Under review as a conference paper at ICLR 2026

VERIFYING GNNS WITH READOUT IS INTRACTABLE

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a logical language for reasoning about quantized aggregate-combine
graph neural networks with global readout (ACR-GNNs). We provide a logical
characterization and use it to prove that verification tasks for quantized GNN's with
readout are (co)NEXPTIME-complete. This result implies that the verification of
quantized GNNs is computationally intractable, prompting substantial research
efforts toward ensuring the safety of GNN-based systems. We also experimentally
demonstrate that quantized ACR-GNN models are lightweight while maintaining
good accuracy and generalization capabilities with respect to non-quantized models.

1 INTRODUCTION

Graph neural networks (GNNs) are models used for classification and regression tasks on graph-
structured data, including node-level and graph-level tasks. GNNs are applied to recommendation in
social network (Salamat et al|2021), knowledge graphs (Ye et al.,[2022)), chemistry (Reiser et al.,
2022)), drug discovery (Xiong et al.,[2021), etc. Like several other machine learning models, GNNs
are difficult to interpret, understand and verify. This is a major issue for their adoption, morally and
legally, with the enforcement of regulatory policies like the EU Al Act (European Parliament, 2024)).
Previous work paves the way for analyzing them using formal logic, Barceld et al.| (2020), Nunn
et al.| (2024)) or Benedikt et al.| (2025)). But many of these approaches consider idealised GNNs in
which numbers are either arbitrary large integers or rationals, while in real implementations GNNs
are quantized: numbers are Standard IEEE 754 64-bit floats, INTS8, or FP8 (Micikevicius et al., 2022)).
Verifying quantized GNNs without global readout has been addressed by |Silzer et al.|(2025). But
global readout is an essential element of GNNs, especially for graph classification (Xu et al., 2019).

Contribution. The contribution is threefold. First, we show that verifying Aggregate-Combine
Graph Neural Networks with global Readout (ACR-GNNs5) is decidable and (co)NEXPTIME-
complete, where NEXPTIME is the class of problems decidable by a non-deterministic algorithm
running in polynomial time in the size of its input. This contrasts with the PSPACE-completeness
without global readout from |Salzer et al.| (2025). To sum up, it means that global readout makes
quantized GNN verification highly intractable. To this aim, we define logic ¢£ extending the one
from [Sélzer et al.|(2025) for capturing global readout. It is expressive enough to capture quantized
ACR-GNNSs with arbitrary activation functions. Moreover, ¢£ can serve as a flexible graph property
specification language reminiscent of modal logics (Blackburn et al., 2001)). The following example
explains the use of gL for expressing graph properties.

Example 1. Assume a class of knowledge graphs (KGs) representing communities of people and
animals, where each node corresponds to an individual. Each individual can be Animal, Human, Leg,
Fur, White, Black, etc. These concepts can be encoded with features xo,x1, . ..,Ts, ... respectively,
taking values 0 or 1. Edges in a KG represent a generic ‘has’ relationship: a human can have an
animal (pet); an animal can have a human (owner), a leg, a fur; a fur can have a color; etc. Suppose
that A is a GNN processing those KGs and is trained to supposedly recognize dogs. We can verify
that the nodes recognized by A are animals—arguably a critical property of the domain—by checking
the validity (i.e., the non-satisfiability of the negation) of o 4 — xo = 1 where v 4 is a qL-formula
corresponding to A’s computation, true in exactly the pointed graphs accepted by A. Ideally, A
should not overfit the concept of dog as a perfect prototypical animal. For instance, three-legged
dogs do <e)3a'st. We can verify that A lets it be a possibility by checking the satisfiability of the formula
YANOS3(zg = 1).

Under review as a conference paper at ICLR 2026

More complex qL formulas can be written to express graph properties to be evaluated against an
ACR-GNN, that will be formalized later in Example([I} 1. Has a human owner, whose pets are all
two-legged. 2. A human in a community that has more than twice as many animals as humans, and
more than five animals without an ownerﬂ 3. An animal in a community where some animals have
white and black fur.

Interestingly, to prove the (co)NEXPTIME upper bound, we reuse the concept of mathematical logic
called Hintikka sets (Blackburn et al., 2001)) which are complete sets of subformulas that can be
true at a given vertex of a graph. We then introduce a quantized variant of Quantifier-Free Boolean
algebra Presburger Arithmetic (QFBAPA) logic (Kuncak & Rinard, 2007), denoted by QFBAPA,
and prove that it is in NP as the original QFBAPA on integers. We then reduce the satisfiability
problem of gL to the one of QFBAPA. On the other hand, (co)NEXPTIME-hardness is proven by
reduction from an adequate tiling problem. In a similar way, we also add global counting to the logic
K previously introduced by Nunn et al.|(2024). We show that it corresponds to AC-GNNs over Z
with global readout and truncated ReLU activation functions. We prove that the satisfiability problem
is NEXPTIME-complete, partially addressing a problem left open in the literature—that is, for the
case of integer values and truncated ReLLU activation functions (Benedikt et al., 2024; 2025)). Details
are in the appendix to keep the main text concise.

Secondly, as NEXPTIME is highly intractable (it is provably different from NP (Seiferas et al.,[1978)),
we relax the satisfiability problem of ¢£ and ACR-GNNS, searching graph counterexamples whose
number of vertices is bounded. This problem is NP-complete, and an implementation is provided to
serve as a proof of concept and a baseline for future research.

Finally, we experimentally show in Section [/|that quantization of GNNs provide minimal accuracy
degradation. Our results confirm that the quantized models retain strong predictive performance while
achieving substantial reductions in model size and inference cost. These findings demonstrate the
practical viability of quantized ACR-GNNs for deployment in resource-constrained environments.

QOutline. In Section |3} we define logic ¢L£, discuss its expressivity, and define formally ACR-
GNN verification tasks. Section 4] provides the (co)NEXPTIME membership of the satisfiability
problem of ¢£ and the ACR-GNN verification tasks. In Section[5] we show that these problems are
(co)NEXPTIME-complete. Section []is about the relaxation making the problems (co)NP-complete.
Section[7] presents experimental results justifying the practical utility of quantized ACR-GNN.

Related work. |Barcelo et al.[(2020) showed that ACR-GNNs have the expressive power of FOCs,
that is, two-variable first-order logic with counting. Recent work has explored the logical expres-
siveness of GNN variants in more detail. Notably, [Nunn et al.| (2024) and [Benedikt et al.| (2024))
introduced logics to exactly characterize the capabilities of different forms of GNNs. Similarly,
Cucala & Grau|(2024) analyzed Max-Sum-GNNs through the lens of Datalog. [Silzer et al.| (2025)
considered the expressivity of GNN with quantized parameters but without global readout. |[Ahvonen
et al.[(2024) offered several logical characterizations of recurrent GNNs over floats and real numbers.

On the verification side, [Henzinger et al.|(2021)) studied the complexity of verification of quantized
feedforward neural networks (FNNs), while [Sdlzer & Lange| (2021)); Salzer & Lange|(2023) investi-
gated reachability and reasoning problems for general FNNs and GNNs. Approaches to verification
are proposed via integer linear programming (ILP) by [Huang et al.|(2024) and Zhang et al.| (2023),
and via model checking by Sena et al.|(2021)).

From a logical perspective, reasoning over structures involving arithmetic constraints is closely tied
to several well-studied logics. Relevant work includes Kuncak and Rinard’s decision procedures for
QFBAPA (Kuncak & Rinard| (2007)), as well as developments by Demri & Lugiez|(2010),Baader
et al.|(2020), Bednarczyk et al.|(2021)), and |Galliani et al.|(2023). These logics form the basis for the
characterizations established in |[Nunn et al.| (2024)); Benedikt et al.| (2024).

Quantization techniques in neural networks exist, with surveys such as |Gholami et al.| (2022);
Nagel et al.| (2021) providing comprehensive overviews focused on maintaining model accuracy.
Although most practical advancements target convolutional neural networks (CNNs), many of the

'Interestingly, g£ goes beyond graded modal logic and even first-order logic (FOL). The property of item
in Example E]cannot be expressed in FOL.

Under review as a conference paper at ICLR 2026

underlying principles extend to GNNs as well (Zhou et al.| (2020)). NVIDIA has demonstrated
hardware-ready quantization strategies (Wu et al.|(2020)), and frameworks like PyTorch (Ansel et al.
(2024)) support both post-training quantization and quantization-aware training (QAT), the latter
simulating quantization effects during training to improve low-precision performance. QAT has been
particularly effective in closing the gap between quantized and full-precision models, especially for
highly compressed or edge-deployed systems (Jacob et al.|(2018)). In the context of GNNss, Tailor
et al.| (2021) proposed Degree-Quant, incorporating node degree information to mitigate quantization-
related issues. Based on this, [Zhu et al.| (2023)) introduced A%(Q, a mixed-precision framework that
adapts bitwidths on graph topology to achieve high compression with minimal performance loss.

2 BACKGROUND

Let K be a set of quantized numbers, and let n denote the bitwidth of K, that is, the number of bits
required to represent a number in [K. The bitwidth n is written in unary; this is motivated by the fact
that n is small and that we would in any case need to allocate n-bit consecutive memory for storing a
number. Formally, we consider a sequence K1, Ko, ... corresponding to bitwidths 1, 2, etc., but we
retain the notation K for simplicity. We suppose that K saturates: e.g.,ifz > 0,y >0,z +y >0
(i.e., no modulo behavior like in int in C for instance). We suppose that 1 € K.

We consider Aggregate-Combine Graph Neural Networks with global Readout (ACR-GNNs), a
standard class of message-passing GNNs (Barceld et al., 2020; |Gilmer et al.,|2017). An ACR-GNN
layer with input dimension m and output dimension m’ is defined by a triple (comb, agg, agg,),
where comb : K3™ — K™ is a combination function, and agyg, agg, are local and global aggregation
functions that map multisets of vectors in K" to a single vector in K™,

An ACR-GNN is composed of a sequence of such layers (L(l), e ,E(L)) followed by a final
classification function cls : K™ — {0, 1}. Given a graph G = (V, E)) and an initial vertex labelling
xg : V — {0, 1}*, the state of a vertex u in layer i is recursively defined as:

zi(u) = comb(zi1(u), agg({{zi-1(v) [uv € E}}), aggy({{zi-1(v) | v € V}}))
The final output of the GNN for a pointed graph (G, u) is A(G,u) = cls(zr(w)).

We concentrate on a specific subclass where both agg and agg, perform summation over vectors,
and where comb(z,y, z) = &(xC + yA; + zA + b), using m x m’-matrices C, A;, A, and a bias
1 x m/-vector b, all with entries from [K, with the componentwise application of an activation function
o. The classification function is a linear threshold: cls(x) =), a;z; > 1 with weights a; € K.
Moreover, we assume that all arithmetic operations are executed according to the arithmetic related to
IK. It is assumed that the context makes clear the I and arithmetic being used. We note [[A]] the set
of pointed graphs (G, u) such that A(G,u) = 1. An ACR-GNN A is satisfiable if [[.A]] is non-empty.
The satisfiability problem for ACR-GNNss is: Given a ACR-GNN A4, decide whether A is satisfiable.

3 LogGIC gL

We set up a logical framework called ¢£ extending the logic in [Sélzer et al.| (2025) with global
aggregation: it is a lingua franca to represent GNN computations and properties on graphs.

Syntax. Let F be a finite set of features and KK be some finite-width arithmetic. We consider a set
of expressions defined by the following grammar in Backus-Naur form:

Vi=clai| o) | agg(¥) | aggy(V) [0+ [cxd

where c is a number in K, x; is a feature in F', «v is a symbol for denoting the activation function, and
agg and aggy denote the aggregation function for local and global readout respectively. A formula is
a construction of the formula ¥} > k£ where ¥ is an expression and & is an element of K. If —1 € K,
and —1 is not, we can write —¢ instead of (—1) x ¥. Other standard abbreviations can be used.

Formulas are represented as direct acyclic graphs, aka circuits, meaning that we do not repeat the same
expressions several times. For instance, the formula agg(x1 +x2)+ (21 +2) > 3 can be represented
as the DAG given in Figure[I] Formulas can also be represented by a sequence of assignments via
new fresh intermediate variables. For instance: y := x1 + z2, 2 := agg(y) + y,res := z > 3.

Under review as a conference paper at ICLR 2026

. /./,»+<agg/v

Figure 1: DAG data structure for the formula agg(z1 + z2) + (z1 + 22) > 3.

Semantics. Consider a graph G = (V, E), where vertices in V' are labeled via a labeling function
¢ :V — K" with feature values. The value of an expression ¥ in a vertex u € V is denoted by
[[Y]]G,« and is defined by induction on ©:

g =c [[e x Vgu = cxk [I]c,us
o lla)le,u = [[@ll([[9]]lc.u),

19 fﬁiHG’“_ﬁ%“ 9] 499l = Sopuro [0
G = G TR Tl l[a99v (G = Soev [0,

We define [[9 > k]] = {G,u | [J]]¢,u =K [[k]]c,u} (We write > for the symbol in the syntax and
> for the comparison in K). A formula ¢ is satisfiable if [[¢]] is non-empty. The satisfiability
problem for qL is: Given a ¢L-formula ¢, decide whether ¢ is satisfiable.

ACR-GNN verification tasks. We are interested in the following decision problems. Given a GNN
A, and a ¢£ formula ¢: (VT1, sufficiency) Do we have [[¢]] C [[A]]? (VT2, necessity) Do we have
[[A]] € [[¢]]? (vT3, consistency) Do we have [[¢]] N [[A]] # 0?

Representing a GNN computation. To reason formally about ACR-GNNs, we represent their
computations using g£L. Logic gL facilitates the modeling of the acceptance condition of ACR-GNNS.

We explain this via example. Consider an ACR-GNN A with with two layers of input and
output dimension 2, using summation for aggregation, truncated ReLU as activation o(z) =
max(0,min(1,z)) = [[a]](x), and a classification function 227 — x2 > 1. The combination
functions are:

T
(201 + 29 +5y1 —3y2 + 1
comb(ar,an) o) a1,0) = B F 2 S))

T
o(3x1 —y1 + 22
comb((z1,x2), (y1,y2), (21, 22)) = (0(_(2;1 +y51yQ +422)1)>

Note that this assumes that .4 operates over K with at least three bits. Then, the corresponding
gL formula @ 4 is given by: 1 = a(2x1 + x2 + bagg(z1) — 3agg(z2) + 1), e == a(—2x1 +
4wy + 2agg(x1) + 6agg(x2) — 2), x1 = a(3¢1 — agg(¥1) + 2(agge(¥2))), x2 = a(—2¢1 +
5(agg(2)) + 4aggy(¥1)), a4 = 2(x1) — x2 > 1. To sum up, given a GNN A, we compute
gL-formula in poly-time in the size of A with [[A]] = [[¢.4]] (as done in|Silzer et al.| (2025))).

Simulating a modal logic in the logic ¢£. We show that extending ¢£ with modal operators
Blackburn et al.| (2001)) does not increase the expressivity. We can even compute an equivalent gL
without Boolean connectives and without modal operators in poly-time. It means that formulas like
oA, = w0 =1orps, AOS3(xy = 1) have poly-size equivalent formulas in ¢L.

Assume that « is ReLLU. Let Atmg be the set of atomic formulas of ¢£ of the form 9 > 0. We
suppose that 1 takes integer values. In general, 19 > k is an atomic formula equivalent to ¥ — k > 0.
Without loss of generality, we thus assume that formulas of gL are over Atmy. Let modal gL be the
propositional logic on Atmg extended with modalities and a restricted variant of graded modalities
where number k£ in K.

[O¢]] ={G,u| G,v € [[¢]] for every v s.t. uEv}
[Oy¢ll ={G,u| G,v € [[¢]] forevery vin V'}
[0=F¢]) = {G,u | {G,v | uBvand G, v € [[p)]}| 2i k} [[07"¢]] = {G.u | [[[#]]| 2 K}

and modalities $="¢ and {5*¢ defined the same way but with <. We can turn back to the graph
properties mentioned in Example

Under review as a conference paper at ICLR 2026

Example 1 (continuing| from p.[T). We first define a few simple formulas to characterize the concepts
of the domain. Let o5 = x9g = 1 (Animal), ¢y = x1 = 1 (Human), pr = x2 = 1 (Leg),
pr =x3 = 1(Fur), pw = x4 = 1 (White), and pp = x5 = 1 (Black).

1. Has a human owner, whose all pets are two-legged: O(op A O(pa — 072¢1)).
2. A human in a community that has more than twice as many animals as humans, and more
than five animals without an owner: og A (aggy(zo) — 2 X aggy(x1) > 0) A OZ5(pa A

O(—pm)).
3. An animal in a community where some animals have white and black fur:
a N Og(Oler A Opw) A O(pr A OpB)).

We can see the boolean operator —, and the various modalities as functions from Atmg to Atmg, and
the boolean operator V as a function from Atmg x Atmg to Atmy.
fﬁ(ﬁ > O) =—19—-1>0 f\/(ﬁl > 0,99 > 0) =91 + ReLU(ﬁz — 191) >0
fo® > 0) = agg(~ReLU (~)) > 0
Jozr(¥ > 0) :=agg(ReLU(Y + 1) — ReLU(¥)) —k >0
fosn(® >0) :=k — agg(ReLU (Y + 1) — ReLU(9)) > 0
For the corresponding global modalities (fo, (¥ > 0), fo=+ (9 > 0), and fo<x (9 > 0)), it suffices to
use aggy in place of agg. The previous transformations can be generalized to arbitrary formulas of
modal gL as follows.
mod2expr(¥ > 0):=9 >0 mod2expr(—y) 1= f-(mod2expr(p))
mod2expr(p1 V pa) := fu(mod2expr(p;), mod2expr(v2))
mod2expr(By) = fm(mod2expr(p)), He {D,Dg,ozk,ogzk,ofk,off}
We can show that formulas of modal ¢£ can be captured by a single expression ¢ > 0. This is a
consequence of the following lemma
Lemma 2. Let ¢ be a formula of modal qL. The formulas ¢ and mod2expr(p) are equivalent.

Now, ACR-GNN verification tasks can be solved by reduction to the satisfiability problem of ¢L.
VT1 by checking that ¢ A =y 4 is not satisfiable; VT2 by checking that ~¢ A @ 4 is not satisfiable;
VT3 by checking that ¢ A @ 4 is satisfiable.

4 COMPLEXITY UPPER BOUND OF THE VERIFICATION TASKS

In this section, we prove the NEXPTIME membership of reasoning in modal quantized logic, and also
of solving of ACR-GNN verification tasks (by reduction to the former). Remember that the activation
function ¢ can be arbitrary in our setting. Our result holds with the loose restriction that [[]] is
computable in exponential-time in the bit-width n of K.

Theorem 3. The satisfiability problem of qL is decidable and in NEXPTIME, and so is VT3. VT1
and VT2 are in coNEXPTIME.

In order to prove Theorem [3] we adapt the NEXPTIME membership of the description logic
ALCSCCT from Baader et al.| (2020) to logic gL£. The difference resides in the definition of
Hintikka sets and the treatment of quantization. The idea is to encode the constraints of a ¢£-formula
 in a formula of exponential length of a quantized version of QFBAPA, that we prove to be in NP.

4.1 HINTIKKA SETS

Consider ¢L-formula ¢. Let E(y) be the set of subexpressions in . For instance, if ¢ is agg(a(za +
aggv(r1))) > 5 then E(p) = {agg(a(r2 + aggy(r1)), a2 +aggy(z1), x2, aggy(z1), 1 }. From
now on, we consider equality subformulas that are of the form Y=k where ¥ is a subexpression of ¢
and k € K.

?For simplicity, we do not present how to handle © > 0 when © is not an integer. We could introduce several
activation functions « in g£, one of them could be interpreted as the Heavyside step function. In the sequel
Deﬁnition@ Point 4 is just repeated for each a.

Under review as a conference paper at ICLR 2026

Definition 4. A Hintikka set H for o is a subset of subformulas of © such that:

1. Forall ¥ € E(p), there is a unique value k € K such thaty =k € H

2. Forall 914194 € E(Lp), ifﬁlzkl,ﬁgzkg € H then 91+92=k1+ko € H

3. Foralle x 9 € E(p), if 9 =k € H then ¢ x 9=k' € H where k' = ¢ xk k
4. Forall a(¥) € E(p), 9=k € H and o(9)=k" € H implies k' = [[a]](k)

Informally, a Hintikka set contains equality subformulas obtained from a choice of a value for each
subexpression of ¢ (point 1), provided that the set is consistent at the current vertex (points 2—4). The
notion of Hintikka set does not take any constraints about agg and aggy into account since checking
consistency of aggregation would require information about the neighbor or the whole graph.

Example 5. If ¢ is agg(a(z2 + aggy(z1))) > 5, then an example of Hintikka set is: {agg(a(ze +
aggy(z1)) = 8, (w2 + aggy(z1)) = 9,22 + aggv(w1) = 9,2 = 7, aggy(v1) = 2,71 = 5}.

Proposition 6. The number of Hintikka sets is bounded by 2% where || is the size of v, and n is
the bitwidth of K.

4.2 QUANTIZED VERSION OF QFBABA (QUANTIFIER-FREE BOOLEAN ALGEBRA AND
PRESBURGER ARITHMETICS)

A QFBAPA formula is a propositional formula where each atom is either an inclusion of sets or
equality of sets or linear constraints (Kuncak & Rinard| (2007), and Appendix [E.2.T). Sets are
denoted by Boolean algebra expressions, e.g., (S U .S’) \ S”, or U where U denotes the set of all
points in some domain. Here S, S, etc. are set variables. Linear constraints are over |\S| denoting
the cardinality of the set denoted by the set expression S. For instance, the QFBAPA-formula
(pianist C happy) A (Jhappy| + [U \ pianist] > 6) A (Jhappy| < 2) is read as ‘all pianists are
happy and the number of happy persons plus the number of persons that are not pianists is greater
than 6 and the number of happy persons is smaller than 2’.

We now introduce a quantized version QFBAPA of QFBAPA. It has the same syntax as QFBAPA
except that numbers in expressions are in [K. Semantically, every numerical expression is interpreted
in K. For each set expression .S, the interpretation of |.S| is not the cardinality c of the interpretation
of S, but the result of the computation 1 + 1 + ... + 1 in K with ¢ occurrences of 1 in the sum.

We consider that KK that saturates, meaning that if z 4+ y exceed the upper bound limit of K, there is a
special value denoted by +oo such that x + y = +o0.

Proposition 7. If bitwidth n is in unary, and if K saturates, then satisfiability in QFBAPA is in NP.

4.3 REDUCTION TO QFBAPA

Let ¢ be a formula of ¢L. For each Hintikka set H, we introduce the set variable Xz that intuitively
represents the H -vertices, i.e., the vertices in which subformulas of H hold. The following QFBAPA-
formulas say that the interpretation of Xy form a partition of the universe. For each subformula
9" = k, we introduce the set variable X/, that intuitively represents the vertices in which 9’ = k
holds. Equation (1) expresses that { Xz } ,; form a partition of the universe. Equation (2)) makes the
bridge between variables Xy —; and Xp.

(N\ XunXgp=0)A UXH_u (1) AN NEo== U Xu) @

H;éH’ 9 €B(p) keK H|9'=keH

We introduce also a variable Sy that denotes the set of all successors of some H-vertex. If there is
no H-vertex then the variable Sy is just irrelevant.

The following QFBAPA-formula (Equation) encodes the semantics of agg(1}). More precisely,
it says that for all subexpressions agg(¥), for all values k, for all Hintikka sets H containing formula
agg(¥)=k, if there is some H-vertex (i.e., some vertex in X), then the aggregation obtained by
summing over the successors of some H-vertex is k.

A A A (X #0) = > |Su N Xo—p| x K = K] 3)

agg(EE(go) kek Hintikka set H k'eK
| agg(¥)=k € H

Under review as a conference paper at ICLR 2026

In the previous sum, we partition Sy into subsets Sy N Xy—x for all possible values k’. Each
contribution for a successor in Sy N Xy—p is k’. We rely here on the facﬂ that (14+1+...+1)xk' =
K + k' +...4+k'. We also fix a specific order over values &’ in the summation (it means that agg(1)
is computed as follows: first order the successors according to the taken values of ¥ in that specific
order, then perform the summation). Finally, the semantics of aggy is captured by the formula:

N A\ Xaggyy—r #0 = D [Xoow| x K =k 4)

aggy (9)EE(¢) keK k'eK

Note that intuitively Equation (4) implies that for X, ()= 1s interpreted as the universe, for the
value £k which equals the semantics of), , i [Xg—p/| X K.

Given ¢ = 9 > k, we define tr(¢) := ¢ A/}~ Xo=r # () where ¢ the conjunction of Formulas
1-4. The function tr requires to compute all the Hintikka sets. So we need in particular to check
Point 4 of Definition[d]and we get the following when [[a]] is computable in exponential time in 7.

Proposition 8. tr(p) is computable in exponential-time in || and n.

Proposition 9. Let p be a formula of qL. v is satisfiable iff tr(p) is QFBAPA satisfiable.

Finally, in order to check whether a g£-formula ¢ is satisfiable, we construct a QFBAPA-formula
tr(y) in exponential time. As the satisfiability problem of QFBAPA is in NP, we obtain that the
satisfiability problem of ¢£ is in NEXPTIME. We proved Theorem 3}

Remark 10. Our methodology can be generalized to reason in subclasses of graphs. For instance,
we may tackle the problem of satisfiability in a graph where vertices are of bounded degree bounded
by d. To do so, we add the constraint |\ ;; |Sg| < d.

5 COMPLEXITY LOWER BOUND OF THE VERIFICATION TASKS

The NEXPTIME upper-bound is tight. Having defined modalities in ¢£ and stated Lemma
Theorem [[]is proven by adapting the proof of NEXPTIME-hardness of deciding the consistency of
ALCQ-T-Boxes presented in Tobies| (2000). So we already have the hardness result for ReLU.

NEXPTIME-hardness is proven via a reduction from the tiling problem by Wang tiles of a torus
of size 2" x 2. A Wang tile is a square with colors, e.g., B4, D4, etc. That problem takes as input
a number n in unary, and Wang tile types, and an initial condition — let say the bottom row is
already given. The objective is to decide whether the torus of 2 x 2" can be tiled while colors of
adjacent Wang tiles match. A slight difficulty resides in adequately capturing a two-dimensional grid
structure—as in Figure 2}—with only a single relation. To do that, we introduce special formulas ¢ g
and ¢ to indicate the direction (east or north). In the formula computed by the reduction, we also
need to bound the number of vertices corresponding to tile locations by 2" x 2”. Thus K needs to
encode 2" x 2". We need a bit-width of at least 2n.

Theorem 11. The satisfiability problem in qL is NEXPTIME-hard, and so is the ACR-GNN verifica-
tion task VT3. The ACR-GNN verification tasks VT1 and VT2 are coNEXPTIME-hard.

Remark 12. [t turns out that the verification task only needs the fragment of L where agg is applied
directly on an expression o(..). Indeed, this is the case when we represent a GNN in qL or when we
translate logical formulas in ¢C (Lemmal[2)). Reasoning about ¢L when K = Z and the activation
function is truncated ReLU is also NEXPTIME-complete (see Appendix[F).

6 BOUNDING THE NUMBER OF VERTICES

The satisfiability problem is NEXPTIME-complete, thus far from tractable. The complexity comes
essentially because counterexamples can be arbitrary large graphs. However, one usually look for
small counterexamples. Let G=V be the set of pointed graphs with at most N vertices. We consider
the ¢£ and ACR-GNN satisfiability problem with a bound on the number of vertices and ACR-GNNs
verification tasks: given a number N given in unary, 1. given a g£-formula ¢, is it the case that

3This is true for some fixed-point arithmetics but not for floating-point arthmetics. See Appendix

Under review as a conference paper at ICLR 2026

uN uUN

Upg,2m —1 Ugn _q on _q

UQ,] ————— U —————> U1,1

1

uN uN

Figure 2: Encoding a torus of exponential size with (modal) ¢£ formulas. Vertices v , correspond
to locations (x, y) in the torus while u and ug denote intermediate vertices indicating the direction
(resp., north and east).

[[e]] N GSN # (), 2. given an ACR-GNN A, is it the case that [[A]] N GSV # (). In the same way,
we introduction the following verification tasks. Given a GNN A, a ¢£ formula ¢, and a number N
in unary: (vT’1, sufficiency) Do we have [[p]] N G=N C [[A]] N GSN? (VT’2, necessity) Do we
have [[A]] N G=N C [[p]] N GSN? (VT 3, consistency) Do we have [[¢]] N [[A]] N G=N #£ (2

Theorem 13. The satisfiability problems with bounded number of vertices are NP-complete, so is
ACR-GNN verification task VT’ 3, while the verification tasks VT’ 1 and V1’2 are coNP-complete.

It is then possible to extend the methodology of [Sena et al.| (2021)) but for verifying GNNs. An
efficient SMT encoding of GNN verification tasks would be a contribution of its own. We merely
propose a proof of concept and a baseline for future research. See Appendix [B.1]for details. Our im-
plementation proposal is a Python program that takes a quantized GNN A as an input, a precondition,
a postcondition and a bound N. It then produces a C program that mimics the execution of .4 on an
arbitrary graph with at most NV vertices, and embeds the pre/postcondition. We then apply ESBMC
(SMT-based context-bounded model checker) (Menezes et al.,|2024) on the C program.

7 QUANTIZATION EFFECTS ON ACCURACY, PERFORMANCE AND MODEL SIZE

We now investigate the application of dynamic Post-Training Quantization (PTQ) to ACR-GNNS.
As a reference, we used the models described and analyzed in [Barceld et al.| (2020), using their
implementation (Barceld et al., 2021) as the baseline. Experiments used two datasets: one synthetic
(Erdos—Rényi model) and one real-world dataset (Protein-Protein Interactions (PPI) benchmark
by Zitnik & Leskovec|(2017)). In the original work, experiments were made with two activation
functions: Rectified Linear Unit (ReLU) and truncated ReLU. Since the models of Section 2] can
handle arbitrary activation functions, in our experiments, we used several types of activation function:
Piecewise linear (ReLU, ReLU6, and trReLLU), Smooth unbounded (GELU and SiLU), Smooth
bounded (Sigmoid), and Smooth ReLU-like (Softplus and ELU). The quantization method is imple-
mented in PyTorch (Ansel et al.| 2024} [PyTorch Team), 2024a)), dynamic PTQ transforms a pre-trained
floating-point model into a quantized version without requiring retraining. In this approach, model
weights are statically quantized to INT8, while activations remain in floating-point format until they
are dynamically quantized at compute time. This hybrid representation enables efficient low-precision
computation using INT8-based matrix operations, thereby reducing the memory footprint and improv-
ing the inference speed. The PyTorch implementation applies per-tensor quantization to the weights
and stores the activations as floating-point values between operations to strike a balance between
accuracy and performance.

Synthetic graphs (Table [3|of Appendix [G) were generated using the dense Erdos—Rényi model, a
classical approach to constructing random graphs. Each graph includes five initial node colors,
encoded as one-hot feature vectors. Following Barceld et al.| (2020), labels were assigned using
formulas from the logic fragment FOC,. Specifically, a hierarchy of classifiers «;(x) was defined
as follows: () := Blue(x) and a1 () := INV-Mly (a;(y) A ~E(x,y)) , where 3V:-M] denotes
the quantifier “there exist between N and M nodes" satisfying a given condition. Each classifier
a;(z) can be expressed within FOCs, as the bounded quantifier can be rewritten using 3% and
—3=M+1 Each property p; corresponds to a classifier a; with i € {1,2,3}. For the analysis, we
collected training time, model size, and accuracy for both datasets. We list the principal findings of

Under review as a conference paper at ICLR 2026

the analysis. More detailed statistics can be found in the Appendix |G} According to our experimental
flow, we first examine the training time. For both datasets, we found that piecewise-linear activation
functions consistently achieve the shortest training time (Table [5 and Table 22] of Appendix [G).
Moreover, for computational efficiency, we found that the model with the Softplus activation function
was consistently the slowest, regardless of the datasets (Table[6]and Table 23] of Appendix [G). We
computed the Reduction (in percentage) of the model size: =~ 60% for Erdos—Rényi (Table [9) and
~ 74% for PPI (Table[26). We calculated the mean speed-up of models after dynamic PTQ, defined
as the ratio of the non-quantized execution time to the quantized one. We observed that dynamic
PTQ does not accelerate inference for both datasets (Figures @ (for Erdos—Rényi) and E] (for PPI)
in Appendix[G). We performed a detailed analysis of the accuracy of both data (Tables[I0HT9|and
Tables [27H36]in Appendix [G). We observed a drop in the accuracy of the baseline models after two
layers. In Table[I] we report the accuracy and difference (A,..) wrt. the baseline of the two-layer
quantized models, for the activation function that performs best for each family.

Table 1: Accuracy with accuracy difference (A,.) after dynamic PTQ for two-layer ACR-GNNs
across datasets. For each activation family, the best-performing activation function (A/F) is shown.

P1 P2

Family A/F Train Testl Test2 A/F Train Test1 Test2
Piecewise-linear ReLU6 99.99% (-0.002) 99.99% (0.000) 99.91% (+0.058) trReLU 68.23% (+0.614) 68.31% (+0.615) 63.58% (+0.313)
Smooth unbounded ~ SiLU 100.00% (0.000) 100.00% (0.000) 99.63% (+0.086) GELU 84.22% (+0.373) 84.98% (+0.045) 76.34% (+1.160)
Smooth bounded Sigmoid 99.99% (-0.004) 99.98% (0.009) 95.90% (+0.789) Sigmoid 71.43% (+0.103) ~ 73.04% (-0.312) 44.78% (+0.342)
Smooth ReLU-like ~ ELU 100.00% (+0.004) 99.99% (+0.009) 84.37% (+0.101) ~ Softplus 84.65% (+0.166) 85.05% (+0.406) 77.10% (-0.313)
P3 PPI

A/F Train Test1 Test2 A/F Train Test Validation
Piecewise-linear ReLU 76.49% (+0.085) 76.56% (+0.342) 76.93% (+0.025) ReLU6 54.20% (-0.001) 38.10% (+0.004) 39.00% (-0.009)
Smooth unbounded ~ SiLU 76.28% (+0.149) 75.85% (+0.328) 76.94% (+0.011) GELU 61.10% (+0.003) 41.70% (+0.011) 44.20% (+0.009)
Smooth bounded Sigmoid 69.22% (-0.107) 66.79% (+0.391) 73.25% (+0.563) ~ Sigmoid 51.60% (+0.001) 38.40% (+0.004) 38.00% (0.000)
Smooth ReLU-like ~ ELU 76.28% (+0.071) 76.12% (+0.417) 76.97% (+0.029) ELU 61.00% (+0.008) 43.70% (-0.003) 44.00% (+0.008)

As shown in Table[I} dynamic PTQ has minimal impact on accuracy. Across all activation families,
the observed A, values are generally within 1%, with one exception being GELU on Test2 of ps.
These findings highlight the advantages of quantized ACR-GNN models of Section [2] with respect to
non-quantized models, striking a remarkable balance between model size and accuracy.

8 CONCLUSION AND FUTURE WORK

The main result is the (co)NEXPTIME-completeness of verification tasks for GNNs with global
readout. It helps to understand the inherent complexity, and demonstrates that the verification of
ACR-GNN s is highly intractable. As a mere baseline for future research, we provide a prototype for
verifying GNNs over a set of graphs with a bounded number of vertices. Finally some experiments
the practical utility of quantized GNNs. This prompts significant efforts of the research community
towards ensuring the safety of GNN-based systems.

There are many directions to go. First, characterizing the modal flavor of ¢£—a powerful graph
property specification language—for other activation functions than ReL.U. New extensions of ¢L
could also be proposed to tackle other classes of GNNs. Verification of neural networks is challenging
and is currently tackled by the verification community (Cordeiro et al.l [2025). So it will be for
GNNs as well. Our verification tool with a bound on the number of vertices is still preliminary and a
mere baseline for future research. One obvious path would be to improve it, to compare different
approaches (bounded model checking vs. linear programming as in/Huang et al.|(2024))) and to apply
it to real GNN verification scenarios. Designing a practical verification procedure in the general case
(without any bound on the number of vertices) and overcoming the high computational complexity is
an exciting challenge for future research towards the verification of GNNs.

Limitations. Section [d]and[5|reflect theoretical results. Some practical implementations of GNNs
may not fully align with them. In particular, the order in the (non-associative) summation over
values in K is fixed in formulas (3) and . It means that we suppose that the aggregation agg(1) is
computed in that order too (we sort the successors of a vertex according to the values of ¢ and then
perform the summation).

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research poses no significant ethical concerns. But it warns the research community that the
safety of GNN-based systems is hard to ensure, and prompts further research.

REPRODUCIBILITY STATEMENT

Full proofs are in the appendix.
The code of the verification prototype is located in the folder ‘src_verificationtool’.

The reproducibility package for the experimental evaluation of ACR-GNN quantization is provided in
the folder ‘code_notebooks_csv’. The ‘Code’ subfolder contains the Python implementation,
along with a ‘README .md’ file that provides a detailed description of the files and step-by-step
instructions for reproducing the experiments. The ‘Notebooks’ subfolder includes the analysis
scripts, all corresponding ‘. csv’ files, and an additional file with usage instructions and descriptions.

REFERENCES

Veeti Ahvonen, Damian Heiman, Antti Kuusisto, and Carsten Lutz. Logical characterizations
of recurrent graph neural networks with reals and floats. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024,2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
bca7a%9a0dd85e2a68420ebcae2/eccfb-Abstract-Conference.htmll

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin
Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable,
Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian
Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano,
Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch,
Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan
Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit
Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. Pytorch 2: Faster machine learning
through dynamic python bytecode transformation and graph compilation. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366.
URLhttps://pytorch.org/assets/pytorch2-2.pdf.

Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. Introduction to Description Logic.
Cambridge University Press, 2017.

Franz Baader, Bartosz Bednarczyk, and Sebastian Rudolph. Satisfiability and query answering
in description logics with global and local cardinality constraints. In Giuseppe De Giacomo,
Alejandro Catald, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugarin, and Jérome Lang
(eds.), ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September
2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PAIS 2020), volume 325 of Frontiers in
Artificial Intelligence and Applications, pp. 616-623. 10S Press, 2020. doi: 10.3233/FAIA200146.
URL https://doi.org/10.3233/FATIA200146.

Pablo Barcel6, Egor V. Kostylev, Mikaél Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=r11Z7AEKVB.

Pablo Barceld, Egor V. Kostylev, Mikaél Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
Gnn-logic. https://github.com/juanpablos/GNN-logic.git, 2021.

10

http://papers.nips.cc/paper_files/paper/2024/hash/bca7a9a0dd85e2a68420e5cae27eccfb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/bca7a9a0dd85e2a68420e5cae27eccfb-Abstract-Conference.html
https://pytorch.org/assets/pytorch2-2.pdf
https://doi.org/10.3233/FAIA200146
https://openreview.net/forum?id=r1lZ7AEKvB
https://github.com/juanpablos/GNN-logic.git

Under review as a conference paper at ICLR 2026

Bartosz Bednarczyk, Maja Orlowska, Anna Pacanowska, and Tony Tan. On classical decidable
logics extended with percentage quantifiers and arithmetics. In Mikolaj Bojanczyk and Chandra
Chekuri (eds.), 41st IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021, Virtual Conference, volume
213 of LIPIcs, pp. 36:1-36:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021. doi:
10.4230/LIPICS.FSTTCS.2021.36. URL https://doi.org/10.4230/LIPIcs.FSTICS.
2021.36.

Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of graph neural
networks via logical characterizations. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and
Ola Svensson (eds.), 51st International Colloguium on Automata, Languages, and Programming,
ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pp. 127:1-127:20. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2024. doi: 10.4230/LIPICS.ICALP.2024.127. URL
https://doi.orqg/10.4230/LIPIcs.ICALP.2024.127.

Michael Benedikt, Chia-Hsuan Lu, and Tony Tan. Decidability of graph neural networks via logical
characterizations. CoRR, abs/2404.18151v4, 2025. URL https://arxiv.orqg/abs/2404.
18151v4.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2001. ISBN 978-1-10705088-4. doi:
10.1017/CB0O9781107050884. URL https://doi.org/10.1017/CB09781107050884!\

Lucas C. Cordeiro, Matthew L. Daggitt, Julien Girard-Satabin, Omri Isac, Taylor T. Johnson, Guy
Katz, Ekaterina Komendantskaya, Augustin Lemesle, Edoardo Manino, Artjoms Sinkarovs,
and Haoze Wu. Neural network verification is a programming language challenge. CoRR,
abs/2501.05867, 2025. doi: 10.48550/ARXIV.2501.05867. URL https://doi.org/10.
48550/arXiv.2501.05867.

David J. Tena Cucala and Bernardo Cuenca Grau. Bridging max graph neural networks and Datalog
with negation. In Pierre Marquis, Magdalena Ortiz, and Maurice Pagnucco (eds.), Proceedings
of the 21st International Conference on Principles of Knowledge Representation and Reasoning,
KR 2024, Hanoi, Vietnam. November 2-8, 2024, 2024. doi: 10.24963/KR.2024/89. URL https:
//doi.org/10.24963/kr.2024/89.

Stéphane Demri and Denis Lugiez. Complexity of modal logics with presburger constraints. J. Appl.
Log., 8(3):233-252, 2010. doi: 10.1016/J.JAL.2010.03.001. URL https://doi.org/10,
1016/7.7a1.2010.03.001!

European Parliament. Artificial Intelligence Act, 2024. URL https://www.europarl,
europa.eu/doceo/document /TA-9-2024-0138_EN.pdf.

Pietro Galliani, Oliver Kutz, and Nicolas Troquard. Succinctness and complexity of ALC with
counting perceptrons. In Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner (eds.),
Proceedings of the 20th International Conference on Principles of Knowledge Representation and
Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023, pp. 291-300, 2023. doi: 10.24963/
KR.2023/29. URL https://doi.org/10.24963/kr.2023/29,

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pp. 291-326. Chapman and Hall/CRC, 2022.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 1263—1272.
PMLR, 2017.

Thomas A. Henzinger, Mathias Lechner, and Dorde Zikelic. Scalable verification of quantized
neural networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February

11

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.36
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.36
https://doi.org/10.4230/LIPIcs.ICALP.2024.127
https://arxiv.org/abs/2404.18151v4
https://arxiv.org/abs/2404.18151v4
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.48550/arXiv.2501.05867
https://doi.org/10.48550/arXiv.2501.05867
https://doi.org/10.24963/kr.2024/89
https://doi.org/10.24963/kr.2024/89
https://doi.org/10.1016/j.jal.2010.03.001
https://doi.org/10.1016/j.jal.2010.03.001
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf
https://doi.org/10.24963/kr.2023/29

Under review as a conference paper at ICLR 2026

2-9, 2021, pp. 3787-3795. AAAI Press, 2021. doi: 10.1609/AAALV3515.16496. URL https:
//doi.org/10.1609/aaai.v35i5.16496.

Pei Huang, Haoze Wu, Yuting Yang, leva Daukantas, Min Wu, Yedi Zhang, and Clark W. Barrett.
Towards efficient verification of quantized neural networks. In Michael J. Wooldridge, Jennifer G.
Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI
2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024,
Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February
20-27, 2024, Vancouver, Canada, pp. 21152-21160. AAAI Press, 2024. doi: 10.1609/AAALI.
V38119.30108. URL https://doi.org/10.1609/aaai.v38119.30108.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 27042713, 2018. doi: 10.1109/CVPR.2018.00286.

Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for boolean algebra with
presburger arithmetic. In Frank Pfenning (ed.), Automated Deduction — CADE-21, pp. 215-230,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-73595-3.

Rafael Menezes, Mohannad Aldughaim, Bruno Farias, Xianzhiyu Li, Edoardo Manino, Fedor
Shmarov, Kunjian Song, Franz Braufle, Mikhail R. Gadelha, Norbert Tihanyi, Konstantin Korovin,
and Lucas C. Cordeiro. ESBMC 7.4: Harnessing the Power of Intervals. In 30" International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’24),
volume 14572 of Lecture Notes in Computer Science, pp. 376-380. Springer, 2024. doi: https:
//doi.org/10.1007/978-3-031-57256-2_24.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisen-
thwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellem-
pudi, Stuart F. Oberman, Mohammad Shoeybi, Michael Y. Siu, and Hao Wu. FP8 formats
for deep learning. CoRR, abs/2209.05433, 2022. doi: 10.48550/ARXIV.2209.05433. URL
https://doi.org/10.48550/arXiv.2209.05433.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
Tijmen Blankevoort. A white paper on neural network quantization. ArXiv, abs/2106.08295, 2021.
URL https://api.semanticscholar.org/CorpusID:235435934.

Pierre Nunn, Marco Silzer, Frangois Schwarzentruber, and Nicolas Troquard. A logic for reasoning
about aggregate-combine graph neural networks. In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence, IJCAI 2024, pp. 3532-3540. ijcai.org, 2024. URL
https://www.ijcai.org/proceedings/2024/391.

PyTorch Team. Quantization — PyTorch 2.x Documentation. https://pytorch.org/docs/
stable/quantization.html, 2024a. Accessed: 2025-05-16.

PyTorch Team. torch.quantize_per_tensor — pytorch 2.x documentation. https:
//pytorch.org/docs/stable/generated/torch.quantize_per_tensor.
html#torch—quantize—-per—tensor, 2024b. Accessed: 2025-05-16.

PyTorch Team. torch.tensor — pytorch 2.x documentation. https://pytorch.org/docs/
stable/tensors.html#torch.Tensor, 2024c. Accessed: 2025-05-16.

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam
Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, and Pascal Friederich. Graph neural
networks for materials science and chemistry. Communications Materials, 3(93), 2022.

Amirreza Salamat, Xiao Luo, and Ali Jafari. Heterographrec: A heterogeneous graph-based neural
networks for social recommendations. Knowl. Based Syst., 217:106817, 2021. doi: 10.1016/j.
knosys.2021.106817. URL https://doi.org/10.1016/3j.knosys.2021.106817.

Marco Silzer and Martin Lange. Reachability is NP-complete even for the simplest neural networks.
In Paul C. Bell, Patrick Totzke, and Igor Potapov (eds.), Reachability Problems - 15th International
Conference, RP 2021, Liverpool, UK, October 25-27, 2021, Proceedings, volume 13035 of Lecture
Notes in Computer Science, pp. 149-164. Springer, 2021. doi: 10.1007/978-3-030-89716-1_10.

12

https://doi.org/10.1609/aaai.v35i5.16496
https://doi.org/10.1609/aaai.v35i5.16496
https://doi.org/10.1609/aaai.v38i19.30108
https://doi.org/10.48550/arXiv.2209.05433
https://api.semanticscholar.org/CorpusID:235435934
https://www.ijcai.org/proceedings/2024/391
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/generated/torch.quantize_per_tensor.html#torch-quantize-per-tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://doi.org/10.1016/j.knosys.2021.106817

Under review as a conference paper at ICLR 2026

Marco Silzer, Frangois Schwarzentruber, and Nicolas Troquard. Verifying quantized graph neural
networks is pspace-complete. In Proceedings of the Thirty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2025, pp. 4660-4668. ijcai.org, 2025. URL https://www,
ijcai.org/proceedings/2025/5109.

Joel I. Seiferas, Michael J. Fischer, and Albert R. Meyer. Separating nondeterministic time complexity
classes. J. ACM, 25(1):146-167, January 1978. ISSN 0004-5411. doi: 10.1145/322047.322061.
URLhttps://doi.org/10.1145/322047.322061.

Luiz H. Sena, Xidan Song, Erickson H. da S. Alves, Iury Bessa, Edoardo Manino, and Lucas C.
Cordeiro. Verifying Quantized Neural Networks using SMT-Based Model Checking. CoRR,
abs/2106.05997, 2021. URL https://arxiv.org/abs/2106.05997.

Marco Silzer and Martin Lange. Fundamental limits in formal verification of message-passing neural
networks. In ICLR, 2023. URL https://openreview.net/forum?id=W1bG820mRH-.

Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant:
Quantization-aware training for graph neural networks. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=NSBrFgJAHg.

Stephan Tobies. The complexity of reasoning with cardinality restrictions and nominals in expressive
description logics. J. Artif. Intell. Res., 12:199-217, 2000. doi: 10.1613/JAIR.705. URL
https://doi.orqg/10.1613/jair.705.

G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pp. 466—-483. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1983. ISBN 978-3-642-81955-1. doi: 10.1007/
978-3-642-81955-1_28. URL |https://doi.org/10.1007/978-3-642-81955-1__
28l

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quantization
for deep learning inference: Principles and empirical evaluation. CoRR, abs/2004.09602, 2020.
URLhttps://arxiv.org/abs/2004.09602.

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph
neural networks for automated de novo drug design. Drug Discovery Today, 26(6):1382—1393,
2021. ISSN 1359-6446. doi: https://doi.org/10.1016/j.drudis.2021.02.011. URL https://www,
sciencedirect.com/science/article/pii/S1359644621000787.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
1d=ryGs6iA5Km.

Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan Song, and Junsong Wang. A comprehensive
survey of graph neural networks for knowledge graphs. IEEE Access, 10:75729-75741, 2022. doi:
10.1109/ACCESS.2022.3191784.

Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, Min Zhang, Taolue Chen, and Jun Sun. Qvip:
An ILP-based formal verification approach for quantized neural networks. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software Engineering, ASE 22,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394758. doi:
10.1145/3551349.3556916. URL https://doi.org/10.1145/3551349.3556916.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
Al open, 1:57-81, 2020.

Zeyu Zhu, Fanrong Li, Zitao Mo, Qinghao Hu, Gang Li, Zejian Liu, Xiaoyao Liang, and Jian Cheng.
A2Q: Aggregation-aware quantization for graph neural networks. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
1d=7L2mgi10TNEP.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):1190-1198, 2017.

13

https://www.ijcai.org/proceedings/2025/519
https://www.ijcai.org/proceedings/2025/519
https://doi.org/10.1145/322047.322061
https://arxiv.org/abs/2106.05997
https://openreview.net/forum?id=WlbG820mRH-
https://openreview.net/forum?id=NSBrFgJAHg
https://doi.org/10.1613/jair.705
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://arxiv.org/abs/2004.09602
https://www.sciencedirect.com/science/article/pii/S1359644621000787
https://www.sciencedirect.com/science/article/pii/S1359644621000787
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/3551349.3556916
https://openreview.net/forum?id=7L2mgi0TNEP
https://openreview.net/forum?id=7L2mgi0TNEP

Under review as a conference paper at ICLR 2026

A PROOFS OF STATEMENTS IN THE MAIN TEXT
Lemma 2. Let ¢ be a formula of modal qL. The formulas ¢ and mod2expr(p) are equivalent.

Proof. We have to prove that for all G, u, we have G, u |= ¢ iff G, u |= mod2expr(p). We proceed
by induction on (.

* The base case is obvious: G,u | ¢ iff G,u | mod2expr(p) is G,u = ¢ iff G,u =
mod2expr(yp).

s GiuE—@iff Giu £ ¢
iff (by induction) G, u = mod2expr(p)
iff (by writing mod2expr(¢) =9 > 0) G,u =9 >0
iff Gou =0 <0
iff G, u =19 < —1 (because we suppose that ¢ takes its value in the integers
iff Gu =9 +1<0
iff Giul=—9—1>0.
* Gu = (p1Ve2)
iff G,u = p10orGyu = o
iff G,ul= (W1 > 0)or G,u = (¥ > 0)
iff G,u =191 + ReLU (Y2 — ¥1) >0
Indeed, (=) if G,u = (1 > 0) then G, u |= 1 + ReLU (Y2 —¥1) > ¥1 > 0.

IfG,’LL ': (192 > 0) and G,u): (191 < 0) then G,u): 191+R6LU(?92 —191) e
P+ P — P =102 > 0.

(<) Conversely, by contrapositive, if G,u = (Y2 < 0) and G,u = (1 < 0), then
G,u }: 191+R6LU(1927’L91) =14+ —91 =093 < 0orG,u ': 191+R€LU(’L927191) =
Y1+ 0 =1 <0. Inthe two cases, G,u =191 + ReLU (2 — ¥1) < 0.

* G,u |= OZFy iff the number of vertices v that are successors of u and with G, v |= ¢ is
greater than k

iff the number of vertices v that are successors of u and with G,v = mod2expr(yp) is
greater than k

iff (written ¢ > 0) iff the number of vertices v that are successors of v and with G, v =
¥ > 0 is greater than k

iff the number of vertices v that are successors of v and with G,v | ReLU (¥ + 1) —
ReLU(¥) = 1 is greater than k (since we know by defining of modal ¢£ that ¢ takes its
value in integers)

iff G,u = agg(ReLU (9 + 1) — ReLU (V) > k
iff G, u = mod2expr(0=Fy)

¢ Other cases are similar.

O

Proposition 6. The number of Hintikka sets is bounded by 2""¢! where |l is the size of @, and n is
the bitwidth of K.

Proof. For each expression v, we choose a number in K. There is 2" different numbers. There are
|o| number of expressions. So we get (2)!¢ = 271#l possible choices for a Hintikka set. O

14

Under review as a conference paper at ICLR 2026

Proposition 7. If bitwidth n is in unary, and if K saturates, then satisfiability in QFBAPA is in NP.

Proof. Here is a non-deterministic algorithm for the satisfiability problem in QFBAPA.

1. Let x be a QFBAPA formula.

2. For each set expression B appearing in some | B|, guess a non-negative integer number k
in K.

3. Let X’ be a (grounded) formula in which we replaced | B| by k5.

4. Check that x’ is true (can be done in poly-time since X’ is a grounded formula, it is a
Boolean formula on variable-free equations and inequations in K).

5. If not we reject.

6. We now build a standard QFBAPA formula 6 = A 5 constraint(B) where:

traint(B) =
constraint(B) {|B| > limit if kg = +o0Kk

where l¢mit is the maximum number that is considered as infinity in K.

7. Run a non-deterministic poly-time algorithm for the QFBAPA satisfiability on J. Accepts if
it accepts. Otherwise reject.

The algorithm runs in poly-time. Guessing a number n g is in poly-time since it consists in guessing
n bits (n in unary). Step 4 is just doing the computations in K. In Step 6, § can be computed in
poly-time.

If x is QFBAPA satisfiable, then there is a solution o such that o = x. At step 2, we guess
np = |o(B)|k. The algorithm accepts the input.

Conversely, if the algorithm accepts its input, x’ is true for the chosen values ng. § is satisfiable. So
there is a solution o such that o = ¢. By the definition of constraint, o = x. O

Remark 14. If the number n of bits to represent K is given in unary and if K is "modulo”,
then the satisfiability problem in QFBAPA is also in NP. The proof is similar except than now
constraint(B) = (|B| = kp + Ldp) where dp is a new variable.

Proposition 8. tr(y) is computable in exponential-time in || and n.

Proof. In order to create tr(y), we write an algorithm where each big conjunction, big disjunction,
big union and big sum is replaced by a loop. For instance, A ; AH is replaced by two inner loops
over Hintikka sets. Note that we create check whether a candidate H is a Hintikka set in exponential
time in n since Point 4 can be checked in exponential time in n (thanks to our loose assumption on
the computability of [[a]] in exponential time in n. There are 2™/*/ many of them. In the same way,
Arek is aloop over 2™ values. There is a constant number of nested loops, each of them iterating
over an exponential number (in n and || of elements. QED. O

Proposition 9. Let p be a formula of qL. ¢ is satisfiable iff tr(p) is QFBAPA satisfiable.

Proof. Let G,u such that G,u |= . We set 0(Xyg=x) := {v | [']]go = k} and o(Xp) =
{v| G,vE H} where G,u = H means that for all ¥ = k € H, we have [[¢]|¢,, = k. For all
Hintikka sets H such that there is v such that G, v = H, we set: o(Sg) := {w | vEw}.

We check that o |= ¢r(¢p). First, o satisfies Formulas 1 and 2 by definition of o. Now, o also satisfies
Formula 3. Indeed, if agg(?') = k € H, then if there is no H-vertex in G then the implication is
true. Otherwise, consider the H-vertex v. But, then by definition of X,g,(9)—. [[agg(¥)]]c,. = k.
But then the semantics of agg exactly corresponds to), [Sy N Xy—x/| x k" = k. Indeed, each
Sz N Xy—p -successor contributes with &’. Thus, the contribution of successors where ¥ is k&’ is
|SH N Xo—p/| X K.

15

Under review as a conference paper at ICLR 2026

Formula 4 is also satisfied by o. Actually, let k such that o |= Xaggy(9)=k = U. This means that

the value of aggy(1)) (which does not depend on a specific vertex « but only on G) is k. The sum
> wek | Xo=w| x k' = k is the semantics of aggy(9) = k.

Finally, as G,u |= ¢, and ¢ is of the form ¥ > k, there is k' > k such that [[J]]¢.. = k’. So
Xo—ir #0

Conversely, consider a solution o of tr(y). We construct a graph G = (V, E) as follows.

V:=oU)
E := {(u,v) | forsome H,u € 0(Xpg)andv € o(Sg)}
£(v); := k wherev € X,

i.e., the set of vertices is the universe, and we add an edge between any H-vertex u and a vertex
v € o(Sk), and the labeling for features is directly given X,.—x. Note that the labeling is well-
defined because of formulas 1 and 2.

As o |= | X,| > 1, there exists u € o(X,,). Let us prove that G, u = ¢. By induction on 9’, we
prove that u € X =, implies [[(']] ¢, = k. The base case is obtained via the definition of ¢. Cases
for +, x and « are obtained because each vertices is in some o (X) for some H. As the definition of
Hintikka set takes care of the semantics of +, x and «, we have [[¥1 +Y2]]c.u = [[91]]cu +[[P2]] G us
etc.

lagg(lau = Bojuesl[Vlc and [[aggy(V)]]au = Lwvev[[¥]]a, hold because of o satisfies
respectively formula 3 and 4. O

Theorem 11. The satisfiability problem in qL is NEXPTIME-hard, and so is the ACR-GNN verifica-
tion task VT3. The ACR-GNN verification tasks VT1 and VT2 are coNEXPTIME-hard.

Proof. We reduce the NEXPTIME-hard problem of deciding whether a domino system D =
(D, V, H), given an initial condition wy . .. w,—1 € D™, can tile an exponential torus Tobies| (2000).
In the domino system, D is the set of tile types, and V and H respectively are the respectively vertical
and horizontal color compatibility relations. We are going to write a set of modal ¢£ formulas that
characterize the torus Z?"*! x 7Z?"*1 and the domino system. We use 2n + 2 features. We use
o, .. Tn—1,and Yo, ..., Yn—1, to hold the (blnary -encoded) coordinates of vertices u; ,, in the torus.
We use the feature x v to denote a vertex u ‘on the way north’ (when xzn = 1) and zg to denote a
vertex up ‘on the way east’ (when g = 1), with abbreviations o := zy = 1,and pg := 2 = 1.
See Figure[2]

For every n € N, we define the following set of formulas. 7;, =

{ Oylen=1Vay=0) , Oy(zg =1Vag =0),

Og(Ajzo (i =1V a; = 0)) : Og(ApZo(yi = 1V y; = 0)),
Og((en =1A2p=1)) ; Og(=(en Ver) — agg(l) =2),
Oy(=(pn V¢E) = (agg(zn) = 1)) Oy(~(en V vE) = (agg(zr) = 1)),
Oy (e — agg(l) =1)) Oy(pp =1 agg(1) = 1),
05 $(0,0)) Oy Pran—1,20-1)s
Dg((SDN vV QOE) — (peast) y . Dg(:‘(@i\f \ L)OE) — @north)v
<>§2 x2" (SON V. QDE)v 052 X2) 052 X2 0B }

where ©(0.0) = Ap—g @i = 0A Aj—g%i = 0,and @(on_120_1) = Ni g i = LAN gy = 1

represent two nodes, namely those at coordinates (0, 0) and (2 —1,2™ —1). The formulas ¢y, 4.+, and
Yeast €nforce constraints on the coordinates of states, such that going north increases the coordinate
encoding using the x; features by one, leaving the y; features unchanged, and going east increases
coordinate encoding using the y; features by one, leaving the z; features unchanged. For every

16

Under review as a conference paper at ICLR 2026

formula ¢, Veast.q stands for J(wgr — Op) and VYnorth.¢ stands for J(on — Op).

n—1 k—1

enoren =\ (/\ (&j = 1)) = (((zx = 1) = Vnorth.(z), = 0)) A ((z), = 0) — Ynorth.(zx = 1)))A
k=0 j=0
n—1 k-1
/\((x; =0)) = (((z = 1) = Vnorth.(zx, = 1)) A ((zr, = 0) — Vnorth.(zx = 0)))A
k=0 j=0

n—1

—~
—~

(yr = 1) = Vnorth.(yx = 1)) A ((yx = 0) = Vnorth.(yx = 0)))

k=0
n—1 k—1
Peast = [\ (/\ (5 = 1)) = (((4yr = 1) = Veast.(yr. = 0)) A ((yr. = 0) = Veast.(yx = 1)))A
k=0 j=0
n—1 k-1
(V (y; =0)) = (((yx = 1) = Veast.(yp = 1)) A ((yx = 0) — Veast.(yx = 0)))A
k=0 j=0

(((x = 1) = Veast.(zr, = 1)) A ((z = 0) — Veast.(zx, = 0)))

The problem of deciding whether a domino system D = (D, V, H), given an initial condition
wy ... w,—1 € D™, can tile a torus of exponential size can be reduced to the problem satisfiability in
gL, checking the satisfiability of the set of formulas T'(n, D, w) = T,, U Tp U T,,,, where T, is as
above, T'p encodes the domino system, and 7, encodes the initial condition as follows. We define

Tp =1 U4(Agep(ra=1Vra=0),

Og(—(en Ver) = (Vaep pa)),

Og(=(en vV er) = (Adep /\d/ep\{d} —(pa A ear))),
Og(Adep(pa = (Yeast. \ 4 gnem a))),
Og(Adep(a = (Ynorth.\ g gnev ea))) }

where for every d € D, there is a feature x4 and ¢, := x4 = 1. Finally, we define
Tw={ DOg(¢©0,0) = Puwo)s---+0g(P(n-1,0) = Puw._1) }

The size of T'(n, D, w) is polynomial in the size of the tiling problem instance, that is in |D| +
|H| + |V| + n. The rest of the proof is analogous to the proof of (Tobies| [2000, Corollary 3.9). The
NEXPTIME-hardness of ¢£ follows from Lemma [2]and (Tobies| 2000, Corollary 3.3) stating the
NEXPTIME-hardness of deciding whether a domino system with initial condition can tile a torus of
exponential size.

For the complexity of ACR-GNN verification tasks, we observe the following.

1. We reduce the satisfiability problem in (modal) ¢£ (restricted to graded modal logic + graded
universal modality, because it is sufficient to encode the tiling problem) to VT3 in poly-time
as follows. Let ¢ be a ¢£. We build in poly-time an ACR-GNN A that recognizes all
pointed graphs. We have ¢ is satisfiable iff [[¢]] N [[A]] # @ So vT3 is NEXPTIME-hard.

2. The validity problem of ¢£ (dual problem of the satisfiability problem, i.e., given a formula
©, is true in all pointed graphs G, u?) is coNEXPTIME-hard. We reduce the validity
problem of gL to VT2. Let ¢ be a ¢£ formula. We construct an ACR-GNN A that accepts
all pointed graphs. We have ¢ is valid iff [[A]] C [[¢]]. So VT2 is coNEXPTIME-hard.

3. We reduce the validity problem of ¢£ to VT1. Let ¢ be a ¢£ formula. (again restricted to
graded modal logic + graded global modalities as for point 1). So following |Barcel? et al.
(2020), we can construct in poly-time an ACR-GNN A that is equivalent to ¢ (by Barcelo
et al.|(2020). We have v is valid iff [[T]] C [[A]]. So VT1 is coNEXPTIME-hard.

O

17

Under review as a conference paper at ICLR 2026

Theorem 13. The satisfiability problems with bounded number of vertices are NP-complete, so is
ACR-GNN verification task VT’ 3, while the verification tasks VT’ 1 and VT’ 2 are coNP-complete.

Proof. NP upper bound is obtained by guessing a graph with at most IV vertices and then check that ¢
holds. The obtained algorithm is non-deterministic, runs in poly-time and decides the satisfiability
problem with bounded number of vertices. NP-hardness already holds for agg-free formulas by
reduction from SAT for propositional logic (the reduction is mod2expr, see Lemma 2)).

For the complexity of the bounded ACR-GNN verification tasks, we observe the following.

1. NP upper bound is also obtained by guessing a graph with at most IV vertices and then
check. For the lower bound, we reduce (propositional) SAT to VT’3 in poly-time as follows.
Let ¢ be a propositional formula. We build in poly-time an ACR-GNN A that recognizes all
pointed graphs. We have ¢ is satisfiable iff [[]] N [[A]] # 0 So VT’3 is NP-hard.

2. coNP upper bound corresponds to a NP upper bound for the dual problem: guessing a
graph with at most N vertices which is recognizes by A but in which ¢ does not hold.
The validity problem of propositional logic (dual problem of the satisfiability problem,
i.e., given a formula ¢, is ¢ true for all valuations) is coNP-hard. We reduce the validity
problem of propositional logic to VT’2. Let ¢ be a propositional formula. We construct an
ACR-GNN A that accepts all pointed graphs. We have ¢ is valid iff [[A]] C [[¢]]. So vT’2
is coNP-hard.

3. coNP upper bound is obtained similarly. For the lower bound, we reduce the validity
problem of propositional logic to VT’ 1. Let v be a propositional formula. So following
Barcel6 et al.| (2020), we can construct in poly-time an ACR-GNN A that is equivalent to 1)
(by Barcel6 et al.|(2020)). We have ¢ is valid iff [[T]] C [[A]]. So vT’1 is coNP-hard.

B PROTOTYPE VERIFICATION OF ACR-GNNS

B.1 PERFORMANCE

We propose the first implementation to serve as a proof of concept, and a baseline for future research.
The prototype directly transforms an instance of a ACR-GNN satisfiability problem into a C program.
The C program is then verified by the model checker ESBMC (Menezes et al., [2024).

We report in Table [2] the performance of our prototype on a very small GNN A, (three layers
of input and output dimensions of three). The implementation can be found in the supplementary
material.

Number of vertices Time (s) 301 |
1 0.089 < 20| .
2 0.103 £ 100 |
3 0.845 =
4 2.576 U= ‘]
5 10.406 1 2 3 4 5 6
6 32.667 Number of vertices

Table 2: Time for solving the ACR-GNN satisfiability problem on the ACR-GNN A4, with varying
number of vertices.

Expectedly, the experimental results reveal a bad scalability. Efficient encoding into Satisfiability
Modulo Theory (SMT) is a research area of its own, and we hope that the machine learning and
verification research communities will find interesting the challenge of making GNN verification
practical.

18

Under review as a conference paper at ICLR 2026

B.2 CHECKING DISTRIBUTIVITY

We provide C source code for checking distributivity. The reader may run the model checker ESBMC
on it to see whether distributivity holds or not.

C EXTENSION OF LOGIC K* AND ACR-GNNS OVER Z

A (labeled directed) graph G is a tuple (V| E, £) such that V' is a finite set of vertices, E CV x V a
set of directed edges and ¢ is a mapping from V' to a valuation over a set of atomic propositions. We
write £(u)(p) = 1 when atomic proposition p is true in u, and £(u)(p) = 0 otherwise. Given a graph
G and vertex u € V, we call (G, u) a pointed graph.

C.1 LogIc

Consider a countable set Ap of propositions. We define the language of logic K %% as the set of
formulas generated by the following BNF:

pu=plopleVe|£>0
Eu=cllo|te |t |E+ElexE

where p ranges over Ap, and c ranges over Z. We assume that all formulas are represented as
directed acyclic graph (DAG) and refer by the size of ¢ to the size of its DAG representation.

Atomic formulas are propositions p, inequalities and equalities of linear expressions. We consider
linear expressions over 1 and fip and fi,¢0. The number T is equal to 1 if ¢ holds in the current
world and equal 0 otherwise. The number f¢ is the number of successors in which ¢ hold. The
number f,¢ is the number of worlds in the model in which ¢ hold. The language seems strict but we
write & < & forés — & >0, = 0for (€ > 0) A (=€ > 0), etc.

As in modal logic, a formula ¢ is evaluated in a pointed graph (G, u) (also known as pointed Kripke
model). We define the truth conditions (G, u) = ¢ (¢ is true in u) by

(G,u) =p it £(u)(p) =1,

(G,u) E - if itis not the case that (G, u) = ¢,
(Gu) =y i (G, u) = ¢ and (G, u) = 1),
(Gu)EE>0 if [[¢lew >0,

and the semantics [[{]]G, ., (the value of £ in w) of an expression £ by mutual induction on ¢ and £ as
follows.

dleu =c,
b4 Ellon = [Eden+ (€l
cx&leu =cX [[f]](G,ua N
1 if (Gu) EFo
[elle B {O otherwise,
tollgu =|{veV|(uv) € Eand(G,v) E ¢}
fo¢llcu ={veVI](Gv) Ee}

A local modality [can be defined as Oy := (—1) x f(—¢) > 0. That is, to say that ¢ holds
in all successors, we say that the number of successors in which = holds is zero. Similarly, a
global/universal modality can be defined as O ¢ := (—1) x f,(—¢) > 0.

C.2 AGGREGATE-COMBINE GRAPH NEURAL NETWORKS

In this section, we consider a detailed definition of quantized (global) Aggregate-Combine GNNs
(ACR-GNN) Barcel¢ et al.[(2020), also called message passing neural networks |Gilmer et al.[(2017)).

A (global) ACR-GNN layer L = (comb, agg, agg,) is a tuple where comb : K3™ — K™ is a
so-called combination function, agg is a so-called local aggregation function, mapping multisets

of vectors from R™ to a single vector from K™, agg, is a so-called global aggregation function,

19

Under review as a conference paper at ICLR 2026

also mapping multisets of vectors from K™ to a single vector from K". We call m the input
dimension of layer £ and m’ the output dimension of layer L. Then, a (global) ACR-GNN is a
tuple (LD, ..., L5 cls) where LV, ... L) are L. ACR-GNN layers and cls : K™ — {0,1} isa
classification function. We assume that all GNNs are well-formed in the sense that output dimension
of layer £(*) matches input dimension of layer £(*+1) as well as output dimension of £(%) matches
input dimension of cls.

Let G = (V, E) be a graph with atomic propositions p1,...,pr and A = (L1, ... LT cls)
an ACR-GNN. We define 7o : V — {0,1}*, called the initial state of G, as xo(u) =
(U(u)(p1),--.,4(u)(pg)) for all w € V. Then, the i-th layer of .A computes an updated state of

G by
z;(u) == comb(z;—1(u), agg({{zi-1(v) | wv € E}}), aggy({{zi-1(v) | v € V'}}))

where agg, agg,, and comb are respectively the local aggregation, global aggregation and combination
function of the i-th layer. Let (G,) be a pointed graph. We write A(G,) to denote the application
of A to (G, u), which is formally defined as A(G,u) = cls(xr(u)) where z, is the state of G
computed by A after layer L. Informally, this corresponds to a binary classification of vertex w.

We consider the following form of ACR-GNN .A: all local and global aggregation functions are given
by the sum of all vectors in the input multiset, all combination functions are given by comb(z,y, z) =
F(xC + yAy 4+ zAs + b) where &(x) is the componentwise application of the activation function
o (x) with matrices C, A; and A5 and vector b of K parameters, and where the classification function
is cls(xz) = >, a;x; > 1, where a; are from K as well.

We note [[.A]] the set of pointed graphs (G, u) such that A(G,u) = 1. An ACR-GNN A is satisfiable
if [[A]] is non-empty. The satisfiability problem for ACR-GNNss is: Given a ACR-GNN A4, decide
whether A is satisfiable.

D CAPTURING GNNSs WITH Kfs

In this section, we exclusively consider ACR-GNNs where K = Z and o is truncated ReLU
o(z) = max(0, min(1, x)).

We demonstrate that the expressive power of (global) ACR-GNNs over Z, with truncated ReLU
activation functions, and K*¥s, is equivalent. Informally, this means that for every formula ¢ of
Kty , there exists an ACR-GNNs A that expresses the same query, and vice-versa. To achieve this,
we define a translation of one into the other and substantiate that this translation is efficient. This
enables ways to employ K %9 for reasoning about ACR-GNN.

We begin by showing that global ACR-GNNSs are at least as expressive as K %9 We remark that the
arguments are similar to the proof of Theorem 1 in|Nunn et al.| (2024).

Theorem 15. Let p € K %9 be a Sformula. There is an ACR-GNN A, such that for all pointed
graphs (G, u) we have (G, u) |= ¢ if and only if A, (G,u) = 1. Furthermore, A, can be built in
polynomial time regarding the size of .

Proof sketch. We construct a GNN A, that evaluates the semantics of a given K %9 formula o for
some given pointed graph (G, v). The network consists of . layers, one for each of the n subformulas
; of ¢, ordered so that the subformulas are evaluated based on subformula inclusion. The first
layer evaluates atomic propositions, and each subsequent messages passing layer /; uses a fixed
combination and fixed aggregation function to evaluate the semantics of ;.

The correctness follows by induction on the layers: the i-th layer correctly evaluates ¢; at each
vertex of (G, assuming all its subformulas are correctly evaluated in previous layers. Finally, the
classifying function cls checks whether the n-th dimension of the vector after layer /,,, corresponding
to the semantics of ¢,, for the respective vertex v, indicates that ¢,, = ¢ is satisfied by (G, v). The
network size is polynomial in the size of ¢ due to the fact that the total number of layers and their
width is polynomially bounded by the number of subformulas of . A full formal proof is given in

Appendix O

20

Under review as a conference paper at ICLR 2026

Theorem 16. Let A be a GNN. We can compute in polynomial time wrt. |A| a K bt -formula ¢ 4,
represented as a DAG, such that [[A]] = [[¢.4]]-

Proof sketch. We construct a K “%9_formula (4 that simulates the computation of a given GNN
A. For each layer [; of the GNN, we define a set of formulas ¢; ;, one per output dimension, that
encode the corresponding node features using linear threshold expressions over the formulas from
the previous layer. At the base, the input features are the atomic propositions p1, . .., D, -

Each formula ¢; ; mirrors the computation of the GNN layer, including combination, local aggre-
gation, and global aggregation. The final classification formula ¢ 4 encodes the output of the linear
classifier on the top layer features. Correctness follows from the fact that all intermediate node
features remain Boolean under message passing layers with integer parameters and truncated ReLU
activations. This allows expressing each output as a Boolean formula over the input propositions.
The construction is efficient: by reusing shared subformulas via a DAG representation, the total size
remains polynomial in the size of A. A more complete proof is given in Appendix[D.2] O

D.1 PROOF OF THEOREM/[I3l

Proof of Theorem([I3] Let ¢ be a K %9 formula over the set of atomic propositions p1, . . ., Pm. Let
©1, ..., pn denote an enumeration of the subformulas of ¢ such that p; = p; fori < m, ¢, = ¢,
and whenever ¢; is a subformula of ¢, it holds that 7 < j. Without loss of generality, we assume
that all subformulas of the form £ > 0 are written as

Dok Vot D ki D kb —e 20,

jet e e
for some index sets J, J', J” C {1,...,n}.

We construct the GNN A, in a layered manner. Note that A, is fully specified by defining the
combination function comb;, including its local and global aggregation, for each layer [; with i €
{1,...,n} and the final classification function cls. Each comb; produces output vectors of dimension
n. The first layer has input dimension m, and comb, is defined by comb; (z,y, z) = (z,0,...,0),
ensuring that the first m dimensions correspond to the truth values of the atomic propositions
D1, - - -, Pm, While the remaining entries are initialized to zero. Note that comb; is easily realized by
an FNN with trReLU activations. For 7 > 1, the combination function comb; is defined as

comb;(z,y,z) = ¢(xC + yA, + zAz + b),
where C, Ay, As are n X n matrices corresponding to self, local (neighbor), and global aggregation
respectively, and b € Z"™ is a bias vector. The parameters are defined sparsely as follows:
e (y; = 1forall ¢ < m (preserving the atomic propositions),
e If p; = —pj,then Cj; = —land b; = 1,
s If ; = ¢; Vg, thenCj; = C; =1, and

C Ui =3 sk Loy + Xjies Ky -8+ D i gu Ky - fgpjr — ¢ 2 0, then
Cji = k‘j, Al,j/i = kj/, Ag,j/i = k‘j//, by =—c+1.

Note that each comb; has the same functional form, differing only in the non-zero entries of its
parameters. The classification function is defined by cls(z) = x,, > 1.

Let I; denote the ith layer of A, and fix a vertex v in some input graph. We show, by induction
on ¢, that the following invariant holds: for all j < 4, (z;(v)); = 1if and only if v = ¢;, and
(x;(v)); = 0 otherwise. Assume that ¢ = 1. By construction, z;(v) contains the truth values of
the atomic propositions py, . . ., pn, in its first m coordinates. Thus, the statement holds at layer 1.
Next, assume the statement holds for layer x;_1. Let j < <. By assumption, the semantics of ¢, are
already correctly encoded in x;_; and preserved by comb; due to the fixed structure of C, A1, As,
and b. Now consider j = 4. The semantics of all subformulas of ¢, are captured in x;_1, either at
the current vertex or its neighbors. By the design of comb;, which depends only on the values of

21

Under review as a conference paper at ICLR 2026

relevant subformulas, we conclude that ; is correctly evaluated. This holds regardless of whether ¢;
is a negation, disjunction, or numeric threshold formula. Thus, the statement holds for all 7, and in
particular for z,,(v) and ¢,, = . Finally, the classifier cls evaluates whether z,,(v),, > 1, which is
equivalent to G, v |= . The size claim is obvious given that n depends polynomial on the size of .
We note that this assumes that the enumeration of subformulas of ¢ does not contain duplicates. [J

D.2 PROOF OF THEOREM [16]

Proof of Theorem[16] Let Abe a GNN composed of layers l1, . . ., [;, where each comb; has input
dimension 2m;, output dimension n;, and parameters C;, A; 1, A; 2, and b;. The final classification
is defined via a linear threshold function cls(z) = a1x1 + « -+ + ap, Zn, > 1. We assume that the
dimensionalities match across layers, i.e., m; = n;_; for all ¢ > 2, so that the GNN is well-formed.

We construct a formula ¢ _4 over the input propositions py, . . . , pm, inductively, mirroring the structure
of the GNN computation.

We begin with the first layer /;. For each j € {1,...,n;}, we define:

miy

prj = Z(Cl)kj “pr + (A1,0)ks - 8ox + (Ar2)is - fopr + (01); = 1.
k=1
Now suppose that we have already constructed formulas ¢;_1 1,...,p;—1 n, , for some layer i > 2.
Then, for each output index j € {1,...,n;}, we define:
i =2 (Cidkj - 10im1 s+ (Ai)kj - Bpi-1k + (Ai2)kj - i1+ (Bi); > 1.
k=1

Once all layers have been encoded in this way, we define the final classification formula as

YA = le]]@kJ + -+ ank]](pk,nk > 1.

Let GG, v be a pointed graph. The correctness of our translation follows directly from the following
observations: all weights and biases in .4 are integers, and the input vectors x((u) assigned to
nodes u in G are Boolean. Moreover, each layer applies a linear transformation followed by a
pointwise truncated ReLLU, which preserves the Boolean nature of the node features. It follows that
the intermediate representations x; (v) remain in {0, 1}" for all . Consequently, each such feature

vector can be expressed via a set of Boolean K %% formulas as constructed above. Taken together,
this ensures that the overall formula ¢ 4 faithfully simulates the GNN’s computation.

It remains to argue that this construction can be carried out efficiently. Throughout, we represent
the (sub)formulas using a shared DAG structure, avoiding duplication of equivalent subterms. This
ensures that subformulas ;1 , can be reused without recomputation. For each layer, constructing all
©;,5 Tequires at most n; - m; steps, plus the same order of additional operations to account for global
aggregation terms. Since the number of layers, dimensions, and parameters are bounded by |.4], and
each operation can be performed in constant or linear time, the total construction is polynomial in the
size of A. O

E DESCRIPTION LOGICS WITH CARDINALITY CONSTRAINTS

E.1 ALCQ AND T¢BOXES CONSISTENCY

ALCQ is the Description Logic adding qualified number restrictions to the standard Description
Logic ALC, analogously to how Graded Modal Logic extends standard Modal Logic with graded
modalities.

Let N¢c and Np be two non-intersecting sets of concept names, and role names respecively. A
concept name A € N¢ is an ALCQ concept expressions of ALCQ. If C is an ALCQ concept
expression, so is ~C". If C; and C5 are ALC Q concept expressions, then so is Cp M Cs. If C'is an
ALCQ concept expression, R € Ng,and n € N, then > n R.C'is an ALCQ concept expression.

22

Under review as a conference paper at ICLR 2026

(0,2 — 1) (2" —1,2" — 1) —[E]

0,1) ——E—> (1, 1)

(0,0) ——[E}— (1,0) (2™ —1,0) —[E]

Figure 3: Encoding a torus of exponential size with an ALC Q-T-Box with one role.

A cardinality restriction of ALCQ is is an expression of the form (> n C) or (< n C), where C an
ALCQ concept expression and n € N.

An ALCQ-T¢Box is a finite set of cardinality restrictions.

An interpretation is a pair [= (A',-T), where A is a non-empty set of individuals, and - is
a function such that: every A € N¢ is mapped to AT C A, and every R € Np is mapped
to RT C AT x Al. Given an element of d € A, we define RI(d) = {d' | (d,d') € Rl;r.
An interpretation [is extended to complex concept descriptions as follows: (-C)! = AL\ C1;
(CinCy)l =cinci;and (> n R.C) = {d| |R!(d) N C| > n}.

An interpretation I satisfies the cardinality restriction (> n C) iff |Cf| > n and it satisfies
the cardinality restriction (< n C) iff |C!| < n. A TgBox TC is consistent if there exists an
interpretation that satisfies all the cardinality restrictions in 7'C.

Theorem 17 (Tobies| (2000)). Deciding the consistency of ALC Q-TcBoxes is NEXPTIME-hard.

The proof can be slightly adapted to show that the result holds even when there is only one role.

Some abbreviations are useful. For every pair of concepts C' and D, C' — D stands for -C' U D. For
every concept C, role R, and non-negative integer n, we define: (< n R.C) :=—(> (n+ 1) R.C),
(VR.C):=(<0R-C),¥VC):=(<£0-C), (=nRC):=(>nRC)N(<n R.C), and
(=nC):=C=nC)N(<nC).

Theorem 18. Deciding the consistency of ALCQ-TcBoxes is NEXPTIME-hard even if |[Nr| = 1.

Proof. Let next be the unique role in Nr. We use the atomic concepts N to denote an individual
‘on the way north” and F to denote an individual ‘on the way east’. See Figure 3]

For every n € N, we define the following ALC Q-T-Box.

T,={ (V-(NUE)— (=1next.N))
(VN — (= 1lnext.T))

(V=(NUE) = (=1next.E))
(VE — (= 1next.T))
EZ 1 Cgn_y12n_1)

(=1C00) :
(v_'(NI—lE) _>D€(lSt)) v_'(NuE) _>Dnorth)
(< @ =2 ~(NUE), (< @ x2)N), (< (2 x 2" B)

such that the concepts C(g gy, C(2n_1,2n_1) are defined like in (Tobies, [2000, Figure 3), and so
are the concepts Dy ortp, and D.,g, except that for every concept (', Veast.C' now stands for
Vnext.(E — Vnext.C') and Vnorth.C now stands for Vnext.(N — Vnext.C).

23

Under review as a conference paper at ICLR 2026

The problem of deciding whether a domino system D = (D, V, H), given an initial condition
wp . .. Wn—1, can tile a torus of exponential size can be reduced to the problem of consistency of
ALCQ-TeBoxes, checking the consistency of T'(n, D, w) = T,, U Tp U T,,, where T, is as above,
Tp encodes the domino system, and T}, encodes the initial condition as follows.

Tp={ (Y=(NUE)—= (sep Ca)),
(VA(NUE) = (Mgep lNaepyfay 7(CaNCar))),
(V [Naep(Ca — (Veast. U(d,d/)eH Ca))),
(V [aep(Ca = (Ynorth.| | 4 gnyev Car))) }

Tw = { (V C(O,O) — Cwo), ceey (V O(n—l,O) — CU]n,fl) }
The rest of the proof remains unchanged. O

E.2 DESCRIPTION LOGICS WITH GLOBAL AND LOCAL CARDINALITY CONSTRAINTS

The Description Logic ALCSCCTT (Baader et al., [2020) extends the basic Description Logic
ALC (Baader et al.,[2017) with concepts that capture cardinality and set constraints expressed in
the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic (QFBAPA) (Kuncak &
Rinard, [2007).

We assume that we have a set of set variables and a set of integer constants.

E.2.1 QFBAPA

A QFBAPA formula is a Boolean combination (A, V, —) of set constraints and cardinality constraints.

A set term is a Boolean combination (U, N,) of set variables, and set constants U, and 0. If S is a
set term, then its cardinality |S| is an arithmetic expressions. Integer constants are also arithmetic
expressions. If 77 and T5 are arithmetic expressions, so is T + T5». If T is an arithmetic expression
and c is an integer constant, then ¢ - 7' is an arithmetic expression.

Given two set terms B; and Bs, the expressions By C By and By = By are set constraints.
Given two arithmetic expressions 77 and 75, the expressions 171 < T and T} = T5 are cardinality
constraints. Given an integer constant ¢ and an arithmetic expression 7', the expression ¢ dvd T is a
cardinality constraint.

A substitution o assigns () to the set constant (), a finite set o ({/) to the set constant I/, and a subset
of o(U) to every set variable. A substitution is first extended to set terms by applying the standard
set-theoretic semantics of the Boolean operations. It is further extended to map arithmetic expressions
to integers, in such that way that every integer constant c is mapped to c, for every set term B, the
arithmetic expression | B| is mapped to the cardinality of the set o(B), and the standard semantics for
addition and multiplication is applied.

The substitution o (QFBAPA) satisfies the set constraint By C By if 0(B;) C o(Bs2), the set
constraint By = By if 0(B;) = o(Bz), the cardinality constraint 73 < T if o(T1) < o(Tz), the
cardinality constraint 77 = T3 if 0(T) = o(T%), and the cardinality constraint ¢ dvd T if ¢ divides
o(T).

E.2.2 ALCSCCTT

We can now define the syntax of ALCSCC™™ concept descriptions and their semantics. Let N¢ be
a set of concept names, and Ny be a set of role names, such that No N N = (). Every A € N¢
is a concept description of ALCSCCT™. Moreover, if C, Cy, Cs, ... are concept descriptions of
ALCSCCH, then so are: Cy M Cy, CLUCs, ~C, and sat(x), where x is a set or cardinality QFBAPA
constraint, with elements of Ny and concept descriptions C1, Co, . .. used in place of set variables.

A finite interpretation is a pair I = (A1), where A’ is a finite non-empty set of individuals, and
-I'is a function such that: every A € N is mapped to A’ C A, and every R € N is mapped to
RT C AT x Al. Given an element of d € A, we define R (d) = {d' | (d,d’) € R'}.

The semantics of the language of ALCSCCt ™" makes use QFBAPA substitutions to interpret QFBAPA
constraints in terms of ALCSCC*™ finite interpretations. Given an element d € A, we can define

24

Under review as a conference paper at ICLR 2026

the substitution o in such a way that: o (U) = Al, c}(0) = 0, and A € N and R € N, are
considered QFBAPA set variables and substituted as o (A) = A’, and o (R) = R!(d).

The finite interpretation I and the QFBAPA substitutions Ué are mutually extended to complex ex-
pressions such that: ¢(Cy M Cy) = (C1 M Co)! = CINCL; ol(CLUC) = (CLUCr)! =
cluci; ol(-C) = (-C)! = AT\ C!; and ol(sat(x)) = (sat(x))! = {d' € Al |
ol, (QFBAPA) satisfies x}.

Definition 19. The ALCSCC'™ concept description C is satisfiable if there is a finite interpretation
I such that CT # (.

Theorem 20 (Baader et al. (2020)). The problem of deciding whether an ALCSCCT™ concept
description is satisfiable is NEXPTIME-complete.

F COMPLEXITY OF THE SATISFIABILITY OF K% AND ITS IMPLICATIONS FOR
ACR-GNN VERIFICATION

In this section, we establish the complexity of reasoning with Big

Instrumentally, we first show that every K %3 formula can be translated into a K**¢ formula that is
equi-satisfiable, and has a tree representation of size at most polynomial in the size of the original
formula. An analogous result was obtained in Nunn et al.| (2024)) for K f. It can be shown using a
technique reminiscent of [T'seitin| (1983)) and consisting of factorizing subformulas that are reused in
the DAG by introducing a fresh proposition that is made equivalent. Instead of reusing a ‘possibly
large’ subformula, a formula then reuses the equivalent ‘small’ atomic proposition.

Lemma 21. The satisfiability problem of K “%9 reduces to the satisfiability of K “a with tree
formulas in polynomial time.

Proof. Letpbea K “*9 formula represented as a DAG. For every subformula v (i.e., for every node
in the DAG representation of (), we introduce a fresh atomic proposition p,,. We can capture the
meaning of these new atomic propositions with the formula ® := /\w node in the DAG S€M(10) where:

sem (¥ V X) = pyvy < (Dy V Py)
sem(—p) =
sem(€>0) :=peso < & >0

(€ =c (a+&) =&+ (cx§ =cx¢
(1) :=1p (#)" = tpy (8,9)" = 4Py
Now, define ¢; := p, A Oy®, where 0y ® := (—1) x f,(=®) > 0, enforcing the truth of ® in every
vertex. The size of its tree representation is polynomial in the size of . Moreover, ; is satisfiable iff
(is satisfiable.

O

Theorem 22. The satisfiability problem of K “%a \ith tree formulas is NEXPTIME-complete.

Proof. For membership, we translate the problem into the NEXPTIME-complete problem of con-
cept description satisfiability in the Description Logics with Global and Local Cardinality Con-
straints [Baader et al. (2020), noted ALCSCCT. The Description Logic ALCSCCT™T uses the
Boolean Algebra with Presburger Arithmetic |Kuncak & Rinard| (2007)), noted QFBAPA, to formalize
cardinality constraints. See Section for a presentation of ALCSCC™™ and QFBAPA.

Let ¢p be a K %9 formula.

For every proposition p occurring in ¢, let A, be an ALCSCCT™ concept name. Let R be an

ALCSCC*™ role name. For every occurrence of T in ¢, let ZOO,, be an ALCSCC™ role name.
Z0O0O-roles stand for ‘zero or one’. The rationale for introducing ZOO-roles is to be able to capture
the value of 1y in ALCSCCT making it equal to the number of successors of the role Z 00, which

25

Under review as a conference paper at ICLR 2026

can then be used in QFBAPA constraints. A similar trick was used, in another context, in|Galliani
et al.| (2023)). Here, we enforce this with the QFBAPA constraint

xo= /\ ((1Z00,| =0V |Z00,| = 1) AT(p) = sat(|Z00,| = 1))
Te€wpo

which states that ZOO,, has zero or one successor, and has one successor exactly when (the translation
of) ¢ is true. The concept descriptions 7() and arithmetic expressions 7 () are defined inductively
as follows:

?(p) = Ap

7(—¢) = —7(p)
T(eVvy) = T()UT()
?Eﬁ)z 0) = sat(—1 < 7(§))
T(E1+&) = T(&) +7(6)
T(ex§) = 7T(c-§)

T(teo = |[RN7(p)|
%) = |Z0O,|
T(8) = [7(»)|

Finally, we define the ALCSCC™™ concept description C,, = T(i00) Msat(xo).

Claim 23. The concept description Cy, is ALCSCC T -satisfiable iff the formula g is K%
satisfiable. Moreover, the concept description C,, has size polynomial in the size of po.

Proof. From right to left, suppose that g is K %9 _satisfiable. It means that there is a pointed
graph (G,u) where G = (V,E) and u € V, such that (G,u) = ¢o. Let Iy = (Afo .10} be
the ALCSCC™*™ interpretation over N¢ and Ng, such that No = {A, | p a proposition in ¢g},
Nr ={R}U{ZOO, | Tp € o}, Alo =V, Al> = {v | v € V,(G,v) | p} for every p in o,
Rl> = E, ZOOL = {(v,v) | v € V,(G,v) |= ¢} for every T¢p in . We can show that u € CL0.
Basically 1Y is like G with the addition of adequately looping ZOO-roles. An individual in A has
exactly one ZOO,,-successor (itself), exactly when ¢ is true, and no successor otherwise; A,, is true
exactly where p is true, and the role R corresponds exactly to F.

From left to right, suppose that C.,, is ALCSCC* " -satisfiable. It means that there is an ALCSCCH™
finite interpretation Iy = (A’°,-70) and an individual d € A’ such thatd € C[2. Let G = (V, E) be
a graph such that V' = Ao, E = R, and ((d)(p) = 1iff d € AJ0. We can show that (G, d) = q.

Since there are at most || subformulas in g, the representation of ZOO,, for every subformula ¢
of g can be done in size log, (| |). For every formula ¢, the size of the concept description 7(¢) is
polynomial (at most O(n log(n))). The overall size of 7() is polynomial in the size of ¢, and so
is the size of sat(£p) (at most O(n?(log(n))?). O

The NEXPTIME-membership follows from Claim [23| and the fact that the concept satisfiability
problem in ALCSCC™™ is in NEXPTIME (Theorem [20)).

For the hardness, we reduce the problem of consistency of ALC Q-TcBoxes which is NEXPTIME-
hard (Tobies, [2000, Corollary 3.9). See Section[E.T|and Theorem [I§]that slightly adapts Tobies’ proof
to show that the problem is hard even with only one role.

We define the translation 7 from the set of ALCQ concept expressions and ALCQ cardinality
constraints, with only one role R.

T(A) = pa

7(=C) = —7(C)

7(C1UC2) = 7(Ch)Vz(Cy)

7(> nRC) = tr(C)+(-1)xn>0
1> nC) = 57(C) +(-1) xn>0
1< nC) = (21 x4r(C) +n>0

Under review as a conference paper at ICLR 2026

It is routine to check the following claim.

Claim 24. Let TC be an ALCQ-TcBox. T'C is consistent iff \ crc 7(X) is K**a_satisfiable.

Moreover, the reduction is linear. Hardness thus follows from the NEXPTIME-hardness of consis-
tency of ALC Q-T-Boxes. O

Lemma 2T and Theorem [22]yield the following corollary.
Corollary 25. The K hhg -satisfiability problem is NEXPTIME-complete.

Furthermore, from Theorem [T3| and Corollary we obtain the complexity of reasoning with
ACR-GNNs with truncated ReLLU and integer weights.

Corollary 26. Satisfiability of ACR-GNN with global readout, over Z and with truncated ReLU is
NEXPTIME-complete.

The decidability of the problem is left open in Benedikt et al.|(2024)) and in the recent long version
Benedikt et al.| (2025) when the weights are rational numbers. Corollary [26]answers it positively in
the case of integer weights and pinpoints the computational complexity.

G EXPERIMENTAL DATA AND FURTHER ANALYSES

In this section, we report on the application of dynamic Post-Training Quantization (PTQ) to
Aggregate-Combined Readout Graph Neural Networks (ACR-GNNs). Implemented in PyTorch|Ansel
et al.| (2024)); PyTorch Team! (2024a), dynamic PTQ transforms a pre-trained floating-point model
into a quantized version without requiring retraining. In this approach, model weights are statically
quantized to INT8, while activations remain in floating-point format until they are dynamically
quantized at compute time. This hybrid representation enables efficient low-precision computation
using INT8-based matrix operations, thereby reducing memory footprint and improving inference
speed. PyTorch’s implementation applies per-tensor quantization to weights and stores activations as
floating-point values between operations to balance precision and performance.

We adopt INT8 and QINTS representations as the primary quantization format. According to the
theory, INT8 refers to 8-bit signed integers that can encode values in the range [—128, 127]. In contrast,
QINTS, as defined in the PyTorch documentation |Ansel et al.|(2024); |PyTorch Team|(2024bic), is a
quantized tensor format that wraps INT8 values together with quantization metadata: a scale (defining
the float value represented by one integer step) and a zero-point (the INTS8 value corresponding to a
floating-point zero). This additional information allows QINTS tensors to approximate floating-point
representations efficiently while enabling high-throughput inference.

To evaluate the practical impact of quantization, we conducted experiments on both synthetic and real
datasets. The synthetic data setup was based on the benchmark introduced by Barcel? et al.| (2020)).
Graphs were generated using the dense Erdos—Rényi model, a classical method for constructing
random graphs, and each graph was initialized with five node colours encoded as one-hot feature
vectors. The dataset is structured as follows, as shown in Table The training set consists of 5000
graphs, each with 40 to 50 nodes and between 560 and 700 edges. The test set is divided into two
subsets. The first subset comprises 500 graphs with the same structure as the training set, featuring
40 to 50 nodes and 560 to 700 edges. The second subset contains 500 larger graphs, with 51 to 69
nodes and between 714 and 960 edges. This design allows us to evaluate the model’s generalization
capability to unseen graph sizes.

For this experiment, we used simple ACR-GNN models with the following specifications. We applied
the sum function for both the aggregation and readout operations. The combination function was
defined as: comb(x,y, z) = ¢(xC +yA+zR+Db), where & denotes the component-wise application
of the activation function. Following the original work, we set the hidden dimension to 64, used
a batch size of 128, and trained the model for 20 epochs using the Adam optimizer with default
PyTorch parameters.

We trained ACR-GNN on complex formulas FOC; for labeling. They are presented as a classifier
«;(z) that constructed as:

ao(2) := Blue(x), a1 (2) := 3V My (i (y) A —E(a,y))

27

Under review as a conference paper at ICLR 2026

Table 3: Dataset statistics summary.

Node Edge
Classifier Dataset Min Max Avg Min Max Avg

Train 40 50 45 560 700 630
D1 Testl 40 50 45 560 700 633
Test2 51 60 55 714 960 832

Train 40 50 45 560 700 630
D2 Testl 40 50 44 560 700 628
Test2 51 60 55 714 960 832

Train 40 50 44 560 700 629
D2 Testl 40 50 45 560 700 630
Test2 51 60 55 714 960 831

[N, M]

where 3 stands for “there exist between /N and M nodes”. satisfying a given property.

J=N J>M+1

Observe that each a;(z) is in FOCs, as 31N-M] can be expressed by combining and —

The data set has the following specifications: Erdos—Rényi graphs and is labeled according to av (),
as(x), and az(x):

* ap(z) := Blue(x)

o p1:ag(z) =380y (ag(y) A —E(2,y))
* pa: ag(z) = 3093y (ai(y) A —E(z,y))
* p3: ag(x) = 300y (as(y) A —~E(x,y))

In the original work, the authors made experiments with the two activation functions: ReL.U and
trReLU (truncated ReLU). The truncated ReLU, also referred to as ReL U1, clips activations to the
interval [0, 1]. It is equivalent to the HardTanh function restricted to this range:

(
o

0, ifz<0,
trReLU(z) = ¢z, if0<z <1,
1, ifz>1.

In our experiments, we employ the strategy described in [Barcel6 et al.| (2020), where accuracy is
calculated as the total number of correctly classified nodes across all nodes in all graphs in the
dataset. In these experiments, we used several types of activation functions: Piecewise linear (ReLU,
ReL U6, and trReL.U), Smooth unbounded (GELU and SiL.U), Smooth bounded (Sigmoid), and
Smooth ReLU-like (Softplus and ELU). The activation functions here influence node-level message
aggregation, feature combination, and global graph-level representation (readout). Here we present
the description for each of the activation functions. We present eight non-linear activation functions
in Figure | considered in our experiments (we used the implementation of PyTorch).

We presented the key aspects of each activation function (A/F) in Table

Table 4: Comparison of activation functions used in ACR-GNN experiments.

A/F Range Smoothness Key Properties / Notes

ReLU [0,00) Non-smooth (kink at 0) Simple, sparse activations; unbounded above.

ReLU6 [0,6] Non-smooth (kinks at 0 and 6) Bounded version of ReLU; robust under quantization.

trReLU [0,1] Non-smooth (piecewise linear) ~ Clipped ReLU; equivalent to HardTanh restricted to [0, 1].

GELU (—00,00) Smooth Probabilistic ReLU; smoother transitions.

Sigmoid (0,1) Smooth Squashing nonlinearity; prone to vanishing gradients.

SiLU (Swish) (—00,00) Smooth Combines ReLU and Sigmoid; unbounded; performs well in deep models.
Softplus (0, 00) Smooth Smooth approximation of ReLUs; strictly positive outputs.

ELU (—a,00) Smooth (except at 0) Allows negative values; improves gradient flow compared to ReLU.

28

Under review as a conference paper at ICLR 2026

Comparing Activation Functions

104 — ELWU
— RellU
— RelU6
= trRely
87 GELU
— Sigmoid
— SILU
| = softplus

Qutput (Activation fucntion(x))

-100 -75 -5.0 -2.5 0.0 25 5.0 75 10.0
Input (x)

Figure 4: Non-linear activation functions that influence were analyzed.

We trained the models on the dataset and collected the training time. This data is the first preliminary
step to analyze the influence of the activation function. Based on the data obtained, we can identify the
slowest and fastest activation functions. Table[5|presents the training times of ACR-GNN model across

Table 5: Training time (s) per classifier and activation function

ReLU ReLU6 tReLU GELU Sigmoid SiLU Softplus ELU

p1 1315.00 134994 142226 1386.15 3382.77 2886.43 3867.97 2667.60
pa 1665.08 137438 1450.75 1386.31 3078.93 2681.81 5737.33 2852.38
p3 147299 1528.14 144393 1563.24 284225 263273 3806.12 3007.42

datasets for classifiers p; and different activation functions. The results reveal substantial variability
depending on the activation function. Standard piecewise-linear activations, such as ReLLU, ReL U6,
and trReLU, consistently achieve the shortest training times, with values between 1315-1665,s. In
contrast, smoother nonlinearities such as SiLU, Softplus, and Sigmoid incur significantly longer
training times, often exceeding 2500s and reaching as high as 5737s for Softplus on ps. GELU
and ELU fall between these extremes, with moderate training costs (around 1380-3000s). Across
datasets, po is generally the most computationally demanding, while p; remains the least expensive
for most activations. Overall, the results indicate that the computational efficiency of training is
strongly activation-dependent, with simpler functions such as ReLU and ReL U6 offering the best
efficiency, while smoother activations introduce significant overhead.

Table 6: Slowest and fastest activation functions across layers and classifiers.

Y4 P2 p3
Layer Fastest Slowest Fastest Slowes Fastest Slowes

GELU Softplus ReLU Softplus ReLU6 trReLU
ReLU6 Softplus ReLU Softplus ReLU6 Sigmoid
ReLU6 Sigmoid trReLU Softplus ReLU6 Softplus
trReLU Softplus trReLU Softplus ReLU6 Softplus
ReLU6 Softplus trReLU Softplus ReLU Softplus
GELU Softplus ReLU6 Softplus trReLU Softplus

ReLU SiLU GELU Softplus ReLU Softplus

ReLU Softplus GELU Softplus trReLU Softplus

ReLU Softplus ReLU6 Softplus ReLU6 Softplus

ReLU Softplus ReLU6 Softplus ReLU6 ELU

SOOIV AW =

29

Under review as a conference paper at ICLR 2026

Based on the results in Table[5]and Table[6] we identify the fastest and slowest activation functions
across layers for the three classifiers. Several consistent trends can be observed along four dimensions:
fastest activation, slowest activation, cross-classifier comparison, and depth effect.

Fastest activations. Across classifiers and depths, the fastest activations are more diverse, with ReLU,
ReLU6, GELU, and trReLU each appearing in multiple layers.

Slowest activations. In contrast, Softplus consistently emerges as the slowest activation across nearly
all classifiers and depths. Occasional exceptions include ELU in the deepest layer of p3 and SiLU
in p; (layer 7). This trend highlights the relatively high computational cost of smooth unbounded
activations compared to piecewise-linear ones.

Cross-classifier comparison. While the fastest activations vary considerably by classifier and depth,
the slowest activations remain remarkably stable: Softplus dominates across all three classifiers. This
suggests that runtime inefficiency of smooth functions is robust to task differences, whereas the speed
of simpler functions like ReL.U is more context-dependent.

Depth effect. As depth increases, variability in the fastest activations decreases, with ReLU becoming
dominant in deeper layers across classifiers. The slowest activation, however, remains almost
exclusively Softplus, independent of depth.

In summary, Softplus demonstrates the highest runtime cost across classifiers and depths, whereas
piecewise-linear activations such as ReLU and ReLL U6 offer consistently faster training and inference
performance.

We measured the size of the model (in Table[7) and obtained the results that the choice of activation
function does not influence on the size of the model.

Table 7: Model size in MB as a function of the number of layers.

Layers 1 2 3 4 5 6 7 8 9 10
Size (MB) 0.06 0.11 0.16 022 0.27 032 038 043 049 0.54

We list the statistics at the microlevel (mean between all nodes) of accuracy. For better representation
of the statistics, we present the information in a tabular way. For each layer of the ACR-GNN, we
present the accuracy of three formulas FOC, for the Train, Testl (the same number of nodes as
the Train) and Test2 (larger number of nodes and edges than the Train) as specified in Table [3|and
accordingly, the activation function (A/F) that was used for the calculations experiments.

As was mentioned before, we trained ten models for each activation function. For better visualization,
we present the benchmark accuracy using heatmaps, which reveal several trends. Specifically, the
ACR-GNN generally loses accuracy on Test2 (where the number of edges was increased) and shows
a further decline in accuracy as the complexity of the formula increases.

The heatmaps in Figure [5] visualize how the accuracy of the ACR-GNN varies with respect to the
number of layers and the choice of activation function. The figure is organized in a 3x3 grid: rows
represent different evaluation metrics (Train accuracy, Test 1 accuracy, and Test 2 accuracy), and
columns represent the three datasets classifiers (p1, p2, p3). Each cell encodes accuracy values as a
function of the number of layers (y-axis) and activation functions (x-axis). This visualization allows
for a direct comparison of performance trends, highlighting, for example, activation functions that
maintain stable accuracy across increasing depth or those that degrade sharply.

Generally, the trend that is common for all models: the number of edges, has a significant influence
on the final classification results, which can be an indication of how robust the model is. Generally,
a robust model performs reliably across different datasets, test conditions, or noise levels (not just
on the data it was trained on). A non-robust model may work very well in the training set, but its
accuracy drops sharply when evaluated on slightly different or more challenging test sets. In the case
of this analysis, robustness is the ability of the model to use different activation functions to keep
accuracy stable on Test2 compared to training.

The analysis of accuracy across different network depths and activation functions highlights several
clear patterns. In shallow architectures (one and two layers), all activation functions achieve strong
performance, with GELU and SiLU in particular showing near-perfect training accuracy and superior

30

Under review as a conference paper at ICLR 2026

ACR-GNN Accuracy Heatmaps (Layers X Activations)

Train - p2

Reg, Regy,
<y ey e

a8, o, St P ey, Reqy, e, Sty St 1y, o, & Yy, Ry R, ey, St Sy, Son,
& Tomy :w%;v tw ots ety B Some 0 oty 0 0 "os et Some Sty

Test1 - p1 Test1 - p2 Test1 - p3

70

S

Rty ety e S oS oS 1y,

s %y, Ao, O Sty g, Son,
Rty Retg, ey, St " et Sy Yoy

Test2 - p1 Test2 — p2 Test2 - p3 50

ft
E
§
7
40
P
E 30

Sy, ey, e, Oy, S, Sty Sop, &
ety Petyy e, Sty Somy s %,
t PR S o, Sy

2

gy, Reqy, Sy S
ety Rt e Xy Som

z St S
v :ﬂfe,,/ujlz/ Fe, Rotys ey, S, %%j 1y % 4%§<u

Figure 5: Heatmaps of ACR-GNN accuracy across activation functions and network depth. Each row
corresponds to a metric (Train, Testl, Test2), while each column corresponds to a dataset classifier
(p1, p2, p3)- Color intensity indicates classification accuracy.

generalization across all partitions. Even saturating functions such as Sigmoid and Softplus remain
competitive at this stage, which indicates that at low depth the model capacity is sufficient to
accommodate a wide range of nonlinearities without severe degradation.

As the number of layers increases (three to five), differences among activation functions become more
pronounced. GELU, SiLU, and Softplus consistently emerge as the most robust choices, maintaining
higher accuracy on the more challenging test sets. In contrast, ReL.U and ELU provide stable but
less competitive generalization, while ReLU6, trReLLU, and Sigmoid begin to exhibit performance
collapse, especially in the p, partition. At this stage, overfitting effects are also more evident, with
models achieving very high training accuracy but diverging in their ability to generalize depending
on the activation function.

In deeper architectures (six to eight layers), the gap between smooth activations and saturating or
clipped activations widens significantly. ReLU6 and trReLU often collapse below 55% accuracy
on the more difficult partitions, whereas GELU and SiLU sustain substantially higher values, often
in the 70-80% range. Softplus demonstrates remarkable stability in this regime, occasionally
outperforming GELU and SiLU, particularly on py. These results emphasize the role of smooth,
non-saturating nonlinearities in maintaining expressive power and preventing gradient-related issues
as depth increases.

Finally, in very deep architectures (nine and ten layers), the failure of saturating activations becomes
evident, with Sigmoid and trReL.U collapsing to near-random performance on certain partitions.
In contrast, Softplus, SiLU, and GELU remain the only viable options, with Softplus providing
the strongest generalization on py and SiLU maintaining robustness on p3. ReLU and ELU offer
moderate results but are consistently outperformed by smoother activations.

Overall, these findings confirm that activation choice becomes increasingly critical with depth, and
that smooth functions such as Softplus, SiLU, and GELU provide clear advantages in terms of
stability and accuracy across different evaluation settings.

To assess how well the models generalize beyond the training data, we report two complementary
metrics: Generalization Ratio and Generalization Gap. The generalization ratio measures the relative

31

Under review as a conference paper at ICLR 2026

closeness between training and test performance:

L . Test Accurac
Generalization Ratio = —y
Train Accuracy

If the ratio is close to 1, the model generalizes well (Test & Train). If it is much less than 1, the model
is overfitting (Train > Test).

The generalization gap quantifies the absolute drop in performance from training to test:
Agen = Train Accuracy — Test Accuracy.

A small gap reflects strong generalization, while larger gaps highlight overfitting.

In our case, we compute both values separately for Testl and Test2. After analysis, we obtain the
following results. Shallow networks (1-2 layers): SiLU, Softplus, and ELU dominate. Moderate
depths (3-5 layers): Softplus (3—4 layers) and ELU (5 layers) are the most reliable. Intermediate-deep
networks (6-8 layers): Smooth activations (Softplus, SiLU, GELU, ELU) outperform sharp ones
(ReLU, ReLUG6, trReLLU). Deep networks (9-10 layers): ELU peaks at 9 layers, but at 10 layers,
Softplus and SiLU emerge as the only consistently stable choices, while Sigmoid and ELU collapse.

To assess the computational efficiency of dPTQ, we measured the inference time of each model
across different activation functions and dataset classifiers.

Table 8: Running time (s) per classifier and activation function. Total running time for the model
before (0) and after dPTQ (q) in seconds across the layers.

ReLU ReLU6 trReLU GELU Sigmoid SiLU Softplus ELU

p1 o 20.00 5340 21.60 24.60 2870 2930 45.60 2590
q 2250 69.30 29.10 28.70 3530 29.60 47.60 30.70
p2 o 20.70 89.00 23.10 26.50 26.60 30.70 49.10 27.80
q 2240 9250 27.70 31.50 31.20 32,60 5390 32.60
ps o 2130 57.00 23.80 2270 2340 28.10 4480 26.60
q 2360 51.10 29.80 2840 3220 30.80 48.70 30.40

Table [8| reports the inference times of the ACR-GNN models across datasets for the classifiers
p; before (o) and after applying dynamic Post-Training Quantization (q). The results show that
quantization does not uniformly reduce runtime; in fact, for several activation functions (e.g., ReLU6,
trReLU, GELU, and Sigmoid), the quantized models exhibit increased execution time compared to
their original counterparts across most datasets. For example, ReLU®6 increases from 53.4s to 69.3s
on p1, and from 89.0s to 92.5s on py. A similar pattern is observed for GELU and Sigmoid, where
quantization consistently adds between 4-6 overhead. However, some cases highlight improved
efficiency after quantization: most notably, ReLU on p3 (from 57.0s down to 51.1s) and, to a smaller
extent, SiLU and Softplus exhibit negligible changes across datasets. These results suggest that
the computational impact of dPTQ is activation-dependent and dataset-dependent, with smoother
nonlinearities (e.g., SiLU, Softplus) showing greater stability. In contrast, activations with more
complex or nonlinear behavior (e.g., GELU, ReLUG6, Sigmoid) tend to incur additional overhead after
quantization.

We report the mean dynamic PTQ speedup across 10 layers, defined as the ratio of non-quantized to
quantized execution time (original time / dPTQ time), which indicates whether dynamic PTQ reduces
or increases runtime.

Figure [6] shows the mean speed-up of dynamic PTQ relative to non-quantized execution, grouped
by activation function and datasets for classifiers p;. The results indicate that dynamic PTQ does
not universally accelerate inference: in most cases, execution times slightly increase (speed-up < 1).
However, for ps with ReLU6, dynamic PTQ achieves a 23% speed-up, highlighting that the benefits
depend on both the activation function and the characteristics of the dataset. Sigmoid consistently
underperforms under PTQ, suggesting limited suitability for quantized execution.

Table Q] reports the size of the model before and after applying dynamic Post-Training Quantization.
We used two metrics to measure the values: Reduction and Ag;... We calculate each of these two

32

Under review as a conference paper at ICLR 2026

Dynamic PTQ Speedup by Activation (mean across layers), faceted by key

EEEEEEEEEEEEEE
123
12
099 095 ose
0.95 0.95 094
© 0.92 092 os
0.7 088 089 5 0.8 o
0.8 052 0.83 oF 083 085

08 077 0.5
05
04
02
© TRl RelUs wRelU GEU Sgmod SLU Sofiplis ELU Roll Rols GRelU | GEU Sigmod SLU Softplus ELU RelU RelUs RO GELU Sigmoid SLU Sotplus ELU

Activation Activation Activation

Figure 6: Mean dPTQ speedup (non-dPTQ time / dPTQ time) by activation function and classifier.

Speedup (origina / PTQ)

metrics in the following way:
ValuedPTQ - Valueo’r‘iginal

Reduction = x 100%

Valueoriginal
and
ASize = Valueoriginal - ValuedPTQ

respectfully.

The results (TableE[) show a consistent and substantial reduction across all configurations, with
quantized models achieving reductions between approximately 59.6% and 62.3% compared to their
original size. This indicates that dynamic PTQ provides highly effective compression with nearly
constant proportional savings, independent of the initial model size. Such reductions highlight
the suitability of dynamic PTQ for resource-constrained environments, where storage and memory
efficiency are critical.

Table 9: Model sizes before and after dynamic Post-Training Quantization.

Layer Original Size (MB) Quantized Size (MB) Ag;.. (MB) Reduction (%)

1 0.057 0.023 0.034 -59.604
2 0.112 0.044 0.068 -60.993
3 0.167 0.064 0.103 -61.559
4 0.221 0.085 0.137 -61.804
5 0.276 0.105 0.171 -61.975
6 0.331 0.126 0.206 -62.068
7 0.386 0.146 0.240 -62.148
8 0.441 0.167 0.274 -62.194
9 0.496 0.187 0.309 -62.230
10 0.551 0.208 0.343 -62.251

Figure [7] illustrates the layer-wise accuracy of ACR-GNN across datasets for classifiers p; and
activation functions, before and after dynamic Post-Training Quantization. The heatmaps show
consistent patterns across Train and Testl, where most activations achieve high accuracies in the
lower layers (1-3) but gradually decrease as the number of layers increases. This trend is most
pronounced for ReLU, ReLU6, and trReL.U, which exhibit sharp drops in accuracy, particularly in p; .
In contrast, smoother activations such as GELU, SiLU, Softplus, and ELU demonstrate more stable
performance across depth, indicating better resilience to increased model complexity.

For Test2, the heatmaps reveal greater variation between activations and datasets. Piecewise-linear
activations (ReLU, ReLU®6, trReLU) consistently show lower and less stable accuracies, while GELU,
SiLU, and Softplus retain higher performance across most layers. The visual differences are especially
apparent in po and ps3, where ReLU-based functions degrade more quickly compared to smoother
nonlinearities.

For a more detailed analysis, we constructed tables with specific structural requirements to better
examine the influence of dynamic PTQ. The impact of dynamic PTQ was assessed by calculating the
Generalization Ratio (GR), the Generalization Gap (A.,,), and the accuracy difference between the
original and quantized models (A,.). The results are presented in Tables [[0]—Tables[T9] Below, we
summarize the principal observations layer by layer.

33

Under review as a conference paper at ICLR 2026

ACR-GNN Accuracy Heatmaps (Layers X Activations)

Train - p1 Train - p2

Accuracy (%)
1acy (%)

Reg, Regy, e, Sy, Siom, &
0 et e By omy s X

e, Rey, o,
ey et "Ry, Sty S

.
g e o e S0, S, S,

Sop. &
on,,
R

Test1 - p3

70
50

oy o, S, om0 5

Test1 - p1 Test1 - p2

St Son, S

Aoty Retgy e .

5 Reg,, Ry Re, Sey,, o, Sy Son, &
% o, et Sty oy i “
1, Somg,) W s ety X om0

Test2 - p1 Test2 - p2 Test2 - p3 50

e, Req, R & ey, Re,, Sp, Sy, Sop &
Rty Retys eyt Some :ﬂfe,,/'/;z/ ey, Rety, ey, Sty Dol ey

% ey, ey, S B
O Bty Pty e ey Somg S o,

Figure 7: Heatmaps of ACR-GNN accuracy after applying the dynamic PTQ across activation
functions and network depth. Each row corresponds to a metric (Train, Test1, Test2), while each
column corresponds to a dataset classifier (p;, p2, p3). Color intensity indicates classification
accuracy.

Table 10: Accuracy differences (Agcc, %) and generalization metrics (GR, Ag.,,) per activation and
classifier for one-layer ACR-GNN after applying the dynamic PTQ.

”m P2 P3
A/F Test1 Test2 Testl Test2 Test1 Test2
GR Ayen Agec GR Ayen Agec GR Ayen Agee GR Ay Agee GR Agen Aee GR Ayen Agee

ReLU 0.994 +0.561 +0.411% 0.743 424702 +0.915% 1.003 -0.176 +1.270% 0.920 +5.559 -7.760% 0.996 +0.265 +0.328% 1.095 -6.536 +0.134%
ReLU6 1.001 -0.082 -0.150% 0.744 +25379 +0.267% 1.013 -0919 +0.517% 0932 +4.710 -6.676% 0.999 +0.043 +0.080% 1.093 -6.396 +0.220%
tReLU 1.001 -0.145 -0.146% 0.866 +13.204 +0.494% 0.988 +0.900 +2.768% 0.640 +27.678 -1.196% 0.994 +0.420 +0.968% 1.067 -4.673 -1.689%
GELU 1.000 -0.014 -0.004% 0901 +9.936 -0.050% 1.018 -1.365 -0.134% 0.695 +23.025 +0.958% 0.997 +0.186 -0.062% 1.058 -4.159 +0.018%
Sigmoid 0.994 +0.587 +0.186% 0.858 +13.967 -1.376% 1.025 -1.788 -0.526% 0.698 +21.999 +0.749% 0.997 +0.197 +0.262% 0952 +3.368 +0.090%
SiLU 1.000 +0.000 +0.000% 0.995 +0.472 +0.342% 1.021 -1489 -0.076% 0.777 +16.083 +0.000% 0.997 +0.200 +0.209% 1.066 -4.666 +0.336%
Softplus 0.993 +0.673 +0.880% 0.857 +14.224 +1.279% 1.023 -1.685 -0.588% 0.714 +20.832 +0.097% 0.995 +0.372 +0.124% 1.038 -2.688 +0.018%
ELU 0.998 +0.243 -0.402% 0.805 +19.405 -0458% 1.025 -1.802 -0.334% 0.714 +20.774 +0.349% 1.000 -0.033 +0.004% 1.036 -2.543 -0.401%

For layer 1 (Table , across Testl, most activations show GR =~ 1 and small |Agen|. On Test2,
several activations exhibit lower GR and larger positive A .,,, indicating stronger train—eval gaps
(e.g., ReLU and trReLU on py and p3). Ay is generally small (mostly within +1%), with Softplus
and ReLU showing a few larger but still moderate deviations depending on classifier and data split.

Table 11: Accuracy differences (Agcc, %) and generalization metrics (GR, A,) per activation and
classifier for two-layer ACR-GNN after applying the dynamic PTQ.

P P2 b3
A/F Testl Test2 Testl Test2 Testl Test2
GR Agen Agce GR Agen Aace GR Agen Aacc GR Agen Agee GR — Agen Aacc GR Agen Agee

ReLU 1.000 -0.006 -0.004% 0986 +1.445 -0.025% 1008 -0.678 +0.013% 0.866 +11.265 +0.389% 1.001 -0.074 +0.342% 1.006 -0.438 +0.025%
ReLU6 1.000 +0.001 +0.000% 0.999 +0.086 +0.058% 1.008 -0.677 +0.254% 0.815 +15.121 -0.047% 0973 +2.038 -0.102% 1.006 -0.494 +0.025%
trReLU 1.000 +0.018 +0.027% 0.746 +25.384 +20.200% 1.001 -0.085 +0.615% 00932 +4.648 +0.313% 0996 +0.316 -0.093% 0981 +1.464 -1.187%
GELU 1.000 +0.000 +0.000% 0.962 +3.815 +1.286% 1.009 -0.759 +0.045% 0.906 +7.885 +1.160% 0.996 +0.288 +0.431% 1.006 -0.426 -0.011%
Sigmoid 1.000 +0.013 +0.009% 0.959 +4.087 +0.789% 1.023 -1.610 -0.312% 0.627 +26.651 +0.342% 0.965 +2.431 +0.391% 1.058 -4.029 +0.563%

SiLU 1.000 +0.000 +0.000% 0.996 +0.375 +0.086% 1.009 -0.758 +0.290% 0.777 +18.504 +0.425% 0.994 +0.427 +0.328% 1.009 -0.665 +0.011%
Softplus 1.000 -0.000 +0.000% 0.991 +0.889 -0.159% 1.005 -0.395 +0.406% 0911 +7.556 -0.313% 1.002 -0.147 +0.355% 1011 -0.850 +0.000%
ELU 1.000 +0.004 +0.009% 0.989 +1.102 +0.101% 1.006 -0.537 +0.250% 0.907 +7.805 -0.378% 0.998 +0.155 +0.417% 1.009 -0.692 +0.029%

For layer 2 (Table[l;l'l) Test1 remains stable (GR ~ 1) for most activations and classifiers; Test2 shows
reduced GR and positive A, (notably for ReLU, Sigmoid, GELU on p3). Most A, values are
small; isolated spikes occur (e.g., GELU on ps—Test2) but remain at the level of % units rather than
tens of percent.

34

Under review as a conference paper at ICLR 2026

Table 12: Accuracy differences (Agcc, %) and generalization metrics (GR, A,) per activation and
classifier for three-layer ACR-GNN after applying the dynamic PTQ.

P P2 3
A/F Testl Test2 Testl Test2 Testl Test2
GR Ayen Aace GR Agen Aqce GR Ay Aace GR Ay, Aqce GR Ay Aace GR Agen Aacc
ReLU 1.000 -0.010 +0.464% 0902 +9.520 +2.057% 1.008 -0.674 -0.062% 0912 +7.297 -0.468% 00988 +0.935 +0.204% 0.797 +15.671 +0.188%

ReLU6 0.992 +0.545 +0.022% 0.961 +2.602 -0.187% 0.987 +0.876 +0.290% 0.878 +8.416 -0.342% 0976 +1.588 +0.764% 1.133 -8.996 +0.534%
trReLU 0.993 +0.451 +0.190% 0.897 +6.459 +0.267% 0.998 +0.113 +0.125% 0.940 +4.093 -0267% 1.016 -1.051 -1.749% 1.058 -3.828 +0.798%
GELU 1.001 -0.123 +0.102% 0.934 +6.504 +0.584% 1.004 -0.359 +0.080% 0.952 +3.999 +0.227% 0.994 +0.473 +0.448% 0.865 +10.352 +0.729%
Sigmoid 0.986 +0.921 +0.115% 0.947 +3.452 +0.104% 0.994 +0.437 +0.281% 0908 +6.288 -0.184% 0.996 +0.257 +0.342% 1.077 -5281 -0.238%
SiLU 1.002 -0.153 -0.172% 0942 +5.563 +0.677% 1.008 -0.658 -0.004% 0975 +2.053 -0.274% 0.993 +0.568 +0.271% 0913 +6.688 -0.141%
Softplus 0.999 +0.094 -0.075% 0.969 +2.946 +0.512% 1.008 -0.677 -0.085% 0955 +3.747 -0259% 0.997 +0.213 +0.253% 0996 +0.333 -0.022%
ELU 0.998 +0.160 -0.071% 0.946 +5.162 +0.760% 1.008 -0.667 +0.018% 0.966 +2.820 -0.659% 0.993 +0.568 +0.413% 0.996 +0.295 -0.152%

For layer 3 (Table [12)), we observed that some separation emerges: GELU and trReLU retain
comparatively higher GR (especially on p; for Testl), while Test2 GR drops for multiple activations
on po and ps with increased A ge,,. Most A, remain modest; a few cells show larger swings (e.g.,
ReLU on p; for Test2 and some p3 for Test2 cases), which suggests sensitivity to the deeper setting.

Table 13: Accuracy differences (A,cc, %) and generalization metrics (GR, Ag,,) per activation and
classifier for four-layer ACR-GNN after applying the dynamic PTQ.

P1 P2 Pps
AIF Testl Test2 Testl Test2 Testl Test2
GR Agen Aace GR — Agen Aaec GR Ayen Auce GR — Ayen Auce GR Agen Aaec GR — Agen Auec

ReLU 0997 +0.193 +0.018% 0.974 +1.767 +0.195% 1.011 -0907 -0.593% 0995 +0.395 -0.468% 0995 +0.385 -0.169% 0.846 +11.916 +0.318%
ReLU6 0987 +0.846 -0.049% 0959 +2.634 -0231% 1016 -1.078 -0.036% 0.928 +4.884 +0.411% 0956 +2.907 +0.146% 1.105 -7.010 +0.397%
trReLU 0.854 +8.958 +9.068% 0.826 +10.641 +3.152% 0.998 +0.127 +2.634% 0.734 +17.053 +8.920% 0977 +1.453 -0.262% 0.728 +16.908 +3.270%
GELU 0992 +0.607 +0.203% 0.906 +7.389 +0.115% 1.010 -0.806 -0.196% 0.997 +0.213 -0274% 0.995 +0.367 -0.027% 0.935 +5.005 +0.332%
Sigmoid 0.984 +1.061 +0.208% 0.963 +2390 +0.061% 1.023 -1.552 +0.651% 0.926 +5.049 -0274% 0975 +1.676 +0.182% 1.069 -4585 +0.718%
SiLU 0996 +0.267 -0.049% 0.979 +1.462 +0.083% 1011 -0.897 -0.397% 0939 +5.109 -1272% 0.988 +0.886 +0.075% 0.960 +3.085 -0.433%
Softplus 0.999 +0.086 -0.221% 0.987 +0.883 +0.025% 1.008 -0.694 -0.147% 0.995 +0.444 -0.141% 0.998 +0.126 +0.200% 1.001 -0.047 +0.043%
ELU 0997 +0.236 -0.053% 0978 +1.529 +0.184% 1.009 -0.730 -0.495% 0.984 +1.291 +0.184% 0.993 +0.503 +0.222% 0.978 +1.676 +0.051%

For layer 4 (Table @ ReL U6 stands out as robust on p; (GR ~ 0.96-0.99 with smaller Ag,,).
Larger gaps appear on Test2 for several activations and classifiers (e.g., ReLU on p3 for Test2).
Accuracy changes are mostly modest, with a few noticeable positive or negative shifts for trReL.U
and SiLU in specific cells.

Table 14: Accuracy differences (Agcc, %) and generalization metrics (GR, Ag.,,) per activation and
classifier for five-layer ACR-GNN after applying the dynamic PTQ.

» p2 b3
AIF Testl Test2 Testl Test2 Test1 Test2
GR Ayen Aace GR Ayen Auec GR Ayen Aaee GR Agen Dace GR Ayen Agee GR Ayen Agec
ReLU 1001 -0.055 -0.102% 0972 +1.914 +0.036% 1.009 -0.761 -0.325% 0.929 +5.950 -0.076% 0.983 +1.280 +0.195% 0.533 +36.010 +0.372%

ReLU6 0.991 +0.588 -0.491% 0.956 +2.776 -0.425% 1.000 +0.013 +0.539% 0.961 +2.590 +0.104% 0.982 +1.192 +0.315% 1.155 -10.104 +0.198%
trReLU 0.974 +1.367 +0.000% 0.958 +2.239 -0.429% 1.021 -1.296 +0.000% 0.628 +23.419 -0.004% 00936 +3.704 +2.828% 1.054 -3.134 -28.571%
GELU 0.996 +0.302 +0.040% 0.978 +1.494 -0.025% 1.007 -0.571 -0.308% 0.901 +8.274 -0.155% 0.966 +2.642 -0.191% 0460 +41.643 -1.649%
Sigmoid 0.974 +1.613 -0.022% 0.925 +4.549 -0.014% 1.000 +0.027 -0.227% 0.936 +4.282 -0.692% 0983 +1.106 +0.444% 1.145 -9.500 -1.007%
SiLU 0.995 +0.328 +0.080% 0.976 +1.633 +0.040% 1.010 -0.811 -0.370% 0.972 +2.328 +0.216% 0.980 +1.590 +0.178% 0.636 +28.440 +2.505%
Softplus 0.997 +0.196 +0.084% 0.980 +1.336 +0.141% 1.008 -0.684 -0.125% 0.993 +0.598 -0.068% 0.978 +1.736 +0.013% 0.656 +27.048 -1.447%
ELU 0.999 +0.059 -0.022% 0.985 +1.003 -0.022% 1.007 -0.590 -0.134% 0.955 +3.728 +0.032% 0.992 +0.652 +0.186% 0.980 +1.560 -0.235%

For layer 5 (Table[I4) trReLU remains strong on p; for Testl (GR =~ 0.97) with small gaps, while
some activations show pronounced degradation on ps for Test2 (very low GR and large Ag.,,). Most
Agcc are small, but a few outliers appear (e.g., large-magnitude entries for trReLU or GELU on p3
for Test2), indicating occasional instability at this depth.

Table 15: Accuracy differences (Agce, %) and generalization metrics (GR, Ag.,,) per activation and
classifier for six layer ACR-GNN after applying the dynamic PTQ.

P P2 P3
AJF Test] Test2 Testl Test2 Testl Test2
GR Ayen Agec GR Ayen Agee GR Ayen Agee GR Ayen Agec GR Ayen Agee GR Ay Agee

ReLU 0.997 +0.180 +0.088% 0.941 +4.048 +0.115% 1.007 -0.598 -0.192% 0.977 +1.908 +0.065% 1.006 -0.468 +0.186% 0.406 +45319 -1.007%
ReLU6 0981 +1.105 +0.150% 0.895 +6.013 -0.375% 0.982 +1.225 +0.428% 0.841 +10.566 -0.234% 0.994 +0.410 +0.129% 1.048 -3.175 +0.935%
trReLU 0986 +0.726 +0.747% 0.968 +1.697 -0.061% 1.020 -1.272 +0.000% 0.628 +23.443 +0.000% 0976 +1.366 -1.052% 0.615 +22.343 -1.516%
GELU 0.993 +0.453 +0.075% 0979 +1.455 -0.086% 1.005 -0.382 -0.049% 0912 +7.332 +0.612% 1.005 -0.425 +0.115% 0.868 +10.186 +0.173%
Sigmoid 0.992 +0.504 +0.190% 0.891 +6.725 +0.404% 1.011 -0.761 -0.098% 00943 +3.841 +0.829% 0.998 +0.110 +0.617% 1.046 -2.952 -0.134%
SiLU 0.996 +0.246 +0.141% 0979 +1.430 -0.122% 1.006 -0.481 -0.080% 0.961 +3230 -0.173% 1011 -0.813 +0.044% 0.630 +28.322 +1.750%
Softplus 0.994 +0.424 +0.429% 0983 +1.143 +0.144% 1.005 -0.451 +0.045% 0983 +1.408 +0.944% 1.008 -0.584 +0.040% 0.588 +31.682 +3.187%
ELU 0.994 +0.434 +0.256% 0.974 +1.810 +0.104% 1.005 -0416 -0.080% 0.934 +5528 +0.331% 0.992 +0.612 -0.013% 0470 +40.811 +0.256%

For layer 6 (Table[T3)), we noticed moderate GR on Test1 for many activations; Test2 again exposes
larger train—evaluation gaps for several pairs (e.g., ReLU6, trReL.U on ps and p3). A handful of A,
cells become larger (e.g., Softplus on p3 for Test2), though many remain within a few tenths of a
percent.

35

Under review as a conference paper at ICLR 2026

Table 16: Accuracy differences (Agcc, %) and generalization metrics (GR, A,) per activation and
classifier for seven-layer ACR-GNN after applying the dynamic PTQ.

P P2 b3
A/F Testl Test2 Testl Test2 Testl Test2
GR Ay, Aace GR Ay, Aqce GR Ay Aqce GR Agen Aqce GR Ay Aqce GR Agen Aqce

ReLU 0.995 +0.330 +0.212% 0.968 +2.176 +0.404% 1.006 -0.525 +0.045% 0.934 +5460 +0.241% 0.997 +0.204 +0.311% 0.605 +30.815 +0.751%
ReLU6 0985 +0.888 -0.367% 0913 +5.058 +0.285% 1.026 -1.713 -0.379% 0.699 +19.814 -0.068% 1.005 -0.319 -0.839% 0.857 +8.831 -1.361%
uReLU 0983 +0.901 +1.605% 0979 +1.126 -0.054% 1.023 -1.509 -0.512% 0.806 +12.505 +3.113% 0.963 +2.171 +1.611% 0.759 +14.011 +3.295%
GELU 0996 +0.257 -0.022% 0973 +1.883 -0.177% 1.004 -0367 +0.004% 0942 +4.824 +0.551% 0991 +0.684 +0.293% 0.995 +0.376 +0.004%
Sigmoid 0.984 +0.949 +0.181% 0.891 +6.376 -0.061% 1.000 -0.020 -0.018% 0.618 +24.404 -0.032% 0961 +2.545 +0.710% 1.126 -8.205 -0.520%
SiLU 0997 +0.222 +0.124% 0.958 +2.850 +0.130% 1.004 -0.346 +0.178% 0.980 +1.670 -0.007% 0.989 +0.826 +0.710% 0.619 +29.343 +5.363%
Softplus 0.997 +0.175 +0.027% 0976 +1.677 -0.159% 1.004 -0.321 +0.183% 0.945 +4.546 +0.742% 0990 +0.801 +0.071% 0.977 +1.745 -0.736%
ELU 0.998 +0.142 +0.040% 0.926 +5.039 +0.288% 1.004 -0.338 +0.245% 0.956 +3.670 +0.317% 0.980 +1.519 +0.586% 0.580 +32.243 -0.783%

For layer 7 (Table[T6) GELU and SiLU retain relatively stable Test] GR on p1; Test2 often degrades
across pp and p3 with increased Ay.,,. Accuracy shifts are still mostly small, but some cells show
multi-percent swings for trReLLU/SiLU on p3 for Test2, pointing to sensitivity at greater depth.

Table 17: Accuracy differences (A,cc, %) and generalization metrics (GR, Agp,) per activation and

classifier for eight-layer ACR-GNN after applying the dynamic PTQ.

P P2 Pps
AIF Testl Test2 Testl Test2 Testl Test2
GR Agen Aace GR Ayen Auce GR Agen Aace GR Agen Aace GR Agen Aaec GR — Agen Auec

ReLU 0.998 +0.109 +0.018% 0.957 +2.952 +0.162% 1.004 -0.328 +0.281% 0.882 +9.788 +0.566% 0978 +1.716 +0.613% 1.005 -0.352 +0.025%
ReLU6 1.012 -0.656 -0.323% 0917 +4.687 +0.079% 1.005 -0.326 -0.018% 0.799 +12.838 -1.841% 0.956 +2.601 +1.278% 0.862 +8.147 -0917%
tReLU 0.996 +0.218 +0.964% 0949 +2.831 -0.497% 1.015 -0.993 +1.364% 0.651 +22.393 +10.059% 0979 +1.146 +0.719% 0.624 +20.858 +8.001%
GELU 0997 +0.173 +0.080% 0.974 +1.747 +0.119% 1.005 -0.382 +0.111% 0.900 +8.352 +0.303% 0.985 +1.140 +0.812% 0815 +14.204 -0.267%
Sigmoid 0.994 +0.325 -0.128% 0.954 +2.538 -0216% 0996 +0.257 -0.009% 0.991 +0.592 -0209% 0961 +2434 -0364% 0.825 +10.900 +1.155%
SiLU 0998 +0.170 +0.018% 0.956 +3.038 -0.025% 1.004 -0.324 -0.089% 0934 +5549 -0.173% 0984 +1.205 +0.071% 0.990 +0.795 +0.014%
Softplus 1.000 +0.026 -0.035% 0.970 +2.074 +0.335% 1.006 -0.525 +0.160% 0.863 +11.365 -0.040% 0.989 +0.837 +0.426% 0.957 +3.301 -0.217%
ELU 0.995 +0.355 +0.159% 0.980 +1.385 -0.137% 1.009 -0.733 +0.009% 0.952 +4.020 -0.569% 0987 +1.030 +0.417% 0.998 +0.122 -0.105%

For layer 8 (Table ReLU and ReL U6 keep Testl near GR ~ 1 on p;; several activations show
reduced GR and larger A, on py and on ps for Test2. A few A, spikes appear (e.g., trReLU on
p2 and p3), but most entries remain within modest ranges.

Table 18: Accuracy differences (A,cc, %) and generalization metrics (GR, Ag.,,) per activation and
classifier for nine-layer ACR-GNN after applying the dynamic PTQ.

p2 b3

A/F Test1 Test2 Test1 Test2 Testl Test2
GR Ayen Aec GR Ayen Auce GR Ayen Auec GR Ayen Auec GR Ayen Auce GR Agen Agce

ReLU 0998 +40.165 -0.186% 0961 +2.707 +0.058% 1.006 -0.471 -0.085% 0934 +5539 +0.501% 0.993 +0.560 +0.160% 0.818 +14.116 -0.173%
ReLU6 1.016 -0.866 -0.168% 0963 +2.014 +0.097% 0.999 +0.096 +0.134% 0.827 +11.147 +0.184% 1.014 -0.833 -1.212% 1.120 -7.431 -0.307%
tReLU 0988 +0.638 +0.765% 0.956 +2.339 -0.512% 0.969 +1.964 +2.763% 0.748 +15.945 +2.897% 00958 +2.485 +1.252% 0.624 +22306 +4.118%
GELU 0.997 +0.187 +0.000% 0.967 +2.270 +0.076% 1.002 -0.151 +0.018% 0.960 +3.346 +0.508% 0.980 +1.504 +0.439% 0.898 +7.770 +3.006%
Sigmoid 0.984 +0.989 +0.062% 0.904 +5.792 -0.209% 1.019 -1.176 +0.209% 0.623 +23.768 +0.393% 0.965 +2.112 +2.046% 0.835 +9.827 -1.176%
SiLU 0997 40200 -0.009% 0942 +3.992 +0.292% 1.003 -0.274 +0.022% 0.885 +9.616 +0.515% 0.969 +2.408 +0.133% 0.691 +23.756 -1.014%
Softplus 0.998 +0.137 -0.075% 0917 45707 +0.317% 1.004 -0.331 +0.160% 0.901 +8275 -0.522% 0.992 +0.634 +0.226% 0.728 +21.375 +0.527%
ELU 0.999 +0.040 -0.018% 0.934 +4.498 -0.104% 1.005 -0401 -0.058% 0973 +2232 +0.249% 0.990 +0.785 +0.781% 0.931 +5.326 -0.834%

For layer 9 (Table[I8), we found that the results are patterns that mirror layer 8: Testl1 is comparatively
stable, where Test2 on py and ps tends to have lower GR and larger positive Ag,,. Accuracy
differences are mostly small, with occasional larger deviations for trReLU, Sigmoid and Softplus in
specific columns.

Table 19: Accuracy differences (Agcc, %) and generalization metrics (GR, A.,,) per activation and
classifier for ten-layer ACR-GNN after applying the dynamic PTQ.

P3

P P2
AF Testl Test2 Testl Test2 Testl Test2
GR Agen Aaec GR Ayen Auce GR Agen Aace GR Agen Aace GR Ayen Adce GR Ayen Auce

ReLU 0.997 +0.230 +0.186% 0.959 +2.822 +0.151% 1.008 -0.702 -0.098% 0.922 +6.501 +0.303% 0.992 +0.596 +0.546% 0.752 +19.319 -5.132%
ReLU6 0977 +1.257 +0.433% 0927 +4.003 +0.850% 1.019 -1.180 -0.316% 0.729 +17.091 -0.303% 0.986 +0.864 +1.580% 1.052 -3.290 -0.296%
uReLU 0.988 +0.633 +0.141% 0955 +2.360 -0.454% 1.020 -1272 +0.000% 0.628 +23.443 +0.000% 1.015 -0930 -1.065% 0.809 +11.485 -0.823%
GELU 0.994 +0.383 +0.212% 0.930 +4.780 +0.249% 1.007 -0.589 -0.058% 0.866 +11.097 +1.373% 0.986 +1.051 +0.053% 0.851 +11.470 +0.639%
Sigmoid 0.988 +0.628 -0.159% 0.929 +3.877 -0.259% 1.020 -1.263 -0.009% 0.627 +23.548 +0.414% 0939 +3.545 +1.740% 0497 +29.314 +0.985%
SiLU 0996 +0.249 +0.004% 0.959 +2.773 +0.306% 1.005 -0.450 +0.013% 0.854 +12.104 -0.130% 0994 +0.473 +0.062% 1.010 -0.754 -0.383%
Softplus 0.998 +0.137 +0.004% 0.906 +6.402 +1.027% 1.007 -0.619 +0.009% 0.967 +2.750 -0.050% 1.002 -0.176 -0.626% 0.997 +0.219 -0.668%
ELU 0.996 +0.284 +0.133% 0.941 +4.050 -0.141% 1.003 -0.287 +0.027% 0.935 +5405 -0.306% 0.998 +0.177 +0.067% 0.510 +37.918 +1.555%

For layer 10 (Table[I9), the deepest layer exhibits the strongest split between Testl and Test2. Several
activations maintain reasonable Test]l GR on p; and ps, but Test2—in particular on ps—shows the
largest gaps and the lowest GR. A few A, entries become sizable (e.g., ReLU on ps for Test2), yet
many cells still stay within the low-percent range.

36

Under review as a conference paper at ICLR 2026

Across layers, dynamic PTQ preserves accuracy in the majority of settings: most A,.. values are
small (often within a few tenths of a percent), with occasional larger swings that concentrate in deeper
layers and on the more challenging Test2 split (especially for p, and p3). Generalization behavior
(GR, Ayep) varies notably with both activation and depth: near-shallow layers and Testl tend to
remain close to GR ~ 1 with small gaps, Test2 consistently surfaces larger positive A, and certain
activations (e.g., trReL.U, ReLU6, GELU) are comparatively more robust in several layers, while
others (e.g., Softplus or specific cases of ReLU and SiL.U at depth) show reduced GR and larger
gaps. Taken together, these results indicate that dynamic PTQ retains predictive performance while
the choice of activation and the evaluation split (Test2) primarily govern robustness; deeper stacks
accentuate these effects, so selecting stable activations (e.g., trReLU, ReLU6 and GELU in the layers
where they maintain higher GR and smaller A,,) is recommended.

To test the technique not only on synthetic data, we chose the Protein-Protein Interactions (PPI)
benchmark |Zitnik & Leskovec|(2017) as in the reference paper of Barcel6 et al.| (2020). The PPI
dataset consists of graph-level mini-batches, with separate splits for Training, Validation, and Testing.

Table 20: Dataset summary. PPI benchmark.

Dataset Num Graphs Node Feature Dim Label Dim Avg Active Labels/Node Avg Degree

Train 20 50 121 37.20 54.62
Validation 2 50 121 35.64 61.07
Test 2 50 121 36.22 58.64

In Table 20| we present a summary of the PPI dataset, which consists of 20 training graphs, 2
validation graphs, and 2 test graphs. Each graph contains nodes with 50-dimensional features and
supports multi-label classification with 121 possible labels. On average, each node is associated with
approximately 36 labels, indicating a densely labelled dataset. The average node degree is also high,
ranging from 54.6 in the training set to 61.1 in the validation set, reflecting the dense connectivity of
the protein-protein interaction graphs. The dataset presents a complex multi-label classification task
with consistently rich structure across all splits.

Table 21: Dataset statistics summary. PPI benchmark.

Node Edge
Dataset Min Max Avg Min Max Avg
Train 591 3480 224530 7708 106754 61318.40
Validation 3230 3284 3257.00 97446 101474 99460.00
Test 2300 3224 2762.00 61328 100648 80988.00

The statistics of the dataset presented in Table 21| contain large graphs with varying sizes between
the train, the validation, and the test splits. Training graphs range from 591 to 3,480 nodes, with an
average of 2,245 nodes per graph, and between 7,708 and 106,754 edges (average 61,318 edges).
Validation graphs are more consistent in size, with 3,230 to 3,284 nodes and 97,446 to 101,474 edges,
averaging 3,257 nodes and 99,460 edges. The test graphs have 2,300 to 3,224 nodes, averaging
2,762 nodes, and 61,328 to 100,648 edges, averaging 80,988. These statistics confirm that the dataset
contains large and densely connected graphs and demonstrate a distributional shift in graph size and
edge count between training and test data. This information is helpful in evaluating the model’s
ability to generalize to unseen and variable graph structures.

One key difference between the synthetic data and the PPI dataset is that the latter involves a
multi-label classification task, rather than a binary classification task, because the PPI dataset is
a common benchmark where each node (representing proteins) can have multiple labels, such as
protein functions or interactions. Also, it is important to mention the key differences between the
synthetic data and the real one. Here, the authors used the code function EarlyStopping: Utility
for stopping training early if no further improvement is observed. The second difference is that the
code is structured to run multiple experiments to collect statistics (mean and standard deviation) of
the model performance, ensuring that the results are robust across different random initializations. In

37

Under review as a conference paper at ICLR 2026

this case, we performed the experiments 10 times for each model, with a combination layer equal to 1
and a number of layers ranging from 1 to 10. The number of hidden dimensions is equal to 256.

We applied the same eight activation functions to train the model. We also continue the experimental
flow for real-world data, focusing on running time (Table 22]and Figure 8)), speedup (Figure[J), size
reduction (Table [26), and analysis of accuracy.

We analyze the total training time of the ACR-GNN across ten layers for different activation functions.
Table @reports the total runtime in seconds and minutes, while Figure|§| visualizes the results across
depths.

Table 22: Training time per activation function

A/F ReLU ReLU6 trReLU GELU Sigmoid SiLU Softplus ELU

Time (min) 204.70 244.20 187.60 192.40 229.20 232.50 250.10 234.40
Time (s) 12286.30 14650.70 11261.60 11541.90 13745.00 13951.00 15007.00 14059.50

Training Time in Minutes

Activation
= RelU
== RelU6
40 | = tRelU
= GELU
== sigmoid
= s
=3 softplus

Time Minutes

]

Number of Layers

Figure 8: Training time by depth of the ACR-GNN.

The results show substantial variability depending on the activation function. Piecewise activations
such as trReLU (187.6 min) and ReLU (204.7 min) yield the fastest training times, while smooth
activations such as Softplus (250.1 min), ReLU6 (244.2 min), and SiLU (232.5 min) incur significant
overhead. Sigmoid also ranks among the slower functions (229.2 min).

Table 23: Slowest and fastest activation functions across the depth of the ACR-GNN.

1 2 3 4 5 6 7 8 9 10

Fastest ~Sigmoid ELU ReLU ReLU trReLU ReLU GELU trReLU tReLU trReLU
Slowest ReLU6 SiLU ReLU6 ReLU6 SiLU ReLU6 Softplus Softplus Softplus ReLU6

As shown in Table 22] the training time for all activation functions increases dramatically after the
second layer. This highlights that not only the type of activation function influences performance
time, but also the depth of the model.

Depth-wise analysis (Table 23) confirms this pattern: trReLU frequently provides the lowest training
time at deeper layers (5, 8—10), while ReLUG6 consistently emerges as the slowest. These findings
indicate that the choice of activation function significantly impacts computational efficiency on PPI,
with piecewise functions offering faster convergence than their smooth counterparts.

We measured the size of the model (in Table [24) and obtained that the choice of activation function
did not influence the size of the model.

To assess the computational efficiency of dPTQ, we measured the elapsed time (Table25)) of each
model across different activation functions and datasets.

Table 23] reports the total elapsed time (in seconds) for training, testing, and validation phases across
activation functions, comparing original and quantized models. The results indicate that dynamic

38

Under review as a conference paper at ICLR 2026

Table 24: PPI. Model size in MB as a function of the number of layers.

Layers 1 2 3 4 5 6 7 8 9 10
Size MB) 092 1.72 251 331 411 49 57 65 729 8.09

Table 25: Total elapsed time (s) per activation function and datasets before and after applying dPTQ

Train Test Validation
A/F Original Quantized Original Quantized Original Quantized
ReLU 22.46 23.13 2.56 2.57 3.04 3.02
ReLU6 21.18 22.44 2.54 2.69 2.90 3.17
trReLU 19.93 20.61 2.50 2.51 2.89 3.00
GELU 23.89 25.37 2.82 291 3.40 3.25
Sigmoid 22.52 24.53 2.72 2.85 3.17 3.24
SiLU 23.14 24.06 2.72 2.87 3.51 3.16
Softplus 21.65 24.97 2.76 3.04 3.27 3.23
ELU 26.13 26.05 3.31 3.22 3.90 3.52

PTQ introduces only marginal differences in runtime across all phases and activations. In most cases,
quantized models require slightly longer execution time (e.g., ReLU6 and Softplus), while in a few
instances, minor improvements are observed (e.g., ELU in Test and Validation). Overall, the runtime
overhead of quantization remains negligible, suggesting that the primary benefit of dynamic PTQ lies
in memory and storage efficiency rather than acceleration.

As for the synthetic data, we measure the speedup (Figure [J) of this type of quantization technique.
We report the mean dynamic PTQ speedup across 10 layers, defined as the ratio of non-quantized to
quantized execution time (original time / dPTQ time), which indicates whether dynamic PTQ reduces
or increases runtime.

Dynamic PTQ Speedup by Activation (mean across layers]

12
| _oss o pmn 058 096 g0
08

05

04

02

° RelU ReLUS

Figure 9: PP1. Dynamic PTQ Speedup by Activation (mean across layers).

Speedup (original / dPTQ)

Figure Q] reports the mean speedup values across layers for different activation functions. Overall,
dynamic PTQ yields values close to 1, indicating only minor runtime benefits. ELU demonstrates the
most consistent improvement, with speedup up to 1.14 in validation and above 1.07 in test, followed
by SiLU and GELU, which also provide modest acceleration during validation. In contrast, Softplus
incurs consistent slowdowns (speedup ~ 0.89 in training and testing), while Sigmoid and ReLU6
remain below 1, showing limited suitability for quantized execution. These results indicate that
smooth activations such as ELU, SiLU, and GELU are better aligned with quantized computation,
whereas Softplus and Sigmoid are unfavorable for efficient PTQ deployment.

We report the results in Table about the difference of the model’s size. We calculated the Ag; ..
and Reduction (%) across the depth. The main result of this experiment is the following: the total
reduction in size is ~74%. That is really good and significant, for example, for the application part of
the quantization, where the model can be used on a low-power computer.

As for the synthetic data, we constructed tables with specific structural requirements to better examine
the influence of dynamic PTQ on PPI data. The impact of dynamic PTQ was assessed by calculating

39

Under review as a conference paper at ICLR 2026

Table 26: PPI. Influence of the dPTQ on the size of the model

Layers Original (MB) Quantized (MB) Delta Reduction(%)

1 0.922108 0.242060 0.680048 -73.7
2 1.718266 0.450790 1.267476 -73.8
3 2.514808 0.659584 1.855224 -73.8
4 3.311350 0.868378 2.442972 -73.8
5 4.107892 1.077172 3.030720 -73.8
6 4.904370 1.285972 3.618398 -73.8
7 5.700912 1.494783 4.206129 -73.8
8 6.497390 1.703594 4.793796 -73.8
9 7.293933 1.912405 5.381528 -73.8
10 8.090486 2.121216 5.969270 -73.8

the Generalization Ratio (GR), the Generalization Gap (A,), and the accuracy difference between
the original and quantized models (A,..). The results are presented in Tables —Tables Below,
we summarize the principal observations layer by layer.

Table 27: PPL. Accuracy differences (Aq.., %) and generalization metrics (GR, Agep,) per activation
and dataset for one-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation
GR Agen Aacc GR Agen Aacc

ReLU 0.821 +0.108 -0.018% 0.866 +0.081 +0.001%
ReLU6 0.835 +0.090 +0.007% 0.917 +0.045 +0.006%
trReLU 0.728 +0.143 +0.001% 0.722 +0.146 +0.000%
GELU 0.716 +0.168 -0.005% 0.848 +0.090 -0.006%
Sigmoid 0.791 +0.109 -0.003% 0.741 +0.135 -0.001%
SiLU 0.765 +0.138 -0.010% 0.854 +0.086 -0.006%
Softplus 0.667 +0.197 +0.025% 0.802 +0.118 +0.016%
ELU 0.719 +0.156 +0.015% 0.774 +0.125 +0.007%

For layer 1 (Table 27) ReLU6 achieves the strongest validation GR (0.917, Ay, = +0.045) with
negligible A, ... Softplus performs worst (GR 0.667/0.802 with the largest gaps).

Table 28: PPIL. Accuracy differences (Aq.., %) and generalization metrics (GR, Age,) per activation
and dataset for two-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation
GR Agen Aacc GR Agen Aacc

ReLU 0.606 +0.241 -0.001% 0.637 +0.222 +0.031%
ReLU6 0.703 +0.161 +0.004% 0.668 +0.180 -0.009%
trReLU 0.694 +0.157 -0.001% 0.687 +0.161 +0.002%
GELU 0.681 +0.195 +0.011% 0.723 +0.170 +0.009%
Sigmoid 0.743 +0.133 +0.004% 0.735 +0.137 -0.000%
SiLU 0.677 +0.197 +0.015% 0.635 +0.223 +0.006%
Softplus 0.681 +0.200 -0.004% 0.655 +0.216 +0.005%
ELU 0.717 +0.172 -0.003% 0.721 +0.170 +0.008%

For layer 2 (Table 28)) ELU and Sigmoid are comparatively stable (GR =~ 0.72-0.74), whereas ReLU
degrades (GR 0.606/0.637 with A ., > 0.22). Accuracy changes remain within £0.03%.

For layer 3 (Table[29) GELU and trReLU lead (GR ~ 0.73), while Softplus is lowest (0.551/0.531).
A 4cc Temains negligible.

40

Under review as a conference paper at ICLR 2026

Table 29: PPIL. Accuracy differences (Aq.., %) and generalization metrics (GR, Agep,) per activation
and dataset for three-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation
GR Agen Aacc GR Agen Aacc

ReLU 0.576 +0.261 -0.006% 0.629 +0.228 -0.004%
ReLU6 0.598 +0.216 +40.034% 0.588 +0.221 +0.008%
trReLU 0.727 +0.143 +0.040% 0.691 +0.162 +0.007%
GELU 0.730 +0.164 -0.027% 0.720 +0.170 -0.014%
Sigmoid 0.749 +0.123 +0.005% 0.627 +0.183 +0.007%
SiLU 0.646 +0.214 -0.000% 0.713 +0.173 -0.001%
Softplus 0.551 +0.282 +0.001% 0.531 +0.295 +0.000%
ELU 0.653 +0.215 +0.024% 0.639 +0.223 -0.010%

Table 30: PPL. Accuracy differences (Agc., %) and generalization metrics (GR, Age,,) per activation
and dataset for four-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation
GR Agen Aacc GR Agen Aacc

ReLU 0.564 +0.269 +0.001% 0.570 +0.265 -0.002%
ReLU6 0902 +0.053 -0.000% 0.878 +0.065 -0.004%
trReLU 0.708 +0.150 -0.000% 0.707 +0.151 -0.004%
GELU 0.589 +0.252 +0.006% 0.597 +0.247 -0.003%
Sigmoid 0.822 +0.088 +0.003% 0.762 +0.118 +0.003%
SiLU 0.612 +0.231 -0.001% 0.595 +0.241 +0.001%
Softplus 0.674 +0.200 -0.005% 0.653 +0.213 +0.007%
ELU 0.600 +0.252 -0.010% 0.556 +0.280 -0.003%

For layer 4 (Table 30) ReLU6 clearly dominates (0.902/0.878, small Ay, ~ 0.05-0.07). ELU is
weakest (=~ 0.60/0.56, large gaps). Agee = 0%.

Table 31: PPL. Accuracy differences (Aqc., %) and generalization metrics (GR, Age,,) per activation
and dataset for five-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation
GR Agen Aacc GR Agen Aacc

ReLU 0.705 +0.180 +0.003% 0.673 +0.200 +0.018%
ReLU6 0.786 +0.110 -0.006% 0.754 +0.126 +0.001%
trReLU 0.921 +0.039 +0.002% 0.906 +0.046 -0.002%
GELU 0.581 +0.252 -0.001% 0.566 +0.261 +0.018%
Sigmoid 0.770 +0.112 +0.031% 0.755 +0.120 +0.006%
SiLU 0.671 +0.195 +0.001% 0.720 +0.166 -0.033%
Softplus 0.598 +0.246 -0.003% 0.586 +0.253 +0.001%
ELU 0.582 +0.251 +0.000% 0.574 +0.255 +0.000%

For layer 5 (Table B1)) trReLU is strongest (0.921/0.906, minimal A.,,). Softplus and ELU are
lowest (=~ 0.59). Sigmoid shows a small positive A,.. on Test (+0.031%), while SiLU has a small
negative A, .. on Validation (-0.033%).

For layer 6 (Table[32) Sigmoid emerges as best (0.880/0.910, smallest gaps), followed by trReLU
(0.870/0.879). SiLLU and ELU are weaker (=~ 0.62). Softplus shows the largest negative A,
(-0.025/-0.031%), though still small.

For layer 7 (Table 33) Sigmoid and GELU lead (0.866/0.841 and 0.744/0.759). SiLU is weakest
(= 0.59 with largest Age,,). Accuracy changes remain near zero.

41

Under review as a conference paper at ICLR 2026

Table 32: PPL. Accuracy differences (Aq.., %) and generalization metrics (GR, Agep,) per activation
and dataset for six-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation
GR Agen Aacc GR Agen Aacc

ReLU 0.730 +0.161 -0.003% 0.717 +0.169 +0.004%
ReLU6 0.672 +0.168 +0.000% 0.663 +0.173 +0.000%
trReLU 0.870 +0.066 +0.012% 0.879 +0.062 +0.000%
GELU 0.642 +0.214 -0.006% 0.628 +0.223 -0.002%
Sigmoid 0.880 +0.057 -0.001% 0910 +0.043 -0.001%
SiLU 0.619 +0.222 +0.000% 0.611 +0.227 -0.015%
Softplus 0.641 +0.216 -0.025% 0.685 +0.190 -0.031%
ELU 0.624 +0.232 +0.004% 0.626 +0.231 +0.010%

Table 33: PPIL. Accuracy differences (Agc., %) and generalization metrics (GR, Ag.,,) per activation
and dataset for seven-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation
GR Agen Aacc GR Agen Aacc

ReLU 0.714 +0.172 -0.009% 0.686 +0.189 +0.007%
ReLU6 0.641 +0.182 -0.001% 0.615 +0.195 -0.002%
trReLU 0.696 +0.155 +0.000% 0.688 +0.159 +0.000%
GELU 0.744 +0.151 +0.010% 0.759 +0.143 -0.000%
Sigmoid 0.866 +0.061 +0.014% 0.841 +0.072 -0.000%
SiLU 0.591 +0.239 +0.002% 0.585 +0.243 +0.001%
Softplus 0.655 +0.210 +0.003% 0.665 +0.204 -0.003%
ELU 0.713 +0.177 +0.003% 0.732 +0.165 -0.001%

Table 34: PPIL. Accuracy differences (Ag.., %) and generalization metrics (GR, A.,,) per activation
and dataset for eight-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation
GR Agen Aacc GR Agen Aacc

ReLU 0.590 +0.245 +0.002% 0.585 +0.247 +0.000%
ReLU6 0.795 +0.103 -0.005% 0.796 +0.102 -0.005%
trReLU 0.855 +0.072 -0.001% 0.845 +0.077 +0.003%
GELU 0.664 +0.199 +0.000% 0.656 +0.204 +0.000%
Sigmoid 0.859 +0.064 -0.007% 0.823 +0.080 -0.012%
SiLU 0.717 +0.162 +0.001% 0.714 +0.164 +0.000%
Softplus 0.631 +0.222 -0.006% 0.613 +0.233 +0.006%
ELU 0.645 +0.211 +0.012% 0.675 +0.193 -0.004%

For layer 8 (Table[34) trReLU and Sigmoid are strongest (0.855/0.845 and 0.859/0.823). Softplus is
lowest (= 0.63/0.61). A, values are minimal.

For layer 9 (Table[35) trReLU again achieves best generalization (0.864/0.846). Softplus is weakest
(=~ 0.59). Ag,cc is small, with mixed signs for Sigmoid (+0.023% Test, -0.015% Validation splits).

For layer 10 (Table@ Sigmoid is strongest (0.805/0.809). ReLU is weakest (0.554/0.571, Ager, =
0.25). SiLU shows the largest absolute A, .. (+0.071/+0.079%), but still below 0.1%.

Dynamic PTQ preserves accuracy across all layers, with |A,..| < 0.1% in nearly every case.
Generalization robustness varies by activation: trReLU and ReLU6 perform most consistently across
layers, Sigmoid becomes increasingly stable in deeper layers, while Softplus is the weakest choice,
and plain ReLU tends to degrade with depth. These findings confirm that quantized models retain

42

Under review as a conference paper at ICLR 2026

Table 35: PPL. Accuracy differences (Aq.., %) and generalization metrics (GR, Agep,) per activation
and dataset for nine-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation
GR Agen Aacc GR Agen Aacc

ReLU 0.614 +0.225 -0.002% 0.610 +0.228 -0.002%
ReLU6 0.699 +0.155 +0.001% 0.690 +0.159 -0.002%
trReLU 0.864 +0.066 -0.003% 0.846 +0.075 -0.015%
GELU 0.634 +0.216 -0.001% 0.627 +0.221 -0.000%
Sigmoid 0.797 +0.093 +0.023% 0.840 +0.073 -0.015%
SiLU 0.760 +0.144 -0.002% 0.752 +0.148 -0.003%
Softplus 0.589 +0.248 -0.001% 0.586 +0.249 -0.004%
ELU 0.690 +0.187 +0.005% 0.710 +0.175 -0.014%

Table 36: PPL. Accuracy differences (Ag.., %) and generalization metrics (GR, Age,,) per activation
and dataset for ten-layer ACR-GNN after applying the dynamic PTQ.

A/F Test Validation
GR Agen A(I(JC GR Agen A(I(JC

ReLU 0.554 +0.260 +0.008% 0.571 +0.250 -0.006%
ReLU6 0.720 +0.138 +0.004% 0.711 +0.143 +0.004%
trReLU 0.732 +0.133 -0.008% 0.715 +0.141 -0.006%
GELU 0.621 +0.225 -0.023% 0.588 +0.245 -0.008%
Sigmoid 0.805 +0.088 +0.019% 0.809 +0.087 +0.007%
SiLU 0.602 +0.232 +0.071% 0.586 +0.241 +0.079%
Softplus 0.729 +0.160 -0.004% 0.705 +0.175 +0.004%
ELU 0.749 +0.152 -0.014% 0.726 +0.166 -0.019%

generalization performance on PPI, with activation choice being the primary factor for robustness
under PTQ.

The experiments were conducted on a Samsung Galaxy Book4 laptop equipped with an Intel Core i7-
150U processor, 16 GB of RAM, and 1 TB of SSD storage. Additional experiments were conducted
using Kaggle’s cloud platform with an NVIDIA Tesla P100 GPU (16 GB RAM).

43

	Introduction
	Background
	Logic qL
	Complexity Upper Bound of the Verification Tasks
	Hintikka Sets
	Quantized Version of QFBABA (Quantifier-free Boolean Algebra and Presburger Arithmetics)
	Reduction to QFBAPAK

	Complexity Lower Bound of the Verification Tasks
	Bounding the Number of Vertices
	Quantization Effects on Accuracy, Performance and Model Size
	Conclusion and Future Work
	Proofs of statements in the main text
	Prototype verification of ACR-GNNs
	Performance
	Checking distributivity

	Extension of logic K and ACR-GNNs over Z
	Logic
	Aggregate-Combine Graph Neural Networks

	Capturing GNNs with K, g6pt
	Proof of Theorem 15
	Proof of Theorem 16

	Description logics with cardinality constraints
	ALCQ and TCBoxes consistency
	Description logics with global and local cardinality constraints
	QFBAPA
	ALCSCC++

	Complexity of the satisfiability of K, g6pt and its implications for ACR-GNN verification
	Experimental data and further analyses

