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ABSTRACT

We introduce a novel and general loss function, called Augmented Negatives
(AugNeg), for effective continual self-supervised learning (CSSL). We first argue
that the conventional loss form of continual learning which consists of single task-
specific loss (for plasticity) and a regularizer (for stability) may not be ideal for
contrastive loss based CSSL that focus on representation learning. Our reasoning is
that, in contrastive learning based methods, the task-specific loss would suffer from
decreasing diversity of negative samples and the regularizer may hinder learning
new distinctive representations. To that end, we propose AugNeg that consists
of two losses with symmetric dependence on current and past models’ negative
representations. We argue our model can naturally find good trade-off between the
plasticity and stability without any explicit hyperparameter tuning. Furthermore, we
present that the idea of utilizing augmented negatives can be applied to CSSL with
non-contrastive learning by adding an additional regularization term. We validate
the effectiveness of our approach through extensive experiments, demonstrating that
applying the AugNeg loss achieves superior performance compared to other state-
of-the-art methods, in both contrastive and non-contrastive learning algorithms.

1 INTRODUCTION

Self-supervised learning (SSL) has recently emerged as a cost-efficient approach for training neural
networks, eliminating the need for laborious data labelling (Gui et al., 2023). Specifically, the
representations learned by recent SSL methods (e.g., MoCo (He et al., 2020), SimCLR (Chen et al.,
2020a), BarlowTwins (Zbontar et al., 2021), BYOL (Grill et al., 2020), and VICReg (Bardes et al.,
2022) are shown to have excellent quality, comparable to those learned from supervised learning.
Despite such success, huge memory and computational complexities are the apparent bottlenecks
for easily maintaining and updating the self-supervised learned models, since they typically require
large-scale unsupervised data, large mini-batch sizes, and numerous gradient update steps for training.

To that end, continual self-supervised learning (CSSL), in which the aim is to learn progressively
improved representations from a sequence of unsupervised data, can be an efficient alternative to
the high-cost, jointly trained self-supervised learning. With such motivation, several recent studies
(Madaan et al., 2022; Hu et al., 2022; Fini et al., 2022) have considered the contrastive learning
based CSSL and showed their effectiveness in maintaining representation continuity. Despite the
positive results, we note that the core idea for those methods is mainly borrowed from the large body
of continual learning research for supervised learning (Parisi et al., 2019; Delange et al., 2021; Wang
et al., 2023). Namely, a typical supervised continual learning method can be generally described
as employing a single-task loss term for the new task (e.g., cross-entropy or supervised contrastive
loss (Khosla et al., 2020)) together with a certain type of regularization (e.g., distillation-based (Li
& Hoiem, 2017; Douillard et al., 2020; Kang et al., 2022; Wang et al., 2022; Cha et al., 2021a)
or norm-based (Kirkpatrick et al., 2017; Aljundi et al., 2018; Jung et al., 2020; Ahn et al., 2019;
Cha et al., 2021b) or replay-sample based terms (Wu et al., 2019; Rebuffi et al., 2017)) to prevent
forgetting; the recent state-of-the-art CSSL methods simply follow that approach with unsupervised
self-supervised loss terms.

In this regard, we raise two issues on the current self-supervised loss based CSSL approach. Firstly,
it is not clear whether adding a regularization term to the existing self-supervised loss is the best
way to achieve successful CSSL. Namely, typical regularization terms are essentially designed to
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maintain the representations of previous model, but they may hinder the capability of learning better
representations while learning from new task data (Cha et al., 2023). Secondly, the current approach
would suffer from the decrease in diversity of negative samples when the contrastive loss is used as
the single-task loss, since the negative samples are only mined from the current task data. Several
studies have shown that the diversity of negative samples is crucial for learning good representations
for contrastive learning (Wang & Isola, 2020; Chen et al., 2020a; Tao et al., 2022), and accordingly,
the current CSSL methods may be inherently limited in learning good representations compared to
the jointly trained SSL models which have access to full data.

To address above limitations, we propose an effective method for augmenting negative representations
for CSSL. First, we consider the case of using InfoNCE -type contrastive loss (Oord et al., 2018),
e.g., SimCLR or MoCo, which explicitly utilizes the negative samples while learning. Namely, we
propose novel loss functions, dubbed as AugNeg, by modifying the ordinary InfoNCE loss as well
as the regularization term for the contrastive distillation (Fang et al., 2021; Tian et al., 2019) so
that the former also considers the negative sample representations from the previous model and the
latter also includes the negative samples representations from the current model. We argue that
enhancing negative representations in this manner facilitates the CSSL methods in learning more
distinct representations from the new data. It ensures that the newly acquired representations do
not overlap with the previously learned ones, thereby enhancing plasticity. Additionally, it allows
for the effective distillation of prior knowledge into the current model without interfering with the
representations already learned by the current model, thus improving overall stability. Second, we
extend above idea to the CSSL using non-contrastive learning methods e.g., BYOL, BarlowTwins
and VICReg. Namely, while those methods do not explicitly use the negative samples in the original
implementations, we show that the idea of augmenting the “negative” representations from the
previous model, which we will precisely define later, is helpful for the several CSSL settings. Finally,
through extensive experimental analyses, our proposed algorithm demonstrates not only the gradual
improvement in the quality of representations during the CSSL steps but also superior results across
various forms of downstream tasks.

2 RELATED WORK

Self-supervised representation learning There have been several recent variations for Self-
Supervised Learning (SSL) (Alexey et al., 2016; Doersch et al., 2015; Vincent et al., 2010; Zhang
et al., 2016; Hadsell et al., 2006; Chen et al., 2020a; He et al., 2020). Among those, contrastive loss-
based methods have emerged as the leading approach to learn discriminative representations (Hadsell
et al., 2006; Oord et al., 2018), in which the representations are learned by pulling the positive pairs
together and pushing the negative samples apart. Several efficient contrastive learning methods, like
MoCo (He et al., 2020; Chen et al., 2020b), SimCLR (Chen et al., 2020a), have been proposed build
on the InfoNCE loss (Oord et al., 2018). Additionally, non-contrastive learning methods, such as
Barlow Twins (Zbontar et al., 2021), BYOL (Grill et al., 2020) and VICReg (Bardes et al., 2022),
have been demonstrated to yield high-quality learned representations without negatives.

Continual learning Continual learning (CL) is the process of acquiring new knowledge while
retaining previously learned knowledge (Parisi et al., 2019; Masana et al., 2020) from a sequence of
tasks. To balance the trade-off between plasticity, the ability to learn new tasks well, and stability,
the ability of retaining knowledge of previous tasks (Mermillod et al., 2013), the supervised CL
research has been proposed in three categories (Parisi et al., 2019; Wang et al., 2023; Delange et al.,
2021). Recently, there has been a growing interest in Continual Self-Supervised Learning (CSSL),
as evidenced by several related researches (Rao et al., 2019; Madaan et al., 2022; Hu et al., 2022;
Fini et al., 2022). Madaan et al. (2022) first demonstrates that CSSL can outperform supervised
CL algorithms in the task-incremental learning scenario. Additionally, they show that CSSL is less
prone to catastrophic forgetting due to achieving wider local minima. Another study (Hu et al.,
2022) focuses on the benefits of CSSL in large-scale datasets (e.g., ImageNet), demonstrating that a
competitive pre-trained model can be obtained through CSSL. Lastly, the most recent work (Fini
et al., 2022) proposed a novel regularization (dubbed as CaSSLe) which effectively overcomes
catastrophic forgetting in CSSL, achieving state-of-the-art performance in various scenarios of CSSL.

Our paper makes distinctive contributions compared to related works. Firstly, we identify shortcom-
ings in a conventional loss form for CSSL such as those majorly used in prior works like CaSSLe, and
shed new light on an issue where the diversity of negative samples significantly decreases in CSSL.
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Secondly, we suggest utilizing additional negatives obtained through model-based augmentation
which is specifically tailored for CSSL. This approach sets itself apart from previous augmentation
methods that primarily focused on training a single-task in SSL (Zheng et al., 2021; Bai et al., 2022).

3 MAIN METHOD

3.1 PROBLEM SETTING

Notations and preliminaries. We evaluate the quality of CSSL methods using the setting and data
for continual supervised learning similarly as in Fini et al. (2022). Namely, let t be the task index,
where t ∈ {1, . . . , T}, and T represents the maximum number of tasks. The input data and their
corresponding true labels given at the t-th task are denoted by x ∈ Xt and y ∈ Yt, respectively1. We
assume each training dataset for task t comprises M supervised pairs, denoted as Dt = {(xi, yi)}Mi=1,
in which each pair is considered to be sampled from a joint distribution p(Xt,Yt). Note in the case of
continual supervised learning (CSL) (Delange et al., 2021; Masana et al., 2020), both inputs and the
labels are used, whereas in CSSL (Fini et al., 2022; Madaan et al., 2022), only input data are utilized
for training, while the true labels are used only for the evaluation of the learned representations,
such as linear probing or k-NN evaluation (Fini et al., 2022; Cha et al., 2023). We denote hθt as the
representation encoder (with parameter θt) learned after task t by a CSSL method. To evaluate the
quality of hθt via linear probing, we consider a classifier fΘt = oϕt ◦ hθt , in which Θt = (θt, ϕt)
and oϕt is the linear output layer (with parameter ϕt) on top of hθt . Then, only oϕt is supervised
trained (with frozen hθt ) using all the training dataset D1:t, including the labels, and the accuracy of
resulting fΘt becomes the proxy for the represenation quality.

Class-/Data-/Domain-incremental learning. We consider the three scenarios of continual learning
as outlined in Van de Ven & Tolias (2019); Wang et al. (2023); Fini et al. (2022). We use k and
j to denote arbitrary task numbers, where k, j ∈ {1, . . . , T} and k ̸= j. The first category is the
class-incremental learning (Class-IL), in which the t-th task’s dataset consists of a unique set of
classes for the input data, namely, p(Xk) ̸= p(Xj) and Yk ∩ Yj = ∅. The second category is
domain-incremental learning (Domain-IL), in which each dataset Dt has the same set of true labels
but with different distribution on Xt, denoted as p(Xk) ̸= p(Xj) but Yk = Yj . In other words, each
dataset in Domain-IL contains input images sampled from a different domain, but the corresponding
set of true labels is the same as for other tasks. Finally, we consider data-incremental learning
(Data-IL), in which a set of input images Xt is sampled from a single distribution, p(Xk) = p(Xj),
but Yk = Yj . To implement the Data-IL scenario in our experiments, we shuffled the entire dataset
(such as ImageNet-100) and divided it into T disjoint datasets.

3.2 MOTIVATION

Conventional loss form of continual learning We first reconsider the loss form, illustrated in
Figure 1(a), which is commonly employed by many state-of-the-art continual learning (CL) methods,
except in cases where exemplar memory is utilized. Namely, when learning task t with a model
parameter Θt, the conventional loss has the form as follows:

Lt
CL(Dt,Θt,Θt−1) = Lsingle(Dt,Θt) + λ · Lreg(Dt,Θt,Θt−1), (1)

in which Θt−1 represents the frozen model trained up to task t− 1 and λ denotes a regularization
parameter that controls appropriate trade-off between the two loss terms. The term Lsingle represents
the typical loss function utilized in single-task learning, such as cross-entropy, supervised contrastive
loss (Khosla et al., 2020) or self-supervised learning loss (He et al., 2020). This term clearly promotes
plasticity for the new task (task t) since it depends only on the current model Θt and Dt. In addition,
Lreg represents a regularization term that is dedicated to increase stability. Namely, since Θt−1 is
considered to contain knowledge of the previous tasks’ dataset (i.e., D1:t−1) in the weight parameters,
Lreg is solely designed to maintain that knowledge to reduce forgetting while training Θt in various
ways: such as direct weight level-regularization (Kirkpatrick et al., 2017), knowledge distillation (Li
& Hoiem, 2017) from Θt−1 to Θt, and model expansion term (Yan et al., 2021). It’s worth noting that
recent works on CSSL (Hu et al., 2022; Fini et al., 2022; Madaan et al., 2022) also adopt a similar

1For concreteness, we explicitly work with image data in this paper, but we note that our method is general
and not confined to image modality.
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Figure 1: Illustrations of motivation for our work. (a) Many of the CL algorithms combine a loss
dedicated to learning a single current task and a regularizer that penalizes the deviation of the current
model from the past. (b): In CSSL, negative samples are solely mined from the current task’s data,
resulting in significantly decreasing diversity of negative samples than the case of the joint SSL.

loss formulation as (1). In particular, CaSSLe (Fini et al., 2022), the current state-of-the-art method,
introduces a novel and effective Lreg that easily integrates with various self-supervised learning
methods, effectively mitigating catastrophic forgetting in learned representations during CSSL.

Nevertheless, we contend that the utilization of such a conventional loss form may impose limitations
on the achievement of more successful CSSL. This stems from the fact that while Lreg contributes to
the preservation of previously acquired representations and the reduction of forgetting , it may impede
the acquisition of new representations from novel tasks. Furthermore, recent empirical findings, as
highlighted in studies such as (Cha et al., 2023; Davari et al., 2022), suggest that prioritizing stability
through regularization (Lreg) may not necessarily result in learning improved representations even
when higher accuracy is attained, thereby supporting this proposition.

Low diversity of negative samples in CSSL In contrast to the prevailing research trend in CSSL,
we assert that CSSL faces a critical challenge stemming from the limited diversity of negative samples
when compared to joint self-supervised learning (Joint SSL). The importance of negative samples in
self-supervised contrastive learning has been extensively acknowledged, with studies demonstrating
the benefits of incorporating a substantial number of diverse negative samples (Oord et al., 2018;
Wang & Isola, 2020; Chen et al., 2020a; Tao et al., 2022) and selecting hard negatives (Robinson
et al., 2020; Kalantidis et al., 2020). However, the issue of negative samples in the CSSL has remained
unexplored until now. In this regard, Figure 1(b) highlights a fundamental problem: while Joint SSL
allows for diverse negative sample selection, CSSL tends to exhibit significantly reduced diversity.
Given the importance of negative samples, we believe that this decrease in diversity can be a key
reason why self-supervised contrastive learning algorithms often yield less effective representations
in CSSL scenarios, especially in terms of plasticity.

3.3 AUGMENTING NEGATIVE REPRESENTATIONS FOR CONTRASTIVE LEARNING METHODS

Motivated by the two issues raised in the previous section, we propose a new form of loss functions
tailored for CSSL. First, recalling the notation in Section 3.1, we note that only the encoder hθt
is trained during CSSL. Then, our Augmented Negatives (AugNeg) loss, devised for contrastive
learning-based methods, for learning from task t has the following form

Lt
AugNeg(Dt, θt, θt−1) = L1(Dt, θt, θt−1) + L2(Dt, θt, θt−1). (2)

While we will specify the two loss functions shortly, here, notice the symmetric dependence of them
on (Dt, θt, θt−1), which is in contrast to (1). As we show below, such symmetry enables our loss to
promote finding inherent trade-off between the plasticity and stability without explicit control of a
hyperparameter.

Model-based augmentation of negative representations. To address the issue depicted in Figure
1(b) and based on the format of Equation (2), we propose to make use of augmented negative
representations obtained from the both current and previous models during training task t. For given
input data xi and encoder hθt , we denote zi,t = Proj(hθt(xi)) ∈ RDP and z̃i,t = Pred(zi,t) ∈
RDP as the normalized embeddings for the encoder of task t, in which “Proj” and “Pred” are the
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Figure 2: Graphical representation of learning with our proposed AugNeg loss. The blue dashed
arrow represents the direction of the gradient update when training with the AugNeg loss, repelling
from the negative sample embeddings of current/past models and attracting to the positive sample
embeddings of the current/past models.

Projection (Chen et al., 2020a) and Prediction (Fini et al., 2022) layers, consisting of a multi-layer
perceptron (MLP), respectively. Furthermore, we denote z+i,t and z−i,t as the embedding (obtained by
hθt ) of the positive and negative sample corresponding to the given xi, respectively, and Nt(i) as the
set of the negative embeddings for xi. Then, both losses in (2) for the sample xi are defined as

L1(xi, θt, θt−1) = −log
exp(zi,t · z+i,t/τ)∑

z−
i,t∈Nt(i)

exp(zi,t · z−i,t/τ) +
∑

z−
i,t−1∈Nt−1(i)

exp(zi,t · z−i,t−1/τ)
,

and

L2(xi, θt, θt−1) = −log
exp(z̃i,t · zi,t−1/τ)∑

z−
i,t∈Nt(i)

exp(z̃i,t · z−i,t/τ) +
∑

z−
i,t−1∈Nt−1(i)

exp(z̃i,t · z−i,t−1/τ)
.

in which τ is a temperature parameter.

Note these two losses are quite similar in form to InfoNCE (Oord et al., 2018), but has a couple
of key differences. Previous CL research, such as CaSSLe, zi,t−1 was solely utilized for distilling
previous knowledge (for better stability). In contrast to them, firstly, in L1, we use additional negative
embeddings in Nt−1(i) which are obtained from the previous model hθt−1

. This addition of negative
embeddings in L1 mitigates the issue of decreasing diversity of negative samples pointed out in
Section 3.2. Moreover, it compels the embedding of xi to be repelled not only from the negative
embeddings of the current model but also from those of the previous model, hence, it fosters the
acquisition of more distinctive representations. Secondly, in L2, which has the similar form of
self-supervised distillation (Fang et al., 2021; Tian et al., 2019), we also use additional negative
embeddings in Nt(i). Such modification has an impact of putting additional constraint in distillation
so that the representations from the past model are maintained in a way not to contradict with the
representations of current model. Also, we introduce the “Pred” layer, as in Fini et al. (2022), to not
hurt the plasticity by doing indirect distillation.

Note that the denominators of the two loss functions are identical except for the “Pred” step in
L2. Therefore, with the identical repelling negative embeddings, adding two losses will result in
achieving natural trade-off between plasticity and stability for learning the representation zi,t. This
intuition is depicted in Figure 2. Namely, unlike in Figure 1(a), both losses symmetrically consider
the embeddings from current and previous models, and as shown in the rightmost hypersphere, the
representation of zi,t gets attracted to z+i,t and zi,t−1 with the constraint that it is far from both z−i,t
and z−i,t−1. Thus, the new representation will be distinctive from the previous model (plasticity) and
carry over the old knowledge (stability) in a way not to hurt the current model.

It is noteworthy that the AugNeg loss can be easily integrated into contrastive learning-based SSL
methods like MoCo and SimCLR. The implemented loss function for them is presented in the
Supplementary Materials. Also, in the Supplementary Materials, we provide more discussions and
analyses, such as the gradient analysis for the proposed loss LAugNeg, the role of augmented negatives.
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3.4 EXTENSION TO THE NON-CONTRASTIVE LEARNING METHODS

For SSL algorithms that do not utilize negatives (e.g., Barlow, BYOL and VICReg), the core idea
of AugNeg which utilizes model-based augmentation of negative representations cannot be directly
applied. However, we can apply the similar principle by adding an additional regularization term. For
instance, consider a batch of input images denoted as x, where distinct augmentations, denoted as
A and B, are applied, resulting in xA and xB , respectively. Based on this, the loss function for the
AugNeg loss s BYOL can be denoted as follows:

Lt
AugNeg, BYOL(x

A, xB, θt, θt−1) = ∥gθt(hθt(x
A))− zξ(x

B)∥22 (3)

+∥Pred(hθt(x
A))− hθt−1(x

A)∥22 (4)

−∥Pred(hθt(x
A))− hθt−1

(xB)∥22, (5)

where qθt represents an MLP layer in BYOL, and zξ corresponds to the target network obtained
through momentum updates using hθ. Equation (3) and Equation (4) denotes the original loss function
of BYOL and CaSSLe’s distillation, respectively. Furthermore, Equation (5) is a newly devised
regularization to enhance plasticity by using negatives from the t− 1 model. Unlike Equation (4),
where the outputs of models t and t−1 task remain consistent when the same augmentation is applied,
Equation (5) ensures that when different augmentations are applied, model t produces different outputs
from model t− 1 (i.e., considering the output of model t− 1 as negative samples). The justification
for Equation (5) can be substantiated by the approach utilized in contrastive distillation of CaSSLe,
where all samples with distinct augmentations (e.g., 2N samples) consider all samples except those
with the same augmentation (e.g., 2N − 1 samples) as negative samples (See the Supplementary
Materials for more details). Note that the similar form of Equation 5 can be utilized for the case
of AugNeg(VICReg) also. We believe that the above idea can similarly be applied to various SSL
algorithms that do not explicitly involve negative samples through the addition of extra regularization.
The implementation details for VICReg and Barlow are introduced in the Supplementary Materials.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Baselines To evaluate the AugNeg loss, we used CaSSLe (Fini et al., 2022) as our primary
baseline, which has shown state-of-the-art performance in CSSL. We selected four SSL methods,
SimCLR (Chen et al., 2020a), MoCo v2 Plus (MoCo) (Chen et al., 2020b), BarlowTwins (Bar-
low) (Zbontar et al., 2021), BYOL (Grill et al., 2020), and VICReg (Bardes et al., 2022), which
achieve superior performance with the combination with CaSSLe in various CSSL scenarios.

Implementation details We conducted experiments on three datasets: CIFAR-100 (Krizhevsky
et al., 2009), ImageNet-100 (Deng et al., 2009), and DomainNet (Peng et al., 2019), following the
methodology outlined in Fini et al. (2022). For CIFAR-100 and ImageNet-100, we performed Class-
and Data-incremental learning (Class- and Data-IL) with 5 and 10 tasks (denoted as 5T and 10T),
respectively. For Domain-incremental learning (Domain-IL), we utilized DomainNet, consisting
of six disjoint datasets from different six source domains. The ResNet-18 (He et al., 2016) model
implemented in PyTorch was used for all experiments. AugNeg was implemented based on the code
provided by CaSSLe (Fini et al., 2022). We conducted all experiments of both CaSSLe and AugNeg
in the unified environment for fair comparison. Each experiment was conducted three times with
different seeds, and the reported values represent the mean, with standard deviation indicated in
parentheses (). Further experimental details are available in the Supplementary Materials.

Evaluation metrics To gauge the quality of representations learned in CSSL, we conduct linear
evaluation by training only the output layer on the given dataset while maintaining the encoder hθt
as a fixed component, following (Fini et al., 2022; Cha et al., 2023). The average accuracy after

learning the task t is denoted as At =
1

t

∑T
i=1 ai,t, where ai,j stands for the linear evaluation top-1

accuracy of the encoder on the dataset of task i after the end of learning task j. Furthermore, we
employ measures of stability (S) and plasticity (P ), and a comprehensive explanation of these terms
is provided in the Supplementary Materials.
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4.2 EXPERIMENTAL EVALUATION OF AUGNEG WITH SSL ALGORITHMS

Figure 3: Applying AugNeg to SSL methods.

A5 MoCo SimCLR Barlow BYOL VICReg

Joint 66.90
(0.11)

63.78
(0.22)

68.99
(0.21)

69.36
(0.28)

68.01
(0.36)

FT 51.95
(0.26)

48.97
(0.74)

55.81
(0.57)

52.43
(0.62)

52.43
(0.62)

EWC* - 53.60 56.70 - 56.40
DER* - 50.70 55.30 - 54.80

LUMP* - 52.30 57.80 - 56.40
Less-Forget* - 52.50 56.40 - 58.60

CaSSLe 60.11
(0.30)

57.73
(1.07)

60.10
(0.38)

61.36
(1.38)

53.13
(0.04)

AugNeg 62.36
(0.29)

58.87
(0.16)

60.28
(0.36)

62.32
(0.98)

56.47
(0.94)

Table 1: Experimental results on CSSL baselines.

To evaluate the effectiveness of integrating AugNeg with different SSL methods, we conducted
experiments by incorporating the AugNeg into MoCo, SimCLR, Barlow, BTOL, and VICReg, as
depicted in Figure 3. These experiments were carried out within the Class-IL (5T) scenario on
CIFAR-100. In this figure, +CaSSLe indicates the outcomes of applying CaSSLe to SSL algorithm,
and AugNeg denotes the results of implementing the AugNeg loss alongside SSL algorithm. Note
that the training cost of CaSSLe and AugNeg is nearly identical, attributable to the inherent simplicity
of AugNeg. This figure reveals several key findings. Firstly, when both CaSSLe and AugNeg are
combined with each SSL method, they progressively enhance the quality of representations as each
task t is learned. Secondly, AugNeg demonstrates more effective integration with MoCo, SimCLR,
BYOL, and VICReg, surpassing the results of CaSSLe.

Table 1 presents the numerical results for A5 in the same scenario. In this table, Joint corre-
sponds to the experimental results in the Joint SSL scenario and FT represents the results achieved
through fine-tuning with the SSL method alone. The * symbol indicates results from the CaSSLe
paper, while the others are reproduced outcomes. From this table, AugNet consistently outper-
forms CaSSLe, demonstrating a maximum improvement of approximately 2-3%. Especially, when
considering the performance arising from the combination of CaSSLe with MoCo and BYOL,
demonstrating superior performance in CSSL and already approaching that of the Joint, we as-
sert that the additional performance enhancement achieved by AugNeg is a notable outcome.

Table 2: Experimental results on stability and plasticity.

S(↓) / P (↑) MoCo SimCLR BYOL VICReg
CaSSLe 0.11 / 9.99 0.33 / 4.08 0.09 / 11.94 0.39 / 6.78
AugNeg 0.06 / 11.8 0.48 / 5.36 0.20 / 13.84 0.65 / 12.59

Finally, Table 2 presents stability (S) and
plasticity (P ) metrics. For MoCo, Sim-
CLR, BYOL, and VICReg, the results il-
lustrate AugNeg’s superiority, attributed
to a significant boost in plasticity while
minimizing increase of stability compared to CaSSLe. This underscores the crucial role of employing
the proposed model-based augmentation of negatives in CSSL. Based on the results of these previous
experiments, we will more focus to apply and evaluate AugNeg(MoCo) and AugNeg(BYOL), which
achieves superior performance, in further experiments on various CSSL scenarios.

4.3 EXPERIMENTAL EVALUATION IN DIVERSE CSSL SCENARIOS

Class-IL We conducted experiments on various datasets and scenarios, and all the experimental
results are presented in Table 3. The figure presents Class-IL experiments conducted with CIFAR-
100 and ImageNet-100 datasets. Firstly, regarding the CaSSLe results, significant performance
variations are observed depending on the dataset and the total number of tasks. For instance, in
the CIFAR-100 experiments, BYOL + CaSSLe consistently outperforms other CaSSLe variants.
However, in the ImageNet-100 experiments, Barlow + CaSSLe exhibits superior performance in 5T,
whereas BYOL + CaSSLe shows the lowest performance. On the other hand, AugNeg combined
with MoCo and BYOL consistently achieves improved performance compared to their combination
with CaSSLe. For example, in the ImageNet-100 experiments, AugNeg(MoCo) and AugNeg(BYOL)
achieves a substantial gain of approximately 2-6% when compared to their combination with CaSSLe,
establishing themselves as the new state-of-the-art method.
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Table 3: Experimental results for three scenarios. All results are averaged over three seeds, and
standard deviations are indicated in parentheses (). The red annotation represents the highest
performance, while the blue annotation indicates the second-highest performance, in each scenario.

Class-IL Data-IL Domain-IL
CIFAR-100 ImageNet-100 ImageNet-100 DomainNetAT

10T 5T 10T 5T 10T 6T
Joint 66.90 (0.11) 76.67 (0.56) 48.2 (0.30)
FT 34.11 (0.90) 57.88 (0.35) 48.27 (0.88) 65.51 (0.72) 60.50 (0.92) 36.48 (1.01)MoCo

+CaSSLe 53.58 (0.41) 63.49 (0.52) 52.71 (0.47) 66.88 (0.32) 59.72 (0.61) 38.04 (0.24)
Joint 63.78 (0.22) 71.91 (0.57) 48.5 (0.21)
FT 39.48 (1.00) 56.11 (0.57) 46.66 (0.59) 62.88 (0.30) 56.47 (0.11) 39.46 (0.20)SimCLR

+CaSSLe 53.02 (0.47) 62.53 (0.11) 54.55 (0.12) 66.05 (0.95) 61.68 (0.38) 46.58 (0.08)
Joint 69.36 (0.21) 75.89 (0.22) 49.5 (0.32)
FT 49.46 (0.67) 60.27 (0.27) 51.83 (0.46) 66.47 (0.24) 59.48 (1.33) 41.87 (0.17)Barlow

+CaSSLe 54.46 (0.24) 64.98 (0.79) 56.27 (0.63) 69.24 (0.36) 63.12 (0.28) 48.49 (0.04)
Joint 68.99 (0.28) 75.52 (0.17) 53.8 (0.24)
FT 46.13 (0.88) 60.77 (0.62) 51.04 (0.52) 69.76 (0.45) 61.39 (0.44) 47.29 (0.08)BYOL

+CaSSLe 57.36 (0.86) 62.31 (0.09) 57.47 (0.75) 66.22 (0.13) 63.33 (0.19) 51.02 (0.08)
AugNeg (MoCo) 56.62 (0.31) 67.85 (0.44) 60.75 (0.39) 69.98 (0.30) 67.83 (0.45) 43.86 (0.17)
AugNeg (BYOL) 58.44 (0.40) 64.23 (0.37) 60.11 (0.91) 64.83 (0.13) 61.90 (0.33) 51.96 (0.08)

Data/Domain-IL In the context of Data-IL, baseline methods exhibits distinct trends from those
observed in Class-IL. Specifically, Barlow + CaSSLe outperforms other variants. Moreover, as
previously reported in the CaSSLe paper, fine-tuning with BYOL produces robust results. However,
AugNeg (MoCo) shows a noteworthy improvement of approximately 3-8% when compared to MoCo
+ CaSSLe, achieving the state-of-the-art performance in Data-IL for both 5T and 10T scenarios. Note
that combining BYOL with CaSSLe and AugNeg in Data-IL, especially in the 5T scenario, yields
suboptimal results. This can be attributed to the unique characteristics of Data-IL and we discuss this
result more in the Supplementary Materials.

In Domain-IL, we presented the average top-1 accuracy achieved by training a linear classifier
independently on each domain, using the feature extractor that was kept frozen (domain-aware).
BYOL + CaSSLe exhibits the most promising results among the existing baselines. In this scenario
as well, the application of AugNeg consistently improves the performance of MoCo and BYOL
compared to the baseline. Notably, AugNeg(BYOL) outperforms the previous state-of-the-art BYOL
+ CaSSLe, more approaching the performance of Joint.

Challenges of reproducing CaSSLe’s results While all experiments were conducted using
CaSSLe’s official code, we obtained results approximately 4-5% lower than those reported in the
original paper, particularly for datasets such as ImageNet-100 and DomainNet. Notably, similar
issues were documented on the issues page of CaSSLe’s official GitHub repository. However, our
experiments, which compared CaSSLe with our proposed AugNeg, were executed within an identical
environment. This allowed us to demonstrate the superior performance of AugNeg without the
confounding factors associated with fair comparison.

4.4 EXPERIMENTAL ANALYSIS FOR AUGNEG

(a) AugNeg(MoCo) (b) MoCo + CaSSLe (c) MoCo + FT

Figure 4: The graph illustrates the values of ak,t for each algorithm in the Class-IL (5T) scenario
using the ImageNet-100 dataset. The measured stability (S ↓) and plasticity (P ↑) for each method
are as follows: (a) (S, P ) = (1.23, 3.47), (b) (S, P ) = (2.80, 2.52), (c) (S, P ) = (3.13, 2.38).
Analysis on performance changes of each task Figure 4 presents the experimental results for Class-
IL (5T) using the ImageNet-100 dataset, showcasing graphs of ak,t and Avg(a1:5,t). To begin, in Figure
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4(a) showing the result of AugNeg(MoCo), we observe a general upward trend in ak,t across all tasks.
Remarkably, the performance for the initial task (ak=1,t) remains relatively stable and even exhibits
slight improvement as subsequent tasks are learned. Conversely, the results depicted in Figures
4(b) and 4(c) for MoCo + CaSSLe and MoCo + FT indicate that, while their Avg(a1:5,t) gradually
increases, certain task performances experience gradual declines (e.g., ak=2,t of MoCo + CaSSLe
and most k of MoCo + FT), showing suffering from catastrophic forgetting than AugNeg(MoCo).
Furthermore, the numerical assessments of plasticity and stability for each algorithm, as detailed
in the caption of Figure 4, confirm that AugNeg(MoCo) achieves its performance improvement
through superior plasticity and stability compared to other baselines. The equivalent analysis for
other baselines can be found in the Supplementary Materials.
Table 4: Experimental results on downstream tasks. The red annotation represents the highest
performance, while the blue annotation indicates the second-highest performance.

Case Data MoCo
+ CaSSLe

SimCLR
+ CaSSLe

Barlow
+ CaSSLe

BYOL
+ CaSSLe

AugNeg
(MoCo)

AugNeg
(BYOL)

10% 56.48 55.16 55.10 54.22 61.74 57.36Semi-supervised 1% 39.14 40.86 41.90 36.86 46.48 40.82
Three datasets 58.61 56.73 58.13 61.35 62.04 62.53Downstream Clipart 28.32 34.68 37.42 38.98 38.86 41.57

Evaluation for semi-supervised learning scenario and downstream tasks We conducted experi-
ments in a more practical semi-supervised setting. Specifically, we considered a scenario where a
linear classifier is only trained using only 1% or 10% of the entire supervised ImageNet-100 dataset
in the CSSL of Class-IL (5T). The experimental results are presented in the upper rows of Table 4.
Notably, when compared to CaSSLe, applying AugNeg to both MoCo and BYOL yields approxi-
mately 3-6% performance improvements in both settings. As a result, AugNeg(MoCo) achieves a
new state-of-the-art performance. The lower rows of Table 4 present the results of linear evaluation
for downstream tasks conducted on the same encoders. Firstly, for the three datasets, we reported
the average accuracy of linear evaluation results on STL-10 (Coates et al., 2011), CIFAR-10, and
CIFAR-100 (Krizhevsky et al., 2009) datasets. Secondly, we set the downstream task to Clipart
within the DomainNet (Peng et al., 2019) dataset and reported the results of linear evaluation using
it. From these experimental outcomes, we once again demonstrate that both AugNeg(MoCo) and
AugNeg(BYOL) achieve performance improvements compared to the CaSSLe results.

Moreover, we present supplementary experimental results in the Supplementary Materials, encom-
passing more detailed results and exploring variations in queue size, mini-batch size, and others.

Ablation study We present the results of the ablation study conducted on CIFAR-100 in the Class-IL
(5T) setting, as illustrated in Table 5. The first row represents the performance of AugNeg(MoCo)
when all additional negative samples (Nt and Nt−1) are included in both L1 and L2. Case 1
to 3 demonstrate the results when one of Nt and Nt−1 is excluded or when both are omitted.

Table 5: Ablation study
Nt Nt−1 + CaSSLe |queue| ×2 A5

AugNeg ✓ ✓ ✗ ✗ 62.36
Case 1 ✗ ✓ ✗ ✗ 61.26
Case 2 ✓ ✗ ✗ ✗ 60.92
Case 3 ✗ ✗ ✗ ✗ 59.97
Case 4 ✗ ✗ ✓ ✓ 60.09

Our experimental results confirm that the absence of
additional negative samples leads to a gradual reduc-
tion in performance, indicating that AugNeg(MoCo)
acquires superior representations by leveraging
these additional negative samples from each model,
hθt and hθt−1

. Moreover, the results from Case 4,
which uses a queue size twice as large for MoCo
+ CaSSLe, illustrate that integrating the extra negative samples from each model is distinct from
merely enlarging the queue size. Additionally, note that the ablation study for AugNeg(BYOL) can
be conducted by comparing the results between BYOL + CaSSLe and AugNeg(BYOL) in Table 3.

5 CONCLUDING REMARKS

We introduce the Augmented Negatives (AugNeg) loss, a simple but novel approach to augmenting
negative representations in continual self-supervised learning (CSSL). Initially, we highlight the
limitations of the traditional CSSL loss formulation and the lack of diversity in negative samples
during CSSL. To address these challenges, we propose considering additional negatives from both
previous and current models for InfoNCE-based contrastive learning. Furthermore, we show that the
idea of AugNeg can be extended to non-contrastive methods by adding extra regularization. Through
extensive experiments, we observe that not only our AugNeg can be applied to various self-supervised
learning methods but also achieves state-of-the-art performance with superior stability and plasticity.
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A SUPPLEMENTARY MATERIALS FOR SECTION 3

A.1 ANALYSIS OF THE GRADIENTS

Here, we give the gradient analysis of our AugNeg loss for contrastive learning methods. For
simplicity, we assume that “Pred” is an identity map instead of a MLP, hence z̃i,t = zi,t. Now,
as given in the Supplementary Material, we can show the gradient of LAugNeg with respect to zi,t
becomes

∂( 12LAugNeg(xi))

∂zi,t
= −

(
z+i,t + zi,t−1

2

)
︸ ︷︷ ︸

(a)

+

{ ∑
z−
i,t∈Nt(i)

z−i,t · Si,t(z
−
i,t) +

∑
z−
i,t−1∈Nt−1(i)

z−i,t−1 · Si,t(z
−
i,t−1)

}
︸ ︷︷ ︸

(b)

,

in which Si,t(u) = exp(zi,t · u)/
[∑

z−
i,t∈Nt(i)

exp(zi,t · z−i,t/τ) +
∑

z−
i,t−1∈Nt−1(i)

exp(zi,t · z−i,t−1/τ)
]
,

and
∑

z−
i,t∈Nt(i)

Si,t(z
−
i,t) +

∑
z−
i,t−1∈Nt−1(i)

Si,t(z
−
i,t−1) = 1. Similarly as in the Unified Gradient

of the InfoNCE loss (Tao et al., 2022), we can make the following interpretations. Namely, the
negative gradient step can be decomposed into two parts, part (a) and the negative of part (b) above.

Part (a) is the average of the embedding of hθt for the positive sample and the embedding of hθt−1
for

the input sample (i.e., xi). Hence, this direction encourages the model to learn new representations
while taking the stability from the previous model into account. On the other hand, negative of part
(b) is the repelling direction from the center of mass point among the negative sample embeddings
in Nt(i) ∪ Nt−1(i), in which each element u ∈ Nt(i) ∪ Nt−1(i) has the probability mass Si,t(u).
Thus, this direction promotes the new representations to be more discriminative from the current and
previous models’ negative sample embeddings, leading to improved plasticity. Our gradient analysis
allows us to better understand the graphical representation in Figure 2.

A.2 DISCUSSION: THE ROLE OF AUGMENTED NEGATIVE REPRESENTATIONS

Incorporating augmented negative representations from the previous model (referred to as the t− 1
model) aligns with SSL algorithms, which leverage positive representations from a momentum
encoder, such as BYOL and MoCo. This momentum encoder progressively enhances their represen-
tations by assimilating updates from the training encoder, thus contributing to the successful positive
representations for SSL. In contrast, in CSSL, the current task model (typically initialized from the
t−1 model) is trained by leveraging information from the previous model with CSSL algorithm, such
as CaSSLe (Fini et al., 2022). It’s important to note that, while the previous model may have achieved
adequate uniformity and alignment for the previous task dataset (Wang & Isola, 2020), it may not
exhibit the same characteristics when applied to a new task, as shown in Figure 2. Therefore, in
scenarios involving knowledge distillation (similar to CaSSLe), merely distilling the representations
of samples from the current task dataset, such as representations of the same image with the same
augmentation (e.g., the numerator of L2 in Section 3.3 and Equation (4)) may have a limitation to
achieve a superior representation.

In this regard, using augmented negative representations from the previous model can be considered
as contributing to the informative additional negative representations for CSSL. By additionally
incorporating representations from both the models (e.g., the denominator of L1 and L2 in Section
3.3) or the previous model (e.g., Equation (5)) as supplementary negative representations, the newly
trained model can learn superior and novel representations (better plasticity), taking into account both
uniformity and alignment of not only the current but also previous model.

A.3 DETAILED LOSS FUNCTION OF AUGNEG WITH SSL METHODS

In this section, we will delve into the detailed loss function of AugNeg in conjunction with SSL
methods, such as AugNeg with MoCo (He et al., 2020), SimCLR (Chen et al., 2020a), and VI-
CReg (Bardes et al., 2022). It’s important to note that the details of AugNeg(BYOL) are already
provided in Section 3.4. We will adhere to the notations introduced in Section 3.4 and the original
formulation of the loss function for each SSL method.
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A.3.1 AUGNEG(MOCO)

AugNeg(MoCo) can be represented by the equation Lt
AugNeg proposed in Section 3.3. Specifically,

L1MoCo and LMoCo
2 are as follows:

LMoCo
1 (xi, θt, θt−1) = −log

exp(zi,t · z+i,t/τ)∑
z−
i,t∈Nt(i)

exp(zi,t · z−i,t/τ) +
∑

z−
i,t−1∈Nt−1(i)

exp(zi,t · z−i,t−1/τ)

(6)

LMoCo
2 (xi, θt, θt−1) = −log

exp(z̃i,t · zi,t−1/τ)∑
z−
i,t∈Nt(i)

exp(z̃i,t · z−i,t/τ) +
∑

z−
i,t−1∈Nt−1(i)

exp(z̃i,t · z−i,t−1/τ)

(7)

Note that in the MoCo-based implementation of AugNeg, both Nt and Nt−1 represent queues that
store positives from the previous iterations of t and t − 1 models, respectively. The entire set of
saved samples in each queue is utilized as negatives for the current iteration. In our experiments,
we maintained a queue size of 65,536 consistent with the original MoCo (He et al., 2020) and
CaSSLe (Fini et al., 2022).

A.3.2 AUGNEG(SIMCLR)

AugNeg(SimCLR) is also derived from the equation Lt
AugNeg. However, the key distinction with

AugNeg(MoCo) lies in the fact that negatives from t and t− 1 models are sourced from the current
mini-batch. When representing the i-th input image as xi, applying distinct augmentations A and B
to N input images results in an augmented batch x′ = [xA

1 , ..., x
A
N , xB

N+1, ...x
B
2N ] with 2N elements

(where i = 1, ..., N and xi = xi+N ). Based on this, the SimCLR implementation of LSimCLR
1 and

LSimCLR
2 in AugNeg is as follows:

LSimCLR
1 (xi, θt, θt−1) = −log

exp(S(zi,t, zi+N,t)/τ)∑2N
k=1 1[k ̸=i]exp(S(zi,t, zk,t)/τ) +

∑2N
k=1 1[k ̸=i]exp(S(zi,t, zk,t−1)/τ)

(8)

LSimCLR
2 (xi, θt, θt−1) = −log

exp(S(z̃i,t, zi,t−1)/τ)∑2N
k=1 1[k ̸=i]exp(S(z̃i,t, zk,t)/τ) +

∑2N
k=1 1[k ̸=i]exp(S(z̃i,t, zk,t−1)/τ)

,

(9)

where S(A,B) = (A)⊤(B)/(||(A)⊤|| · ||(B)||) and 1[k ̸=i] is indicator function. It’s important to
note that in the case of Supervised Contrastive Learning (SupCon) (Khosla et al., 2020), we can
straightforwardly extend the AugNeg(SimCLR) to incorporate supervised labels, as proposed in
SupCon.

A.3.3 AUGNEG(VICREG)

To implement AugNeg(VICReg), we merely incorporate an additional regularization proposed in
Section 3.4, similar to AugNeg(BYOL). Adhering to the original loss function proposed in Bardes
et al. (2022) and the notations introduced in Section 3.4, AugNeg(VICReg) can be expressed as:

Lt
AugNeg, VICReg(x

A, xB, θt, θt−1) = λs(zAt , z
B
t ) + µ[v(zAt ) + v(zBt )] + ν[c(zAt ) + c(zBt )] (10)

+λCaSSLe[s(z̃
A
t , z

A
t−1) ∗ 0.5 + s(z̃Bt , zBt−1) ∗ 0.5] (11)

+λAugNeg[s(z̃
A
t , z

B
t−1) ∗ 0.5 + s(z̃Bt , zAt−1) ∗ 0.5], (12)

where Equation (10) is the original VICReg loss function and s(·, ·) denotes the mean-squared
euclidean distance between each pair of vectors. λCaSSLe and λAugNeg are hyperparameters. Equa-
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tion (11) represents CaSSLe’s distillation, while Equation (12) serves as an additional regulariza-
tion for AugNeg in non-contrastive learning, sharing a similar form with Equation (5) used in
AugNeg(BYOL).

For all algorithms, we only modified the loss function to take the form described above, while keeping
the remaining elements consistent with the original training procedures of each SSL algorithm.

A.4 MOTIVATION OF AUGNEG FOR NON-CONTRASTIVE LEARNING

Comparing LSimCLR
2 to Equation (4) in Section 3.4, we can consider that the numerator part

(exp(Ŝi,i/τ)) plays a role similar to Equation (4). However, since BYOL and VICReg do not
fully consider negative samples for self-supervised learning, terms like the denominator of LSimCLR

2
do not exist.

The motivation behind the regularization defined in Equation (5) and Equation (12) for considering
negatives from the t-1 model stems from one of the terms in the denominator of LSimCLR

2 , namely∑2N
k=1 1[k ̸=i]exp(S(z̃i,t, zk,t−1)/τ). It considers all 2N − 1 samples as negatives for the given

augmented xi with the condition that k ̸= i excluding only one sample. For instance, among the
2N − 1 negatives for xA

1 , an image with the different augmentation applied to the same source input
x (e.g., xB

1+N ) is included as the negatives. As a result, the distance between the output features of
the t model for xA

1 and the t− 1 model for xB
1+N increases during training task t.

Both Equation (5) and Equation (12) are BYOL and VICReg implementations for considering the
negatives mentioned above, respectively. More specifically, for images with different augmentations
applied to the same source image x, denoted as xA and xB , this additional regularization is applied
to increase the squared mean square error between the output features of each t and t − 1 model
to ensure that they differ. With these explanations in mind, we would like to underscore that the
additional regularization introduced to incorporate negatives from the t− 1 model for CSSL using
non-contrastive learning is inspired by the AugNeg Loss presented in Section 3.3.

B SUPPLEMENTARY MATERIALS FOR SECTION 4

B.1 SUBOPTIMAL PERFORMANCE OF CASSLE AND AUGNEG IN DATA-IL

As shown in Table 3, combining BYOL with CaSSLe and AugNeg in Data-IL led to suboptimal
performance, particularly in the 5T scenario. This can be attributed to the unique characteristics of
Data-IL, briefly discussed in the CaSSLe paper. Data-IL involves shuffling and evenly distributing
the ImageNet-100 dataset among tasks, resulting in minimal distribution disparities between them.
During BYOL training (using Equation (3)), the target encoder (ξ) retains some information from
the current task which is conceptually similar to the previous task, due to momentum updates from
the training encoder (hθt). As a result, fine-tuning solely with BYOL can produce a robust Data-IL
outcome due to the substantial similarity in distribution between tasks. However, the incorporation of
CaSSLe (Equation (4)) and AugNeg (Equation (4)) may conflict with Equation (3) in Data-IL.

On the contrary, when applied to the Domain-IL scenario using the DomainNet dataset where distinct
variations in input distribution are evident for each task, AugNeg(BYOL) effectively demonstrates
the feasibility of augmenting negative representations as outlined in Table 3. This reinforces our
conviction that the suboptimal results observed in Data-IL are solely attributable to the unique and
artificial circumstances inherent to Data-IL.

B.2 MEASURES FOR STABILITY AND PLASTICITY

To evaluate each CSSL algorithm in terms of stability and plasticity, we use measures for them,
following Fini et al. (2022); Cha et al. (2021b), as shown in below:

• Stability: S =
1

T − 1

∑T−1
i=1 maxt∈{1,...,T}(ai,t − ai,T )

• Plasticity: P =
1

T − 1

∑T−1
j=1

1

T − j

∑T
i=j+1(ai,j − FTi)
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Here, FTi signifies the linear evaluation accuracy (on the validation dataset of task i) of the model
trained through finetuning with an base SSL algorithm until task i.

B.3 ADDITIONAL EXPERIMENTAL ANALYSIS FOR AUGNEG (BYOL)

(a) AugNeg (BYOL) (b) BYOL + CaSSLe (c) BYOL + FT

Figure 5: The graph illustrates the values of ak,t for each algorithm in the Class-IL (5T) scenario.
The measured stability and plasticity for each method are as follows: (a) (S, P ) = (0.4,−0.07), (b)
(S, P ) = (1.5,−0.47), (c) (S, P ) = (4.9,−1.6).
Figure 5 depicts the results of the experimental analysis conducted on AugNeg (BYOL), BYOL +
CaSSLe, and BYOL + FT in Class-IL (5T) experiments using the ImageNet-100 dataset. The trends
observed here align with those presented in the manuscript. Initially, there is a gradual increase in
their Avg(a1:5,t). However, it is noteworthy that ak=1,t, ak=3,t for BYOL + CaSSLe decrease across
tasks. Similarly, BYOL + FT experiences a decline in most k. In contrast, the application of the
proposed AugNeg not only maintains ak=1,t but also results in a gradual increase in ak=2,t and ak=4,t,
suggesting that AugNeg surpasses BYOL + CaSSLe in terms of plasticity and stability. The plasticity
(P ↑) and stability (S ↓) measurements mentioned in the caption of Figure 5 further substantiate
these experimental findings.

B.4 ADDITIONAL EXPERIMENTAL ANALYSIS FOR BARLOW/SIMCLR + CASSLE

(a) Barlow + CaSSLe (b) SimCLR + CaSSLe

Figure 6: The graph illustrates the values of ak,t for each algorithm in the Class-IL (5T) scenario.
The measured stability and plasticity for each method are as follows: (a) (S, P ) = (2.52, 2.8), (b)
(S, P ) = (2.22, 1.95).

Figure 6 illustrates an additional experimental analysis of Barlow + CaSSLe and SimCLR + CaSSLe
in Class-IL (5T) experiments using the ImageNet-100 dataset. Similar to previous analyses, we once
again observe an increase in their Avg(a1:5,t); however, some tasks experience catastrophic forgetting.
For instance, Barlow + CaSSLe exhibits a decline in performance in ak=1,t and ak=3,t. Likewise,
ak=1,t and ak=4,t of SimCLR + CaSSLe display a similar trend.

B.5 ADDITIONAL EXPERIMENTAL RESULTS WITH OTHER METHODS

Given that results for prominent contrastive learning-based algorithms (SimCLR, MoCo V2) were
already proposed, we introduce Supervised Contrastive Learning(SupCon) Khosla et al. (2020) as
an additional algorithm to investigate the effectiveness of AugNeg in scenarios where labels are
available. To accomplish this, we modified the implementation of AugNeg(SimCLR) in Equation (8)
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and (9) adapting it to utilize supervised labels. More specifically, it incorporates additional negatives
in SupCon + CaSSLe.

For the Non-contrastive learning-based algorithm, we selected the recent VICReg Bardes et al. (2022)
algorithm to explore the potential application of AugNeg to various SSL algorithms. To implement
AugNeg, we added additional regularization proposed in Equation (12) and conducted experiments
accordingly.

We conducted experiments with the CIFAR-100 and ImageNet-100 datasets, employing the Class-IL
(5T, 10T) scenario as our experimental setting, and the results are as follows.

Table 6: Experimental results for three downstream tasks.

AT
CIFAR-100 ImageNet-100

Class-IL 5T Class-IL 10T Class-IL 5T Class-IL 10T

SupCon CaSSLe 60.38 55.38 66.26 60.48
AugNeg 60.73 56.16 66.96 60.95

VICReg CaSSLe 53.17 47.54 59.18 49.00
AugNeg 55.40 50.78 61.88 51.82

Based on the results of the above experiments, we observe that AugNeg can be applied to additional
contrastive and non-contrastive learning algorithms, leading to consistent performance improvement
compared to CaSSLe. In particular, we observed successful application of our proposed AugNeg to
VICReg, one of the latest SSL algorithms, achieving consistent performance improvements of 2-3%
in both CIFAR-100 and ImageNet-100 experiments. We believe that these experimental findings
suggest the potential for the proposed idea of AugNeg to be widely applicable to future various
contrastive and non-contrastive learning algorithms.

B.6 EVALUATION FOR DOWNSTREAM TASKS

Table 7: Experimental results for three downstream tasks.

Scenario Downstream MoCo
+ CaSSLe

SimCLR
+ CaSSLe

Barlow
+ CaSSLe

BYOL
+ CaSSLe

AugNeg
(MoCo)

AugNeg
(BYOL)

Class-IL

5T

CIFAR-100 44.52 41.99 43.59 46.71 47.8 48.8
CIFAR-10 68.09 64.9 65.43 69.42 71.26 70.21

STL-10 63.23 63.3 65.39 67.93 67.07 68.59
Average 58.61 56.73 58.13 61.35 62.04 62.53

10T

CIFAR-100 40.84 40.34 40.67 45.49 45.86 48.63
CIFAR-10 66.01 64.62 64.42 68.02 68.65 70.34

STL-10 60.16 59.77 62.38 65.55 65.78 67.51
Average 55.67 54.91 55.82 59.69 60.10 62.16

Data-IL

5T

CIFAR-100 44.5 42.33 44.5 47.02 47.07 48.14
CIFAR-10 68.47 65.03 66.92 69.14 70.01 69.03

STL-10 64.49 63.54 67.2 68.66 69.98 68.68
Average 59.15 56.97 59.54 61.61 62.35 61.95

10T

CIFAR-100 42.17 41.3 43.53 45.3 46.88 48.05
CIFAR-10 66.66 65.9 65.38 69.27 69.84 70.80

STL-10 60.35 61.88 64.51 67.35 67.48 67.95
Average 56.39 56.36 57.81 60.64 61.40 62.27

As emphasized in multiple representation learning papers (Cha et al., 2023; Chen et al., 2020a; He
et al., 2020), evaluating the generalization of learned representations across diverse downstream tasks
is crucial. In line with this, we conducted evaluations on models trained with each CSSL scenario on
the ImageNet-100 dataset, encompassing a range of downstream tasks. Following the methodology
outlined in (Cha et al., 2023), we employed the resized CIFAR-10/-100 (Krizhevsky et al., 2009)
datasets (resized to 96x96) and the STL-10 (Coates et al., 2011) dataset as downstream tasks and
performed linear evaluations on them. The results, presented in Table 7, showcase the exceptional
performance of AugNeg not only in the linear evaluation on the ImageNet-100 dataset (an in-domain
dataset, as depicted in the manuscript) but also across various out-domain downstream task datasets,
consistently achieving the best overall results. Furthermore, the proposed AugNeg exhibits superior
representation learning in CSSL compared to other CaSSLe variations, particularly evident in the
Data-IL scenario.
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Table 8: Experimental results for CilPart in DomainNet (Peng et al., 2019)

Scenario MoCo
+ CaSSLe

SimCLR
+ CaSSLe

Barlow
+ CaSSLe

BYOL
+ CaSSLe

AugNeg
(MoCo)

AugNeg
(BYOL)

5T 28.32 34.68 37.42 38.98 38.86 41.57Class-IL 10T 28.57 33.33 38.30 38.05 38.19 38.05
5T 29.74 34.17 36.13 37.04 38.33 40.06Data-IL 10T 32.81 35.53 38.45 35.91 40.45 35.91

Secondly, following a similar approach as in the CaSSLe paper (Fini et al., 2022), we employed
models trained with each CSSL scenario on the ImageNet-100 dataset and conducted linear evaluation
using the CilPart dataset from DomainNet as the downstream task, with the results shown in Table 8. In
the scenario of Class-IL, we observed that models trained with Barlow + CaSSLe or BYOL + CaSSLe
achieve superior performance among baselines. However, AugNeg(MoCo) and AugNeg(BYOL) also
shows competitive or state-of-the-art performance, especially in AugNeg(BYOL) in Class-IL 5T.
Particularly in the case of Data-IL, similar to the results obtained from previous downstream task
experiments, we observed that AugNeg(MoCo) and AugNeg(BYOL) outperform other algorithms by
a considerable margin, except for AugNeg(BYOL) in Data-IL 10T.

B.7 EXPERIMENTAL RESULTS FOR VARIOUS DIMENSIONS OF MLP IN PROJ LAYER

The use of larger dimensions for the Projection (or Prediction) layer has been known to facilitate the
learning of superior representations in the self-supervised learning Chen et al. (2020a;b). Therefore,
we conducted experiments to examine the performance variations of the proposed AugNeg(MoCo)
by altering the dimension of the Projection layer. It is important to note that, for this experiment, we
maintained the MLP dimension of the Prediction layer for distillation in AugNeg(MoCo) as 2048
and only adjusted the dimension of the Projection layer.

Table 9: Experimental results for different dimensions of MLP for the Proj layer (CIFAR-100, 5T).

A5
Proj layer
dim = 128

Proj layer
dim = 256

Proj layer
dim = 512

Proj layer
dim = 1024

Proj layer
dim = 2048

(default)

Proj layer
dim = 4096

Proj layer
dim = 8192

Proj layer
dim = 16384

AugNeg 58.58 59.61 60.04 61.29 62.36 62.75 63.05 63.02

Table 9 presents the experimental results for the Class-IL 5T scenario using CIFAR-100. Similar
to single-task self-supervised learning, it was empirically observed that a larger MLP dimension
enhances the quality of learned representations after CSSL. While the default dimension of 2048
reached a certain level of convergence in all experiments, increasing the dimension to 4096 or 8192
yielded an additional performance gain of approximately 0.4-0.7%. This finding demonstrates that,
when considering the dimensions of the Proj and Pred (for BYOL only) layers used by BYOL on
CIFAR-100 (as shown in Table 9), AugNeg(MoCo) can create a slightly larger performance gap
compared to BYOL when the MLP dimension in the Proj layer is set to be similar to that of BYOL.

Table 10: Experimental results for different dimensions of MLP for the Proj layer.

AT

Proj layer
dim = 2048

(default)

Proj layer
dim = 4096

Proj layer
dim = 8192

Class-IL ImageNet-100 (5T) 67.70 68.26 66.92
ImageNet-100 (10T) 60.65 60.32 60.43

Data-IL ImageNet-100 (5T) 70.22 70.32 70.24
ImageNet-100 (10T) 67.38 67.23 67.32

Domain-IL DomainNet (6T) 46.74 47.06 47.53

Table 10 displays the experimental results obtained by increasing the MLP dimension of the Proj
layer in AugNeg(MoCo) for experiments conducted on ImageNet-100 and DomainNet. Similar to
the previous CIFAR-100 experiments, it was observed that increasing the MLP dimension beyond the
default value of 2048 did not result in significant performance differences in most scenarios. However,
in the case of Class-IL 5T or Domain-IL, when the dimension of the Proj layer was increased (i.e., set
to a dimension similar to that of BYOL), an additional performance improvement of approximately
0.5-0.8% was achieved, leading to a larger performance gap (in Class-IL 5T) or a reduced gap (in
Domain-IL) compared to BYOL.
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B.8 VARIOUS SIZES OF QUEUE FOR AUGNEG(MOCO)

Table 11: Experimental results for various sizes of queue for AugNeg(MoCo).

A5
Queue size

= 256
Queue size

= 512
Queue size

= 1024
Queue size

= 2048
Queue size

= 4096
Queue size

= 8192
Queue size

= 16384
Queue size

= 32768

Queue size
= 65536
(default)

Queue size
= 131072

CIFAR-100 5T 61.03 61.33 61.68 61.84 61.90 61.95 62.10 61.99 62.36 62.01

Lastly, the experimental results for various queue sizes in AugNeg are presented in Table 11. As
stated in the manuscript, the proposed AugNeg loss utilizes negative samples obtained from both
the current and previous models, making the number of available negative samples during training
crucial for performance. The findings in this table provide empirical evidence of this phenomenon.
Performance shows no significant difference when the queue size exceeds 8192. However, a notable
decline in performance is observed when the queue size is reduced, particularly at 256 which aligns
with the mini-batch size. In this instance, when comparing the results of AugNeg(MoCo) using
the queue size of 256 (60.10) to those of SimCLR + CaSSLe (58.87) in Table 1 , we once again
observe the advantages of incorporating additional negatives. Furthermore, the negatives stored in
the queue employed by AugNeg(MoCo) contain the features of samples used as positives in the
previous iteration. Consequently, these can be seen to play the role of replaying exemplars of features
from previous iterations. This suggests that, much like the significant benefits observed in traditional
continual learning research when utilizing exemplar memory, employing such a queue can contribute
to achieving better results in CSSL.

In conclusion, we are confident that these experiments validate the effective integration of
AugNeg(MoCo) with MoCo. This is achieved through the utilization of a queue, allowing the
inclusion of a significant number of negative samples used as positives in previous iterations, irre-
spective of the mini-batch size.

B.9 EXPERIMENTAL RESULTS USING DIFFERENT MINI-BATCH SIZE

Table 12: Experimental results (A5) of ImageNet-100 (Class-IL 5T).

MoCo
+ FT

MoCo
+ CaSSLe

SimCLR
+ FT

SimCLR
+ CaSSLe

Barlow
+ FT

Barlow
+ CaSSLe

BYOL
+ FT

BYOL
+ CaSSLe

AugNeg
(MoCo)

AugNeg
(BYOL)

55.80 61.70 53.70 62.40 59.00 65.00 59.20 61.60 67.40 63.34

In order to reproduce the results of CaSSLe, we trained with a mini-batch size of 256 during the
CSSL process, and then conducted the same linear evaluation as described in the main text, as shown
in Table 12. From the experimental results, we found that increasing the mini-batch size made it
challenging to faithfully reproduce the results of the CaSSLe paper, and, in fact, we obtained slightly
lower results compared to the results mentioned in the manuscript (with a mini-batch size of 128).
However, for AugNeg(MoCo) and AugNeg(BYOL), we observed similar results even across two
different mini-batch size settings.

B.10 TRAINING DETAILS FOR CONTINUAL SELF-SUPERVISED LEARNING

Table 13 presents the training details for each algorithm utilized in the Continual Self-supervised
Learning (CSSL) experiments. All experiments were run on an NVIDIA RTX A5000 with CUDA
11.2. We employed LARS (You et al., 2017) to train an encoder in the scenario of CSSL. It is
worth emphasizing that we strictly followed the training settings of BarlowTwins, as implemented in
CaSSLe, including crucial factors such as learning rate, weight decay, learning rate schedule, and
augmentations. Notably, we did not perform an extensive search for hyperparameters.

It is important to mention that all self-supervised learning algorithms use a Projection layer Chen et al.
(2020a), consisting of two layers of MLP with ReLU activation. Specifically, BYOL incorporates
a larger default dimension for the Projection layer (dim = 4096) and includes its own Prediction
layer (for BYOL) that is not utilized by other self-supervised learning algorithms. This indicates that
BYOL assigns a larger portion of weights to the MLP layer in the CSSL process. The subsequent
sections will present the consistent results of AugNeg, accounting for these factors.

For the Domain-incremental learning (Domain-IL) experiments conducted on the DomainNet dataset,
we followed the experimental setup described in the CaSSLe paper Fini et al. (2022). Specifically,
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Table 13: Experimental details for CSSL. (CIFAR-100 / ImageNet-100 / DomainNet)

CIFAR-100 / ImageNet-100
/ DomainNet

MoCo
(+CaSSLe)

SimCLR
(+CaSSLe)

BarLow
(+CaSSLe)

BYOL
(+CaSSLe)

AugNeg
(MoCo/BYOL)

Epoch
(per task) 500 / 400 / 200

Batch size 256 / 128 / 128
Learning rate 0.4 0.4 0.3 / 0.4 / 0.4 1.0 / 0.6 / 0.6 0.6

Optimizer SGD

Weight decay 1e-4 1e-4 1e-4 1e-5 1e-4 (for MoCos)
1e-5 (for BYOL)

Projection layer
(dim) 2048 2048 2048 4096 2048

Prediction layer
(dim, for CSSL) 2048

Prediction layer
(dim, for BYOL) - - - 4096 / 8192 / 8192 4096 / 8192 / 8192

(for BYOL only)

Queue 65536 - - - 65536
(for MoCo only)

Temperature
(τ ) 0.2 0.2 - - 0.2

(for MoCo only)

we performed Domain-IL in the order of Real => QuickDraw => Painting => Sketch => InfoGraph
=> CilPart.

B.11 OTHER EXPERIMENTAL DETAILS

Linear evaluation Table 14 provides the training details used for linear evaluation on each dataset
using the encoders trained through CSSL. In the case of CaSSLe variations, we conducted the
experiments while keeping the linear evaluation settings consistent with those used in CaSSLe.

Table 14: Experimental details for lienar evaluation. (CIFAR-100 / ImageNet-100 / DomainNet)

CIFAR-100 / ImageNet-100
/ DomainNet

MoCo
(+CaSSLe)

SimCLR
(+CaSSLe)

BarLow
(+CaSSLe)

BYOL
(+CaSSLe) AugNeg

Epoch
(per task) 100

Batch size 128 / 256 / 256
Learning rate 3.0 1.0 0.1 3.0 3.0

Scheduler Step LR (steps = [60, 80], gamma = 0.1)
Optimizer SGD

Weight decay 0

Downstream task Table 15 presents the settings utilized for linear evaluation on downstream
tasks using models trained with each CSSL scenario on the ImageNet-100 dataset. In line with
the algorithms based on CaSSLe, we adopted the experimental settings outlined in the respective
paper. As a result, we observed that distinct learning rates were employed for linear evaluation across
different algorithms, highlighting variations in their downstream task assessments. Likewise, we
conducted experiments for AugNeg with an optimized learning rate to present the most favorable
results. Table 15: Experimental details for linear evaluation on downstream tasks.

CIFAR-10 / CIFAR-100 / STL-10
/ CilPart

MoCo
(+CaSSLe)

SimCLR
(+CaSSLe)

BarLow
(+CaSSLe)

BYOL
(+CaSSLe) AugNeg

Epoch
(per task) 100

Batch size 256
Learning rate 3.0 1.0 0.1 3.0 3.0

Scheduler Step LR (steps = [60, 80], gamma = 0.1)
Optimizer SGD

Weight decay 0
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C IMPLEMENTATION DETAILS

C.1 PSEUDO CODE OF AUGNEG WITH SSL ALGORITHMS

In this section, we provide a detailed explanation of the practical implementation of the loss function
described in Equation (2) of the manuscript. As discussed in Section 3, the proposed AugNeg loss
can be easily implemented for SimCLR (Chen et al., 2020a) by utilizing 2N augmented images
from the input mini-batch. However, for MoCo v2 Plus (Chen et al., 2020b), which employs a
queue, and BarlowTwins (Zbontar et al., 2021), which relies on a loss function based on the cross-
correlation matrix, additional explanations are required to implement AugNeg loss using these
approaches. To address this, we provide pseudo code for implementing AugNeg loss based on MoCo
and BarlowTwins in Algorithms 1 and 2, respectively. For more detailed implementation instructions,
please refer to the accompanying source code.
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Algorithm 1 AugNeg with MoCo v2 Plus Chen et al. (2020b).

1: function AUGNEG(query1, key1, queue1, distill1, query2, queue2, temp)
2: l_pos1 = einsum(’nc,nc->n’, [query1, key1]).unsqueeze(-1)
3: l_neg1 = einsum(’nc,ck->nk’, [query1, cat([queue1, queue2], dim = 1)])
4: logits1 = cat([l_pos1, l_neg1], dim=1)
5: logits1 /= temp
6: labels = zeros(logits1.shape[0]).cuda()
7: loss1 = cross_entropy(logits1, labels)
8:
9: l_pos2 = einsum(’nc,nc->n’, [distill1, query2]).unsqueeze(-1)

10: l_neg2 = einsum(’nc,ck->nk’, [distill1, cat([queue1, queue2], dim = 1)])
11: logits2 = cat([l_pos2, l_neg2], dim=1)
12: logits2 /= temp
13: loss2 = cross_entropy(logits2, labels)
14:
15: loss = loss1 + loss2
16: return loss
17: end function
Require:
18: hθt , hm

θt
: t-th task’s encoder and momentum network

19: hθt−1 : encoder network for the previous task.
20: Qm

t , Qt−1: queues.
21: m: momentum.
22: τ : temperature.
Ensure: hθt : encoder after learning the task t.
23: # Starting from the end of learning t− 1 (previous) task.
24: hθt ← hθt−1

# initialize task t-th’s encoder.
25: hm

θt
← hθt−1

# initialize task t-th’s momentum encoder.
26: Projt ← Projt−1 # initialize Proj layer of hθt .
27: Projmt ← Projt−1 # initialize Proj layer of hm

θt
.

28: Qm
t ← Qm

t−1 # initialize Qm
t .

29: Pred,Qt−1 ← RandInit # initialize Pred layer with random initialization.
30:
31: for x in loader do # load a minibatch x with N samples.
32: xa, xb = Auga(x), Augb(x) # applying augmentations
33:
34: qat , q

b
t = Norm(Projt(hθt(x

a))), Norm(Projt(hθt(x
b)))

35: dat , d
b
t = Norm(Pred(qat )), Norm(Pred(qbt ))

36: kat , k
b
t = Norm(Projmt (hm

θt
(xa))).detach(), Norm(Projmt (hm

θt
(xb))).detach()

37:
38: qat−1, q

b
t−1 = Norm(Projt−1(hθt−1

(xa))).detach(), Norm(Projt−1(hθt−1
(xb))).detach()

39:
40: loss = AugNeg(qat , k

b
t ,Qm

t , dat , q
a
t−1,Qt−1, τ) + AugNeg(qbt , k

a
t ,Qm

t , dbt , q
b
t−1,Qt−1, τ)

41: (loss*0.5).backward(), update(hθt , Projt, P red)
42:
43: enqueue(Qm

t , cat(kat , k
b
t )), enqueue(Qt−1, cat(qat−1, q

b
t−1)) # enqueue the current batch

44: dequeue(Qm
t ), dequeue(Qt−1)

45: # momentum update using t-th model.
46: momentum_update(hθt , h

m
θt
,m), momentum_update(Projt, P rojmt ,m)

47: end for
48: # The end of learning t (current) task.
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Algorithm 1 AugNeg with BarlowTwins Zbontar et al. (2021).

1: function AUGNEG(z1, z2, z1_prev, z2_prev, z1_distill, z2_distill, λ = 0.005, scale= 0.1)
2:
3: N, D = z1.size()
4: bn = BatchNorm1d(D, affine=False).to(z1.device)
5:
6: z1 = bn(z1)
7: z2 = bn(z2)
8: z1_prev = bn(z1_prev)
9: z2_prev = bn(z2_prev)

10: z1_distill = bn(z1_distill)
11: z2_distill = bn(z2_distill)
12:
13: corr1 = einsum(bi, bj -> ij, z1, z2) / N
14: corr1_prev = einsum(bi, bj -> ij, z1, z2_prev) / N
15: corr2 = einsum(bi, bj -> ij, z1_distill, z1_prev) / N
16: corr2_prev = einsum(bi, bj -> ij, z1_distill, z2) / N
17:
18: diag = eye(D)
19: cdif1 = (corr1 - diag).pow(2)
20: cdif1[ diag.bool()] *= λ
21: # off_diagonal: get off diagonal values of a given matrix.
22: off_diag_prev1 = off_diagonal(corr1_prev).pow(2).sum()
23: loss1 = scale * (cdif1.sum() + off_diag_prev1 * λ)
24:
25: cdif2 = (corr2 - diag).pow(2)
26: cdif2[ diag.bool()] *= λ
27: off_diag_prev2 = off_diagonal(corr2_prev).pow(2).sum()
28: loss2 = scale * (cdif2.sum() + off_diag_prev2 * λ)
29:
30: loss = (loss1 + loss2)
31: return loss
32: end function
Require:
33: hθt , hm

θt
: t-th task’s encoder and momentum network

Ensure: hθt : encoder after learning the task t.
34: # Starting from the end of learning t− 1 (previous) task.
35: hθt ← hθt−1

# initialize task t-th’s encoder.
36: Projt ← Projt−1 # initialize Proj layer of hθt .
37: Projmt ← Projt−1 # initialize Proj layer of hm

θt
.

38: Pred← RandInit # initialize Pred layer with random initialization.
39:
40: for x in loader do # load a minibatch x with N samples.
41: xa, xb = Auga(x), Augb(x) # applying augmentations
42:
43: qat , q

b
t = Norm(Projt(hθt(x

a))), Norm(Projt(hθt(x
b)))

44: dat , d
b
t = Norm(Pred(qat )), Norm(Pred(qbt ))

45:
46: qat−1, q

b
t−1 = Norm(Projt−1(hθt−1

(xa))).detach(), Norm(Projt−1(hθt−1
(xb))).detach()

47:
48: loss = AugNeg(qat , q

b
t , q

a
t−1, q

b
t−1, d

a
t , d

b
t) + AugNeg(qbt , q

a
t , q

b
t−1, q

a
t−1, d

b
t , d

a
t )

49: (loss*0.5).backward(), update(hθt , Projt, P red)
50:
51: end for
52: # The end of learning t (current) task.
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