xn(v) and φn = φ. Finally, the classifier cls evaluates whether xn(v)n ≥ 1, which is
equivalent to G, v |= φ. The size claim is obvious given that n depends polynomial on the size of φ.
We note that this assumes that the enumeration of subformulas of φ does not contain duplicates.

D.2 PROOF OF THEOREM 16

Proof of Theorem 16. Let A be a GNN composed of layers l1, . . . , lk, where each combi has input
dimension 2mi, output dimension ni, and parameters Ci, Ai,1, Ai,2, and bi. The final classification
is defined via a linear threshold function cls(x) = a1x1 + · · ·+ ank

xnk
≥ 1. We assume that the

dimensionalities match across layers, i.e., mi = ni−1 for all i ≥ 2, so that the GNN is well-formed.

We construct a formulaφA over the input propositions p1, . . . , pm1
inductively, mirroring the structure

of the GNN computation.

We begin with the first layer l1. For each j ∈ {1, . . . , n1}, we define:

φ1,j =

m1∑
k=1

(C1)kj · 𝟙pk + (A1,1)kj · ♯pk + (A1,2)kj · ♯gpk + (b1)j ≥ 1.

Now suppose that we have already constructed formulas φi−1,1, . . . , φi−1,ni−1
for some layer i ≥ 2.

Then, for each output index j ∈ {1, . . . , ni}, we define:

φi,j =

mi∑
k=1

(Ci)kj · 𝟙φi−1,k + (Ai,1)kj · ♯φi−1,k + (Ai,2)kj · ♯gφi−1,k + (bi)j ≥ 1.

Once all layers have been encoded in this way, we define the final classification formula as

φA = a1𝟙φk,1 + · · ·+ ank
𝟙φk,nk

≥ 1.

Let G, v be a pointed graph. The correctness of our translation follows directly from the following
observations: all weights and biases in A are integers, and the input vectors x0(u) assigned to
nodes u in G are Boolean. Moreover, each layer applies a linear transformation followed by a
pointwise truncated ReLU, which preserves the Boolean nature of the node features. It follows that
the intermediate representations xi(v) remain in {0, 1}ni for all i. Consequently, each such feature
vector can be expressed via a set of Boolean K♯,♯g -formulas as constructed above. Taken together,
this ensures that the overall formula φA faithfully simulates the GNN’s computation.

It remains to argue that this construction can be carried out efficiently. Throughout, we represent
the (sub)formulas using a shared DAG structure, avoiding duplication of equivalent subterms. This
ensures that subformulas φi−1,k can be reused without recomputation. For each layer, constructing all
φi,j requires at most ni ·mi steps, plus the same order of additional operations to account for global
aggregation terms. Since the number of layers, dimensions, and parameters are bounded by |A|, and
each operation can be performed in constant or linear time, the total construction is polynomial in the
size of A.

E DESCRIPTION LOGICS WITH CARDINALITY CONSTRAINTS

E.1 ALCQ AND TCBOXES CONSISTENCY

ALCQ is the Description Logic adding qualified number restrictions to the standard Description
Logic ALC, analogously to how Graded Modal Logic extends standard Modal Logic with graded
modalities.

Let NC and NR be two non-intersecting sets of concept names, and role names respecively. A
concept name A ∈ NC is an ALCQ concept expressions of ALCQ. If C is an ALCQ concept
expression, so is ¬C. If C1 and C2 are ALCQ concept expressions, then so is C1 ⊓ C2. If C is an
ALCQ concept expression, R ∈ NR, and n ∈ ℕ, then ≥ n R.C is an ALCQ concept expression.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(2n − 1, 2n − 1)(0, 2n − 1)

(2n − 1, 0)

N

E

N

E

N N

E

E

Figure 3: Encoding a torus of exponential size with an ALCQ-TCBox with one role.

A cardinality restriction of ALCQ is is an expression of the form (≥ n C) or (≤ n C), where C an
ALCQ concept expression and n ∈ ℕ.

An ALCQ-TCBox is a finite set of cardinality restrictions.

An interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty set of individuals, and ·I is
a function such that: every A ∈ NC is mapped to AI ⊆ ∆I , and every R ∈ NR is mapped
to RI ⊆ ∆I × ∆I . Given an element of d ∈ ∆I , we define RI(d) = {d′ | (d, d′) ∈ RI}.
An interpretation I is extended to complex concept descriptions as follows: (¬C)I = ∆I \ CI ;
(C1 ⊓ C2)

I = CI1 ∩ CI2 ; and (≥ n R.C)I = {d | |RI(d) ∩ CI | ≥ n}.

An interpretation I satisfies the cardinality restriction (≥ n C) iff |CI | ≥ n and it satisfies
the cardinality restriction (≤ n C) iff |CI | ≤ n. A TCBox TC is consistent if there exists an
interpretation that satisfies all the cardinality restrictions in TC.

Theorem 17 (Tobies (2000)). Deciding the consistency of ALCQ-TCBoxes is NEXPTIME-hard.

The proof can be slightly adapted to show that the result holds even when there is only one role.

Some abbreviations are useful. For every pair of concepts C and D, C → D stands for ¬C ⊔D. For
every concept C, role R, and non-negative integer n, we define: (≤ n R.C) := ¬(≥ (n+ 1) R.C),
(∀ R.C) := (≤ 0 R.¬C), (∀ C) := (≤ 0 ¬C), (= n R.C) := (≥ n R.C) ⊓ (≤ n R.C), and
(= n C) := (≥ n C) ⊓ (≤ n C).

Theorem 18. Deciding the consistency of ALCQ-TCBoxes is NEXPTIME-hard even if |NR| = 1.

Proof. Let next be the unique role in NR. We use the atomic concepts N to denote an individual
‘on the way north’ and E to denote an individual ‘on the way east’. See Figure 3.

For every n ∈ ℕ, we define the following ALCQ-TCBox.

Tn = { (∀ ¬(N ⊔ E) → (= 1 next.N)) , (∀ ¬(N ⊔ E) → (= 1 next.E))
(∀ N → (= 1 next.⊤)) , (∀ E → (= 1 next.⊤))
(= 1 C(0,0)) , (= 1 C(2n−1,2n−1))
(∀ ¬(N ⊔ E) → Deast) , (∀ ¬(N ⊔ E) → Dnorth)
(≤ (2n × 2n) ¬(N ⊔ E)), (≤ (2n × 2n) N), (≤ (2n × 2n) E) }

such that the concepts C(0,0), C(2n−1,2n−1) are defined like in (Tobies, 2000, Figure 3), and so
are the concepts Dnorth and Deast, except that for every concept C, ∀east.C now stands for
∀next.(E → ∀next.C) and ∀north.C now stands for ∀next.(N → ∀next.C).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The problem of deciding whether a domino system D = (D,V,H), given an initial condition
w0 . . . wn−1, can tile a torus of exponential size can be reduced to the problem of consistency of
ALCQ-TCBoxes, checking the consistency of T (n,D, w) = Tn ∪ TD ∪ Tw, where Tn is as above,
TD encodes the domino system, and Tw encodes the initial condition as follows.

TD = { (∀ ¬(N ⊔ E) → (
⊔
d∈D Cd)),

(∀ ¬(N ⊔ E) → (
d
d∈D

d
d′∈D\{d} ¬(Cd ⊓ Cd′))),

(∀
d
d∈D(Cd → (∀east.

⊔
(d,d′)∈H Cd′))),

(∀
d
d∈D(Cd → (∀north.

⊔
(d,d′)∈V Cd′))) }

Tw = { (∀ C(0,0) → Cw0
), . . . , (∀ C(n−1,0) → Cwn−1

) }
The rest of the proof remains unchanged.

E.2 DESCRIPTION LOGICS WITH GLOBAL AND LOCAL CARDINALITY CONSTRAINTS

The Description Logic ALCSCC++ (Baader et al., 2020) extends the basic Description Logic
ALC (Baader et al., 2017) with concepts that capture cardinality and set constraints expressed in
the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic (QFBAPA) (Kuncak &
Rinard, 2007).

We assume that we have a set of set variables and a set of integer constants.

E.2.1 QFBAPA

A QFBAPA formula is a Boolean combination (∧, ∨, ¬) of set constraints and cardinality constraints.

A set term is a Boolean combination (∪, ∩, ·) of set variables, and set constants U , and ∅. If S is a
set term, then its cardinality |S| is an arithmetic expressions. Integer constants are also arithmetic
expressions. If T1 and T2 are arithmetic expressions, so is T1 + T2. If T is an arithmetic expression
and c is an integer constant, then c · T is an arithmetic expression.

Given two set terms B1 and B2, the expressions B1 ⊆ B2 and B1 = B2 are set constraints.
Given two arithmetic expressions T1 and T2, the expressions T1 < T2 and T1 = T2 are cardinality
constraints. Given an integer constant c and an arithmetic expression T , the expression c dvd T is a
cardinality constraint.

A substitution σ assigns ∅ to the set constant ∅, a finite set σ(U) to the set constant U , and a subset
of σ(U) to every set variable. A substitution is first extended to set terms by applying the standard
set-theoretic semantics of the Boolean operations. It is further extended to map arithmetic expressions
to integers, in such that way that every integer constant c is mapped to c, for every set term B, the
arithmetic expression |B| is mapped to the cardinality of the set σ(B), and the standard semantics for
addition and multiplication is applied.

The substitution σ (QFBAPA) satisfies the set constraint B1 ⊆ B2 if σ(B1) ⊆ σ(B2), the set
constraint B1 = B2 if σ(B1) = σ(B2), the cardinality constraint T1 < T2 if σ(T1) < σ(T2), the
cardinality constraint T1 = T2 if σ(T1) = σ(T2), and the cardinality constraint c dvd T if c divides
σ(T).

E.2.2 ALCSCC++

We can now define the syntax of ALCSCC++ concept descriptions and their semantics. Let NC be
a set of concept names, and NR be a set of role names, such that NC ∩ NR = ∅. Every A ∈ NC
is a concept description of ALCSCC++. Moreover, if C, C1, C2, . . . are concept descriptions of
ALCSCC++, then so are: C1⊓C2, C1⊔C2, ¬C, and sat(χ), where χ is a set or cardinality QFBAPA
constraint, with elements of NR and concept descriptions C1, C2, . . . used in place of set variables.

A finite interpretation is a pair I = (∆I , ·I), where ∆I is a finite non-empty set of individuals, and
·I is a function such that: every A ∈ NC is mapped to AI ⊆ ∆I , and every R ∈ NR is mapped to
RI ⊆ ∆I ×∆I . Given an element of d ∈ ∆I , we define RI(d) = {d′ | (d, d′) ∈ RI}.

The semantics of the language of ALCSCC++ makes use QFBAPA substitutions to interpret QFBAPA
constraints in terms of ALCSCC++ finite interpretations. Given an element d ∈ ∆I , we can define

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

the substitution σId in such a way that: σId(U) = ∆I , σId(∅) = ∅, and A ∈ NC and R ∈ NR are
considered QFBAPA set variables and substituted as σId(A) = AI , and σId(R) = RI(d).

The finite interpretation I and the QFBAPA substitutions σId are mutually extended to complex ex-
pressions such that: σId(C1 ⊓ C2) = (C1 ⊓ C2)

I = CI1 ∩ CI2 ; σId(C1 ⊔ C2) = (C1 ⊔ C2)
I =

CI1 ∪ CI2 ; σId(¬C) = (¬C)I = ∆I \ CI ; and σId(sat(χ)) = (sat(χ))I = {d′ ∈ ∆I |
σId′ (QFBAPA) satisfies χ}.

Definition 19. The ALCSCC++ concept description C is satisfiable if there is a finite interpretation
I such that CI ̸= ∅.

Theorem 20 (Baader et al. (2020)). The problem of deciding whether an ALCSCC++ concept
description is satisfiable is NEXPTIME-complete.

F COMPLEXITY OF THE SATISFIABILITY OF K♯,♯g AND ITS IMPLICATIONS FOR
ACR-GNN VERIFICATION

In this section, we establish the complexity of reasoning with K♯,♯g .

Instrumentally, we first show that every K♯,♯g formula can be translated into a K♯,♯g formula that is
equi-satisfiable, and has a tree representation of size at most polynomial in the size of the original
formula. An analogous result was obtained in Nunn et al. (2024) for K♯. It can be shown using a
technique reminiscent of Tseitin (1983) and consisting of factorizing subformulas that are reused in
the DAG by introducing a fresh proposition that is made equivalent. Instead of reusing a ‘possibly
large’ subformula, a formula then reuses the equivalent ‘small’ atomic proposition.

Lemma 21. The satisfiability problem of K♯,♯g reduces to the satisfiability of K♯,♯g with tree
formulas in polynomial time.

Proof. Let φ be a K♯,♯g formula represented as a DAG. For every subformula ψ (i.e., for every node
in the DAG representation of φ), we introduce a fresh atomic proposition pψ. We can capture the
meaning of these new atomic propositions with the formula Φ :=

∧
ψ node in the DAG sem(ψ) where:

sem(ψ ∨ χ) := pψ∨χ ↔ (pψ ∨ pχ)
sem(¬ψ) := p¬ψ ↔ ¬pψ

sem(ξ ≥ 0) := pξ≥0 ↔ ξ′ ≥ 0

(c)′ := c (ξ1 + ξ2)
′ := ξ′1 + ξ′2 (c× ξ)′ := c× ξ′

(𝟙ψ)′ := 𝟙pψ (♯ψ)′ := ♯pψ (♯gψ)
′ := ♯gpψ

Now, define φt := pφ ∧□gΦ, where □gΦ := (−1)× ♯g(¬Φ) ≥ 0, enforcing the truth of Φ in every
vertex. The size of its tree representation is polynomial in the size of φ. Moreover, φt is satisfiable iff
φ is satisfiable.

Theorem 22. The satisfiability problem of K♯,♯g with tree formulas is NEXPTIME-complete.

Proof. For membership, we translate the problem into the NEXPTIME-complete problem of con-
cept description satisfiability in the Description Logics with Global and Local Cardinality Con-
straints Baader et al. (2020), noted ALCSCC++. The Description Logic ALCSCC++ uses the
Boolean Algebra with Presburger Arithmetic Kuncak & Rinard (2007), noted QFBAPA, to formalize
cardinality constraints. See Section E.2 for a presentation of ALCSCC++ and QFBAPA.

Let φ0 be a K♯,♯g formula.

For every proposition p occurring in φ0, let Ap be an ALCSCC++ concept name. Let R be an
ALCSCC++ role name. For every occurrence of 𝟙φ in φ0, let ZOOφ be an ALCSCC++ role name.
ZOO-roles stand for ‘zero or one’. The rationale for introducing ZOO-roles is to be able to capture
the value of 𝟙φ in ALCSCC++ making it equal to the number of successors of the role ZOOφ which

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

can then be used in QFBAPA constraints. A similar trick was used, in another context, in Galliani
et al. (2023). Here, we enforce this with the QFBAPA constraint

χ0 =
∧

𝟙φ∈φ0

(
(|ZOOφ| = 0 ∨ |ZOOφ| = 1) ∧ τ(φ) = sat(|ZOOφ| = 1)

)
which states thatZOOφ has zero or one successor, and has one successor exactly when (the translation
of) φ is true. The concept descriptions τ(φ) and arithmetic expressions τ(ξ) are defined inductively
as follows:

τ(p) = Ap
τ(¬φ) = ¬τ(φ)
τ(φ ∨ ψ) = τ(φ) ⊔ τ(ψ)
τ(ξ ≥ 0) = sat(−1 < τ(ξ))
τ(c) = c
τ(ξ1 + ξ2) = τ(ξ1) + τ(ξ2)
τ(c× ξ) = τ(c · ξ)
τ(♯φ) = |R ∩ τ(φ)|
τ(𝟙φ) = |ZOOφ|
τ(♯gφ) = |τ(φ)|

Finally, we define the ALCSCC++ concept description Cφ0 = τ(φ0) ⊓ sat(χ0).

Claim 23. The concept description Cφ0 is ALCSCC++-satisfiable iff the formula φ0 is K♯,♯g -
satisfiable. Moreover, the concept description Cφ0 has size polynomial in the size of φ0.

Proof. From right to left, suppose that φ0 is K♯,♯g -satisfiable. It means that there is a pointed
graph (G, u) where G = (V,E) and u ∈ V , such that (G, u) |= φ0. Let I0 = (∆I0 , ·I0) be
the ALCSCC++ interpretation over NC and NR, such that NC = {Ap | p a proposition in φ0},
NR = {R} ∪ {ZOOφ | 𝟙φ ∈ φ0}, ∆I0 = V , AI0p = {v | v ∈ V, (G, v) |= p} for every p in φ0,
RI0 = E, ZOOI0φ = {(v, v) | v ∈ V, (G, v) |= φ} for every 𝟙φ in φ0. We can show that u ∈ CI0φ0

.
Basically I0 is like G with the addition of adequately looping ZOO-roles. An individual in ∆I0 has
exactly one ZOOφ-successor (itself), exactly when φ is true, and no successor otherwise; Ap is true
exactly where p is true, and the role R corresponds exactly to E.

From left to right, suppose that Cφ0 is ALCSCC++-satisfiable. It means that there is an ALCSCC++

finite interpretation I0 = (∆I0 , ·I0) and an individual d ∈ ∆I0 such that d ∈ CI0φ0
. LetG = (V,E) be

a graph such that V = ∆I0 , E = RI0 , and ℓ(d)(p) = 1 iff d ∈ AI0p . We can show that (G, d) |= φ0.

Since there are at most |φ0| subformulas in φ0, the representation of ZOOφ for every subformula φ
of φ0 can be done in size log2(|φ0|). For every formula φ, the size of the concept description τ(φ) is
polynomial (at most O(n log(n))). The overall size of τ(φ0) is polynomial in the size of φ0, and so
is the size of sat(ξ0) (at most O(n2(log(n))2).

The NEXPTIME-membership follows from Claim 23 and the fact that the concept satisfiability
problem in ALCSCC++ is in NEXPTIME (Theorem 20).

For the hardness, we reduce the problem of consistency of ALCQ-TCBoxes which is NEXPTIME-
hard (Tobies, 2000, Corollary 3.9). See Section E.1 and Theorem 18 that slightly adapts Tobies’ proof
to show that the problem is hard even with only one role.

We define the translation τ from the set of ALCQ concept expressions and ALCQ cardinality
constraints, with only one role R.

τ(A) = pA
τ(¬C) = ¬τ(C)
τ(C1 ⊔ C2) = τ(C1) ∨ τ(C2)
τ(≥ n R.C) = ♯τ(C) + (−1)× n ≥ 0
τ(≥ n C) = ♯gτ(C) + (−1)× n ≥ 0
τ(≤ n C) = (−1)× ♯gτ(C) + n ≥ 0

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

It is routine to check the following claim.

Claim 24. Let TC be an ALCQ-TCBox. TC is consistent iff
∧
χ∈TC τ(χ) is K♯,♯g -satisfiable.

Moreover, the reduction is linear. Hardness thus follows from the NEXPTIME-hardness of consis-
tency of ALCQ-TCBoxes.

Lemma 21 and Theorem 22 yield the following corollary.
Corollary 25. The K♯,♯g -satisfiability problem is NEXPTIME-complete.

Furthermore, from Theorem 15 and Corollary 25, we obtain the complexity of reasoning with
ACR-GNNs with truncated ReLU and integer weights.
Corollary 26. Satisfiability of ACR-GNN with global readout, over ℤ and with truncated ReLU is
NEXPTIME-complete.

The decidability of the problem is left open in Benedikt et al. (2024) and in the recent long version
Benedikt et al. (2025) when the weights are rational numbers. Corollary 26 answers it positively in
the case of integer weights and pinpoints the computational complexity.

G EXPERIMENTAL DATA AND FURTHER ANALYSES

In this section, we report on the application of dynamic Post-Training Quantization (PTQ) to
Aggregate-Combined Readout Graph Neural Networks (ACR-GNNs). Implemented in PyTorch Ansel
et al. (2024); PyTorch Team (2024a), dynamic PTQ transforms a pre-trained floating-point model
into a quantized version without requiring retraining. In this approach, model weights are statically
quantized to INT8, while activations remain in floating-point format until they are dynamically
quantized at compute time. This hybrid representation enables efficient low-precision computation
using INT8-based matrix operations, thereby reducing memory footprint and improving inference
speed. PyTorch’s implementation applies per-tensor quantization to weights and stores activations as
floating-point values between operations to balance precision and performance.

We adopt INT8 and QINT8 representations as the primary quantization format. According to the
theory, INT8 refers to 8-bit signed integers that can encode values in the range [−128, 127]. In contrast,
QINT8, as defined in the PyTorch documentation Ansel et al. (2024); PyTorch Team (2024b;c), is a
quantized tensor format that wraps INT8 values together with quantization metadata: a scale (defining
the float value represented by one integer step) and a zero-point (the INT8 value corresponding to a
floating-point zero). This additional information allows QINT8 tensors to approximate floating-point
representations efficiently while enabling high-throughput inference.

To evaluate the practical impact of quantization, we conducted experiments on both synthetic and real
datasets. The synthetic data setup was based on the benchmark introduced by Barceló et al. (2020).
Graphs were generated using the dense Erdös–Rényi model, a classical method for constructing
random graphs, and each graph was initialized with five node colours encoded as one-hot feature
vectors. The dataset is structured as follows, as shown in Table 3. The training set consists of 5000
graphs, each with 40 to 50 nodes and between 560 and 700 edges. The test set is divided into two
subsets. The first subset comprises 500 graphs with the same structure as the training set, featuring
40 to 50 nodes and 560 to 700 edges. The second subset contains 500 larger graphs, with 51 to 69
nodes and between 714 and 960 edges. This design allows us to evaluate the model’s generalization
capability to unseen graph sizes.

For this experiment, we used simple ACR-GNN models with the following specifications. We applied
the sum function for both the aggregation and readout operations. The combination function was
defined as: comb(x, y, z) = σ⃗(xC+yA+zR+b), where σ⃗ denotes the component-wise application
of the activation function. Following the original work, we set the hidden dimension to 64, used
a batch size of 128, and trained the model for 20 epochs using the Adam optimizer with default
PyTorch parameters.

We trained ACR-GNN on complex formulas FOC2 for labeling. They are presented as a classifier
αi(x) that constructed as:

α0(x) := Blue(x), αi+1(x) := ∃[N,M]y (αi(y) ∧ ¬E(x, y))

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 3: Dataset statistics summary.

Node Edge

Classifier Dataset Min Max Avg Min Max Avg

p1

Train 40 50 45 560 700 630
Test1 40 50 45 560 700 633
Test2 51 60 55 714 960 832

p2

Train 40 50 45 560 700 630
Test1 40 50 44 560 700 628
Test2 51 60 55 714 960 832

p2

Train 40 50 44 560 700 629
Test1 40 50 45 560 700 630
Test2 51 60 55 714 960 831

where ∃[N,M] stands for “there exist between N and M nodes”. satisfying a given property.

Observe that each αi(x) is in FOC2, as ∃[N,M] can be expressed by combining ∃≥N and ¬∃≥M+1.

The data set has the following specifications: Erdös–Rényi graphs and is labeled according to α1(x),
α2(x), and α3(x):

• α0(x) := Blue(x)

• p1 : α1(x) := ∃[8,10]y (α0(y) ∧ ¬E(x, y))

• p2 : α2(x) := ∃[10,30]y (α1(y) ∧ ¬E(x, y))

• p3 : α3(x) := ∃[10,30]y (α2(y) ∧ ¬E(x, y))

In the original work, the authors made experiments with the two activation functions: ReLU and
trReLU (truncated ReLU). The truncated ReLU, also referred to as ReLU1, clips activations to the
interval [0, 1]. It is equivalent to the HardTanh function restricted to this range:

trReLU(x) =


0, if x < 0,

x, if 0 ≤ x ≤ 1,

1, if x > 1.

In our experiments, we employ the strategy described in Barceló et al. (2020), where accuracy is
calculated as the total number of correctly classified nodes across all nodes in all graphs in the
dataset. In these experiments, we used several types of activation functions: Piecewise linear (ReLU,
ReLU6, and trReLU), Smooth unbounded (GELU and SiLU), Smooth bounded (Sigmoid), and
Smooth ReLU-like (Softplus and ELU). The activation functions here influence node-level message
aggregation, feature combination, and global graph-level representation (readout). Here we present
the description for each of the activation functions. We present eight non-linear activation functions
in Figure 4 considered in our experiments (we used the implementation of PyTorch).

We presented the key aspects of each activation function (A/F) in Table 4.

Table 4: Comparison of activation functions used in ACR-GNN experiments.

A/F Range Smoothness Key Properties / Notes

ReLU [0,∞) Non-smooth (kink at 0) Simple, sparse activations; unbounded above.
ReLU6 [0, 6] Non-smooth (kinks at 0 and 6) Bounded version of ReLU; robust under quantization.
trReLU [0, 1] Non-smooth (piecewise linear) Clipped ReLU; equivalent to HardTanh restricted to [0, 1].
GELU (−∞,∞) Smooth Probabilistic ReLU; smoother transitions.
Sigmoid (0, 1) Smooth Squashing nonlinearity; prone to vanishing gradients.
SiLU (Swish) (−∞,∞) Smooth Combines ReLU and Sigmoid; unbounded; performs well in deep models.
Softplus (0,∞) Smooth Smooth approximation of ReLU; strictly positive outputs.
ELU (−α,∞) Smooth (except at 0) Allows negative values; improves gradient flow compared to ReLU.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 4: Non-linear activation functions that influence were analyzed.

We trained the models on the dataset and collected the training time. This data is the first preliminary
step to analyze the influence of the activation function. Based on the data obtained, we can identify the
slowest and fastest activation functions. Table 5 presents the training times of ACR-GNN model across

Table 5: Training time (s) per classifier and activation function

ReLU ReLU6 trReLU GELU Sigmoid SiLU Softplus ELU

p1 1315.00 1349.94 1422.26 1386.15 3382.77 2886.43 3867.97 2667.60
p2 1665.08 1374.38 1450.75 1386.31 3078.93 2681.81 5737.33 2852.38
p3 1472.99 1528.14 1443.93 1563.24 2842.25 2632.73 3806.12 3007.42

datasets for classifiers pi and different activation functions. The results reveal substantial variability
depending on the activation function. Standard piecewise-linear activations, such as ReLU, ReLU6,
and trReLU, consistently achieve the shortest training times, with values between 1315–1665,s. In
contrast, smoother nonlinearities such as SiLU, Softplus, and Sigmoid incur significantly longer
training times, often exceeding 2500s and reaching as high as 5737s for Softplus on p2. GELU
and ELU fall between these extremes, with moderate training costs (around 1380–3000s). Across
datasets, p2 is generally the most computationally demanding, while p1 remains the least expensive
for most activations. Overall, the results indicate that the computational efficiency of training is
strongly activation-dependent, with simpler functions such as ReLU and ReLU6 offering the best
efficiency, while smoother activations introduce significant overhead.

Table 6: Slowest and fastest activation functions across layers and classifiers.

p1 p2 p3

Layer Fastest Slowest Fastest Slowes Fastest Slowes

1 GELU Softplus ReLU Softplus ReLU6 trReLU
2 ReLU6 Softplus ReLU Softplus ReLU6 Sigmoid
3 ReLU6 Sigmoid trReLU Softplus ReLU6 Softplus
4 trReLU Softplus trReLU Softplus ReLU6 Softplus
5 ReLU6 Softplus trReLU Softplus ReLU Softplus
6 GELU Softplus ReLU6 Softplus trReLU Softplus
7 ReLU SiLU GELU Softplus ReLU Softplus
8 ReLU Softplus GELU Softplus trReLU Softplus
9 ReLU Softplus ReLU6 Softplus ReLU6 Softplus

10 ReLU Softplus ReLU6 Softplus ReLU6 ELU

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Based on the results in Table 5 and Table 6, we identify the fastest and slowest activation functions
across layers for the three classifiers. Several consistent trends can be observed along four dimensions:
fastest activation, slowest activation, cross-classifier comparison, and depth effect.

Fastest activations. Across classifiers and depths, the fastest activations are more diverse, with ReLU,
ReLU6, GELU, and trReLU each appearing in multiple layers.

Slowest activations. In contrast, Softplus consistently emerges as the slowest activation across nearly
all classifiers and depths. Occasional exceptions include ELU in the deepest layer of p3 and SiLU
in p1 (layer 7). This trend highlights the relatively high computational cost of smooth unbounded
activations compared to piecewise-linear ones.

Cross-classifier comparison. While the fastest activations vary considerably by classifier and depth,
the slowest activations remain remarkably stable: Softplus dominates across all three classifiers. This
suggests that runtime inefficiency of smooth functions is robust to task differences, whereas the speed
of simpler functions like ReLU is more context-dependent.

Depth effect. As depth increases, variability in the fastest activations decreases, with ReLU becoming
dominant in deeper layers across classifiers. The slowest activation, however, remains almost
exclusively Softplus, independent of depth.

In summary, Softplus demonstrates the highest runtime cost across classifiers and depths, whereas
piecewise-linear activations such as ReLU and ReLU6 offer consistently faster training and inference
performance.

We measured the size of the model (in Table 7) and obtained the results that the choice of activation
function does not influence on the size of the model.

Table 7: Model size in MB as a function of the number of layers.

Layers 1 2 3 4 5 6 7 8 9 10

Size (MB) 0.06 0.11 0.16 0.22 0.27 0.32 0.38 0.43 0.49 0.54

We list the statistics at the microlevel (mean between all nodes) of accuracy. For better representation
of the statistics, we present the information in a tabular way. For each layer of the ACR-GNN, we
present the accuracy of three formulas FOC2 for the Train, Test1 (the same number of nodes as
the Train) and Test2 (larger number of nodes and edges than the Train) as specified in Table 3 and
accordingly, the activation function (A/F) that was used for the calculations experiments.

As was mentioned before, we trained ten models for each activation function. For better visualization,
we present the benchmark accuracy using heatmaps, which reveal several trends. Specifically, the
ACR-GNN generally loses accuracy on Test2 (where the number of edges was increased) and shows
a further decline in accuracy as the complexity of the formula increases.

The heatmaps in Figure 5 visualize how the accuracy of the ACR-GNN varies with respect to the
number of layers and the choice of activation function. The figure is organized in a 3×3 grid: rows
represent different evaluation metrics (Train accuracy, Test 1 accuracy, and Test 2 accuracy), and
columns represent the three datasets classifiers (p1, p2, p3). Each cell encodes accuracy values as a
function of the number of layers (y-axis) and activation functions (x-axis). This visualization allows
for a direct comparison of performance trends, highlighting, for example, activation functions that
maintain stable accuracy across increasing depth or those that degrade sharply.

Generally, the trend that is common for all models: the number of edges, has a significant influence
on the final classification results, which can be an indication of how robust the model is. Generally,
a robust model performs reliably across different datasets, test conditions, or noise levels (not just
on the data it was trained on). A non-robust model may work very well in the training set, but its
accuracy drops sharply when evaluated on slightly different or more challenging test sets. In the case
of this analysis, robustness is the ability of the model to use different activation functions to keep
accuracy stable on Test2 compared to training.

The analysis of accuracy across different network depths and activation functions highlights several
clear patterns. In shallow architectures (one and two layers), all activation functions achieve strong
performance, with GELU and SiLU in particular showing near-perfect training accuracy and superior

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 5: Heatmaps of ACR-GNN accuracy across activation functions and network depth. Each row
corresponds to a metric (Train, Test1, Test2), while each column corresponds to a dataset classifier
(p1, p2, p3). Color intensity indicates classification accuracy.

generalization across all partitions. Even saturating functions such as Sigmoid and Softplus remain
competitive at this stage, which indicates that at low depth the model capacity is sufficient to
accommodate a wide range of nonlinearities without severe degradation.

As the number of layers increases (three to five), differences among activation functions become more
pronounced. GELU, SiLU, and Softplus consistently emerge as the most robust choices, maintaining
higher accuracy on the more challenging test sets. In contrast, ReLU and ELU provide stable but
less competitive generalization, while ReLU6, trReLU, and Sigmoid begin to exhibit performance
collapse, especially in the p2 partition. At this stage, overfitting effects are also more evident, with
models achieving very high training accuracy but diverging in their ability to generalize depending
on the activation function.

In deeper architectures (six to eight layers), the gap between smooth activations and saturating or
clipped activations widens significantly. ReLU6 and trReLU often collapse below 55% accuracy
on the more difficult partitions, whereas GELU and SiLU sustain substantially higher values, often
in the 70–80% range. Softplus demonstrates remarkable stability in this regime, occasionally
outperforming GELU and SiLU, particularly on p2. These results emphasize the role of smooth,
non-saturating nonlinearities in maintaining expressive power and preventing gradient-related issues
as depth increases.

Finally, in very deep architectures (nine and ten layers), the failure of saturating activations becomes
evident, with Sigmoid and trReLU collapsing to near-random performance on certain partitions.
In contrast, Softplus, SiLU, and GELU remain the only viable options, with Softplus providing
the strongest generalization on p2 and SiLU maintaining robustness on p3. ReLU and ELU offer
moderate results but are consistently outperformed by smoother activations.

Overall, these findings confirm that activation choice becomes increasingly critical with depth, and
that smooth functions such as Softplus, SiLU, and GELU provide clear advantages in terms of
stability and accuracy across different evaluation settings.

To assess how well the models generalize beyond the training data, we report two complementary
metrics: Generalization Ratio and Generalization Gap. The generalization ratio measures the relative

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

closeness between training and test performance:

Generalization Ratio =
Test Accuracy
Train Accuracy

If the ratio is close to 1, the model generalizes well (Test ≈ Train). If it is much less than 1, the model
is overfitting (Train ≫ Test).

The generalization gap quantifies the absolute drop in performance from training to test:

∆gen = Train Accuracy − Test Accuracy.

A small gap reflects strong generalization, while larger gaps highlight overfitting.

In our case, we compute both values separately for Test1 and Test2. After analysis, we obtain the
following results. Shallow networks (1–2 layers): SiLU, Softplus, and ELU dominate. Moderate
depths (3–5 layers): Softplus (3–4 layers) and ELU (5 layers) are the most reliable. Intermediate-deep
networks (6–8 layers): Smooth activations (Softplus, SiLU, GELU, ELU) outperform sharp ones
(ReLU, ReLU6, trReLU). Deep networks (9–10 layers): ELU peaks at 9 layers, but at 10 layers,
Softplus and SiLU emerge as the only consistently stable choices, while Sigmoid and ELU collapse.

To assess the computational efficiency of dPTQ, we measured the inference time of each model
across different activation functions and dataset classifiers.

Table 8: Running time (s) per classifier and activation function. Total running time for the model
before (o) and after dPTQ (q) in seconds across the layers.

ReLU ReLU6 trReLU GELU Sigmoid SiLU Softplus ELU

p1 o 20.00 53.40 21.60 24.60 28.70 29.30 45.60 25.90
q 22.50 69.30 29.10 28.70 35.30 29.60 47.60 30.70

p2 o 20.70 89.00 23.10 26.50 26.60 30.70 49.10 27.80
q 22.40 92.50 27.70 31.50 31.20 32.60 53.90 32.60

p3 o 21.30 57.00 23.80 22.70 23.40 28.10 44.80 26.60
q 23.60 51.10 29.80 28.40 32.20 30.80 48.70 30.40

Table 8 reports the inference times of the ACR-GNN models across datasets for the classifiers
pi before (o) and after applying dynamic Post-Training Quantization (q). The results show that
quantization does not uniformly reduce runtime; in fact, for several activation functions (e.g., ReLU6,
trReLU, GELU, and Sigmoid), the quantized models exhibit increased execution time compared to
their original counterparts across most datasets. For example, ReLU6 increases from 53.4s to 69.3s
on p1, and from 89.0s to 92.5s on p2. A similar pattern is observed for GELU and Sigmoid, where
quantization consistently adds between 4–6 overhead. However, some cases highlight improved
efficiency after quantization: most notably, ReLU on p3 (from 57.0s down to 51.1s) and, to a smaller
extent, SiLU and Softplus exhibit negligible changes across datasets. These results suggest that
the computational impact of dPTQ is activation-dependent and dataset-dependent, with smoother
nonlinearities (e.g., SiLU, Softplus) showing greater stability. In contrast, activations with more
complex or nonlinear behavior (e.g., GELU, ReLU6, Sigmoid) tend to incur additional overhead after
quantization.

We report the mean dynamic PTQ speedup across 10 layers, defined as the ratio of non-quantized to
quantized execution time (original time / dPTQ time), which indicates whether dynamic PTQ reduces
or increases runtime.

Figure 6 shows the mean speed-up of dynamic PTQ relative to non-quantized execution, grouped
by activation function and datasets for classifiers pi. The results indicate that dynamic PTQ does
not universally accelerate inference: in most cases, execution times slightly increase (speed-up < 1).
However, for p3 with ReLU6, dynamic PTQ achieves a 23% speed-up, highlighting that the benefits
depend on both the activation function and the characteristics of the dataset. Sigmoid consistently
underperforms under PTQ, suggesting limited suitability for quantized execution.

Table 9 reports the size of the model before and after applying dynamic Post-Training Quantization.
We used two metrics to measure the values: Reduction and ∆Size. We calculate each of these two

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 6: Mean dPTQ speedup (non-dPTQ time / dPTQ time) by activation function and classifier.

metrics in the following way:

Reduction =
ValuedPTQ − Valueoriginal

Valueoriginal
× 100%

and
∆Size = Valueoriginal − ValuedPTQ

respectfully.

The results (Table9) show a consistent and substantial reduction across all configurations, with
quantized models achieving reductions between approximately 59.6% and 62.3% compared to their
original size. This indicates that dynamic PTQ provides highly effective compression with nearly
constant proportional savings, independent of the initial model size. Such reductions highlight
the suitability of dynamic PTQ for resource-constrained environments, where storage and memory
efficiency are critical.

Table 9: Model sizes before and after dynamic Post-Training Quantization.

Layer Original Size (MB) Quantized Size (MB) ∆Size (MB) Reduction (%)

1 0.057 0.023 0.034 -59.604
2 0.112 0.044 0.068 -60.993
3 0.167 0.064 0.103 -61.559
4 0.221 0.085 0.137 -61.804
5 0.276 0.105 0.171 -61.975
6 0.331 0.126 0.206 -62.068
7 0.386 0.146 0.240 -62.148
8 0.441 0.167 0.274 -62.194
9 0.496 0.187 0.309 -62.230

10 0.551 0.208 0.343 -62.251

Figure 7 illustrates the layer-wise accuracy of ACR-GNN across datasets for classifiers pi and
activation functions, before and after dynamic Post-Training Quantization. The heatmaps show
consistent patterns across Train and Test1, where most activations achieve high accuracies in the
lower layers (1-3) but gradually decrease as the number of layers increases. This trend is most
pronounced for ReLU, ReLU6, and trReLU, which exhibit sharp drops in accuracy, particularly in p1.
In contrast, smoother activations such as GELU, SiLU, Softplus, and ELU demonstrate more stable
performance across depth, indicating better resilience to increased model complexity.

For Test2, the heatmaps reveal greater variation between activations and datasets. Piecewise-linear
activations (ReLU, ReLU6, trReLU) consistently show lower and less stable accuracies, while GELU,
SiLU, and Softplus retain higher performance across most layers. The visual differences are especially
apparent in p2 and p3, where ReLU-based functions degrade more quickly compared to smoother
nonlinearities.

For a more detailed analysis, we constructed tables with specific structural requirements to better
examine the influence of dynamic PTQ. The impact of dynamic PTQ was assessed by calculating the
Generalization Ratio (GR), the Generalization Gap (∆gen), and the accuracy difference between the
original and quantized models (∆acc). The results are presented in Tables 10 –Tables 19. Below, we
summarize the principal observations layer by layer.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 7: Heatmaps of ACR-GNN accuracy after applying the dynamic PTQ across activation
functions and network depth. Each row corresponds to a metric (Train, Test1, Test2), while each
column corresponds to a dataset classifier (p1, p2, p3). Color intensity indicates classification
accuracy.

Table 10: Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation and
classifier for one-layer ACR-GNN after applying the dynamic PTQ.

p1 p2 p3
A/F Test1 Test2 Test1 Test2 Test1 Test2

GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.994 +0.561 +0.411% 0.743 +24.702 +0.915% 1.003 -0.176 +1.270% 0.920 +5.559 -7.760% 0.996 +0.265 +0.328% 1.095 -6.536 +0.134%
ReLU6 1.001 -0.082 -0.150% 0.744 +25.379 +0.267% 1.013 -0.919 +0.517% 0.932 +4.710 -6.676% 0.999 +0.043 +0.080% 1.093 -6.396 +0.220%
trReLU 1.001 -0.145 -0.146% 0.866 +13.204 +0.494% 0.988 +0.900 +2.768% 0.640 +27.678 -1.196% 0.994 +0.420 +0.968% 1.067 -4.673 -1.689%
GELU 1.000 -0.014 -0.004% 0.901 +9.936 -0.050% 1.018 -1.365 -0.134% 0.695 +23.025 +0.958% 0.997 +0.186 -0.062% 1.058 -4.159 +0.018%
Sigmoid 0.994 +0.587 +0.186% 0.858 +13.967 -1.376% 1.025 -1.788 -0.526% 0.698 +21.999 +0.749% 0.997 +0.197 +0.262% 0.952 +3.368 +0.090%
SiLU 1.000 +0.000 +0.000% 0.995 +0.472 +0.342% 1.021 -1.489 -0.076% 0.777 +16.083 +0.000% 0.997 +0.200 +0.209% 1.066 -4.666 +0.336%
Softplus 0.993 +0.673 +0.880% 0.857 +14.224 +1.279% 1.023 -1.685 -0.588% 0.714 +20.832 +0.097% 0.995 +0.372 +0.124% 1.038 -2.688 +0.018%
ELU 0.998 +0.243 -0.402% 0.805 +19.405 -0.458% 1.025 -1.802 -0.334% 0.714 +20.774 +0.349% 1.000 -0.033 +0.004% 1.036 -2.543 -0.401%

For layer 1 (Table 10), across Test1, most activations show GR ≈ 1 and small |∆gen|. On Test2,
several activations exhibit lower GR and larger positive ∆gen, indicating stronger train–eval gaps
(e.g., ReLU and trReLU on p2 and p3). ∆acc is generally small (mostly within ±1%), with Softplus
and ReLU showing a few larger but still moderate deviations depending on classifier and data split.

Table 11: Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation and
classifier for two-layer ACR-GNN after applying the dynamic PTQ.

p1 p2 p3
A/F Test1 Test2 Test1 Test2 Test1 Test2

GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 1.000 -0.006 -0.004% 0.986 +1.445 -0.025% 1.008 -0.678 +0.013% 0.866 +11.265 +0.389% 1.001 -0.074 +0.342% 1.006 -0.438 +0.025%
ReLU6 1.000 +0.001 +0.000% 0.999 +0.086 +0.058% 1.008 -0.677 +0.254% 0.815 +15.121 -0.047% 0.973 +2.038 -0.102% 1.006 -0.494 +0.025%
trReLU 1.000 +0.018 +0.027% 0.746 +25.384 +20.200% 1.001 -0.085 +0.615% 0.932 +4.648 +0.313% 0.996 +0.316 -0.093% 0.981 +1.464 -1.187%
GELU 1.000 +0.000 +0.000% 0.962 +3.815 +1.286% 1.009 -0.759 +0.045% 0.906 +7.885 +1.160% 0.996 +0.288 +0.431% 1.006 -0.426 -0.011%
Sigmoid 1.000 +0.013 +0.009% 0.959 +4.087 +0.789% 1.023 -1.610 -0.312% 0.627 +26.651 +0.342% 0.965 +2.431 +0.391% 1.058 -4.029 +0.563%
SiLU 1.000 +0.000 +0.000% 0.996 +0.375 +0.086% 1.009 -0.758 +0.290% 0.777 +18.504 +0.425% 0.994 +0.427 +0.328% 1.009 -0.665 +0.011%
Softplus 1.000 -0.000 +0.000% 0.991 +0.889 -0.159% 1.005 -0.395 +0.406% 0.911 +7.556 -0.313% 1.002 -0.147 +0.355% 1.011 -0.850 +0.000%
ELU 1.000 +0.004 +0.009% 0.989 +1.102 +0.101% 1.006 -0.537 +0.250% 0.907 +7.805 -0.378% 0.998 +0.155 +0.417% 1.009 -0.692 +0.029%

For layer 2 (Table 11) Test1 remains stable (GR ≈ 1) for most activations and classifiers; Test2 shows
reduced GR and positive ∆gen (notably for ReLU, Sigmoid, GELU on p2). Most ∆acc values are
small; isolated spikes occur (e.g., GELU on p2–Test2) but remain at the level of % units rather than
tens of percent.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 12: Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation and
classifier for three-layer ACR-GNN after applying the dynamic PTQ.

p1 p2 p3
A/F Test1 Test2 Test1 Test2 Test1 Test2

GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 1.000 -0.010 +0.464% 0.902 +9.520 +2.057% 1.008 -0.674 -0.062% 0.912 +7.297 -0.468% 0.988 +0.935 +0.204% 0.797 +15.671 +0.188%
ReLU6 0.992 +0.545 +0.022% 0.961 +2.602 -0.187% 0.987 +0.876 +0.290% 0.878 +8.416 -0.342% 0.976 +1.588 +0.764% 1.133 -8.996 +0.534%
trReLU 0.993 +0.451 +0.190% 0.897 +6.459 +0.267% 0.998 +0.113 +0.125% 0.940 +4.093 -0.267% 1.016 -1.051 -1.749% 1.058 -3.828 +0.798%
GELU 1.001 -0.123 +0.102% 0.934 +6.504 +0.584% 1.004 -0.359 +0.080% 0.952 +3.999 +0.227% 0.994 +0.473 +0.448% 0.865 +10.352 +0.729%
Sigmoid 0.986 +0.921 +0.115% 0.947 +3.452 +0.104% 0.994 +0.437 +0.281% 0.908 +6.288 -0.184% 0.996 +0.257 +0.342% 1.077 -5.281 -0.238%
SiLU 1.002 -0.153 -0.172% 0.942 +5.563 +0.677% 1.008 -0.658 -0.004% 0.975 +2.053 -0.274% 0.993 +0.568 +0.271% 0.913 +6.688 -0.141%
Softplus 0.999 +0.094 -0.075% 0.969 +2.946 +0.512% 1.008 -0.677 -0.085% 0.955 +3.747 -0.259% 0.997 +0.213 +0.253% 0.996 +0.333 -0.022%
ELU 0.998 +0.160 -0.071% 0.946 +5.162 +0.760% 1.008 -0.667 +0.018% 0.966 +2.820 -0.659% 0.993 +0.568 +0.413% 0.996 +0.295 -0.152%

For layer 3 (Table 12), we observed that some separation emerges: GELU and trReLU retain
comparatively higher GR (especially on p1 for Test1), while Test2 GR drops for multiple activations
on p2 and p3 with increased ∆gen. Most ∆acc remain modest; a few cells show larger swings (e.g.,
ReLU on p1 for Test2 and some p3 for Test2 cases), which suggests sensitivity to the deeper setting.

Table 13: Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation and
classifier for four-layer ACR-GNN after applying the dynamic PTQ.

p1 p2 p3
A/F Test1 Test2 Test1 Test2 Test1 Test2

GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.997 +0.193 +0.018% 0.974 +1.767 +0.195% 1.011 -0.907 -0.593% 0.995 +0.395 -0.468% 0.995 +0.385 -0.169% 0.846 +11.916 +0.318%
ReLU6 0.987 +0.846 -0.049% 0.959 +2.634 -0.231% 1.016 -1.078 -0.036% 0.928 +4.884 +0.411% 0.956 +2.907 +0.146% 1.105 -7.010 +0.397%
trReLU 0.854 +8.958 +9.068% 0.826 +10.641 +3.152% 0.998 +0.127 +2.634% 0.734 +17.053 +8.920% 0.977 +1.453 -0.262% 0.728 +16.908 +3.270%
GELU 0.992 +0.607 +0.203% 0.906 +7.389 +0.115% 1.010 -0.806 -0.196% 0.997 +0.213 -0.274% 0.995 +0.367 -0.027% 0.935 +5.005 +0.332%
Sigmoid 0.984 +1.061 +0.208% 0.963 +2.390 +0.061% 1.023 -1.552 +0.651% 0.926 +5.049 -0.274% 0.975 +1.676 +0.182% 1.069 -4.585 +0.718%
SiLU 0.996 +0.267 -0.049% 0.979 +1.462 +0.083% 1.011 -0.897 -0.397% 0.939 +5.109 -1.272% 0.988 +0.886 +0.075% 0.960 +3.085 -0.433%
Softplus 0.999 +0.086 -0.221% 0.987 +0.883 +0.025% 1.008 -0.694 -0.147% 0.995 +0.444 -0.141% 0.998 +0.126 +0.200% 1.001 -0.047 +0.043%
ELU 0.997 +0.236 -0.053% 0.978 +1.529 +0.184% 1.009 -0.730 -0.495% 0.984 +1.291 +0.184% 0.993 +0.503 +0.222% 0.978 +1.676 +0.051%

For layer 4 (Table 13) ReLU6 stands out as robust on p1 (GR ≈ 0.96–0.99 with smaller ∆gen).
Larger gaps appear on Test2 for several activations and classifiers (e.g., ReLU on p3 for Test2).
Accuracy changes are mostly modest, with a few noticeable positive or negative shifts for trReLU
and SiLU in specific cells.

Table 14: Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation and
classifier for five-layer ACR-GNN after applying the dynamic PTQ.

p1 p2 p3
A/F Test1 Test2 Test1 Test2 Test1 Test2

GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 1.001 -0.055 -0.102% 0.972 +1.914 +0.036% 1.009 -0.761 -0.325% 0.929 +5.950 -0.076% 0.983 +1.280 +0.195% 0.533 +36.010 +0.372%
ReLU6 0.991 +0.588 -0.491% 0.956 +2.776 -0.425% 1.000 +0.013 +0.539% 0.961 +2.590 +0.104% 0.982 +1.192 +0.315% 1.155 -10.104 +0.198%
trReLU 0.974 +1.367 +0.000% 0.958 +2.239 -0.429% 1.021 -1.296 +0.000% 0.628 +23.419 -0.004% 0.936 +3.704 +2.828% 1.054 -3.134 -28.571%
GELU 0.996 +0.302 +0.040% 0.978 +1.494 -0.025% 1.007 -0.571 -0.308% 0.901 +8.274 -0.155% 0.966 +2.642 -0.191% 0.460 +41.643 -1.649%
Sigmoid 0.974 +1.613 -0.022% 0.925 +4.549 -0.014% 1.000 +0.027 -0.227% 0.936 +4.282 -0.692% 0.983 +1.106 +0.444% 1.145 -9.500 -1.007%
SiLU 0.995 +0.328 +0.080% 0.976 +1.633 +0.040% 1.010 -0.811 -0.370% 0.972 +2.328 +0.216% 0.980 +1.590 +0.178% 0.636 +28.440 +2.505%
Softplus 0.997 +0.196 +0.084% 0.980 +1.336 +0.141% 1.008 -0.684 -0.125% 0.993 +0.598 -0.068% 0.978 +1.736 +0.013% 0.656 +27.048 -1.447%
ELU 0.999 +0.059 -0.022% 0.985 +1.003 -0.022% 1.007 -0.590 -0.134% 0.955 +3.728 +0.032% 0.992 +0.652 +0.186% 0.980 +1.560 -0.235%

For layer 5 (Table 14) trReLU remains strong on p1 for Test1 (GR ≈ 0.97) with small gaps, while
some activations show pronounced degradation on p3 for Test2 (very low GR and large ∆gen). Most
∆acc are small, but a few outliers appear (e.g., large-magnitude entries for trReLU or GELU on p3
for Test2), indicating occasional instability at this depth.

Table 15: Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation and
classifier for six layer ACR-GNN after applying the dynamic PTQ.

p1 p2 p3
A/F Test1 Test2 Test1 Test2 Test1 Test2

GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.997 +0.180 +0.088% 0.941 +4.048 +0.115% 1.007 -0.598 -0.192% 0.977 +1.908 +0.065% 1.006 -0.468 +0.186% 0.406 +45.319 -1.007%
ReLU6 0.981 +1.105 +0.150% 0.895 +6.013 -0.375% 0.982 +1.225 +0.428% 0.841 +10.566 -0.234% 0.994 +0.410 +0.129% 1.048 -3.175 +0.935%
trReLU 0.986 +0.726 +0.747% 0.968 +1.697 -0.061% 1.020 -1.272 +0.000% 0.628 +23.443 +0.000% 0.976 +1.366 -1.052% 0.615 +22.343 -1.516%
GELU 0.993 +0.453 +0.075% 0.979 +1.455 -0.086% 1.005 -0.382 -0.049% 0.912 +7.332 +0.612% 1.005 -0.425 +0.115% 0.868 +10.186 +0.173%
Sigmoid 0.992 +0.504 +0.190% 0.891 +6.725 +0.404% 1.011 -0.761 -0.098% 0.943 +3.841 +0.829% 0.998 +0.110 +0.617% 1.046 -2.952 -0.134%
SiLU 0.996 +0.246 +0.141% 0.979 +1.430 -0.122% 1.006 -0.481 -0.080% 0.961 +3.230 -0.173% 1.011 -0.813 +0.044% 0.630 +28.322 +1.750%
Softplus 0.994 +0.424 +0.429% 0.983 +1.143 +0.144% 1.005 -0.451 +0.045% 0.983 +1.408 +0.944% 1.008 -0.584 +0.040% 0.588 +31.682 +3.187%
ELU 0.994 +0.434 +0.256% 0.974 +1.810 +0.104% 1.005 -0.416 -0.080% 0.934 +5.528 +0.331% 0.992 +0.612 -0.013% 0.470 +40.811 +0.256%

For layer 6 (Table 15), we noticed moderate GR on Test1 for many activations; Test2 again exposes
larger train–evaluation gaps for several pairs (e.g., ReLU6, trReLU on p2 and p3). A handful of ∆acc

cells become larger (e.g., Softplus on p3 for Test2), though many remain within a few tenths of a
percent.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 16: Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation and
classifier for seven-layer ACR-GNN after applying the dynamic PTQ.

p1 p2 p3
A/F Test1 Test2 Test1 Test2 Test1 Test2

GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.995 +0.330 +0.212% 0.968 +2.176 +0.404% 1.006 -0.525 +0.045% 0.934 +5.460 +0.241% 0.997 +0.204 +0.311% 0.605 +30.815 +0.751%
ReLU6 0.985 +0.888 -0.367% 0.913 +5.058 +0.285% 1.026 -1.713 -0.379% 0.699 +19.814 -0.068% 1.005 -0.319 -0.839% 0.857 +8.831 -1.361%
trReLU 0.983 +0.901 +1.605% 0.979 +1.126 -0.054% 1.023 -1.509 -0.512% 0.806 +12.505 +3.113% 0.963 +2.171 +1.611% 0.759 +14.011 +3.295%
GELU 0.996 +0.257 -0.022% 0.973 +1.883 -0.177% 1.004 -0.367 +0.004% 0.942 +4.824 +0.551% 0.991 +0.684 +0.293% 0.995 +0.376 +0.004%
Sigmoid 0.984 +0.949 +0.181% 0.891 +6.376 -0.061% 1.000 -0.020 -0.018% 0.618 +24.404 -0.032% 0.961 +2.545 +0.710% 1.126 -8.205 -0.520%
SiLU 0.997 +0.222 +0.124% 0.958 +2.850 +0.130% 1.004 -0.346 +0.178% 0.980 +1.670 -0.007% 0.989 +0.826 +0.710% 0.619 +29.343 +5.363%
Softplus 0.997 +0.175 +0.027% 0.976 +1.677 -0.159% 1.004 -0.321 +0.183% 0.945 +4.546 +0.742% 0.990 +0.801 +0.071% 0.977 +1.745 -0.736%
ELU 0.998 +0.142 +0.040% 0.926 +5.039 +0.288% 1.004 -0.338 +0.245% 0.956 +3.670 +0.317% 0.980 +1.519 +0.586% 0.580 +32.243 -0.783%

For layer 7 (Table 16) GELU and SiLU retain relatively stable Test1 GR on p1; Test2 often degrades
across p2 and p3 with increased ∆gen. Accuracy shifts are still mostly small, but some cells show
multi-percent swings for trReLU/SiLU on p3 for Test2, pointing to sensitivity at greater depth.

Table 17: Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation and
classifier for eight-layer ACR-GNN after applying the dynamic PTQ.

p1 p2 p3
A/F Test1 Test2 Test1 Test2 Test1 Test2

GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.998 +0.109 +0.018% 0.957 +2.952 +0.162% 1.004 -0.328 +0.281% 0.882 +9.788 +0.566% 0.978 +1.716 +0.613% 1.005 -0.352 +0.025%
ReLU6 1.012 -0.656 -0.323% 0.917 +4.687 +0.079% 1.005 -0.326 -0.018% 0.799 +12.838 -1.841% 0.956 +2.601 +1.278% 0.862 +8.147 -0.917%
trReLU 0.996 +0.218 +0.964% 0.949 +2.831 -0.497% 1.015 -0.993 +1.364% 0.651 +22.393 +10.059% 0.979 +1.146 +0.719% 0.624 +20.858 +8.001%
GELU 0.997 +0.173 +0.080% 0.974 +1.747 +0.119% 1.005 -0.382 +0.111% 0.900 +8.352 +0.303% 0.985 +1.140 +0.812% 0.815 +14.204 -0.267%
Sigmoid 0.994 +0.325 -0.128% 0.954 +2.538 -0.216% 0.996 +0.257 -0.009% 0.991 +0.592 -0.209% 0.961 +2.434 -0.364% 0.825 +10.900 +1.155%
SiLU 0.998 +0.170 +0.018% 0.956 +3.038 -0.025% 1.004 -0.324 -0.089% 0.934 +5.549 -0.173% 0.984 +1.205 +0.071% 0.990 +0.795 +0.014%
Softplus 1.000 +0.026 -0.035% 0.970 +2.074 +0.335% 1.006 -0.525 +0.160% 0.863 +11.365 -0.040% 0.989 +0.837 +0.426% 0.957 +3.301 -0.217%
ELU 0.995 +0.355 +0.159% 0.980 +1.385 -0.137% 1.009 -0.733 +0.009% 0.952 +4.020 -0.569% 0.987 +1.030 +0.417% 0.998 +0.122 -0.105%

For layer 8 (Table 17) ReLU and ReLU6 keep Test1 near GR ≈ 1 on p1; several activations show
reduced GR and larger ∆gen on p2 and on p3 for Test2. A few ∆acc spikes appear (e.g., trReLU on
p2 and p3), but most entries remain within modest ranges.

Table 18: Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation and
classifier for nine-layer ACR-GNN after applying the dynamic PTQ.

p1 p2 p3
A/F Test1 Test2 Test1 Test2 Test1 Test2

GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.998 +0.165 -0.186% 0.961 +2.707 +0.058% 1.006 -0.471 -0.085% 0.934 +5.539 +0.501% 0.993 +0.560 +0.160% 0.818 +14.116 -0.173%
ReLU6 1.016 -0.866 -0.168% 0.963 +2.014 +0.097% 0.999 +0.096 +0.134% 0.827 +11.147 +0.184% 1.014 -0.833 -1.212% 1.120 -7.431 -0.307%
trReLU 0.988 +0.638 +0.765% 0.956 +2.339 -0.512% 0.969 +1.964 +2.763% 0.748 +15.945 +2.897% 0.958 +2.485 +1.252% 0.624 +22.306 +4.118%
GELU 0.997 +0.187 +0.000% 0.967 +2.270 +0.076% 1.002 -0.151 +0.018% 0.960 +3.346 +0.508% 0.980 +1.504 +0.439% 0.898 +7.770 +3.006%
Sigmoid 0.984 +0.989 +0.062% 0.904 +5.792 -0.209% 1.019 -1.176 +0.209% 0.623 +23.768 +0.393% 0.965 +2.112 +2.046% 0.835 +9.827 -1.176%
SiLU 0.997 +0.200 -0.009% 0.942 +3.992 +0.292% 1.003 -0.274 +0.022% 0.885 +9.616 +0.515% 0.969 +2.408 +0.133% 0.691 +23.756 -1.014%
Softplus 0.998 +0.137 -0.075% 0.917 +5.707 +0.317% 1.004 -0.331 +0.160% 0.901 +8.275 -0.522% 0.992 +0.634 +0.226% 0.728 +21.375 +0.527%
ELU 0.999 +0.040 -0.018% 0.934 +4.498 -0.104% 1.005 -0.401 -0.058% 0.973 +2.232 +0.249% 0.990 +0.785 +0.781% 0.931 +5.326 -0.834%

For layer 9 (Table 18), we found that the results are patterns that mirror layer 8: Test1 is comparatively
stable, where Test2 on p2 and p3 tends to have lower GR and larger positive ∆gen. Accuracy
differences are mostly small, with occasional larger deviations for trReLU, Sigmoid and Softplus in
specific columns.

Table 19: Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation and
classifier for ten-layer ACR-GNN after applying the dynamic PTQ.

p1 p2 p3
A/F Test1 Test2 Test1 Test2 Test1 Test2

GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.997 +0.230 +0.186% 0.959 +2.822 +0.151% 1.008 -0.702 -0.098% 0.922 +6.501 +0.303% 0.992 +0.596 +0.546% 0.752 +19.319 -5.132%
ReLU6 0.977 +1.257 +0.433% 0.927 +4.003 +0.850% 1.019 -1.180 -0.316% 0.729 +17.091 -0.303% 0.986 +0.864 +1.580% 1.052 -3.290 -0.296%
trReLU 0.988 +0.633 +0.141% 0.955 +2.360 -0.454% 1.020 -1.272 +0.000% 0.628 +23.443 +0.000% 1.015 -0.930 -1.065% 0.809 +11.485 -0.823%
GELU 0.994 +0.383 +0.212% 0.930 +4.780 +0.249% 1.007 -0.589 -0.058% 0.866 +11.097 +1.373% 0.986 +1.051 +0.053% 0.851 +11.470 +0.639%
Sigmoid 0.988 +0.628 -0.159% 0.929 +3.877 -0.259% 1.020 -1.263 -0.009% 0.627 +23.548 +0.414% 0.939 +3.545 +1.740% 0.497 +29.314 +0.985%
SiLU 0.996 +0.249 +0.004% 0.959 +2.773 +0.306% 1.005 -0.450 +0.013% 0.854 +12.104 -0.130% 0.994 +0.473 +0.062% 1.010 -0.754 -0.383%
Softplus 0.998 +0.137 +0.004% 0.906 +6.402 +1.027% 1.007 -0.619 +0.009% 0.967 +2.750 -0.050% 1.002 -0.176 -0.626% 0.997 +0.219 -0.668%
ELU 0.996 +0.284 +0.133% 0.941 +4.050 -0.141% 1.003 -0.287 +0.027% 0.935 +5.405 -0.306% 0.998 +0.177 +0.067% 0.510 +37.918 +1.555%

For layer 10 (Table 19), the deepest layer exhibits the strongest split between Test1 and Test2. Several
activations maintain reasonable Test1 GR on p1 and p2, but Test2—in particular on p3—shows the
largest gaps and the lowest GR. A few ∆acc entries become sizable (e.g., ReLU on p3 for Test2), yet
many cells still stay within the low-percent range.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Across layers, dynamic PTQ preserves accuracy in the majority of settings: most ∆acc values are
small (often within a few tenths of a percent), with occasional larger swings that concentrate in deeper
layers and on the more challenging Test2 split (especially for p2 and p3). Generalization behavior
(GR, ∆gen) varies notably with both activation and depth: near-shallow layers and Test1 tend to
remain close to GR ≈ 1 with small gaps, Test2 consistently surfaces larger positive ∆gen, and certain
activations (e.g., trReLU, ReLU6, GELU) are comparatively more robust in several layers, while
others (e.g., Softplus or specific cases of ReLU and SiLU at depth) show reduced GR and larger
gaps. Taken together, these results indicate that dynamic PTQ retains predictive performance while
the choice of activation and the evaluation split (Test2) primarily govern robustness; deeper stacks
accentuate these effects, so selecting stable activations (e.g., trReLU, ReLU6 and GELU in the layers
where they maintain higher GR and smaller ∆gen) is recommended.

To test the technique not only on synthetic data, we chose the Protein-Protein Interactions (PPI)
benchmark Zitnik & Leskovec (2017) as in the reference paper of Barceló et al. (2020). The PPI
dataset consists of graph-level mini-batches, with separate splits for Training, Validation, and Testing.

Table 20: Dataset summary. PPI benchmark.

Dataset Num Graphs Node Feature Dim Label Dim Avg Active Labels/Node Avg Degree

Train 20 50 121 37.20 54.62
Validation 2 50 121 35.64 61.07
Test 2 50 121 36.22 58.64

In Table 20, we present a summary of the PPI dataset, which consists of 20 training graphs, 2
validation graphs, and 2 test graphs. Each graph contains nodes with 50-dimensional features and
supports multi-label classification with 121 possible labels. On average, each node is associated with
approximately 36 labels, indicating a densely labelled dataset. The average node degree is also high,
ranging from 54.6 in the training set to 61.1 in the validation set, reflecting the dense connectivity of
the protein-protein interaction graphs. The dataset presents a complex multi-label classification task
with consistently rich structure across all splits.

Table 21: Dataset statistics summary. PPI benchmark.

Node Edge

Dataset Min Max Avg Min Max Avg

Train 591 3480 2245.30 7708 106754 61318.40
Validation 3230 3284 3257.00 97446 101474 99460.00
Test 2300 3224 2762.00 61328 100648 80988.00

The statistics of the dataset presented in Table 21 contain large graphs with varying sizes between
the train, the validation, and the test splits. Training graphs range from 591 to 3,480 nodes, with an
average of 2,245 nodes per graph, and between 7,708 and 106,754 edges (average 61,318 edges).
Validation graphs are more consistent in size, with 3,230 to 3,284 nodes and 97,446 to 101,474 edges,
averaging 3,257 nodes and 99,460 edges. The test graphs have 2,300 to 3,224 nodes, averaging
2,762 nodes, and 61,328 to 100,648 edges, averaging 80,988. These statistics confirm that the dataset
contains large and densely connected graphs and demonstrate a distributional shift in graph size and
edge count between training and test data. This information is helpful in evaluating the model’s
ability to generalize to unseen and variable graph structures.

One key difference between the synthetic data and the PPI dataset is that the latter involves a
multi-label classification task, rather than a binary classification task, because the PPI dataset is
a common benchmark where each node (representing proteins) can have multiple labels, such as
protein functions or interactions. Also, it is important to mention the key differences between the
synthetic data and the real one. Here, the authors used the code function EarlyStopping: Utility
for stopping training early if no further improvement is observed. The second difference is that the
code is structured to run multiple experiments to collect statistics (mean and standard deviation) of
the model performance, ensuring that the results are robust across different random initializations. In

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

this case, we performed the experiments 10 times for each model, with a combination layer equal to 1
and a number of layers ranging from 1 to 10. The number of hidden dimensions is equal to 256.

We applied the same eight activation functions to train the model. We also continue the experimental
flow for real-world data, focusing on running time (Table 22 and Figure 8), speedup (Figure 9), size
reduction (Table 26), and analysis of accuracy.

We analyze the total training time of the ACR-GNN across ten layers for different activation functions.
Table 22 reports the total runtime in seconds and minutes, while Figure 8 visualizes the results across
depths.

Table 22: Training time per activation function

A/F ReLU ReLU6 trReLU GELU Sigmoid SiLU Softplus ELU

Time (min) 204.70 244.20 187.60 192.40 229.20 232.50 250.10 234.40
Time (s) 12286.30 14650.70 11261.60 11541.90 13745.00 13951.00 15007.00 14059.50

Figure 8: Training time by depth of the ACR-GNN.

The results show substantial variability depending on the activation function. Piecewise activations
such as trReLU (187.6 min) and ReLU (204.7 min) yield the fastest training times, while smooth
activations such as Softplus (250.1 min), ReLU6 (244.2 min), and SiLU (232.5 min) incur significant
overhead. Sigmoid also ranks among the slower functions (229.2 min).

Table 23: Slowest and fastest activation functions across the depth of the ACR-GNN.

1 2 3 4 5 6 7 8 9 10

Fastest Sigmoid ELU ReLU ReLU trReLU ReLU GELU trReLU trReLU trReLU
Slowest ReLU6 SiLU ReLU6 ReLU6 SiLU ReLU6 Softplus Softplus Softplus ReLU6

As shown in Table 22, the training time for all activation functions increases dramatically after the
second layer. This highlights that not only the type of activation function influences performance
time, but also the depth of the model.

Depth-wise analysis (Table 23) confirms this pattern: trReLU frequently provides the lowest training
time at deeper layers (5, 8–10), while ReLU6 consistently emerges as the slowest. These findings
indicate that the choice of activation function significantly impacts computational efficiency on PPI,
with piecewise functions offering faster convergence than their smooth counterparts.

We measured the size of the model (in Table 24) and obtained that the choice of activation function
did not influence the size of the model.

To assess the computational efficiency of dPTQ, we measured the elapsed time (Table 25) of each
model across different activation functions and datasets.

Table 25 reports the total elapsed time (in seconds) for training, testing, and validation phases across
activation functions, comparing original and quantized models. The results indicate that dynamic

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 24: PPI. Model size in MB as a function of the number of layers.

Layers 1 2 3 4 5 6 7 8 9 10

Size (MB) 0.92 1.72 2.51 3.31 4.11 4.9 5.7 6.5 7.29 8.09

Table 25: Total elapsed time (s) per activation function and datasets before and after applying dPTQ

Train Test Validation

A/F Original Quantized Original Quantized Original Quantized

ReLU 22.46 23.13 2.56 2.57 3.04 3.02
ReLU6 21.18 22.44 2.54 2.69 2.90 3.17
trReLU 19.93 20.61 2.50 2.51 2.89 3.00
GELU 23.89 25.37 2.82 2.91 3.40 3.25
Sigmoid 22.52 24.53 2.72 2.85 3.17 3.24
SiLU 23.14 24.06 2.72 2.87 3.51 3.16
Softplus 21.65 24.97 2.76 3.04 3.27 3.23
ELU 26.13 26.05 3.31 3.22 3.90 3.52

PTQ introduces only marginal differences in runtime across all phases and activations. In most cases,
quantized models require slightly longer execution time (e.g., ReLU6 and Softplus), while in a few
instances, minor improvements are observed (e.g., ELU in Test and Validation). Overall, the runtime
overhead of quantization remains negligible, suggesting that the primary benefit of dynamic PTQ lies
in memory and storage efficiency rather than acceleration.

As for the synthetic data, we measure the speedup (Figure 9) of this type of quantization technique.
We report the mean dynamic PTQ speedup across 10 layers, defined as the ratio of non-quantized to
quantized execution time (original time / dPTQ time), which indicates whether dynamic PTQ reduces
or increases runtime.

Figure 9: PPI. Dynamic PTQ Speedup by Activation (mean across layers).

Figure 9 reports the mean speedup values across layers for different activation functions. Overall,
dynamic PTQ yields values close to 1, indicating only minor runtime benefits. ELU demonstrates the
most consistent improvement, with speedup up to 1.14 in validation and above 1.07 in test, followed
by SiLU and GELU, which also provide modest acceleration during validation. In contrast, Softplus
incurs consistent slowdowns (speedup ≈ 0.89 in training and testing), while Sigmoid and ReLU6
remain below 1, showing limited suitability for quantized execution. These results indicate that
smooth activations such as ELU, SiLU, and GELU are better aligned with quantized computation,
whereas Softplus and Sigmoid are unfavorable for efficient PTQ deployment.

We report the results in Table 26 about the difference of the model’s size. We calculated the ∆Size

and Reduction (%) across the depth. The main result of this experiment is the following: the total
reduction in size is ≈74%. That is really good and significant, for example, for the application part of
the quantization, where the model can be used on a low-power computer.

As for the synthetic data, we constructed tables with specific structural requirements to better examine
the influence of dynamic PTQ on PPI data. The impact of dynamic PTQ was assessed by calculating

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 26: PPI. Influence of the dPTQ on the size of the model

Layers Original (MB) Quantized (MB) Delta Reduction(%)

1 0.922108 0.242060 0.680048 -73.7
2 1.718266 0.450790 1.267476 -73.8
3 2.514808 0.659584 1.855224 -73.8
4 3.311350 0.868378 2.442972 -73.8
5 4.107892 1.077172 3.030720 -73.8
6 4.904370 1.285972 3.618398 -73.8
7 5.700912 1.494783 4.206129 -73.8
8 6.497390 1.703594 4.793796 -73.8
9 7.293933 1.912405 5.381528 -73.8

10 8.090486 2.121216 5.969270 -73.8

the Generalization Ratio (GR), the Generalization Gap (∆gen), and the accuracy difference between
the original and quantized models (∆acc). The results are presented in Tables 27 –Tables 36. Below,
we summarize the principal observations layer by layer.

Table 27: PPI. Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation
and dataset for one-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation

GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.821 +0.108 -0.018% 0.866 +0.081 +0.001%
ReLU6 0.835 +0.090 +0.007% 0.917 +0.045 +0.006%
trReLU 0.728 +0.143 +0.001% 0.722 +0.146 +0.000%
GELU 0.716 +0.168 -0.005% 0.848 +0.090 -0.006%
Sigmoid 0.791 +0.109 -0.003% 0.741 +0.135 -0.001%
SiLU 0.765 +0.138 -0.010% 0.854 +0.086 -0.006%
Softplus 0.667 +0.197 +0.025% 0.802 +0.118 +0.016%
ELU 0.719 +0.156 +0.015% 0.774 +0.125 +0.007%

For layer 1 (Table 27) ReLU6 achieves the strongest validation GR (0.917, ∆gen = +0.045) with
negligible ∆acc. Softplus performs worst (GR 0.667/0.802 with the largest gaps).

Table 28: PPI. Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation
and dataset for two-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation

GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.606 +0.241 -0.001% 0.637 +0.222 +0.031%
ReLU6 0.703 +0.161 +0.004% 0.668 +0.180 -0.009%
trReLU 0.694 +0.157 -0.001% 0.687 +0.161 +0.002%
GELU 0.681 +0.195 +0.011% 0.723 +0.170 +0.009%
Sigmoid 0.743 +0.133 +0.004% 0.735 +0.137 -0.000%
SiLU 0.677 +0.197 +0.015% 0.635 +0.223 +0.006%
Softplus 0.681 +0.200 -0.004% 0.655 +0.216 +0.005%
ELU 0.717 +0.172 -0.003% 0.721 +0.170 +0.008%

For layer 2 (Table 28) ELU and Sigmoid are comparatively stable (GR ≈ 0.72–0.74), whereas ReLU
degrades (GR 0.606/0.637 with ∆gen > 0.22). Accuracy changes remain within ±0.03%.

For layer 3 (Table 29) GELU and trReLU lead (GR ≈ 0.73), while Softplus is lowest (0.551/0.531).
∆acc remains negligible.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 29: PPI. Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation
and dataset for three-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation

GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.576 +0.261 -0.006% 0.629 +0.228 -0.004%
ReLU6 0.598 +0.216 +0.034% 0.588 +0.221 +0.008%
trReLU 0.727 +0.143 +0.040% 0.691 +0.162 +0.007%
GELU 0.730 +0.164 -0.027% 0.720 +0.170 -0.014%
Sigmoid 0.749 +0.123 +0.005% 0.627 +0.183 +0.007%
SiLU 0.646 +0.214 -0.000% 0.713 +0.173 -0.001%
Softplus 0.551 +0.282 +0.001% 0.531 +0.295 +0.000%
ELU 0.653 +0.215 +0.024% 0.639 +0.223 -0.010%

Table 30: PPI. Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation
and dataset for four-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation

GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.564 +0.269 +0.001% 0.570 +0.265 -0.002%
ReLU6 0.902 +0.053 -0.000% 0.878 +0.065 -0.004%
trReLU 0.708 +0.150 -0.000% 0.707 +0.151 -0.004%
GELU 0.589 +0.252 +0.006% 0.597 +0.247 -0.003%
Sigmoid 0.822 +0.088 +0.003% 0.762 +0.118 +0.003%
SiLU 0.612 +0.231 -0.001% 0.595 +0.241 +0.001%
Softplus 0.674 +0.200 -0.005% 0.653 +0.213 +0.007%
ELU 0.600 +0.252 -0.010% 0.556 +0.280 -0.003%

For layer 4 (Table 30) ReLU6 clearly dominates (0.902/0.878, small ∆gen ≈ 0.05–0.07). ELU is
weakest (≈ 0.60/0.56, large gaps). ∆acc ≈ 0%.

Table 31: PPI. Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation
and dataset for five-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation

GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.705 +0.180 +0.003% 0.673 +0.200 +0.018%
ReLU6 0.786 +0.110 -0.006% 0.754 +0.126 +0.001%
trReLU 0.921 +0.039 +0.002% 0.906 +0.046 -0.002%
GELU 0.581 +0.252 -0.001% 0.566 +0.261 +0.018%
Sigmoid 0.770 +0.112 +0.031% 0.755 +0.120 +0.006%
SiLU 0.671 +0.195 +0.001% 0.720 +0.166 -0.033%
Softplus 0.598 +0.246 -0.003% 0.586 +0.253 +0.001%
ELU 0.582 +0.251 +0.000% 0.574 +0.255 +0.000%

For layer 5 (Table 31) trReLU is strongest (0.921/0.906, minimal ∆gen). Softplus and ELU are
lowest (≈ 0.59). Sigmoid shows a small positive ∆acc on Test (+0.031%), while SiLU has a small
negative ∆acc on Validation (-0.033%).

For layer 6 (Table 32) Sigmoid emerges as best (0.880/0.910, smallest gaps), followed by trReLU
(0.870/0.879). SiLU and ELU are weaker (≈ 0.62). Softplus shows the largest negative ∆acc

(-0.025/-0.031%), though still small.

For layer 7 (Table 33) Sigmoid and GELU lead (0.866/0.841 and 0.744/0.759). SiLU is weakest
(≈ 0.59 with largest ∆gen). Accuracy changes remain near zero.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Table 32: PPI. Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation
and dataset for six-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation

GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.730 +0.161 -0.003% 0.717 +0.169 +0.004%
ReLU6 0.672 +0.168 +0.000% 0.663 +0.173 +0.000%
trReLU 0.870 +0.066 +0.012% 0.879 +0.062 +0.000%
GELU 0.642 +0.214 -0.006% 0.628 +0.223 -0.002%
Sigmoid 0.880 +0.057 -0.001% 0.910 +0.043 -0.001%
SiLU 0.619 +0.222 +0.000% 0.611 +0.227 -0.015%
Softplus 0.641 +0.216 -0.025% 0.685 +0.190 -0.031%
ELU 0.624 +0.232 +0.004% 0.626 +0.231 +0.010%

Table 33: PPI. Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation
and dataset for seven-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation

GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.714 +0.172 -0.009% 0.686 +0.189 +0.007%
ReLU6 0.641 +0.182 -0.001% 0.615 +0.195 -0.002%
trReLU 0.696 +0.155 +0.000% 0.688 +0.159 +0.000%
GELU 0.744 +0.151 +0.010% 0.759 +0.143 -0.000%
Sigmoid 0.866 +0.061 +0.014% 0.841 +0.072 -0.000%
SiLU 0.591 +0.239 +0.002% 0.585 +0.243 +0.001%
Softplus 0.655 +0.210 +0.003% 0.665 +0.204 -0.003%
ELU 0.713 +0.177 +0.003% 0.732 +0.165 -0.001%

Table 34: PPI. Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation
and dataset for eight-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation

GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.590 +0.245 +0.002% 0.585 +0.247 +0.000%
ReLU6 0.795 +0.103 -0.005% 0.796 +0.102 -0.005%
trReLU 0.855 +0.072 -0.001% 0.845 +0.077 +0.003%
GELU 0.664 +0.199 +0.000% 0.656 +0.204 +0.000%
Sigmoid 0.859 +0.064 -0.007% 0.823 +0.080 -0.012%
SiLU 0.717 +0.162 +0.001% 0.714 +0.164 +0.000%
Softplus 0.631 +0.222 -0.006% 0.613 +0.233 +0.006%
ELU 0.645 +0.211 +0.012% 0.675 +0.193 -0.004%

For layer 8 (Table 34) trReLU and Sigmoid are strongest (0.855/0.845 and 0.859/0.823). Softplus is
lowest (≈ 0.63/0.61). ∆acc values are minimal.

For layer 9 (Table 35) trReLU again achieves best generalization (0.864/0.846). Softplus is weakest
(≈ 0.59). ∆acc is small, with mixed signs for Sigmoid (+0.023% Test, -0.015% Validation splits).

For layer 10 (Table 36) Sigmoid is strongest (0.805/0.809). ReLU is weakest (0.554/0.571, ∆gen ≈
0.25). SiLU shows the largest absolute ∆acc (+0.071/+0.079%), but still below 0.1%.

Dynamic PTQ preserves accuracy across all layers, with |∆acc| < 0.1% in nearly every case.
Generalization robustness varies by activation: trReLU and ReLU6 perform most consistently across
layers, Sigmoid becomes increasingly stable in deeper layers, while Softplus is the weakest choice,
and plain ReLU tends to degrade with depth. These findings confirm that quantized models retain

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Table 35: PPI. Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation
and dataset for nine-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation

GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.614 +0.225 -0.002% 0.610 +0.228 -0.002%
ReLU6 0.699 +0.155 +0.001% 0.690 +0.159 -0.002%
trReLU 0.864 +0.066 -0.003% 0.846 +0.075 -0.015%
GELU 0.634 +0.216 -0.001% 0.627 +0.221 -0.000%
Sigmoid 0.797 +0.093 +0.023% 0.840 +0.073 -0.015%
SiLU 0.760 +0.144 -0.002% 0.752 +0.148 -0.003%
Softplus 0.589 +0.248 -0.001% 0.586 +0.249 -0.004%
ELU 0.690 +0.187 +0.005% 0.710 +0.175 -0.014%

Table 36: PPI. Accuracy differences (∆acc, %) and generalization metrics (GR, ∆gen) per activation
and dataset for ten-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation

GR ∆gen ∆acc GR ∆gen ∆acc

ReLU 0.554 +0.260 +0.008% 0.571 +0.250 -0.006%
ReLU6 0.720 +0.138 +0.004% 0.711 +0.143 +0.004%
trReLU 0.732 +0.133 -0.008% 0.715 +0.141 -0.006%
GELU 0.621 +0.225 -0.023% 0.588 +0.245 -0.008%
Sigmoid 0.805 +0.088 +0.019% 0.809 +0.087 +0.007%
SiLU 0.602 +0.232 +0.071% 0.586 +0.241 +0.079%
Softplus 0.729 +0.160 -0.004% 0.705 +0.175 +0.004%
ELU 0.749 +0.152 -0.014% 0.726 +0.166 -0.019%

generalization performance on PPI, with activation choice being the primary factor for robustness
under PTQ.

The experiments were conducted on a Samsung Galaxy Book4 laptop equipped with an Intel Core i7-
150U processor, 16 GB of RAM, and 1 TB of SSD storage. Additional experiments were conducted
using Kaggle’s cloud platform with an NVIDIA Tesla P100 GPU (16 GB RAM).

43

	Introduction
	Background
	Logic qL
	Complexity Upper Bound of the Verification Tasks
	Hintikka Sets
	Quantized Version of QFBABA (Quantifier-free Boolean Algebra and Presburger Arithmetics)
	Reduction to QFBAPAK

	Complexity Lower Bound of the Verification Tasks
	Bounding the Number of Vertices
	Quantization Effects on Accuracy, Performance and Model Size
	Conclusion and Future Work
	Proofs of statements in the main text
	Prototype verification of ACR-GNNs
	Performance
	Checking distributivity

	Extension of logic K and ACR-GNNs over Z
	Logic
	Aggregate-Combine Graph Neural Networks

	Capturing GNNs with K, g6pt
	Proof of Theorem 15
	Proof of Theorem 16

	Description logics with cardinality constraints
	ALCQ and TCBoxes consistency
	Description logics with global and local cardinality constraints
	QFBAPA
	ALCSCC++

	Complexity of the satisfiability of K, g6pt and its implications for ACR-GNN verification
	Experimental data and further analyses

