Under review as submission to TMLR

Actor-only and Safe-Actor-only REINFORCE Algorithms
with Deterministic Update Times

Anonymous authors
Paper under double-blind review

Abstract

Regular Monte-Carlo policy gradient reinforcement learning (RL) algorithms require aggre-
gation of data over regeneration epochs, constituting an episode (until a termination state
is reached). In real-world applications involving large state and action spaces, the hitting
times for goal states can be very sparse or infrequent, resulting in large episodes of unpre-
dictable length. As an alternative, we present an RL algorithm called Actor-only algorithm
(AOA) that performs data aggregation over a certain (deterministic) number of epochs.
This helps remove unpredictability in the data aggregation step and thereby the update
instants. Note also that satisfying safety constraints in RL is extremely crucial in safety-
critical applications. We also extend the aforementioned AOA to the setting of safe RL that
we call Safe-Actor-only algorithm (SAOA). In this work, we provide the asymptotic and
finite-time convergence guarantees of our proposed algorithms to obtain the optimal policy.
The finite-time analysis of our proposed algorithms demonstrates that finding a first-order
vJ (9)H§ < eand HVE (9,77)“2 < ¢ of performance function J(6) and
L(0,n), respectively, both with O(e~2) sample complexity. Further, our empirical results

on benchmark RL environments demonstrate the advantages of proposed algorithms over
considered algorithms in the literature.

stationary point, i.e.,

1 Introduction

Reinforcement learning (RL) is a sequential decision-making paradigm that aims at finding the optimal
sequence of actions in order to minimize or maximize a certain long-term objective when the system model
of the underlying Markov decision process (MDP) (Puterman) 2014) is not known (Sutton & Bartol [2018]).
RL algorithms learn from data received from either a simulation device or a real source. RL has found
applications in diverse domains including power systems, natural language processing, asset management,
and robotics (Hakobyan et al.| 2019). RL algorithms can broadly be classified as value-based, such as Q-
learning, and policy-based methods, such as policy-gradient (PG) (Sutton & Bartol [2018). PG methods are
often appropriate for high-dimensional state-action settings (Sutton et al., |2000) that occur in real-world
applications. Among PG methods, actor-critic (AC) (Konda & Tsitsiklis| |2000]) and soft actor-critic (SAC)
(Haarnoja et all |2018]) are popular. PG algorithms update policy either at every time step or at the end
of the trajectory (using the Monte Carlo PG (MCPG) (Noorani & Baras| [2021)), that is, when the goal
state is reached. In this paper, we first present an Actor-only algorithm (AOA) that works with a single
update recursion (instead of two recursions commonly used in the AC method) and works with linear function
approximation. Further, our methodology updates the actor parameter after increasing deterministic instants
using a Simultaneous Perturbation Stochastic Approximation (SPSA) based approach. Our proposed method
is thus analogous to a trajectory-based method where the trajectories are of deterministic though increasing
lengths.

We further extend our framework to incorporate inequality constraints obtained from single-stage costs in
addition to rewards, and present a Safe-Actor-only algorithm (SAOA) that derives the optimal policy within
a safe region. There is a lot of research activity on Safe RL in recent times and (Garc “1a & Fern “andez, 2015))
provides an overview of the same. Note again that regular RL aims to optimize the agent’s performance via

Under review as submission to TMLR

its long-term reward, and in the process, learn an optimal policy interacting with the dynamic environment.
This often requires significant exploration, which can often be unsafe in real-world applications.

In recent times, RL algorithms have been applied in several safety-critical applications, such as robotics,
autonomous driving, cybersecurity, and financial management, where agents’ safety is crucial
[2022; Machado et al.,[2017)). Thus, the agent’s goal here is not only to maximize long-term reward or achieve
optimal policy but also to ensure that the agent never enters unsafe states, i.e., the agent must look for
optimal solutions under safety constraints.

For our Safe-Actor-only algorithm, we introduce a safe PG method, where the underlying setting is a con-
strained Markov decision process (CMDP) (Altman| 1999),(Bhatnagar & Lakshmanan| 2012). Here, the
constraint region can be designed to ensure the agent’s safety. Our Safe-Actor-only method adds constraint
functions to the original objective function, partitioning the state space into safe and unsafe regions. Our
specific contributions are listed below.

e Our algorithms resolve the unpredictability of parameter update that lies in the Monte-Carlo PG
methods. Our proposed algorithms perform parameter updates after increasing deterministic in-
stants, unlike the regular Monte-Carlo PG methods, where the update happens after the end of each
episode (episode lengths are random, not deterministic).

e We consider two different MDP settings - with and without constraints, and propose RL algorithms
for both settings. Specifically, we propose (i) AOA for the regular MDP and (ii) SAOA for the
constrained MDP, in the long-run average reward with function approximation settings.

o Both of our algorithms, AOA (involves two timescales) and SAOA (involves three timescales), are
model-free RL algorithms and, in fact, versions of PG and constrained PG algorithms, respectively.

e We provide the convergence guarantees of our proposed algorithms by performing both asymptotic
and non-asymptotic or finite-time analysis. We show that our algorithms in a non-i.i.d (Markovian)
setting are guaranteed to converge to an e-neighborhood of the first-order stationary point, i.e.,
[VJ(0)|13 < eand |[VL(0,1)]|3 < € of the performance function J(#) and L(6,7), respectively, with
a sample complexity of O(e~2) for both algorithms AOA and SAOA, respectively. To the best of
our knowledge, there are no other two-timescale and three-timescale algorithms that provide this
sample complexity while remaining almost surely stable and convergent.

e We also provide empirical results, including regular and safe navigation of the RL agent in different
standard environments, that demonstrate the effectiveness of the theoretical results.

2 Related Work

PG for Regular MDPs: PG algorithms are data-driven approaches and involve either trajectory-based
methods or else are incremental update approaches. The latter fall under the broad category of actor-critic
methods, while the former approaches are typically actor-only methods. We now go over some of the works
that employ PG approaches.

PG methods with compatible function approximators are discussed in (Sutton et al., 2000). AC algorithms
with PG actors have been studied and analyzed for their asymptotic convergence in (Konda & Tsitsiklis|
[2000; Bhatnagar et all [2009). In (Bhatnagar & Kumarj |2004; Abdulla & Bhatnagar, |2007), actor-critic
algorithms for the look-up table setting and for the discounted and average (avg.) cost MDPs, respectively,
are presented. These involve temporal difference (TD) learning critic and PG actor, where the actor update
is based on simultaneous perturbation stochastic approximation (SPSA) gradient estimates.
In (Kumar & et al) 2024} Qiu et al., 2019; Wu et al., 2020), AC algorithms are discussed where finite-time
analysis (FTA) is done, but asymptotic analysis is not shown. In contrast, in (Mandal et al.,[2024; Bhatnagar|
, asymptotic analysis is shown, but FTA is not available. In (Li et all} 2024), stochastic first-
order methods for avg. reward MDPs are presented, and FTA is provided for the generative model and the
Markovian model settings. In this work, parameter update depends on the aggregation of data until the
termination of the trajectory, and can lead to infrequent or unpredictable parameter updates as trajectory

Under review as submission to TMLR

length is random, not deterministic. Furthermore, in (Li et al., 2024)), the constrained MDP setting is not
considered, and asymptotic convergence analysis is not demonstrated.

PG for Constrained MDPs: Incorporating safety constraints in RL is crucial for safety critical appli-
cations. The CMDP (Altman, |1999)) is a widely studied framework for RL with constraints. It is assumed
here that in addition to single-stage rewards, each state transition also fetches a set of single-stage costs that
describe the (long-term) constraint functions. Constrained policy optimization procedures are based on this
formulation, see for instance, (Achiam et al., 2017)), (Tessler et al., 2019) and (D. Ding et al., 2020).

In (Borkar, [2004), a multi-timescale constrained AC algorithm in the look-up table case, for the long-run avg.
reward criterion is presented. The Lagrange multiplier approach is adopted resulting in a three timescale
algorithm. In addition to the actor and critic updates on different timescales, the Lagrange parameter is
updated on the slowest timescale. Extending the idea in (Borkar, [1997), (Bhatnagar, [2010a) presents a
constrained AC algorithm with function approximation for the discounted reward setting. The actor update
here incorporates SPSA based gradient search.

In (Bhatnagar & Lakshmanan| 2012), an online constrained AC (CAC) algorithm with function approxima-
tion for the avg. reward setting is presented and asymptotic analysis is done. The actor update here incor-
porates the PG estimator ((Sutton et al., |2000))) for the Lagrangian obtained from relaxing the constraints
in the objective. Model-based RL for constrained MDP is discussed in (Singh et al.; [2023; |A. H. Zonuzy &
Shakkottai, |2021)) for finite and infinite time horizon settings, respectively. Safe RL-based approaches are
also discussed in (Ge et all [2019; |Wachi & Suil |2020). In (Panda & Bhatnagar, 2024) CAC is discussed
and FTA is shown. Table [I] summarizes the comparison of our proposed works, AOA and SAOA, with
corresponding related works, in terms of sample complexity and asymptotic analysis.

3 Background

Regular RL: Markov Decision Process (MDP) is the backbone of regular RL. By an MDP, we mean a
four-tuple (S, A,r, P), where S, A, r, P denote the state space, the action space, the reward function, and
the probability transition matrix, respectively. We assume here finite state and action spaces. By a policy
m, we mean a mapping 7 : S = A(A) from the state space S to the set of distributions over feasible actions
in state s € S. In this work, we consider the average (avg.) reward setting and the aim is to find a policy
7" that maximizes the long-run avg. reward, J., as follows:

n—1
™" = argmax Jx, where J, = nILH;O g]E[l;) % | 7. (1)

We consider a class of policies 7¢, parameterized by # € R%, d > 1. Our objective then is to determine the
optimal value of § to maximize the long-run avg. reward Jo.

When the closed form of VyJ, e is known, one can find the optimal 6 iteratively by following the gradient
ascent scheme:

9n+1 - an + anvej‘n-e, n > 07 (2)

starting from an arbitrarily chosen 6, € R? and a,,,n > 0, is the step-size sequence. Since Vg.J, o is not
known, we adopt a novel stochastic gradient search-based procedure.

Constrained RL: Constrained RL algorithms such as constrained actor-critic (CAC) algorithms (Bhatna-
gar), 2010b; |Bhatnagar & Lakshmanan), 2012) have found significant applications in the area of safe RL. Let
ry, denote the single-stage reward obtained at the nth instant as before. However, we shall assume that each
state transition also fetches N other single-stage costs gi(n),...,gn(n) at instant n > 0. Given the current
state-action pair (s, an), n, gq(n),¢ = 1,..., N are assumed conditionally independent of the previous states
and actions (S, @m,m < n). Further, r(s,a) and g,(s,a) are defined as (s, a) := E[ry, | s, = s,a, = a] and
gq(s,a) :==Elgg(n) | sp = s,a, = a],qg =1,..., N, respectively. Let, d; = (d:(s),s € S) be the stationary
probability distribution of the ergodic Markov process {X,,n > 0} (see Assumption [I]). The objective is to

Under review as submission to TMLR

maximize the long-run avg. reward, given by

z_:rk | 7T‘| = Zdﬂ(s) Z 7(s,a)r(s,a). (3)

k=0 sES ac€A(s)

This is, however done subject to the constraints

Galm) =l oF

n—1
qu(k) | 7"] = Zdﬂ(s) Z 7(s,a)gq(s, a) < vq, (4)

q=0 seS acA(s)

g=1,...,N, where vy, ...,vyN are prescribed positive thresholds. The above problem that is defined in
and is redefined using Lagrange relaxation as follows:

N N
L(m,n) = Jx =Y g (G(m) —vg) =) _dn(s) Y m(s,a) (r(s,a) — D 1l (9q(5,0) — Vq)> NG

q=1 ses acA(s)

where, = (n1,...,mn5)" is a vector of Lagrange multipliers n, € R* U {0},¢ = 1,..., N, with £(m,n)
being the Lagrangian. We now consider at instant n, the single-stage reward for the relaxed problem as
Ty — Eé\,:l Nq (94(n) — v4). In our work, we use Lagrangian and adopt a novel stochastic gradient search-
based approach to get the optimal policy.

4 Proposed Algorithm
This section describes our proposed methodology, Actor-only (i.e., Algorithm (1) and Safe-Actor-only (i.e.,

Algorithm [2)) REINFORCE algorithms with deterministic update times that resolve the unpredictability of
parameter update lies in the Monte-Carlo PG methods.

4.1 Actor-only Algorithm (AOA) for Regular RL

Algorithm 1 Actor-only Algorithm for Regular RL

Input: Scalar § > 0 and A, a zero-mean, £1-valued, Bernoulli distributed sample.
Output: Optimal policy

1: Initialisation : 6(0) =60y, ng =0, m=0,0<0”" <o <1, J=0.

2: for n =0 to co do

3 o, = “Tl}d,,” Bn = W satisfy au, < Bn

4: Nim+1 = min{j > N | Zgznm+1 o; > Bnm}

5. Get next state s’, reward r(n) using current state s and action a ~ 7?.

6: Get next state sT, reward r*(n) using current state s and action a ~ 70494,
7. if n==mn,,41 then

8: fori=1,...,ddo

0 Bulm 1) = Affim) + (550 0p USR]

10: end for

11: m <4 m+1

12: end if

132 J(n+1) < J(n)+ Bu(r(n) — J(n))

14: Update the current state s as the next state s, i.e., s + s’
15: end for

16: return Optimal policy parameter 6*.

Our proposed AOA (i.e., Algorithm [I]) obtains the optimal policy in the long-run average reward setting.
This algorithm computes the optimal policy parameter 6, where the objective is to maximize the long-run

Under review as submission to TMLR

average reward. In this algorithm, we estimate the gradient of the objective function using the SPSA-based
gradient estimates (Spalll |1992) as these are easy to compute and are found to be efficient. Here, we make
the following standard assumptions as in the literature (Bhatnagar & Lakshmanan|, [2012; [Wu et al, 2020).

Assumption 1. The Markov chain {X,,n > 0} under any policy m is ergodic.

Assumption 2. For any a € A(s),s € S, (s, a) is twice continuously differentiable in the policy parameter.

By Assumption[I] the Markov chain is irreducible, aperiodic, and positive recurrent (Li et al}[2024). Under
this assumption, the Markov chain has a unique stationary distribution d,. We employ linear soft-max policy
parameterizations (see eq. @) as we consider linear function approximation in this work.

ef ' b(s,a)
Za’EA 60T¢(5ua,) ’

where @(s,a) is the state-action feature vector. Let, the set of parameterized policies be denoted I, ie.,
II = {n%0 € R?}. Now, the optimization of policy parameter @ is only for policies in II.

70 (s,a) =

Vs € S,a€ A, (6)

The proposed algorithm has a single update recursion, update of parameter #, that involves step-size
an,n > 0. The update epochs, n,, > 0, or alternatively m > 0 are obtained from two sets of step-sizes
an,n >0, and B,,n > 0, respectively. These step-size sequences satisfy (28)~(30) shown in the Appendix [A]
We take § > 0 as a small constant and assume that policy parameter takes values in the compact set
C:= H?:ﬂgi,min» 0; max]. From Assumption |1} for every fixed 6, the Markov process {X,,,n > 0} is ergodic.
The projection operator A(:) = (A1(:),...,Aq(-))" : RY — C. Here, A;(2) := min(max(6; min, 2), 0i max)>
for i = 1,2,...,d, projects any z € R to its closest point in the interval [6; min,®i max] C R. De-
fine now a sequence of points {n,,,m > 0}, parameter update instants of Algorithm as ng = 0,
N1 = min{j > n,, | Zz=nm+1 a; > B, }. It is easy to see that {n,,,m > 0} is a deterministically
increasing sequence of points.

Our proposed algorithm makes use of two simulations governed by {éf, j > 0}, where k = 1,2, and n,, <
j < nmy1,m > 0, with 931 = 6(m) + 0A(m), and QAJQ = 6(m),m > 0. Further, parameter 6 is defined as
0(m) = (01 (m), 02(m), ...,04(m))T. We sample the perturbation vector A once 6(m) is obtained and denote
the same as A(m) = (Ay(m), As(m), ..., Aq(m)) T, where A;(m), for i = 1,...d, are mutually independent,
+1-valued, symmetric Bernoulli random variables with zero-mean. Moreover, A(m), m > 0 is independent
of the sigma-field generated by {6(1),1 < m,A(l),l <m},m > 0.

In the Algorithm [I} we take § and A (explained previously) as input and initialize policy parameter 6 as
fp. At each time instant n, we get value of step-sizes a,,, 8, and from these values we compute n,,. We get
rewards r(n) and r+(n) using two parallel simulations governed by policy parameter § and perturbed policy
parameter 6 + A, respectively, at time n. Next, we update parameter 6 at each instant n,, as follows:

J=nmt1

for i = 1,2,...,d. Note that the (m + 1)th update of 6 happens at instant n,,1, see line no. EI of the
algorithm. From construction, note that {n,,} is a subsequence of {n}.

In this algorithm, the long-run average reward J(n) at time instant n is calculated iteratively (see line no.
. As B, > a,,¥n > 0, J(n) evolves on a faster timescale than €, and in the long run J(n) converges
to Je . See for J.e but for the parameterized policy 7%, i.e., see in the Appendix.
We obtain the optimal value of 6, that is 8* and the total accumulated reward J after the convergence of
Algorithm|[I] The proposed algorithm is a purely data-driven algorithm that employs two parallel simulations
for the gradient estimation.

4.2 Safe-Actor-only Algorithm (SAOA) for Constrained RL

Similar to Algorithm [I} in Algorithm 2] Assumptions [T and [2] continue to hold. Further, the parameterized
policy is as in (6)), and the framework to use SPSA is as in section The proposed SAOA (Algorithm

Under review as submission to TMLR

involves two separate recursions but requires three sets of step-sizes {(,,,n > 0}, {an,n > 0}, and {3,,n > 0},
respectively, satisfy f shown in the Appendix

In Algorithm [2] the recursion for the Lagrange multiplier 7-update is run on the slowest timescale obtained
from (,,n > 0, while the recursion for the actor parameter #-update is using the timescale a,,n > 0. In
Algorithm [2] The goal of the agent is to maximize the long-run average reward while maintaining the safety
cost constraint. In this algorithm, we take a small positive number 4, A (as in Algorithm , cost constraints
Vg,q=0,...,N as input.

Algorithm 2 Safe-Actor-only Algorithm for Constrained RL

Input: scalar § > 0, sample A obtained from zero-mean, +1-valued, Bernoulli distribution.
Input: v, >0, forg=1,--- ,N.
Output: Optimal policy

1: Initialisation: 8(0) =6y, ng =0, m=10,0< 04 < 05 < 06 < 1.

2: Initialisation: J(0) = G4(0) = 0,74(0) = no.

3: for n =0 to co do

4 (= {1+E'll}067 o {1+iz}°*5 , B = m satisfy ¢, < an < Bn

5. N1 =min{j > ng | S 0 > B(nm)}
6: Get next state s’, reward 7(n), cost g,(n) using current state s and action a ~ 7%.
N
7 h(n) =r(n) = 31 Ne(ge(n) —)
8: Get next state sT, reward r*(n), cost g™ (n) using current state s and action a ~ 7994,
N
9 h¥(n) =r*(n) =31 nqlgq (n) — vq)
10: if n==mny,41 then
11: fori=1,...,ddo
m Rt (§)—h(j
12: Oi(m + 1) = Ay[0:(m) + (725! 4y oy ")
13: end for
14: m<<m+1
15: end if

16: J(n+1)« J(n)+ Bu(r(n) — J(n))

17 L(n+1) « L(n)+ Bn(h(n) — L(n))

18 Gg(n+1) < gq(n) + Br(gq(n) — Gg(n))

19: 1g(n +1) = A(ng(n) — Cu(Gg(n) — v4(n)))

20: Update the current state s as the next state s'; i.e., s + s
21: end for

22: return Optimal policy parameter 6*.

!

We initialize the policy parameter 8, average reward J, average cost G,, Lagrange parameter 7, (see Lines
in Algorithm . For each time instant n, we get values of step-size sequences and instants n,, as described
in the algorithm. Now, using two parallel simulations guided by 6 and 6 + dA, respectively, we obtain the
corresponding reward and cost at each time instant n. We define h(n) = r(n) — Z;V:l Nq(gg(n) — v4) and

ht(n) =r*(n) — 25:1 1494 (n) — v) corresponding to two parallel simulations. We use the values of h(n)

and hA™(n) in the policy parameter update at instant n,,1 (see Line no. [12)). Further, Line no. calculates
the average reward J. The update rules for the Lagrangian £, policy parameter 6, estimated cost G, and
Lagrange parameters 7 are as follows:

L(n+1) = L(n) + Bn(h(n) = L(n)), (8)

K RHG) k)

91(m+1)=A1 9,(m)+(Z Q; 5A(m)) , fori=1,2,...,d. (9)
j=nm+1 v
Gq(n +1) = Gy(n) + Bn(gq(n) — G4(n)), (10)

Under review as submission to TMLR

Ng(n+1) = A(nq(n) — (n(Gq(n) —v4(n))), forg=1,2,...,N. (11)

In , AR > [0, B,] denotes the projection of z, Az) = max (0, min(z, By), for any z € R, where
B, < o0 is a large positive constant. A ensures boundedness of Lagrange parameters 7,. Upon convergence
of Algorithm [2] we obtain the optimal parameter 6* that provides the optimal safe policy 7 . Further,
Algorithm [2| provides the average total reward J, average safety cost G,, and the optimal value of Lagrange
parameters 7, upon convergence.

5 Asymptotic Convergence Analysis

We first present the asymptotic convergence results of our proposed algorithm AOA, i.e., Algorithm
Subsequently, we briefly sketch the changes in analysis needed for the (constrained algorithm) SAOA, i.e.,
Algorithm [2] The detailed proof of all Lemmas and Theorems is provided in Appendix [A1]

5.1 Asymptotic Analysis of Algorithm [I]
Lemma 1. J_6 is continuously differentiable in 6 € C, where C is a compact set.

For purposes of the remaining analysis, we alternatively consider a cost minimization problem (instead of a
reward maximization) wherein we set ¢(j) = —r(j), V4. While Algorithm || maximizes the long-term reward
J.o, an algorithm with the aforementioned cost structure would minimize J,o = —J,o. Thus, and @
can be rewritten in terms of long-term average cost J,o and single-stage cost as follows:

n—1

_ |
Jro = lim gE[Z crpr | 7] (12)
k=0
N @) = el)
O;(m+1)=A; |0;(m) — Z Oéjw) (13)
Jj=nm+1 v

for i = 1,2,...,d. We use here J,» and J(#) interchangeably to mean the same quantity. We analyze the
convergence of to prove the convergence of Algorithm

Let K denote the set of all stationary points of the function J, i.e.,

K={0eC|A(-VJ(®)) =0}, (14)
where for any bounded, continuous, real-valued function v(-), y € C,i=1,...,d,
_ A, _
Auo(s) = iy (RN, (15)
740 n

Also, A(z) = (Ai(z;),i = 1,...,d)T, where z = (z;,4 = 1,...,d)T. The operator A(-) ensures that the
evolution of the ODE happens within the set C. Further, given v > 0, let K7 denote the y-neighborhood of
the set K, i.e.,

K7 ={0€C|[|6—0oll <v, b0 €K}

Theorem 1. Given v > 0, 359 > 0 such that for any 6 € (0,0¢], the iterates O(n),n > 0 governed by
Algorithm [1] converge to K7 almost surely.

5.2 Asymptotic Analysis of Algorithm 2]

Lemma 2. L0, is continuously differentiable in 0 € C, where C is a compact set.

Under review as submission to TMLR

Algorithm [2| maximizes L0 ,, i.e., is equivalent to minimizing ﬁ_ﬂsm. Let, at time instance j single-stage
cost h(j) = —h(j) (here if h(j) is uniformly bounded, then h(j) is also uniformly bounded) and

n—1
Lo, = nhﬁn;Q EE[hit1 | 7] (16)
k=0
= RRG) — k)
Further, rewriting (9) we get, 6;(m + 1) = A; |6;(m) — Z ajﬁ , (17)
i(m
j=nm+1
for i = 1,2,...,d. In this section, we use Zﬂ",n and [,_(9,77) interchangeably to mean the same quantity.

We receive the following convergence of Algorithm [2| analyzing and . Now, recall from line {4 of
Algorithm 2| and 7, Appendix |Al that n-update in runs in the slower time-scale than #-update
in . Thus, from the viewpoint of #-update recursion, the recursion of n-update would appear to be
quasi-static . Hence, we show the convergence of #-update in Theorem [2| for a given value of
7. Further, to prove the convergence of n-update in Proposition [1} #-update recursion would appear to have
converged. In the below, the definition of K is similar as K7 and can get by replacing function J with
Lagrange function L.

Theorem 2. Given lagrange multiplier n, v > 0, 36y > 0 such that for any § € (0, dp] policy parameter 0,
in the Algorithm |9 converges to K., almost surely.

Note that, the convergence of = (91,...,mx) " is shown in Proposition [1|in Appendix

6 Finite Time Analysis

We here present the finite-time sample complexity of our Algorithm [1j and Algorithm [2l The detailed proof
of all Lemmas and Theorems is provided in Appendix

6.1 Finite Time Analysis of Algorithm [I]

In this section, we discuss the finite time analysis as in (Wu et all [2020) but for our proposed Algorithm
We make the required assumption as follows:

Assumption 3. (Uniform ergodicity). For a fized 0, as before, let d,o(-) be the stationary distribution
induced by the policy 70 (s,-) and the transition probabilities P(- | s,a). Consider a Markov chain generated
by the rule a; ~ 7 (s¢,+), se01 ~ P(- | st,at). Then there exists 9 > 0 and p € (0,1) such that:

dryv(P(s, € - | sg = 8),de(:)) < Ip*' Ve >0,Vs € S (18)

In the above, drv(0,Q) is defined as dryv(0,Q) = 0.5 [},| O(dy) — Q(dy) | and called total variation
distance of two probability measures O and). Further, we define an integer that depends on the learning
rates in Algorithm [T} as follows:
MNm
tm 2 min{m >0 | 9p™ ! < min{ Z a;, f(m)}}, (19)

=Ny _1+1

where ¥, p are defined in Assumption [3| By definition, in , Lm is the mixing time of an ergodic Markov
chain and is used to control the Markovian noise encountered during the training process. Now, we rewrite

Under review as submission to TMLR

and analyze the recursion .

0:(m + 1) =A;(0;(m) — B(m) J(O(m) + 5&(;%)) J(0(m))

B()[E?%“ o (SG") T00m) + 8a0m) - T(Oem),
: Bim) A (m)
—As(0(m) — B(m) 2007)+5A((n>l)) Jo(m)
p(m) Z;lm’;:rl*l a; (¢t (j) —c(4))
B(m)

= (J(O(m) + 6A(m)) = J(0(m))) (20)

L 0:(m+ 1) = Ay[0:(m) — B(m) J(O(m) + 6A(m)) — J(0(m))

— Bm)N(8:(m))] (21)

6A;(m)
= A [0:m) = Bm) (VI (0(m)) + N (B:(m))) | (22)
where N (0;(m)) = x|t ;;SW D) (Fo(m) + 6A(m)) — JO(m)))]

We now analyze the recursion considering J(-) is a non-convex function. First, we introduce the required
Lemmas, and then discuss the main theorem. Now, let, E,, is shorthand for E (- | F,,), where F,, be the
sigma-field generated by {6(1),l < m},m > 0.

Lemma 3. The faster and slower step sizes 3, = W, a, = W, where 0 < o” < o', follows
N 41)
0< %“J < " assuming 0 < nppy1 — N < {np}?, ¢ > 0 where 0 < o’ + 0" < 0. Thus,
Tm+41 .
mgx%;rl] is bounded.
Lemma 4. E,[||N(0(m)]] < % and E, [N (6(m)]|?] < me for some constant By, By > 0.
Lemma 5. There exists a constant B > 0 such that |[V.J(0)||1 < B,Vf € R4.
Lemma 6. The gradient estimate @j(Hk) satisfies the following inequalities for all k > 1 :
o _ . 2
[ex [700] -vien|_ <5 @3 g [wak)u] | [Srmo)| + 2 e

In the above, Ej, is shorthand for E (- | Fj), with sigma-field F, and ¢1, co are some positive constants. The
significance and required assumptions for Lemma [3] -Lemma [6] are summarized at Remark [T}

N1)
Remark 1. 1. Lemma |4 confirms the boundedness of %ﬁa] at finite time instant m. Assumption
0 < Nypa1 — Ny, < c”{nm}”l, " >0 where 0 < o' + 0" < o' is used in this lemma.
2. Lemma [§) confirms boundedness of the noise term, and the square of the noise term N at finite time
instant m. Assumption[3 and Lemma[3 are used in this Lemma.
3. Lemma E confirms that for all 0, gradient of the cost function J(0) is bounded. In this lemma, it is
assumed that gmdzent of J(), i.e., VJ(-) is estimated by V.J(-) and this is true, see equations (@ and (@)
in Appendiz[A-27]]
4. Lemma [confirms that the difference between the expected value of the estimated gradient and the exact
gradient is bounded. No assumption is made for this lemma.

Under review as submission to TMLR

Remark 2. As a consequence of Lemma@ it follows that |V J(0') —VJ(0")||y < B < L||6/ —0"|1,V0',0" €
Re. Thus, J is L-smooth (as in Deﬁnition@ shown in the Appendix , where L = B and L > 0.

Definition 1. Iteration complexity: For a given € > 0, the iteration complexity of an algorithm is the
number of iterations of the algorithm before finding an e-stationary point for a non-convex objective function.

Theorem 3. Suppose the objective function J is L-smooth (as in (A. & Bhatnagar), |2024;|\Wu et all,|2020)),
and Lemmaﬁ - @ hold. Suppose that the recursion (@) is run with the stepsize By, for each k = ty, ..., m,

where B, = min{ Then an order O(e=2) iterations of the Algorz'thm are enough to find a

i1
R {1+k‘}5“
point Oy that satisfies Ogllci? E ||Vj(t9k)||2 < e when o =1,0" =1/2.

Proof sketch of Theorem |3; Since J is L-smooth, and using Lemma and expanding terms we get

_ _ _ L
J (Ok1) < J (0k) + (VI (0r) , k1 — Ok) + 5 10k+1 = 0|

BBlﬁ]% Co

6 02
Now, we rearrange terms, sum up the inequality for & = ¢,,, to m, take expectations, divide by (14+ m — ¢,,)
both sides, and get,

<700~ (5 - 562 97 @0 + a8 (6 + L83) -

L 2 2 ¢2 L 4
+ §ﬂk |:d61(5 +] + TPB;;ﬂk

1 i - 2
T 2 B
2 i (EJ (0x) — ErJ (Brs1)) 2 i o SB <1+L6k>
_l—i-m—Lmk: Br(2 — LBk) 1—|—m—Lmk: ! 2 — Lf

L N~ B fgesr,]2 N~ Bx [LBig, BB
1+m—Lme (2—Lp) [dclé +52}+1+mLmk_Z (2 — LBi) | 262 A

=lm —tm
Now, upon bounding and simplifying the above right-hand side terms, we get the desired results (for detailed

analysis, check Appendix .

Remark 3. Comparative analysis: The finite-time complezity T = O(¢~2) of AOA (i.e., Algorithm/|1)) is
O(e=2), O(e72), and O(e=%9) times better than (Kumar & et all, 2024),(Qiu et al), |2019), and
, respectively, (see Table . Further, the notation O, used in the literature, hides logarithm terms.
In our case, no logarithm term is multiplied in the sample complexity as we use the O notation. Further,
as presented in the Table (1], the finite-time complexity of algorithms in (Yujia € Sidford, |2021); | Zihan &
2025; |Daniil & Gasnikou, |2022) not only depends on the term € but also depends on the size of the
state-action space, and has linear or polynomial growth of sample complexity with the cardinality of the state
and action space, unlike our algorithms. Clearly, our algorithm is better than these algorithms in terms of
sample complexity. The iteration complexity in (Julien & Marekl,|2025) is also in terms of the cardinality of
the state-action space, unlike our algorithm. Further, our AOA algorithm achieves the sample complexity as
good as in while having deterministic update instants, unlike . Furthermore,
our AOA not only provides better sample complexity than majority of the considered existing algorithms but
also remains almost surely stable and convergent (see Theorem , whereas almost sure convergence is not

guaranteed in 2024).

6.2 Finite Time Analysis of Algorithm [2]

In this section, we discuss the finite time analysis as in (Panda & Bhatnagar} 2024) but for our proposed
Algorithm Here, we consider the step sizes (5, = Qp, and (, where 0 <

1 _ _ 1
THnpar ¥ = {Tgnyos = {T¥ntos

1><, v , respectively, denote not available and available.
2The mixing of the probability transition matrix of all policies is at most iz
3sp(h*) the span of the optimal bias function

10

Under review as submission to TMLR

Table 1: Finite time complexity of different algorithms [

Algorithm FT Complexity (7') Asymptotic Analysis
discounted reward AC (IKumar & et al. |2024b O(e™%) X
average (avg.) reward AC (iQiu et aLI 2019b O(e™) X
avg. reward AC (IWu et al.l |2020 O(e2) X
avg. reward CAC (iPanda & Bhatnagar |2024} O(e~%9) X
discounted reward AC (IMandal et al.l 2024} X v
avg. reward AC (IBhatnagar et al.l |2009 X v
avg. reward CAC (iBhatnagar & Lakshmanan |2012b X v
average-reward MDPs (iYujia & Sidford| |20211E| O S | Atmize™?) X
average-reward MDPs (iZihan & Xiel |2023E O(SAsp?(h*)e 2 4+ S2Asp(h*)e ™) X
average-reward MDPs (IDaniil & Gasnikovl |2022} O3, 1S|e?) X
average-reward MDPs (ILi et al.| 2024| O(e7?) X
AOA (Proposed) O(e72?) v
SAOA (Proposed) O(e7?) v

04 <05 <0g < 1. Further,let 0 <r < B,,,0<¢9, < By, 0<v, <B,,0<n, <By,Vg=1,...,N, where
B,, By, By, B, < oo are some large positive constants. Thus, 0 < h < Bj,, where By, = B, +NB,(By+ B,)

and h also upper bounded by Bj,, and By < co.

As in the Algorithm [I] here also we consider the Assumption [3]i.e., Uniform ergodicity. Now, we define
mixing time for Algorithm [2] as follows:

Nm,

P min{m >0 | Ipmt < min{{(m), Z ag, B(m)}}, (25)

i =Nm—1+1

where 9, p are defined in Assumption By definition, in , Lm is the mixing time of an ergodic Markov
chain and is used to control the Markovian noise encountered during the training process. We now rewrite
and analyze the recursion by following the simar steps as in and get

0, (m +1) = Ai[6,(m) — B(m) — BN (B:m), n(m))] (26
= A [6:(m) = Bm) (VLB(m),n(m)) + N (6:(m),n(m)))] (27)

where N7 (0;(m), 1(m)) = 55760 533@12;‘5@“”*‘“) _ (L(O(m) + 8A(m),n(m)) — L(O(m),n(m)))].

We now analyze the recursion considering £(-) is a non-convex function. All required lemmas, Lemma
El to Lemma are presented and proved in the Appendix Now, let, E,, is shorthand for E (- |),
where F,,, be the sigma-field generated by {6(1),! < m},m > 0. Note that, £ is L-smooth due to Lemma
as in Remark 2l

Theorem 4. Suppose the objective function L is L-smooth (as in (A. & Bhatnagar, 2024)), and Lemma@
- Lemma'? hold. Suppose that the recursion is run with the stepsize By for each k = ty,, ..., m, where

%, W} Then an order O(e~2) iterations of the Algorithm |4 are enough to find a point 0y,

B = min
that satisfies Oér’lci<n E|VL (9;6,77(16))H2 < € when og = 1, 05 = 0.99, 04 = 0.49.

Remark 4. Comparative analysis: The similar arguments follows as in the remark[3 The finite-time
complexity T = O(e~2) of our SAOA (i.e., Algorz'thm@ as demonstrated in Theorem and presented in the
Table[d} is better than majority of considered existing algorithms, even if this algorithm is for the constrained

11

Under review as submission to TMLR

RL settings. Note that our SAOA algorithm obtained sample complexity as good as in ,
while having deterministic update instants, applicable for constrained RL, remains almost surely stable and

convergent (see Theorem[d), unlike 2024).

7 Experiments and Results

In this section, we demonstrate the performance of the proposed algorithms AOA (i.e., Algorithm [I]) and
SAOA (i.e., Algorithm [2) on standard RL environments. Here, we consider different Grid-world (GW)
environments (for continuing tasks) such as having size 10 x 10, 50 x 50, and 100 x 100 to ensure the
scalability of our algorithms. We perform 1,00,000 training iterations (i.e., the value of n in the algorithms,
alternatively, the number of function measurements) to ensure the convergence and stability of the algorithms.
We further employ ‘CartPole’ and ‘Acrobot’, widely used RL environments in the recent RL literature
let al.l 2023; [Muppidi et al., [2024)), available in the OpenAl gym (Brockman et all, [2016]). We perform 10000
training iterations, i.e., total episodes are 10000 (for episodic tasks), and the length of each episode is n,
which is random. In all our experiments, linear softmax policies are implemented as shown in eq. @ In all
experiments of Algorithm step sizes a,, and 3, are ﬁ, and W7 respectively. In all experiments

of Algorithm [2| step sizes (,, oy, and 3, are {plrn}, {1+71}0'95’ and {1+7§}0’667 respectively. The value of d is

set to 0.6 in all experiments.
120 120
25
100 100 S
—
209 — o 80 T 80
3 2 2
5
215 2 60 3 60
& o 40 — © 40 —
—onmaon | § o e | ol M- .1
2 — sAC RR of SAC <207 amee———RC T RROIAL | T 5 °
51 oo — AC RR of AC - A G e .RROfAC__
—AC RR of AC 0 PES RR of PES r PES RR of PES
— — of 0 -
o | PES RR of PES ARS RR of ARS ARS RR of ARS
ARS RR of ARS 20 © °
0 000 5000 000 4000 40000 0 000 40000 0000 4400 40000
0 20000 4q000 guo00 o000 400000 W7 o GO0 800 10 WO e © g0 w0
2 20 B 20 A -) -)
No. of Training Iterations No. of Training Iterations
No. of Training Iterations
(a) (b) (c)
Figure 1: Comp. with AOA: Avg. reward on (a) 10x 10 (b) 50 x 50 (c¢) 100 x 100 GW w.r.t. train. iterations.
35
30 125 120
- 25 100 100
g [T / / 3z
& 20 g 75 g 80
)] &
& 15 < % 60
o o 50 Qo
g % S
< 10] g 40
g 2
5 — SAOA RR of SAOA o — SAOA RR of SAOA 20 — SAOA RR of SAOA
o — CsAC RR of CSAC — csAC RR of CSAC o — csac RR of CSAC
— cAC RR of CAC 25 — cAC RR of CAC — cAC RR of CAC

0 90000 0000

60000

0000 400000

No. of Training Iterations

(a)

0 20000

40000

60000

80000 100000

No. of Training Iterations

(b)

0 20000 4000 o000

0000 400000

No. of Training Iterations

(c)

Figure 2: Comp. with SAOA: Avg. reward on (a) 10 x 10 (b) 50 x 50 (c¢) 100 x 100 GW w.r.t. iterations.

Performance of AOA on GW: To analyze the performance and convergence (conv.) of our AOA, we study
the evolution of average (avg.) reward with respect to (w.r.t.) training iterations. We generate ten different
random seeds to observe the training results of ten different independent runs. The avg. reward and standard
deviation (std.) of rewards obtained at each time instant in ten different runs are calculated and plotted,
where the z-axis presents the number (no.) of training iterations, and the y-axis presents the avg. total
reward obtained so far. ‘RR’ in each plot represents the reward range, i.e., std. of rewards. The performance
of the algorithm during training is presented in Figure a), Figure b)7 Figure c), respectively, for three
different environments with the cardinality of state and action space, i.e., (| S |,| A |) are (100,5), (2500, 5)

12

Under review as submission to TMLR

— SAOA CR of SAOA 100 — SAOA CR of SAOA 20 — SAOA CR of SAOA
— CSAC CR of CSAC 0 — CSAC CR of CSAC — CSAC CR of CSAC
60 CAC CR of CAC cAC CR of CAC 30 CAC CR of CAC
60
B a0 8 a0 g ®
[g)n gJD
® g 2 g 10 E\
o @
2 z 3,
o] L -40 20
20 10
0
0 90000 Q000 000 000 4000 0 90000 000 000 000 4000 0 50000 40000 o000 go000 400000
No. of Training Iterations No. of Training Iterations No. of Training Iterations
(a) (b) (c)
Figure 3: Comp. with SAOA: Avg. safety cost in (a) 10 x 10 (b) 50 x 50 (c) 100 x 100 GW w.r.t. iterations.
12 10 2000 -
o
10 2
8 o 1500
T g % >
g 38)
g [T + 1000 -
[} 6 S E
& g @
g 4 4 S 500 |
z [}
, =
2 0- .
0 Bhatden et eis e aedee ot it e d o d ettt Safe State Unsafe State
0 90000 4q000 o000 000 400000 0 90000 0000 o000 4000 4o0®P
No. of Training Iterations No. of Training Iterations
(a) (b) (c)

Figure 4: Conv. result: (a) Avg. reward (b) Avg. Safety Cost (c¢) No. of visit in Safe and Unsafe states.

and (10,000, 5), respectively. In each environment, some states contain positive rewards, and all other states
contain reward zero, the agent’s goal is to maximize the long-term reward, i.e., to maximize the visit of the
maximum reward-containing state.

Empirical comparative analysis: We consider popular algorithms such as standard Actor-Critic (AC)
(Bhatnagar et al.l 2009) and Soft Actor-Critic (SAC) (Haarnoja et al., 2018), Parallelized Evolution Strate-
gies (PES) (Salimans et al 2017)), and Augmented Random Search (ARS) (Mania et al.,[2018) and perform
additional experiments on the same environmental settings as in proposed AOA. From our experiments, we
observe the following result:

1. We observe that the avg. total reward converges for all three considered environments.

2. Figure (a), Figure b)7 Figure c) demonstrate that our proposed AOA outperforms the considered
algorithms AC (Bhatnagar et all 2009), SAC (Haarnoja et al., 2018)), PES (Salimans et all [2017), ARS
(Mania et al.| [2018) by achieving a highest avg. total reward while training in all considered environments.
3. The converged results of PES and ARS algorithms are very lower than (i.e., not comparable to) our
proposed algorithm, and hence in columns 2 — 4 of Table [2] we present converged mean and std. of rewards
of AC, SAC with our proposed AOA (see column 3). The numerical values show the highest reward of our
proposed algorithm while achieving lower std. (majority of the cases).

4. Columns 2 —6 of Table shows that our AOA achieved 15.23% —99.31% performance improvement (alter-
natively computational cost reduction) in terms of computational time compared to considered algorithms.

Performance of SAOA on GW: We now study the evolution of avg. reward and safety cost w.r.t. training
iterations to analyze the empirical performance and convergence of the proposed SAOA. For the SAOA, we
also consider the state and action spaces with the same cardinality as discussed above for the AOA in three
different GWs. However, here we have unsafe states having unwanted costs with the reward-giving states, in
the state space and need to avoid those unsafe states while maximizing the avg. reward.

Empirical comparative analysis: We consider SOTA algorithms constrained Actor-Critic (CAC) (Bhat-|
nagar & Lakshmanan| 2012) and constrained Soft Actor-Critic (CSAC) (Haarnoja et al., [2018)) for the
comparative analysis. The avg. reward and std. of rewards obtained at each time instant of ten different
independent runs of the algorithm are calculated and plotted in Figure 2[(a), Figure 2[b), Figure [[c), re-
spectively, for considered three different GW settings where the = and y axis are as in Figure[I} Further, in a

13

Under review as submission to TMLR

Table 2: Performance (mean + std. of rewards) across 10 independent runs (using 10 random seeds).

Environment AC SAC Proposed AOA CAC CSAC Proposed SAOA

10 x 10 GW 18.37 £ 7.67 19.50 £ 4.03 21.31 + 6.38 21.02+6.75 22.55 + 8.09 24.22 + 9.47

50 x 50 GW 86.08 £26.85 91.08 £ 27.71 99.84 +£15.77 97.06 £28.28 101.67 & 39.66 113.40 £12.42

100 x 100 GW 82.21 4 26.32 91.31 £ 16.35 100.71 £ 13.19 82.81 & 34.09 96.38 + 26.90 102.55 £+ 14.76

Table 3: Computation time (in seconds) for n = 1,00,000 iterations.

No. of Itr. AC SAC PES ARS Proposed AOA CAC | CSAC | Proposed SAOA

1,00,000 49.52 53.73 776.91 6126.43 41.98 62.29 67.54 61.65

similar manner, the avg. cost is calculated and plotted in Figure a), Figure b)7 Figure c), respectively.
In each figure, the z-axis presents as in Figure [3] and the y-axis presents the obtained avg. total cost. ‘CR’ in
each plot represents the cost range, i.e., std. of costs. From the training of SAOA, we observe the following:
1. Each part of Figure[2]and Figure[3|show that the avg. total reward and avg. total safety cost, respectively,
converge for all considered experimental setups.

2. For all three environments, the cost constraint is satisfied for different values of v. Here we show that for
v = 0.01 the safety cost satisfies the constraint as the converged avg. cost is 0.

3. The columns 5 — 7 of Table [2] and columns 7 — 9 of Table [3] demonstrate that our proposed SAOA
outperforms the considered algorithms CAC (Bhatnagar & Lakshmanan, [2012) and CSAC (Haarnoja et al.,
2018) by achieving a highest avg. total reward and the least computation time in the constrained setup in
all three experimental environments.

Further, we train our SAOA in | S |= 100,| A |= 4 setup and present the avg. total rewards, avg. total
cost, and after convergence, the no. of visits of “safe” and “unsafe” states. We can observe from Figure a)7
Figure b), respectively, that avg. total rewards converge, avg. total costs converge and satisfy the cost
constraint v = 1. Figure (C) shows that the no. of visit to “unsafe” sate in last 2000 iterations i.e., after
convergence is zero.

Performance on CartPole and Acrobot environment: Figure[f]and Table[d demonstrate performance
evaluation during training and after convergence in the ‘CartPole’ and ‘Acrobot’ environments. For the per-
formance comparison, we consider two popular policy gradient (PG) algorithms, Monte-Carlo PG (MCPG)
and AC. However, since the results obtained using MCPG are much lower than our proposed algorithm (see
Table |4)), in the training plot we present our algorithm and AC. Parts (a) and (b) of Figure |5 show the
training evolution of our AOA and existing AC algorithms. Table {| (as a representative of our proposed
algorithms) shows the average reward after convergence and overall computational time (for 10000 episodes)
performance (in seconds). Our AOA obtained approx. 3 and 4 times performance improvement in terms
of computation time compared to existing algorithms in the CartPole and Acrobot environments. Part (c)
of Figure 5| (as a representative of both environments) shows the average cost during training on Cartpole

50 — SAOA CR of SAOA
500 100 L0 CAC CR of CAC

0.8
o 400 T -150 N
< 2 7]

g H S o6
& 300 s -200 g
[©
o S 50]

©) 0.4
S >
2 200 < <

< -300 02

— AOA RR of AOA -
100 —
AOA RR o: AOA .350 —lac RR of AC
. — AC RR of AC 0.0
o 00 0 00 0 000 0 0 0 0 00
0 200 4000 o0 g0 40000 200 a0 % 500 40 O 200 a0 0 g0 400
No. of Training Iterations No. of Training Iterations

No. of Training Iterations

(a) (b) (c)
Figure 5: Performance in terms of average reward or average cost on different environments (a) AOA, AC
on CartPole (b) AOA, AC on Acrobot (¢) SAOA, CAC on CartPole, w.r.t. train. iterations.

14

Under review as submission to TMLR

Table 4: Performance after convergence on CartPole and Acrobot environments.

Average Reward Computation Time x10? (Sec.)

Environments | MCPG AC AOA | MCPG AC AOA

CartPole-v1 232.6 409.4 | 417.8 | 0.3740 | 0.3313 0.1016

Acrobot-v1 -193.7 | -140.5 | -77.2 | 8.8948 | 10.9900 2.8589

of SAOA and existing CAC. After convergence, the obtained average cost is 0.09 and 0.17, respectively, for
SAOA and CAC, which shows that our SAOA is better than CAC and satisfies the cost constraint v = 0.5.
Note that in the CartPole environment for the constrained RL algorithms, the cost can be calculated by
penalizing the large pole angle, the fast cart velocity, or both (considered in our settings). Figure |5 and Ta-
ble [4f present that our algorithms outperform the considered algorithms in terms of average reward /average
cost and computation time. Further, it is confirmed that the performance of our algorithms is generalizable
across environments.

8 Conclusions

We propose Actor-only (AOA) and Safe-Actor-only (SAOA) reinforcement learning algorithms, where we
introduce a procedure to determine the policy update instants. Our proposed algorithm eliminates the
uncertainty of policy update that exists in the regular Monte-Carlo PG methods. Our AOA incorporates
two timescales - one each for getting policy update instants and updating policy parameters, respectively.
Our SAOA incorporates three timescales - two timescales as in AOA and a third timescale to update the
Lagrange multiplier. We provide asymptotic convergence as well as finite-time analysis of our proposed
algorithms, and empirically demonstrate the convergence of the proposed algorithms. The finite-time analysis
of our algorithms demonstrates that our algorithms outperform the majority of the considered algorithms in
the literature, even though our algorithms are two-timescale and three-timescale algorithms. Further, our
experimental results across different RL environments show a better performance of our algorithms both in
terms of computational time and average total reward than the considered algorithms in the literature.

References

Prashanth L. A. and Shalabh Bhatnagar. Gradientbased algorithms for zeroth-order optimization. 2024.
URL https://www.cse.iitm.ac.in/~prashla/bookstuff/GBS0%5Fbook.pdf.

D. Kalathil A. H. Zonuzy and S. Shakkottai. Model-based reinforcement learning for infinite-horizon dis-
counted constrained markov decision processes. IJCAI 2021.

M.S. Abdulla and S. Bhatnagar. Reinforcement learning based algorithms for average cost markov decision
processes. Discrete Event Dynamic Systems, 17(1):23-52, 2007.

J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. ICML, 2017.
Eitan Altman. Constrained markov decision processes. CRC' Press, 7, 1999.

S. Bhatnagar and S. Kumar. A simultaneous perturbation stochastic approximation-based actor-critic algo-
rithm for markov decision processes. IEEE Transactions on Automatic Control, 49(4):592-598, 2004.

S. Bhatnagar, M. C. Fu, S. I. Marcus, and Shashank Bhatnagar. Randomized difference two-timescale simul-

taneous perturbation stochastic approximation algorithms for simulation optimization of hidden markov
models. Technical Report, Institute for Systems Research, University of Maryland, 2000.

15

https://www.cse.iitm.ac.in/~prashla/bookstuff/GBSO%5Fbook.pdf

Under review as submission to TMLR

S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic algorithms. Automatica, 45:
2471-2482, 2009.

Shalabh Bhatnagar. An actor—critic algorithm with function approximation for discounted cost constrained
markov decision processes. Systems and Control Letters, 59:260-266, 2010a.

Shalabh Bhatnagar. An actor—critic algorithm with function approximation for discounted cost constrained
markov decision processes. Syst. & Cont. Letters, 59(12):760-766, 2010b.

Shalabh Bhatnagar and K Lakshmanan. An online actor—critic algorithm with function approximation for
constrained markov decision processes. J. Opt. Theo. and Appli., 153(3):688-708, 2012.

V. S. Borkar. Stochastic approximation with two timescales. Systems and Control Letters, pp. 291-294,
1997.

Vivek S Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan Book Agency and
Spri., 2022.

V.S. Borkar. An actor-critic algorithm for constrained markov decision processes. Systems and Control
Letters, 54:207-213, 2004.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym, 2016.

K. Zhang D. Ding, T. Bagar, and M. R. Jovanovi¢. Natural policy gradient primal-dual method for con-
strained markov decision processes. NeurIPS, 2020.

Tiapkin Daniil and Alexander Gasnikov. Primal-dual stochastic mirror descent for mdps. In International
Conference on Artificial Intelligence and Statistics. PMLR, 2022.

Javier Garc“1a and Fernando. Fern “andez. A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research, 16:1437-1480, 2015.

Yangyang Ge, Fei Zhu, Xinghong Ling, and Quan Liu. Safe g-learning method based on constrained markov
decision processes. IEEE Access, 7:165007-165017, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. Proc. Int. Conf. Mach. Lear., 2018.

Astghik Hakobyan, Gyeong Chan Kim, and Insoon Yang. Risk-aware motion planning and control using
cvar-constrained optimization. IEEE Robotics and Automation Letters, 4(4):3924-3931, 2019.

Grand-Clément Julien and Petrik Marek. Reducing blackwell and average optimality to discounted mdps via
the blackwell discount factor. In Advances in Neural Information Processing Systems, pp. 52628-52647.
PMLR, 2023.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil Yogamani, and
Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEFE Trans. Intelligent
Transportation Systems, 23(6):4909-4926, 2022.

V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. Proc. Advances in Neural Information Processing
Systems (NIPS), pp. 1008-1014, 2000.

Harshat Kumar and et al. On the sample complexity of actor-critic method for reinforcement learning with
function approximation. Machine Language, 112(7):2433-2467, 2024.

Tianjiao Li, Feiyang Wu, and Guanghui Lan. Stochastic first-order methods for average-reward markov
decision processes. Mathematics of Operations Research, pp. 1-36, 2024.

16

Under review as submission to TMLR

M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, , and M. Bowling. Revisiting the
arcade learning environment: evaluation protocols and open problems for general agents. J. Artif. Intell.
Res., 21:5573-5577, 2017.

Lakshmi Mandal, Raghuram Bharadwaj Diddigi, and Shalabh Bhatnagar. Variance-reduced deep actor-critic
with an optimally sub-sampled actor recursion. IEEE Trans. Arti. Intelli., pp. 1-15, 2024.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive approach to
reinforcement learning, 2018.

Aneesh Muppidi, Zhiyu Zhang, and Heng Yang. Fasttrac: A parameter-free optimizer for lifelong reinforce-
ment learning. In 88th Conference on Neural Information Processing Systems (NeurIPS2024). PMLR,
2024.

Erfaun Noorani and John S. Baras. Risk-sensitive reinforce: A monte carlo policy gradient algorithm for
exponential performance criteria. In 2021 60th IEEE Conference on Decision and Control (CDC), pp.
1522-1527, 2021.

Prashansa Panda and Shalabh Bhatnagar. Finite time analysis of constrained actor critic and constrained
natural actor critic algorithms. arXiv:2310.16363, 2024.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochastic
variance-reduced policy gradient. Proc. Int. Conf. Mach. Lear., pp. 4023-4032, 2018.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Shuang Qiu, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. On the finite-time convergence of actor-critic
algorithm. NeurIPS 2019 Optimization Foundations of Reinforcement Learning Workshop, 2019.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning, 2017.

P.J. Schweitzer. Perturbation theory and finite markov chains. Journal of Applied Probability, 5(2):401-413,
1968.

Rahul Singh, Abhishek Gupta, and Ness B. Shroff. Learning in constrained markov decision processes. IEEE
Trans. Control of Network Systems, 10(1):441-453, 2023.

J.C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation.
IEEE Trans. Automatic Control, 37:332-341, 1992. doi: 10.1109/9.119632.

R. Sutton, D.A. McAllester, S.P. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning
with function approximation. Advances in Neural Information Processing Systems, pp. 1057-1063, 2000.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning : An introduction, 2'nd ed. Cambridge,
MA: MIT Press, 2:526, 2018.

C. Tessler, D. J. Mankowitz, and S. Mannor. Reward constrained policy optimization. ICLR, 2019.
A. Wachi and Y. Sui. Safe reinforcement learning in constrained markov decision processes. ICML, 2020.

Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran Wang,
Chao Huang, and Qi Zhu. Enforcing hard constraints with soft barriers: Safe reinforcement learning in
unknown stochastic environments. In 40th International Conference on Machine Learning. PMLR, 2023.

Yue Wu, Los Angeles, Los Angeles, Pan Xu, Los Angeles, Los Angeles, Weitong Zhang, Los Angeles, Los
Angeles, Quanquan Gu, Los Angeles, and Los Angeles. A Finite-Time Analysis of Two Time-Scale Actor-
Critic Methods. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, number NeurIPS, pp. 17617-17628, 2020.

17

Under review as submission to TMLR

Jin Yujia and Aaron Sidford. Towards tight bounds on the sample complexity of average-reward mdps. In
International Conference on Machine Learning. PMLR, 2021.

Zhang Zihan and Qiaomin Xie. Sharper model-free reinforcement learning for average-reward markov decision
processes. In The Thirty Sizth Annual Conference on Learning Theory. PMLR, 2023.

A Appendix

In this appendix, we discuss and prove the lemma and theorem from Section [5] and [6]

Notations:

o 0",0", 04,04,05,06 are positive constants and take values as defined in the algorithms and theorems.

e o', 03 are positive constants and are employed in Lemma [3[and Lemma |Z|, respectively.

Step-size sequences criterion:
Step-size sequences in the Algorithm [1| satisfy the following criterion.

Za”:ZBnZOO§ an, B >0,Yn >0, (28)
Z(ozn2 + Bn?) < o0; lim n . (29)
— n—oo 3,
lim Y p g Ontl g (30)
n—oo " nsoo fBy '

Step-size sequences in the Algorithm [2] satisfy the following.

ZCn:ZOén226n:OO, Cn,an,ﬁn>O’VnZO7 (31)
2 2 2 o G L an
i Qnt1 . Bn—H o

A.1 Asymptotic Convergence Analysis

A.1.1 Asymptotic Analysis of Algorithm [I]

Proof of Lemma [1k

Proof. Recall that

n—1
.1
Jeo = nh_)rr;o EE[; res1 | 70 = Z;gdﬂe (s) gﬂe(s,a)r(s,a), (34)
=0 s€ a€

where d 6 = (de(s),s € S) is the stationary probability distribution of the ergodic Markov process {X,,,n >
0} (see Assumption [1)). Note that the expected value of single-stage reward r(s,a) is uniformly bounded.
Also, from Assumption 2 7%(s,a) is continuously differentiable with respect to #. In particular, as noted
previously, from the form of 7%(s,a) that we use, see @, 7%(s,a) is continuously differentiable with respect

18

Under review as submission to TMLR

to §. We now have to verify that the steady state distribution d e = (dre(s),s € S) is continuously
differentiable.

For simplicity, let P(6) denote the transition probability matrix of the Markov chain under policy 7. In other
words, P(60) = [[pi,;(0)]]ijes where p; ;(8) = >, c 47 (i,a)P(jli,a). Also, let Z(6) = [I — P(6) + P>(6)] ",

where T is the identity matrix, P*°(0) = n}i_r}noc % Z P*(8) is the time averaged transition probability matrix,
k=1

with P*(6) being the k-step transition probability matrix. Since the state-valued process is ergodic Markov
for any 0 (cf. Assumption , it follows that P (0) = de(j), Vi,j € S. From Assumption VvVl exists
and is in fact uniformly bounded over all § € C C R?, a compact set. Thus, VP(6) exists as well and is also
uniformly bounded. Now, recall from Section [3| that our MDP has a finite state and action space. Thus,
for any policy 7%, the resulting Markov chain {X,,} has a finite state space. It then follows from Theorem 2
of (Schweitzer) [1968) that d.e is continuously differentiable and in fact,

Vde =d.eVP(0)Z(0).
It now follows from that Je is continuously differentiable in 6 € C. O
Proof of Theorem [it
Proof. Note that the recursion can be rewritten as:

N ct () —c(j
Zj:’rt;r‘rl 7 (JXZ(WL()J))
B(m)

Now from the fact that an";{l +1®/Bm — 1 as m — oo and conclusion of Theorem 4.1 of (Bhatnagar et al.,
2000), we can show that exhibits the same behavior asymptotically as follows.

e () — (204020 = T00m)) 56)

n—1
Here A(t) = A(n), for t € [t(n),t(n+ 1)), where t(n) = Z B(k), n > 1. Now, the ODE associated with the
k=0

f-update recursion is as follows:

- (- [J< () +38(0) - 70 @),)

00(t)

where E[-] is with respect to the common distribution of A;(t). We also consider another associated ODE

0(t) = A[-V.J(6(1))] , (38)
but with the same initial condition as .

We recall here that the set K is invariant for the ODE (38) if it is closed and any trajectory 6(-) of the ODE
for which 6(0) € K satisfies 0(t) € K, Vt € R. Note that, the function J serves as a Lyapunov function
for the ODE ([38)) since

J(0) = (V.J(6),0) = (V.J(0),A(=V.J(#)) <0, 0 eC.
Now, using a Taylor series expansion around the point (m), we get

J(O(m) + 6A(m)) = J(O(m)) + SAm)TVI(B(m)) + O(62).

19

Under review as submission to TMLR

Hence,

+ ; iJgZ)) V;J(8(m)) + 0(6).

From our assumptions on the perturbation sequence, A(m),m > 0 is zero-mean, +1-valued Bernouli se-
quence. Thus, in the gradient estimation, we get the following.

g [tm 82 - J(0(m))

N } = V,;J(0(m)) + O(9). (39)

Now, as § — 0, right-hand side (RHS) of converges to the RHS of (38).

Therefore, it can be seen that the trajectories of the ODE converge asymptotically to those of
uniformly over compacts for the same initial conditions. Now, K is the set of asymptotically stable attractors
of (38) with J(-) as its associated strict Liapunov function. From the Hirsch lemma, ||0y; — K|| — 0 a.s. as
M — oo and § — 0. Hence, given v > 0,3y > 0, s.t. V6 € (0,], Opr — 0* € K7 a.s. as M — oc.

O

A.1.2 Asymptotic Analysis of Algorithm 2]

Proof of Lemma [2k

Proof. Recall that

n—1

Loy = lim EE[Z hyr | 7] = Zdwﬁ (s) Z (s, a)h(s,a)
k=0

n—oo N
= seS acA

:Zdﬂ"’(s) Z T‘-G(Saa)[r(&a)_an(gq(s’a)_yq)]v

seS a€A(s)

where d o = (dre(s),s € S) is the stationary probability distribution of the ergodic Markov process {X,,, n >
0}. As the expected value of single-stage reward r(s,a) and costs g4,¢ = 1,..., N are uniformly bounded
and from the definition of 7(s,a), see @, we can check that 7%(s,a) is continuously differentiable with
respect to 6. Further, as in proof of Lemma [} d,¢ is continuously differentiable. Thus, £, is continuously
differentiable in 6 € C. O

We define set K as follows:)
K"={0eC|A[-VL(H)] =0}, (40)

where A is as in . Further, given v > 0, let K, denote the y-neighborhood of the set K", i.e.,

Ky ={0€C |06l <, o€ K"}
Proof of Theorem [2k
Proof. Note that the can be rewritten as:

MNom ;L+ —;L J
St 0y (TR

O;(m+1)=A; | 6;(m) — B(m) 50m)

20

Under review as submission to TMLR

Now from the fact that Y 7" 1 a;/B(m) — 1 as m — oo and conclusion of Theorem 4.1 of (Bhatnagar
et al.l |2000)), we can show that exhibit the same behavior asymptotically as follows.

bt +1) = & (B30m) — () (£ Z O]), (12)
Here A(t) = A(n), for t € [t(n),t(n+ 1)), where t(n) = ”i B(k), n > 1. Now, the ODE associated with the
k=0

f-update recursion, i.e., (42)) is as follows:

. - L(O(t) +5A(t),n o(t),n
o~ (=[S0 980) ~E00] .)
where E[-] is with respect to the common distribution of A;(¢). We also consider another associated ODE
0(t) = A [-VL(@O(),)], (44)

having the same initial condition as (43)).

Now denote by K" the largest invariant set contained within the set K. We recall here that the set K"
is invariant for the ODE (44) if it is closed and any trajectory 6(-) of the ODE for which 6(0) € K"
satisfies 6(t) € K", ¥t € R. Note that, the function £ serves as a Lyapunov function for the ODE (44)) since

L(0,1) = (VLO,m),6) =~ VLO,n)]?

Thus, _
E(G,n) <0 Vo & K"
=0 otherwise.

Given v > 0, let K be the set of points within a distance « from the points in the set K7, i.e.,

K1 ={0eC| 16— 60l| <60 € K7). (45)
Now, using the Taylor series expansion around the point 8(m) we get
L(O(m) +0A(m),n) = L(O(m), 1) + 6A(m)TVLO(m),n) + O(5%).

Hence,

L(O(m) +3A(m),n) _ L(8(m),n)
)

JAi(m) = T oA(m Vil +Z W) G £(6(m).m) + 0().

A;(m)
JFi
From our assumptions on the perturbation sequence, A(m),m > 0 is zero-mean, +1-valued Bernouli se-

quence. Thus, in the gradient estimation, we get the following.

L(O(m) + 5A(m),n) —

E L(B(m). ”)} = V:L(0(m),n) + O(5). (46)

Now, as 6 — 0, right-hand side (RHS) of converges to the RHS of (44]). Therefore, it can be seen
that the trajectories of the ODE converge asymptotically to those of (44)) uniformly over compacts for
the same initial conditions. Now, K" is the set of asymptotically stable attractors of with £(-) as its
associated strict Liapunov function. From the Hirsch lemma, ||0p; — K[| — 0 a.s. as M — oo and § — 0.
Hence, given v > 0,30 > 0, s.t. Vo € (0,00, pr — 0% € K a.s. as M — oc. O

Now, define £ := {5 = (n1,...nx) 7 | 13 € [0, M,], A(G,(67) —) =0,¥g =1,..., N, 0" € K"}.

21

Under review as submission to TMLR

Proposition 1. Under the Assumptz'ons and O(n) = 0, lim,,_, n(n) = n* with probability one, for some
nt =gyl € B

Proof. Under the Assumptions and already proven 0(n) = 0,Vn, we get lim, o, G4(n) = G4(0),q =
1,..., N with probability one as in Proposition 4.2 of (Bhatnagar & Lakshmanan) |2012). Further, the proof
sketch is similar to the proof of Theorem 4.3 of (Bhatnagar & Lakshmanan) 2012)). O

A.2 Finite Time Analysis

A.2.1 Finite Time Analysis of Algorithm [1]

Proof of Lemma [3t

Nn 41 Mo 41 1 N +1 1 1 1 1
Qj = < s 7+ 2 s e w77
j:§+1 ' j:§+1 (1+35)7 j:nZ,;Jrl J° {nm +1}7 {rm +2}7 {nmi1}7
Therefore,
Nom 1 1 .. S
Zj:’:;l_i_l Oéj < {’nm-‘rl}"”/ + {nm+2}a/// + + {nm+1}0///
= 1
P Tt 37
1 1 1].
- 7/L’rn+]-0- |: ///+ ///+"'+///:|
L I T {1}
1" 1 1 1
<A{nm +1}7 7+ R e
<t 0 | o 1]
7 o’
< A{nm +1}° {TCL{Z”‘l}}W as per the assumption
C”{Tlm + 1}0”+a' o o
o a5 {1} < (1)
c//

{n’rn I 1}(7/// —ol—g’

Tm+1 . 1"
Zj:nm-u Qj C

Bm,n - {nm + 1}(;///70”70,

ie.,

(47)

ZT'THH) 1" . .
1‘6"7m <’ and if n,, is large

mn

From 0 < o/ +o” < o', we get "' — " — o’ > 0. Now if n,,, = 0 then
Mm+41 Mm41

. s . @
number then 7:,87*"+1J tends to 0. Hence, the above claim is satisfied and max%;rlj is bounded. [J
Mo m

Proof of Lemma 4t

— (J(0(m) + 6A(m)) = J(0(m)))]

1 mta (et G) —eh) - _]

5Ai(m)[B(m)
1o [Elhae @) =) -
=g B(m) (J(6(m) +6A(m)) J<9<m>)>]

22

Under review as submission to TMLR

Now,

>t 05 (€ () = e(4))
B(m)

Nm41 Mm 41

a; Lo (eF () — (4
<E l{max 2 6?7;751 J }ZJ nminer(l +1(J) (7))

Nm 41
c’ 1

> ail(c () = T(O(m) + 5A(m))) — (c(j) — J(B(m)))]

ol —ag! —g’ MNm+1
{1+nM} Zg nm+1] N +1

(from Lemma [3] see(d7))

En = (J(O(m) + 6A(m)) — J(0(m)))

= (J(O(m) + 6A(m)) — T (6(m)))

<E,,

c// 1 MNm+1

< Mmoo s Z 4a;9p™ ! Bg (using Assumption 3,0 < p < 1, Bg > 0)
m j=nm+1 Vi [E—

C// 1 Nm4-1 B1
< 1" " ’ 4B (0% 2 = 1" " ’ MNom,
= {1+nm}a —o''—o 82?:7.::L+1 Olj j:nzm:—i_l Jﬁ’ﬂm {]-"_nm}g —o'—¢o ﬁn

B 1 B B,

Blﬂm

= = <
{1+nm}a//1_o.//_o./ {1+nm}o.// {1+nm}o.///_o./ — {1+ m}a—// —
In the above, By = 4Bgc” and from Assumption |3} m > 1, where ¢, is mixing time, Jp™ "1 < B(m).
Blﬁm
Thus, En[[N(B(m)]]] < ==

In the similar way we can show that E,,[[|N(8(m)]|?] < B‘g—fi. O

Proof of Lemma [5G B B
Let, assume that gradient of J(-), i.e., V.J(-) is estimated by VJ , and from . we know that

J(B(m) + () — J(0(m))

. _ 4
Thus,
J(O(m) + 6A(m)) — J(6(m)) -
E 0 =V,;J(0 0, 49
[e [6(m)| = V. T(6m)) + e (19)
for some constant term ¢; > 0. Now,
d J(O0+6A) — J(0)
AZCIED Ik |—Z|E[il
d _
J(0+0A
SZ { A)i (>9}|+c15|§3.
The last inequality holds as single-stage rewards are bounded and hence, J(-) is bounded.
O
Proof of Lemma
From (49)), as in (A. & Bhatnagar], 2024)), it is easy to see that the proof holds. O

Definition 2. L-smooth function: A function f : C C R — R be L-smooth if for some L > 0, V
0',0" € C, f(-) satisfies || Vf(O') =V f(O")||<L| 6 —0"].

23

Under review as submission to TMLR

Proof of Theorem [3
Since J is L-smooth, (see Definition , as in (A. & Bhatnagar, |2024; [Papini et al. 2018)), we have

T Orin) < T (0) + (VT (6) , Oppr — 1) + g 10sr — 041
< T (0~ (VT (03), T 00) + N0) + 25297 (00) + M|

<7000 - 5 (V700,97 00)) - (77 00 N 6) + 562 [00+ o] 6o

Taking expectations with respect to the sigma field Fj on both sides of , we obtain

Ey[J (Ok11)] < Ex [J (0k)] — Be (VI (0k) , VI (01) + c161ax1) — BrBE, [|N(0k)||
+ 508 [(97 @]+ 3] + s oo

<J (0k) = Br ||V T (00)||” + c16BxEx || VT (1) Hl—B@kBlﬁ’“

+£g,§ [ij(ek)+c151dxl\| n 2} LﬁkBgfk (51)
<J(O) = Br || VT 00)||* + c16B:Ex |V T (61)]], — BB(;ﬁ’%

+5 Lg 82 (97 @0 + 2010Ex [V (00)], +dete® + 53] + 252 B.S?
gj(ek) — <5k — 25,3) VT (6x)||* + c16B (B, + LBZ) — B%ﬁ’f + gﬂz [dc§52 + g—i} + 2%345,3, (52)

The 1st inequality follows from , in Lemma@ and from Lemma. In the above, —||y|1 < Zle Yi
for any d-vector y, is used to get the inequality in . The last inequality follows from the fact that
||VJ (0k) Hl < B by Lemmal Now, rearranging the terms

V7 (6] [T (6x) — Ba (6xs1) +c16 (By + LB2) B

242 [LB4 5 BBl}
Br(2 — L)

«___ 2
=~ Br(2— LBk)
LBI% [252

Y 52— LAy

}Jr 2027k

Now, as in (Wu et al.} 2020), we sum up the inequality above for k = ¢,,, to m, take expectations, divide by
(1+ m — ty,) both sides and assume m > 2i,, — 1. We now obtain the following.

1 i - 2
1+m—bm k; Ek"vj(ek)|‘
2 m (]Ekj(ak) -]Ekj(ek+1)) 2 Ui 1+ LBk
_1+m—Lmk; (2 — LPk) +1+m_Lmk; 015B<2—Lﬂk>

m

L —~ B 252 4 2 Be [LBy_, BB
+1+m—Lmk; (2—Lﬁk)[10 (52]+1+m—Lmk; (2—L5k){2525’“ 5] (53)

Now, we denote 1st, 2nd, 3rd and 4th terms of right-hand-side of as Iy, I, I3, and I respectively.

24

Under review as submission to TMLR

In Il,

i 1 (ExJ (0) — ExJ (6x41)) < Zm: i*(Ekj(Qk)fEkj(ek-o-l))

= Pr (2 —LBk) = Pr
= Xm: (-)Ek [T (0)] + ——Ex [T (6.,,)] - L g, [T (Bms1)]
S \Br Bro Buom—1 T B
1 1 1 /1 1 1
B r— —B, < B, - — :BT;L17
. kZ (m_l) Al et m S AP </3k ﬁH) L

In the above, the 1st inequality is due to 8y < 1. The 2nd inequality holds due to |[E4[J(0))]| < B, as single
stage rewards r are bounded.

From I,
2 - 1+ LBy, 2 "
T E 0B < E 0B(1+ L
L+m—im & “ <2—Lﬁk)_1+m—bka c10B(1+ L)
— §m 201086y < Bsfim = O(—)
T 14+m—uy ml/2

k=tm

In the above the 1st and 2nd inequality is due to Gy < % and Bs > 0 some constant term.

From I3 we get,

L - B L
1+m—bmk§; (2—L,8k)[dejd® + 52}§1+m—bm Zﬁk[dcw 52}

k=tm

1
< BefBm = O(m)

In the above, first inequality is due to S < +, and a constant Bg > 0.

Further, From Iy

2 i B [LBig BB
(2—LBy) [2027F 6

k:Lm

LB4 BBl 1
_1+m—L 26k|:262 5 :|<B7ﬂm (3/2)

In the above, first inequality is due to S < +, and a constant B7 > 0.
Now from
og}cglmEHVJ (O) H 1+m—L Z Ei HVJ ek |
4B, [} 1 1
§1+m—Lm+O(1/2)+0(m3/2)
1 _
= O(—173) + O(=173) = O(c™?)

25

Under review as submission to TMLR

A.2.2 Finite Time Analysis of Algorithm [2]

Lemma 7. The faster and slower than faster step sizes B, = W, = W, where 0 < 04 < 03,
follow
Zn7n+l 1
0< J gm-i- S C///7 (54)
my
Zﬂm-u oy
assuming 0 < npy1 — Ny < {37, " > 0 where 0 < o4 + 03 < 05. Thus, 15"7“ s bounded.

Proof. The proof follows by replacing o', ¢”, o’ with o5, 04 and o3, respectively, in the proof of Lemma

Bl O

Lemma 8. E,,[[|N71(0(m),n(m)|] < B%’@m and Ep,[[|N1(0(m),n(m)]?] < Bl“ﬁ"’ for some constant
Big, B14 > 0.

Proof.
B NG 04(m). ()]
fm (e7] }_lJr] —}_l] ~ —
= lMl()P"m“) (”)—<c<e<m>+aA<m>,n<m>>—c<e<m>,n<m>>>H
g (RG) - BG) _
<1k, [Zﬂ e 0T 10D —<£<9<m>+6A<m>,n<m»—cw(m),n(m)))]
Now,
o BEG) —RG)))
B P e —(E(9(m)+5A(m),n(m))—E(G(Tn),n(m)))]
41 o1 @ h(j) = h(j
< By f{max 2 e)2 +z(1(”) D) _ (0(m) + 5 o) -
J=nm+
£00m),)] < Bl Y

{1 + nm}057(r4703 Z;%;:L+1 y et

[(h*(7) = L(B(m) + 6A(m),n(m))) = (h(j) — L{O(m),n(m)))]] (from Lemmal [T} as in [47))

R 1 Nm4-1 -))
< T Z?;l "y Z 14aj19p Bi1 (using Assumption 3]0 < p < 1, By; > 0 constant)
m =T+
C/” 1 iae B10
< 4B o =
T T g jormeeme 2 1 @ j:nzm-i-l i {1+ np}os—oamos B
Bio 1 Bio Bio Bio

— - < Biofm,
{1+nm}05704703 {1+nm}a'4 {1+nm}05703 — {1+nm}05703 — {1+nm}a‘4 = 106 n

In the above, Bjp = 4B, and from Assumption 3| m > ¢, where ¢, is mixing time, 9p™ ! < B(m).

Thus, E,,[[N:(8(m), n(m)|] < L1l

In the similar way we can show that E,, [[A;(0(m), n(m)||?] < 2242 O

Lemma 9. There exists a constant B' > 0 such that |VL(#),n(m)|, < B’,VH € R

26

Under review as submission to TMLR

Proof. Let, assume that gradient of £(-), i.e., VL(-) is estimated by Vﬁ), and from (, we know
that @ic_(g(m)m(m)) — 5(9(m)+6A(mg,2(m))—5(9(m)7n(m)). Thus,

i(m)

g | SRRl A)) = SO |)| = oL0(m).) + cot (55)
for some constant term cs > 0. Now,
d _
Hvz(a)’n(m)ulzz|v£0n |—Z|E|: 9+5A 77(621_[’(9,77(771))|9 —C35|
d

The last inequality holds as the expected value of single-stage reward r and costs g4, ¢ = 1,..., N in Algorithm
are uniformly bounded and hence, £(-) is bounded.

O
Lemma 10. The gradient estimate VL (0y,1(k)) satisfies the following inequalities for all k > 1 :
|Ex [V£ @ nk)] = VL 0en(e)| < cad (56)
and
. 2 2 ¢
| [FE @]] < o [FE @] [+ G 67)
In the above, E, is shorthand for E (- | F), with sigma-field Fj and cs3, ¢4 are some positive constants.
Proof. From (55), as in (A. & Bhatnagar] [2024)), it is easy to see that the proof holds. O
Proof of Theorem [4:
Since £ is L-smooth, (see Definition [2] ' as in (A. & Bhatnagar] [2024; Papini et al., 2018), we have
_ _ _ L
L (Or1,n(k)) < L (O, n(k)) + (VL Ok, (k) , 011 — Ox) + 5 10kr1 — Ol
_ _ _ L L 2
< L (00, m(k)) = B (VL O (k) VL O, n(k) + N3 (0k)) + 552 VL 0 n(k) + Ni (60|
< L (0, m(k)) — Br <VC_ (O, n(K)) . VL (O, 77(7‘5))> — B (VL (O,n(k)) ,N1(6r))
L 2 2
382 || V£ @] + N3 @0)] (58)

Taking expectations with respect to the sigma field F on both sides of (58)), we obtain

27

Under review as submission to TMLR

Ex [£ (0341)] < Ei [£(0k,m(k))] — Be (VL Ok, n(k)), VL (0, (k) + c361ax1)
- BB MO + 55 | [[F2 0]+ 5] + S o012

<L (O, (k) = Br || VL (O, 77(7<?))||2 + 30 BkEx || VL (O, n(k))]|, — Blﬁkm

d
L - L B3
258 [IVL Ok + st +] + 2z P10l (59)
i} . 2 . B'Biof;
<L Ok (k) = Be [VL @r. (k)| + esd Bii | VL (Or (k) |, = =5+
L _ - L L
582 (V2 6k n (o) |* + 2¢50Bk [VL @, (k)| | + 557 [dc36% + 53] + 525 Buab]
~ L o ; 2 / 2 B/BIO@%
<L (0k,n(k)) — | Br — 551@ VL (8, n(E)||” + c36B' (B + LBR) — —5
L L
o7 [430% + 55| + 555 Busl, (60)

The 1st inequality follows from , in Lemma

0, and from Lemma. In the above, —||y|1 < Zle Yi
for any d-vector y, is used to get the inequality in (59)). The last inequality follows from the fact that
VL (0, n(k))||, < B’ by Lemma

Now, re-arranging the terms,

VL (9k,77(k))’|2 < m (£ (0, n(k)) — ExL (Bxs1) +c36 (Be + LBE) B']
LB}% 29 Cq 25,3 LBM 2 B/Blo
om ol L) R womey ol e a Sl

Now, as in (Wu et al.} 2020), we sum up the inequality above for k = ¢,,, to m, take expectations, divide by
(1+ m — ty,) both sides and assume m > 2i,,, — 1. We now obtain

m
1

> 2
_— E
e 2 B VG|
(B (O, n(E)) — B L (6s1, n(k m 1
< 2 3 (ExL (Or, n(k)) — ErL Oy, n()))+ 2 2035B’< +L6k>
1+m—Lmk:L ﬂk(2_L5k) 1+m_Lmk:L 2 — Lp
L - B 272 , C4 2 G B LBy , BBy
dc2o? + & _ .
+1+m—bmk§: (2—L6k)[c3 +62:|+1+m—Lme @ LBy | 202 " s (61)

=lm

Now, we denote 1st, 2nd, 3rd and 4th terms of right-hand-side of as Iy, I, I3, and I respectively.

28

Under review as submission to TMLR

In Il,
O 1 (BL (k) — L (Ban(k) _ S~ 1 ~EiL
,;n B (2= LBy) S,;ﬂ 5 * (BiL (6 n(k)) = il Bresr, (k)
-y é s (BiL (6g, n(k)) — B L (B1,m(k + 1))
k=tm
Y é* (ExL (O 1, n(k + 1)) — Ex L (B2, (k)
k=tm
-y (1‘ :)Ek [£ 00 100)) i [£ Br 10m))] = 5 [£ B, nom+ 1)]
k=tm Br Br-1 , Bim—1 e B h
+ Z E* (Bg+Bu)Z|77q(k+1)*nq(k)|
k=tm q=1
SN SN PR B 'y &
- kg;m (k Bkl) bt ﬁL,,rlBh 5mBh FAE) kg;m B
a i \Be o B B k=t

{m — y, + 1} 700604
1 — 0O¢6 + (o)
— 2Bh5;11 —+ Bld{m —lm + 1}1_06+U4,

< 2BB;." + Bia

In the above, the 1st inequality is due to 8 < +. The 2nd inequality holds due to [E[L(0y),n(k)]| < By, as
mentioned above. The second last inequality is from

Mm—Llm

m—tm+1 - 1—(04—0¢)
m m+1
§ : (1 k)f(mlfaﬁ) S/ y7(04705) dy* (1L)
= 0 — (04— 0¢)

and in the equality Bys = Bia/o4 > 0.

From I,
2 " 1+ LBy, 2 "
_— 0B’ < SB'(1+ L
1+m—4mkgc3 <2—LB;€)_1—|—m—Lmk§C3 (1+ L)
P EEEE— i QCg(SB/Bk, < B156 = O(!)
“14+m—ty . - m ml/2
=lm

In the above the 1st and 2nd inequality is due to S < % and Bis > 0 some constant term.

From I3 we get,

L i Br 9y C4 L " by C4 1
Al —= : 2| < BigBpm = O(——
1+m— k; (2 — LBk) [dc35 + 62} “14+m— oty = B [dc35 + 52} < Buofs O(ml/Z)

m =lm

In the above, first inequality is due to 8, < 1, and Byg > 0.

29

Under review as submission to TMLR

Further, from I,

2 - B LBy ,, BBy
1+m—Lmk; (2—L6k){262 P B

2 Ui LBy 2 B/Blo 3 1
< — — < B = O
= 1 +m— m kz Bk |: 252 Bk: 5 = 176177, (m3/2)

=tlm

In the above, first inequality is due to 8 < %, and Bi7 > 0.

Now from
. 5 2 1 “ 5 2
ogclgnmE VL 0k, n(k))||” = T — k_z By || VL 0k, n(k))|
4By, B B {m — Ly, + 1} 06 t0s Lo 1)+ O 1)
T l4m—iy 1 14+m—tm ml/2 m3/2
1/2
< 4By, max{L,{1 +m}'/*} Bis Lo 1)
14+m—iy {m — ty, + 1}o6704 m1/2
1 1 1 _9

30

	Introduction
	Related Work
	Background
	Proposed Algorithm
	Actor-only Algorithm (AOA) for Regular RL
	Safe-Actor-only Algorithm (SAOA) for Constrained RL

	Asymptotic Convergence Analysis
	Asymptotic Analysis of algo:opttheta
	Asymptotic Analysis of algo:optthetaconstrainedMDP

	Finite Time Analysis
	Finite Time Analysis of algo:opttheta
	Finite Time Analysis of algo:optthetaconstrainedMDP

	Experiments and Results
	Conclusions
	Appendix
	Asymptotic Convergence Analysis
	Asymptotic Analysis of algo:opttheta
	Asymptotic Analysis of algo:optthetaconstrainedMDP

	Finite Time Analysis
	Finite Time Analysis of algo:opttheta
	Finite Time Analysis of algo:optthetaconstrainedMDP

