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ABSTRACT

Intrinsic motivation and reward shaping guide reinforcement learning (RL) agents
by adding pseudo-rewards, which can lead to useful emergent behaviors. How-
ever, they can also exhibit unanticipated side effects – leading to reward hacking
or fixation with noisy TVs. Here we provide a theoretical model which antici-
pates these behaviors, and provides broad criteria under which their effects can
be bounded. We characterize all pseudo-rewards as reward shaping in Bayes-
Adaptive Markov Decision Processes (BAMDPs), which formulates the problem
of learning in MDPs as an MDP over the agent’s knowledge. We can understand
pseudo-rewards as guiding exploration by incentivizing RL agents to go to states
with higher BAMDP value, which comprises the value of information gathered
and the prior value of the physical state, while they mislead exploration when they
align poorly with this value. We extend potential-based shaping theory (Ng et al.,
1999) to prove only BAMDP Potential-based shaping Functions (BAMPFs) are
guaranteed to preserve the optimal RL algorithm, and show empirically how a
BAMPF helps a meta-RL agent learn an optimal RL agent for a Bernoulli Bandit
domain. We finally prove that BAMPFs with bounded monotone potentials are
also resistant to reward-hacking in MDPs. We show that it is straightforward to
retrofit or design new pseudo-reward terms in this form to avoid unintended side
effects, and provide an empirical demonstration in the Mountain Car environment.

1 INTRODUCTION

RL algorithms are known to struggle when rewards are sparse. A common solution is intrinsic
motivation (IM) or reward shaping, which guides RL agents by adding pseudo-rewards to the true
rewards (Schmidhuber, 1991; Dorigo & Colombetti, 1994; Barto et al., 2004). Intrinsic rewards
may depend on the entire history while shaping rewards depend only on the action and previous and
current MDP state. A wide variety of pseudo-rewards have been proposed and used successfully
with scalable deep RL algorithms in complex environments (Pathak et al., 2017; Berseth et al., 2019;
Hafner et al., 2023). However, designing them is challenging, and they can affect performance in
counter-intuitive ways leading to degenerate behaviors (Taiga et al., 2021; Clark & Amodei, 2016).
For instance, IM that rewards accurate prediction of the next percept may cause an agent to sit
forever in front of a blank wall (Rhinehart et al., 2021), while favoring “surprise”—states where the
next percept is hard to predict—causes an agent to get stuck watching a “noisy TV” that randomly
flips channels, rather than encouraging exploration as one might expect (Burda et al., 2018).

Avoiding these behaviors requires understanding their root causes. We approach this by analyz-
ing pseudo-rewards within a theoretical framework for how a rational RL agent should behave—
the Bayes-Adaptive MDP (BAMDP) (Bellman & Kalaba, 1959; Martin, 1967), a generalization of
Bayesian bandits Gittins (1979). In a BAMDP, the agent starts out not knowing which MDP it is
operating in and learns more through experience. BAMDP states consist of the cumulative informa-
tion observed from the actual MDP, i.e., the entire history h of states, actions, and rewards, up to
and including the current physical state. An RL algorithm can be viewed as a policy mapping the
BAMDP state to an action that updates it (Duff, 2002), and optimal RL algorithms maximize the
expected BAMDP return, i.e., the expected return while exploring and learning.
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(a) Each state s is colored by the
PBSF reward for stepping there from
s0, i.e., γϕ(s)− ϕ(s0), with ϕ(s) the
proximity to the goal (green cell).

(b) States colored by BAMPF rewards with potential ϕ(h) = |{s ∈ h}|,
i.e., the count of unique states visited over an RL agent’s history h of all
observed transitions. Over the 3 episodes shown, the agent must travel
further from s0 to reach unvisited states and increase ϕ(h).

Figure 1: Examples of reward shaping based on potential functions ϕ of the MDP state (PBSF,
1a), and the BAMDP state (BAMPF, 1b, which can evolve over the course of training). Start and
goal states (grid cells) s0, g are marked white and green; every other state is colored by the shaping
reward for transitioning there directly from s0 at the start of the episode. Goal proximity is defined
as ϕ(s) = −∥s− g∥1. Each episode ends and the state is reset to s0 every 50 steps, γ = 0.99.

Within this framework, we can understand both reward shaping and IM as BAMDP reward shaping,
i.e., functions over BAMDP states, that guide effective exploration by incentivizing behavior that
goes to more valuable BAMDP states. We decompose BAMDP state value into the value of the
information collected (VOI) and the value of the physical MDP state under the prior, which we
call the value of opportunity (VOO). Many IM terms, e.g., prediction error Pathak et al. (2017) or
information gain (Houthooft et al., 2016), can be understood as incentivizing exploration by adding
some approximation for increase in VOI into the objective. These terms can fail to help when they do
not align well enough with actual VOI—for instance, watching the noisy TV yields high prediction
error but no valuable information. Other kinds of pseudo-rewards attempt to steer exploration by
compensating for implied priors in the initialization of RL algorithms that misestimate VOO. For
example, goal proximity (Colombetti et al., 1996) and subtask completion rewards (Ng et al., 1999)
compensate for overly pessimistic VOO estimates while surprise minimization (Berseth et al., 2019)
and information cost (Eysenbach et al., 2021) compensate for overly optimistic VOO estimates. This
yields a new, principled typology of both IM and reward shaping approaches based on the different
types of BAMDP value that they signal.

Next, we prove conditions under which a broad form of pseudo-rewards cannot be “hacked”, i.e.,
maximized to the detriment of the underlying objective, in both RL and meta-RL settings. Potential-
Based reward Shaping Functions (PBSFs) take the form γϕ(s′)−ϕ(s), where potential ϕ encourages
going to higher value states by encoding their desirability, e.g., Fig. 1a. PBSFs on the BAMDP state
(BAMPFs), e.g., Fig. 1b, may encode desirability of both the physical state and the total information
gathered. Since they may depend on the entire training history, it is easy to convert most pseudo-
rewards to BAMPFs. We extend results from Ng et al. (1999) to prove that BAMPFs always preserve
the optimality of RL algorithms. Thus, we can use BAMPFs to guide meta-RL without the risk of
generating RL agents that are optimal for the shaped rewards but suboptimal for the underlying do-
main. We empirically show this by guiding a meta-RL agent to learn an optimal RL agent for a
Bernoulli Bandits domain. Next, we return to the regular RL setting and prove that BAMPFs based
on potential functions that are bounded and monotonic over increasing experience will eventually
also preserve the optimal MDP policy, i.e., no RL algorithm can find a reward-hacking policy max-
imizing shaped rewards but not real rewards. We finally demonstrate the impact of our framework
in the Mountain Car environment. We use the BAMDP value decomposition to inform the design
of an effective potential function, and show that the resulting BAMPF improves learning efficiency
while preserving optimality, whereas similar pseudo-rewards result in reward hacking.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

Markov decision processes (MDPs) are defined by tuple M = (S,A, R, T, T0, γ) with S a set of
states, A a set of actions, T (s′|s, a) and R(r|s, a, s′) the transition and reward probability functions
with expected reward R(s, a, s′), T0(s0) an initial state distribution, and γ a discount factor (when

2
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it is not critical, we write R without s′ for brevity). MDP policies map from current states to
distributions over next actions: π(a|s). The return is defined as the discounted sum of rewards
G =

∑∞
t=0 γ

trt+1, and an optimal policy π∗ maximizes the expected return.

2.2 INTRINSIC MOTIVATION AND REWARD SHAPING

Intrinsic motivation (IM) is a method for guiding RL algorithms (Barto, 2013) by adding pseudo-
rewards to the original reward at each step, generating composite reward signal: r′t = rt +
F (ht), where F denotes the IM function which can depend on the entire training history ht =
s0a0r1s1...at−1rtst (and thus also the algorithm’s internal state or beliefs). Reward shaping func-
tions are restricted to the form F (st, at, st+1), resulting in shaped reward function R′(st, at, st+1)
(whereas IM does not generally lead to a valid MDP reward function of this form). The opti-
mal policy for the shaped MDP, i.e. maximizing the composite return, is generally not optimal
for the original MDP. Potential-based shaping functions (PBSFs) take the form F (st, at, st+1) =
γϕ(st+1)− ϕ(st) and preserve optimal policies in all MDPs (Ng et al., 1999).

2.3 FORMULATION OF RL PROBLEMS AS BAMDPS

We formulate RL problems as BAMDPs, for which RL algorithms are policies. We use overlines,
e.g., M̄ , to denote the BAMDP version of any object. Our conventions are inspired by Zintgraf et al.
(2019) and Guez et al. (2012).

RL algorithms learn to maximize return in an MDP by repeatedly updating an internal state (e.g.,
a Q-function estimate) while selecting actions and receiving observations. We denote them by π̄ :
S × H → A, where H is the set of histories (ht = s0a0r1s1...at−1rtst, representing the sequence
of all transitions observed so far). We measure performance in MDP M by expected return while
learning: JM (π̄) = EM,π̄[

∑∞
t=0 γ

tR(st, at)].1 A Bayes-optimal RL algorithm for an RL problem
maximizes the expected performance in MDPs sampled from prior p(M): J (π̄) = Ep(M)[JM (π̄)]
(Singh et al., 2009), where p(M) represents the domain, i.e., the distribution of MDPs that the
algorithm will encounter (e.g., MiniGrid mazes (Chevalier-Boisvert et al., 2023) or Atari games).

For clarity of exposition, we assume all possible MDPs in p(M) share the same S,A, γ, so only
R, T, T0 are initially uncertain.2 p(M |ht) is the posterior after updating p(M) on the evidence in
history ht, i.e., p(M |ht) ∝ p(ht|M)p(M).

A BAMDP is a tuple M̄ = (S̄,A, R̄, T̄ , T̄0, γ) where:

• S̄ is an augmented state space S ×H, so s̄ = ⟨s, h⟩. This encapsulates all the information
π̄ could use when choosing an action—though typically it maintains a lossy memory of h.

• A and γ are shared with the underlying MDPs, although internally π̄ may sample its actions
from the MDP policy that it learnt: πt = π̄(s̄t), so that π̄(a|s̄t) = πt(a|st).

• R̄(s̄t, a) = Ep(M |ht)[R(st, a)], the expected reward under the current posterior.

• T̄ (s̄t+1|s̄t, at) = Ep(M |ht)[T (st+1|st, at)R(rt+1|st, at)1[ht+1 = htatrt+1st+1]]

• T̄0(⟨s0, h0⟩) = Ep(M)[T0(s)]1[h0 = s0].

We illustrate the basic concepts of BAMDPs using the caterpillar domain shown in Fig. 2. Here,
p(M) represents how butterflies usually lay eggs on the best food source in the area, but 10% of the
time a more rewarding source is nearby; upon hatching on the weed, the caterpillar does not know
which MDP it is in and must decide whether exploring the neighboring bush is worth the energy and
opportunity cost. The bush’s reward varying across possible MDPs manifests as stochastic BAMDP
dynamics at the transition where the caterpillar first observes it (e.g., taking the highlighted eat
action). After observing the reward, p(M |ht) collapses to the underlying MDP and all dynamics
become deterministic (e.g., at the transitions marked with red arrows).

1We can convert settings with episodic environments or train/test regimes to infinite-horizon MDPs by
augmenting the state space, e.g., with within-episode step indices or train/test indicators.

2This formulation can be extended to POMDPs and for distributions over S,A, γ without any conceptual
changes—the agent receives observations ot, and expectations are taken over additional variables as needed.
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Figure 2: The caterpillar domain formulated as a BAMDP. Left: prior p(M) is a categorical distri-
bution over MDPs M1 and M2; in both, all transitions are deterministic, with the curved and straight
arrows corresponding to eat and go actions respectively. The caterpillar hatches at state sw, and must
decide whether to eat for guaranteed reward 21, or spend −5 to go to sb. Right: truncated BAMDP
transition diagram, arrows are labeled with rewards (and transition probabilities when p < 1). The
stochastic transitions (from the highlighted eat action) are due to the uncertainty over the MDP; all
future transitions (the highlighted arrows) become deterministic once its identity is revealed.

The value of an RL algorithm is its value as a policy in the BAMDP, or, more explicitly, its expected
BAMDP return is its expected return while learning in initially unknown MDP M ∼ p(M):

Eπ̄[Ḡ] = ET̄0

[
V̄ π̄(s̄0)

]
= ET̄0,T̄

[ ∞∑
t=0

γtR̄(s̄t, π̄(s̄t))

]
= Ep(M)

[
EM

[∑∞

t=0
γtR(st, π̄(s̄t))

]]
= Ep(M) [JM (π̄)] = J (π̄).

Thus, the optimal policy for the BAMDP, π̄∗ maximizing Eπ̄[Ḡ], explores optimally for the problem,
i.e., it is the Bayes-optimal RL algorithm with respect to prior p(M).3 Since Eπ̄[Ḡ] is calculated
over future beliefs, π̄∗ must plan through its own learning. E.g., in Fig. 2 with large enough γ,
the optimal caterpillar would deem sb worth exploring because it can stay there if it finds food,
otherwise it will learn that sb is empty and use this knowledge to go back to sw and never return.

3 PSEUDO-REWARDS CORRECT BAMDP VALUE MISESTIMATION

We first use our framework to explain how IM and reward shaping can incentivize effective explo-
ration by signalling the value of BAMDP states.

3.1 THE RELATIONSHIP BETWEEN VALUE MISESTIMATION AND REGRET

RL algorithms typically act, implicitly or explicitly, to maximize a value prediction estimated from
the history, which we denote by ˆ̄Q(s̄t, a). Applying the performance difference lemma (Kakade &
Langford, 2002) at the BAMDP level tells us that algorithmic regret is directly related to how these
estimates differ from the Bayes-Optimal value over their trajectory:
Lemma 3.1. The Bayesian regret (Ghavamzadeh et al., 2015) of algorithms acting on estimate
ˆ̄Q(s̄t, a) can be expressed as:

Eπ̄∗ [Ḡ]− Eπ̄[Ḡ] = Eπ̄

[∑
t
γt

(
V̄ ∗(s̄t)− Q̄∗

(
s̄t, argmaxa

ˆ̄Q(s̄t, a)
))]

, (1)

Thus, if we can add pseudo-rewards that nudge the value estimates of RL agents ˆ̄Q such that they
select actions with higher BAMDP value Q̄∗, they will explore more optimally.

3Note that, since π̄∗ explores only when exploration is expected to increase return, exploring enough to find
and settle on an optimal MDP policy π∗ is not generally Bayes-optimal. E.g., in Fig. 2 with small enough γ,
immediate expected reward dominates Eπ̄[Ḡ], so π̄∗ eats at sw rather than risking delaying rewards by checking
sb (see appendix J.1 for full calculations). Thus, optimal RL algorithms do not necessarily converge to optimal
policies for the underlying MDP. Conversely, RL algorithms that do have this property may be over-exploring.

4
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3.2 BAMDP VALUE DECOMPOSITION

We can now understand the role of pseudo-rewards as directly incentivizing RL agents to go to
more valuable BAMDP states. IM terms that reward novel observations or diverse actions encode
the value of the information in the BAMDP state ht; these are popular because commonly used
RL algorithms do not inherently account for the value of information (see appendix C). RL agents
can also misestimate the value of physical states due to incorrect initial beliefs; many other pseu-
dorewards compensate for this type of misestimated value, typically when there is significant prior
knowledge about how to maximize rewards, e.g., it is advantageous for a ball-dribbling robot to be
closer to the ball (Ji et al., 2023). This is helpful to express as a pseudo-reward because it can be
difficult to program such prior knowledge into non-tabular (e.g., deep RL) algorithms before they
begin learning. We decompose the BAMDP value function into these two values, which we call the
Value of Information and Value of Opportunity, respectively.
Definition 3.1 (Value of Information). The Value of Information (VOI) from state s̄t is the increase
in π̄∗’s expected return from st due to the information in ht compared to its initial beliefs:

V̄ ∗
I (⟨st, ht⟩) = V̄ ∗(⟨st, ht⟩)− V̄ ∗(⟨st, h0⟩). (2)

E.g, after watching TV ht may contain more information than h0, but that information wouldn’t
help π̄∗ get higher return, so V̄ ∗

I would be zero. Meanwhile, exploring a new maze section, even if it
contains no rewards, helps π̄∗ focus its search on a smaller remaining area, so V̄ ∗

I would be positive.
Definition 3.2 (Value of Opportunity). The Value of Opportunity (VOO) to π̄ from state s̄t is the
expected optimal value of state st without having learnt anything, i.e.:

V̄ ∗
O(⟨st, ht⟩) = V̄ ∗(⟨st, h0⟩). (3)

E.g., if there is always a reward at a known goal state sg , then st that are fewer steps from it have
higher VOO. But RL agents with misspecified priors may underestimate the value of st before first
discovering the reward at sg . Conversely, if walking near a cliff edge has a high chance of injury,
then st there have lower VOO, but RL agents may overestimate their value before the first fall.
Lemma 3.2 (BAMDP Value Decomposition). The optimal BAMDP value can be decomposed into
the Value of Information and the Value of Opportunity:

V̄ ∗(s̄t) = V̄ ∗
I (s̄t) + V̄ ∗

O(s̄t). (4)

We can now categorize IM and reward shaping terms by which of these components they signal (see
Table 1). We can also understand the failure of pseudo-rewards to effectively guide RL algorithms as
a result of them aligning poorly with the true BAMDP value. For example, negative surprise (Berseth
et al., 2019) signals the prior knowledge that unpredictable parts of the environment have lower
V̄ ∗
O. This is well-aligned for environments with dangerous dynamics, but fails in safe environments

where unpredictability correlates poorly with negative outcomes, causing agents to stare at a wall
rather than exploring (Rhinehart et al., 2021). Meanwhile, Entropy Bonus (Szepesvári, 2010; Mnih,
2016; Haarnoja et al., 2017) signals that more V̄ ∗

I can be gained by trying a wider spread of actions.
This breaks down if the scale of the pseudo-rewards is too high, because overly random behavior
is unlikely to reach interesting novel states, so it must be carefully balanced with the scale and
frequency of the extrinsic rewards (Hafner et al., 2023). See appendix B for more in-depth discussion
of these and more examples.

4 PRESERVING OPTIMALITY WITH BAMDP POTENTIAL-BASED SHAPING

Section 3 explained how IM and reward shaping guide suboptimal RL algorithms to explore more ef-
fectively. As our algorithms become more powerful, another issue is that they find ways to “reward-
hack”, i.e., maximize their shaped rewards without also maximizing the underlying rewards we care
about. This can be avoided by using pseudo-rewards that preserve optimality, i.e., guarantee that
any behavior maximizing shaped rewards also maximizes underlying rewards. Using our frame-
work, we define a form of pseudo-reward which makes it easy to retrofit IM terms, or design new
terms, which preserve optimality: BAMDP potential-based shaping functions (BAMPFs). We prove
that the use of BAMPFS can avoid reward-hacking in both RL (i.e., optimizing over the MDP policy)
and meta-RL (i.e., optimizing over the RL algorithm) settings.
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Table 1: Typology of IM and reward shaping terms based on the value components signalled. At-
tractive signals increase with metrics that correlate with under-estimated value, and repulsive signals
decrease with metrics warning of over-estimated value.

No V̄ ∗
O Signal Attractive V̄ ∗

O Signal Repulsive V̄ ∗
O Signal

No V̄ ∗
I

Signal
• Goal proximity (57; 28)
• Subgoal reaching (60;

76)
• Ball possession (40)

• Negative surprise (8)
• Information cost (22)
• Joint angle violation

penalty (40)

Attractive
V̄ ∗
I Signal

• Prediction error (59;
10)

• Counts-based (6; 10)
• Entropy bonus (78; 54)
• Skill discovery (71; 82)
• Info gain (37; 72)

• Optimism bonuses (75;
61)

• Unlocking subtasks (34)

• Empowerment (44;
30)

• Information Capture
(62)

4.1 DEFINITION OF BAMDP POTENTIAL-BASED SHAPING FUNCTIONS

Classic potential-based shaping guides RL agents towards more valuable MDP states by encoding
their desirability with the potential function ϕ(s) (e.g., when the potential is proximity to the goal,
Fig. 1a). A BAMDP Potential-Based Shaping Function (BAMPF) can guide RL agents by encoding
the desirability of BAMDP states ϕ(s̄) (or equivalently, ϕ(h)), which includes not only the physi-
cal state value (corresponding to VOO), but also the value of the information accumulated (VOI),
encouraging exploration to gather valuable experiences.
Definition 4.1. (BAMPF) Let any S̄,A, γ be given. Function F is a BAMDP Potential-Based
Shaping Function if there exists a real-valued function ϕ such that for all realizable ht,

F (ht) = γϕ(ht)− ϕ(ht−1), (5)

where ht−1 is the first t− 1 timesteps of ht. See Fig. 1b for an example of a simple BAMPF based
on the size of the set of MDP states visited in h.

E.g., information gain expressed as the decrease in entropy of the agent’s belief of the MDP dynam-
ics p̂(T ), i.e., H(p̂(T |ht−1)) − H(p̂(T |ht)) (Houthooft et al., 2016), can be viewed as a BAMPF
for γ = 1 with ϕ(h) = −H(p̂(T |h)), i.e., the certainty of the posterior belief after updating on h,
encouraging exploration towards states where the agent knows more about the environment. Due to
the expressivity of ϕ, it is straightforward to convert virtually any IM or reward shaping function to
a BAMPF - take whatever measure of the desirability of the information and/or physical state that it
is based on, and use that measure as ϕ.

4.2 BAYES-OPTIMAL RL ALGORITHMS ARE INVARIANT TO BAMPFS

We first consider the use of BAMPFs for guiding meta-RL systems to discover better RL algorithms
more efficiently, without making them eventually converge to suboptimal “reward-hacking” algo-
rithms. In this setting, the meta-learner generates RL algorithms π̄θ, updating θ to maximize the
expected shaped rewards it obtains while learning in MDPs sampled from task distribution p(M).
E.g., information gain pseudo-rewards could encourage the metalearner to generate π̄θ that take
more information-gathering actions. But if the pseudo-reward doesn’t preserve optimality, it could
cause the meta-learner to converge on algorithms that explore badly with respect to the true rewards.
We extend existing theory on PBSFs preserving optimal policies in MDPs, to prove BAMPFs pre-
serve optimal RL algorithms in any BAMDPs, i.e., in meta RL problems.

4.2.1 MAIN RESULTS

We model the effect of pseudo-reward function F (ht) as producing shaped BAMDP M̄ ′ with shaped
reward R̄′(s̄t, a, s̄t+1) = R̄(s̄t, a) + F (ht+1), while S̄ and T̄ are unchanged, i.e., ht still only con-
tains the underlying rewards. This reflects the fact that F (ht) is fully known from the start, so it

6
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should not be treated as information or influence the posterior. The RL algorithm observes the under-
lying rewards in ht, while only the meta-learner receives the pseudo-rewards in this setting. An opti-
mal algorithm for M̄ ′ maximizes the expected shaped return from R̄′, i.e., π̄∗′ = argmaxπ̄ Eπ̄[Ḡ

′].

We now state our main theorem that BAMPFs always preserve Bayes-Optimality.
Theorem 4.2 (BAMDP Potential-Based Shaping Theorem). For a pseudo-reward function to guar-
antee that the optimal algorithm for any shaped BAMDP is optimal for the original BAMDP, i.e.,
Bayes-optimal for the underlying RL problem, it is necessary and sufficient for it to be a potential-
based shaping function on the BAMDP state.

Proof Sketch. For sufficiency, we show that the ϕ form a telescoping sum, reducing to a constant.
For necessity, we construct a BAMDP such that when F − (γϕ′ − ϕ) is nonzero, different actions
maximize the shaped and extrinsic returns. The proof follows Ng et al. (1999) but rewards impact
the BAMDP state, making it more complex than for regular MDPs; see A.1 for full proofs.

Thus, if the meta-learner converges to an RL algorithm that learns optimally for the BAMPF-shaped
rewards, this algorithm will also always explore optimally with respect to the true reward distri-
bution. Meanwhile, if we use IM that is not a BAMPF, there will be settings where π̄∗′ explores
suboptimally for the underlying problem. We extend this result to prove that BAMPFS also preserve
approximate optimality of RL algorithms in Appendix A.2.

4.2.2 SHAPING META-RL ON BERNOULLI BANDITS

We demonstrate this in the Bernoulli Bandit meta-RL problem introduced by Wang et al. (2016).
Every MDP in p(M) has two arms, one with reward probability 0.1 and the other 0.9 (randomly
assigned), and a budget of 10 pulls. At each step an RNN-based RL agent observes the last arm that
was pulled, the reward that it produced, and how many pulls it has left, and chooses which arm to pull
next. After 10 pulls, the episode ends and a new MDP is sampled from p(M). The meta-learner (we
used A2C (Mnih, 2016)) continually updates the RNN agent to maximize expected return in its 10-
step lifetime, i.e., to find the RL algorithm that optimally balances exploration and exploitation with
respect to p(M). Fig. 3b shows how without shaping (the grey curve), the meta-learner gradually
learns to generate RL agents that try fewer arms on average, i.e., avoiding over-exploration. This
shows that the meta-learner initially over-estimates the VOI of trying more arms, so we could add
a BAMPF to correct its prior. The 1st Winner Pulls BAMPF sets ϕ(h) to the total pull count of
the first arm that produced a reward, decreasing the relative perceived VOI of exploring the other
arm. Fig. 3b (green curve) shows it helps A2C learn more exploitative RL agents more quickly, and
Fig. 3a shows that these agents achieve lower regret more quickly, while it doesn’t prevent eventual
convergence to an optimal agent. In contrast, when this pull count is added directly as a pseudo-
reward (purple curve), it causes the meta-learner to converge on an agent that exploits too heavily
and never achieves the optimal regret, because if the p = 0.1 arm is ever the “first winner” then
shaped return is maximized by continuing to pull it, even if it never yields a reward again. See
appendix H for full experimental details.

4.3 BOUNDED MONOTONE BAMPFS PRESERVE APPROXIMATE OPTIMALITY IN MDPS

Now we turn our attention to the common RL setting, where an RL algorithm updates an MDP policy
to maximize return. A certain natural type of BAMPF is also un-hackable at the MDP level, i.e.,
RL algorithms cannot converge on policies maximizing shaped rewards without also maximizing
the true rewards. These are any BAMPFS based on ϕ that are bounded monotone functions over
increasing experience (i.e., either ϕ(ht1) ≤ ϕ(ht2) or ϕ(ht1) ≥ ϕ(ht2) for all training steps t1 < t2).

Theorem 4.3 (Bounded Monotonic BAMPF Theorem). If the pseudo-rewards added to an MDP can
be expressed as a BAMPF with a bounded potential that is monotonic over time, it will eventually
preserve approximate optimality in the MDP, i.e.,

∀ϵ > 0 ∃H : ∀t > H : Eπ∗′
t
[G] > Eπ∗ [G]− ϵ, (6)

Where t is the training step, Eπ[G] denotes the expected (unshaped) return of MDP policy π, π∗′

t is
a policy maximizing BAMPF-shaped return at step t, and π∗ is an optimal policy for the underlying
MDP.
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(a) Average regret of the learnt RL agents as they are
updated through meta-learning.

(b) Average number of arms tried by the learnt agents.

Figure 3: The effect of reward shaping on A2C meta-learning an RNN-based RL agent for Bernoulli
Bandits with two arms, reward probabilities (0.1, 0.9) and a budget of 10 pulls. The mean and stan-
dard error of 10 seeds are plotted for each condition. Without shaping, the meta-learner gradually
learns to generate RL agents that try fewer arms on average, i.e., avoiding over-exploration (grey
curve in 3b). The 1st Winner Pulls BAMPF sets ϕ to the pull count of the first arm that yielded a
reward, helping A2C learn to exploit and achieve lower regret more quickly, while still converging
to the same optimal strategy. When this pull count is added directly as a pseudo-reward (1st Winner
Pulls), it causes the meta-learner to converge on an agent that over-exploits.

(a) Psuedo-reward values over time. (b) Levers tried over time. (c) Correct lever pull fraction over time.

Figure 4: The effect of a bounded monotone BAMPF and entropy bonus pseudo-rewards on DQN in
a 1-state MDP, where 1 in 100 total levers gives reward 10 when pulled. None refers to DQN without
any pseudo-rewards. The BAMPF potential is the count of unique levers tried, and the Entropy
reward is 10x the entropy of the last 10 lever pulls. The setting is non-episodic with γ = 0.9. The
mean and standard error of 32 seeds are plotted for each condition. See appendix G for full details.

Proof Sketch. Because ϕ is bounded and monotone, there must be a final point in training H where it
changes by at least ϵ. The BAMPF rewards form a telescoping sum leaving a single policy-dependent
ϕ term from the final step. Thus, after time H the BAMPF can only modify the difference in any
two policies’ returns by at most ϵ. Therefore the optimal policy in the shaped MDP can only be ϵ
worse than the optimal policy in the true MDP. See appendix A.3 for the full proof.

This class of BAMPF naturally includes intrinsic motivation terms that signal the total value of
information gathered so far, e.g., count-based rewards (Bellemare et al., 2016) or information
gain (Houthooft et al., 2016), and they are simple and intuitive to design. For example, take a
single-state MDP with 100 levers only one of which yields a reward when pulled. A bounded mono-
tone ϕ could be the number of unique levers tried so far, encoding the VOI from having explored
more levers. Figure 4a shows how, when applied to DQN, the BAMPF reward converges to a con-
stant as more levers are tried. Figure 4b shows how this BAMPF causes the agent to try more levers
on average than without pseudo-rewards (which relies purely on ϵ−greedy exploration). And yet,
it doesn’t prevent DQN from converging to the optimal policy, i.e., pulling the correct lever at ev-
ery step (Fig. 4c). Meanwhile, entropy bonus (the entropy of the last 10 lever pulls, which isn’t a
BAMPF) makes the agent oscillate between pulling the correct lever to get the extrinsic reward, and
pulling other levers to increase the entropy bonus, which achieves higher shaped rewards (but lower
true rewards) than pulling the correct lever at every step.
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(a) Visualization of the envi-
ronment.

(b) Episodic extrinsic returns over
training.

(c) Exponentially smoothed maximum
displacement.

Figure 5: The effect of pseudo-rewards on PPO in Mountain Car; the mean and standard error of 10
seeds are plotted for each type of reward shaping. Displacement rewards the current displacement
of the car, Displacement PBS is potential-based shaping with the current displacement as the MDP
state potential ϕ(s), and Max Displacement BAMPF uses the exponentially smoothed maximum
displacement over training (5c) as the BAMDP state potential ϕ(h). With Displacement the agent
learns a reward-hacking policy that avoids the goal to collect more pseudo-rewards (see Fig. 7),
while the BAMPF helps PPO learn to reach the goal more quickly while preserving optimality (5b).

4.3.1 SHAPING RL IN MOUNTAIN CAR

We now demonstrate the benefits of BAMPFs in a more realistic setting: with PPO (Schulman et al.,
2017) in the Mountain Car environment (Brockman et al., 2016) which has a 2D continuous state
comprising the car’s position and velocity. The reward is -1 at each timestep; each episode lasts 200
steps or ends early if the car reaches the goal. The car starts in a valley, and to reach the goal (the flag
post in Fig. 5a) it must build momentum by first moving up the opposite slope. Thus, displacement
from the lowest point in the valley is an intuitive shaping reward to signal the VOO of being further
uphill in either direction. We find this helps PPO reach greater displacements early in training (red
curve in Fig. 5c), but eventually results in reward-hacking policies that collect more pseudo-rewards
by avoiding the goal (Figures 5b and 7). Converting this to classic potential-based shaping by setting
ϕ(s) to the displacement, we find it preserves optimality but doesn’t help learning (blue curve in Fig.
5b), possibly because the further uphill the car gets, the more negative PBS rewards it soon receives
when it rolls back. We can understand these failures as a result of the fact that displacement is
too weak a signal for the true VOO in Mountain Car. Instead, we could signal VOI by rewarding
the maximum displacement so far, which doesn’t penalize temporary decreases in displacement.
This value clearly depends on more than the current state, so isn’t a valid MDP potential- but it
is a valid BAMDP potential ϕ(ht). It is bounded due to the finite width of the environment, and
monotonically increases throughout training. It signals the VOI of the RL agent learning how to get
further uphill; because it sometimes surpasses its maximum displacement by chance before learning
how to consistently get so far, we apply exponential smoothing. Fig. 5c (green curve) shows the
resulting BAMPF gets the agent to explore further more quickly, and Fig. 5b shows it learns to reach
the goal and maximize true rewards sooner while avoiding reward-hacking. See Appendix I for full
experimental details.

4.3.2 CONVERTING PSEUDO-REWARDS TO PRESERVE OPTIMALITY IN MDPS

Although virtually any pseudo-reward can be cast as a BAMPF, bounded monotone BAMPFs don’t
naturally include terms purely based on the latest behavior, e.g., prediction error (the predictability
of the latest observations) or entropy bonus (the randomness of the latest policy). However, these
terms would still preserve optimality if they could be converted to the sum of a bounded monotone
BAMPF and a classic PBSF. E.g., Curiosity (Pathak et al., 2017) rewards the error of a learnt dynam-
ics model in predicting the latest observations, to encourage continually seeking novel experiences
while improving the dynamics model. To convert this, it could be split into a PBSF with ϕ(s) equal
to the error of a fixed model’s prediction of features of s (similar to RND (Burda et al., 2018)), plus a
BAMPF with bounded monotone ϕ(h) equal to the minimum error of the dynamics model on a fixed
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set of transitions4. The PBSF encourages visiting increasingly unfamiliar states, and the BAMPF
encourages gathering experiences that make its world model increasingly accurate. This form of
Curiosity would no longer be susceptible to the Noisy TV problem, since the dynamics model’s
error ϕ(h) would not keep decreasing while watching TV, and even if the fixed model’s prediction
error ϕ(s) were higher at the TV, Ng et al. (1999)’s result guarantees that a policy can’t maximize
its total shaped return by staying there. See Appendix D for a more detailed exposition.

5 RELATED WORK

Theory of Intrinsic Motivation Oudeyer & Kaplan (2007) categorize IM as knowledge-based,
competence-based or morphological, and evaluate them by their exploration (leading to exploratory
and investigative behavior) and organization (leading to structured and organized behavior) poten-
tials, which are similar to the effects of signalling V̄O and V̄I . Singh et al. (2009) propose an evolu-
tionary framework for rewards as maximizing expected fitness over a distribution of environments,
concluding that optimal IM depends on regularities across the distribution and properties of the
learning agent. Aubret et al. (2023) propose an information-theoretic taxonomy of IM, but this only
captures IM terms signalling value of information, and they do not consider the prior distribution
and so cannot explain how IM should be designed for a given domain.

Extensions of Potential-Based Shaping Devlin & Kudenko (2012) and Forbes et al. (2024) extend
PBS theory to potential functions that vary over time, including functions of the history, showing
that they also preserve the optimal MDP policy. However, Devlin & Kudenko (2012)’s proof omits
finite-horizon episodes, and Forbes et al. (2024) modify the potential at the last step of each episode
to cancel out all prior shaping rewards. This is inappropriate for potentials measuring the value
of information, since observations from an episode do not lose all value once the episode ends.
Eck et al. (2016) extend PBSFs to POMDP planning, defining potential functions over POMDP
belief states and categorizing them as Domain-dependent and Domain-independent, which share
similarities to V̄O and V̄I . Kim et al. (2015) propose BAMDP potential-based shaping specifically
for a model-based Bayesian RL method, although they do not prove that the PBS theorem still holds
for BAMDPs (which is non-trivial, because rewards influence the BAMDP state) and do not consider
the broader implications for developing IM for any RL algorithm.

See Appendix E for an extended discussion of related work.

6 DISCUSSION

By formulating RL problems as BAMDPs, we formalize how intrinsic motivation and reward shap-
ing guide exploration by signalling the value of BAMDP states, which we decompose into the value
of information and the value of opportunity. This allows us to characterize the roles of existing
pseudo-rewards, and explain failure modes where they introduce incentives that are misaligned with
the actual value in the environments they’re used in. We also extend potential-based shaping the-
ory to prove that pseudo-rewards in the form of BAMDP potential-based shaping functions always
preserve the optimality of RL algorithms. Thus, BAMPFs can guide meta-RL without risking the
meta-learner converging to RL algorithms that explore optimally for the shaped rewards but are sub-
optimal for the underlying domain. We demonstrate this by designing a BAMPF for a Bernoulli
Bandits domain, showing that it helps the meta-RL agent learn an optimal RL algorithm more
quickly. Returning to the regular RL setting, we finally prove that BAMPFs based on bounded
monotone potentials will eventually preserve the optimality of MDP policies. Thus, they also en-
sure RL algorithms cannot converge on reward-hacking policies that maximize shaped rewards to
the detriment of real rewards. Although it is a manual process, it is straightforward to design and
convert many existing pseudo-rewards into this form. We provide an empirical demonstration in the
Mountain Car environment: we leverage the BAMDP value decomposition to inform the design of
a BAMPF potential, and demonstrate that it improves learning efficiency and preserves optimality,
whereas similar pseudo-rewards result in reward hacking.

4The fixed model and transition set could be refreshed regularly between batch updates– optimality is pre-
served as long as the RL algorithm’s choice of policy doesn’t affect them.
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Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
International Conference on Machine Learning, pp. 5779–5788. PMLR, 2019.

Herbert A Simon. Dynamic programming under uncertainty with a quadratic criterion function.
Econometrica, pp. 74–81, 1956.

Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from. In Proceed-
ings of the annual conference of the cognitive science society, pp. 2601–2606. Cognitive Science
Society, 2009.

Jonathan Sorg, Satinder Singh, and Richard L Lewis. Variance-based rewards for approximate
bayesian reinforcement learning. arXiv preprint arXiv:1203.3518, 2012.

Henry Sowerby, Zhiyuan Zhou, and Michael L Littman. Designing rewards for fast learning. arXiv
preprint arXiv:2205.15400, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in Neural Information
Processing Systems, 12, 1999.
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A POTENTIAL-BASED SHAPING PROOFS

A.1 MAIN THEOREM

Theorem 4.2 (BAMDP Potential-Based Shaping Theorem). For a pseudo-reward function to guar-
antee that the optimal algorithm for any shaped BAMDP is optimal for the original BAMDP, i.e.,
Bayes-optimal for the underlying RL problem, it is necessary and sufficient for it to be a potential-
based shaping function on the BAMDP state.

Proof. (Sufficiency) Denote the original BAMDP M̄ = (S̄,A, R̄, T̄ , T̄0, γ) with optimal algorithm
π̄∗, and the shaped BAMDP as M̄ ′ = (S̄,A, R̄′, T̄ , T̄0, γ), i.e., it is identical to M̄ except for its
shaped reward function R̄′(s̄t, a, s̄t+1) = R̄(s̄t, a) + F (s̄t+1) = R̄(s̄t, a) + γϕ(ht+1)− ϕ(ht). So
we model the pseudo-rewards as being added to the RL algorithm’s reward signal internally, rather
than entering through the history in the BAMDP state s̄t. We denote the optimal algorithm for M̄ ′

by π̄∗′.
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Figure 6: All edges have probability 1, and only action a is applicable from s2 and sa.

Abbreviating ϕ(ht) to ϕt, we can now express the expected return of an algorithm in M̄ ′ in terms of
the underlying return it would achieve in M̄ :

(7)

Eπ̄[Ḡ′] = ET̄ ,T̄0,π̄

[∑
t

γtR̄′ (s̄t, at, s̄t+1)

]

= ET̄ ,T̄0,π̄

[∑
t

γt
(
R̄ (s̄t, at) + γϕt+1 − ϕt

)]

= ET̄ ,T̄0,π̄

[ ∞∑
t=0

γtR̄(s̄t, at)

]
+ ET̄ ,T̄0,π̄

[
−ϕ0 +

∞∑
t=1

γt(ϕt − ϕt)

]
= Eπ̄[Ḡ]− ϕ0

Plugging this into the definitions of the Bayes-optimal algorithms for M̄ ′ and M̄ :

(8)

π̄∗′ ∈ argmax
π̄

Eπ̄[Ḡ
′]

= argmax
π̄

Eπ̄[Ḡ]− ϕ0

= argmax
π̄

Eπ̄[Ḡ] = π̄∗

We now prove that if pseudo-reward function F (h) is not a BAMPF, then there exists BAMDP
reward and transition functions such that no Bayes-optimal algorithm for the shaped BAMDP is
Bayes-optimal in the original BAMDP.

Proof. (Necessity) Our proof follows Ng et al. (1999)’s proof of necessity, but is more complex
because the BAMDP state contains the entire history. Assume F is not a BAMPF. We need to show
that we can construct T̄ , R̄ such that no optimal algorithm in shaped BAMDP M̄ ′ is also optimal
in M̄ . We abbreviate a sub-sequence hij of a history that repeats itself n times by (hij)n. Define
ϕ(h) = −

∑∞
t=0 γ

tF (h(a0sa)t+1) for all h with sa ∈ S, a ∈ A. By assumption of F not being
a BAMPF, there exists a valid transition between two BAMDP states ⟨s1, h1⟩, ⟨s2, h1a

′r′s2⟩ ∈ S̄
via some action a′ ∈ A yielding reward r′ such that γϕ(h1a

′r′s2)− ϕ(h1) ̸= F (h1a
′r′s2). Define

∆ = F (h1a
′r′s2)−γϕ(h1a

′r′s2)+ϕ(h1). We now construct M̄ with no uncertainty over R, T , i.e.,
p(M) is concentrated on a single MDP M , illustrated in Figure 6. In this M , we have T (sa|s1, a) =
T (s2|s1, a′) = 1.0, and from s2 and sa the only applicable action a leads to sa with probability
1. The initial MDP state is s1, so for s1, h1 to be realizable in this environment h1 is the length 1
sequence s1. Let R(s1, a) = r′ +∆/2, R(s1, a

′) = r′, R(·, ·) = 0 elsewhere. Then we have
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Q̄∗(⟨s1, h1⟩, a) = r′ +∆/2

Q̄∗(⟨s1, h1⟩, a′) = r′

Q̄∗′(⟨s1, h1⟩, a) = r′ +∆/2 +

∞∑
t=0

γtF (h1(a0sa)t+1)

= r′ +∆/2− ϕ(h1)

= r′ +∆/2 + F (h1a
′r′s2)− γϕ(h1a

′r′s2)−∆

= r′ + F (h1a
′r′s2)− γϕ(h1a

′r′s2)−∆/2

Q̄∗′(⟨s1, h1⟩, a′) = r′ + F (h1a
′r′s2) + γ

∞∑
t=0

γtF (h1a
′r′s2(a0sa)t+1)

= r′ + F (h1a
′r′s2)− γϕ(h1a

′r′s2).

Hence

π̄∗(⟨s1, h1⟩) =
{
a if ∆/2 > 0

a′ otherwise
π̄∗′(⟨s1, h1⟩) =

{
a′ if ∆/2 > 0

a otherwise
(9)

A.2 NEAR OPTIMAL ALGORITHMS ARE NEARLY INVARIANT TO BAMPFS

We now extend our results to approximately optimal algorithms, first providing an overview of the
results and proof sketches before diving into the full proofs.

Corollary A.1. With BAMPF shaping, a near-optimal algorithm π̄ϵ for M̄ ′ will also be near-optimal
when applied to M̄ , i.e.,

Eπ̄∗′ [Ḡ′]− Eϵ
π̄[Ḡ

′] < ϵ ⇐⇒ Eπ̄∗ [Ḡ]− Eϵ
π̄[Ḡ] < ϵ. (10)

Proof Sketch. Because BAMPF shaping shifts BAMDP returns by a constant, lower shaped return
Eπ̄[Ḡ′] corresponds directly to Eπ̄[Ḡ] decreasing by the same amount. See A.2.1 for the full proof.

Another form of approximate optimality is the maximization of return over a finite horizon k. We
can also upper-bound the regret as a function of k.

Definition A.1 (k-Step learning-aware). We define an RL algorithm as k-step learning-aware for a
BAMDP if it maximizes the expected k-step return in it:

π̄∗
k ∈ argmax

π̄
ET̄0,T̄

[∑k

t=0
γtR̄(s̄t, π̄(s̄t))

]
. (11)

Corollary A.2. If F is a BAMPF with potential function of maximum magnitude ϕmax, and the
extrinsic reward has maximum magnitude Rmax, then the k-step learning-aware algorithm for the
shaped BAMDP, π̄∗′

k , has regret bounded by 2γk(ϕmax +Rmax
γ

1−γ ) in the underlying BAMDP, i.e.,

Eπ̄∗ [Ḡ]− Eπ̄∗′
k
[Ḡ] ≤ 2γk

(
ϕmax +Rmax

γ

1− γ

)
. (12)

Proof Sketch. The telescoping ϕ summed over horizon k leaves a trailing term of γkϕk from the last
step, which allows us to bound π̄∗′

k ’s k-step regret compared to π̄∗
k in terms of ϕmax. The regret of

π̄∗
k compared to the fully Bayes-optimal algorithm π̄∗ is bounded by the worst-case regret after step

k, giving us a bound in terms of Rmax. See A.1 for the full proof.
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A.2.1 FULL PROOFS OF APPROXIMATE OPTIMALITY COROLLARIES

The result in Equation 7 tells us that a near-optimal algorithm for M̄ ′ will also be near-optimal in
M̄ because the return is just shifted by a constant.

Corollary A.1. With BAMPF shaping, a near-optimal algorithm π̄ϵ for M̄ ′ will also be near-optimal
when applied to M̄ , i.e.,

Eπ̄∗′ [Ḡ′]− Eϵ
π̄[Ḡ

′] < ϵ ⇐⇒ Eπ̄∗ [Ḡ]− Eϵ
π̄[Ḡ] < ϵ. (10)

Proof.

(13)Eπ̄∗′ [Ḡ′]− Eπ̄[Ḡ′] = Eπ̄∗′ [Ḡ]− ϕ0 − (Eπ̄[Ḡ]− ϕ0)

= Eπ̄∗′ [Ḡ]− Eπ̄[Ḡ]

= Eπ̄∗ [Ḡ]− Eπ̄[Ḡ]

Now to prove Corollary A.2 we first introduce the following Lemma:

Lemma A.1. If F is a BAMPF with potential function of maximum magnitude ϕmax, then the k-step
learning-aware algorithm for the shaped BAMDP, π̄∗′

k , has k-step regret bounded by 2γkϕmax in the
true BAMDP:

max
s,h

|ϕ(h)|= ϕmax =⇒ Eπ̄∗
k
[Ḡk]− Eπ̄∗′

k
[Ḡk] ≤ 2γkϕmax (14)

Proof. First, observe that when PBSF rewards are summed over a finite horizon, all but the potentials
of the first and last timesteps cancel out:

(15)
k∑

t =0

γt(γϕt+1 − ϕt) = −ϕ0 +

k−1∑
t=1

γt(ϕt − ϕt) + γkϕk

= γkϕk − ϕ0

Thus, following the same steps as Equation 7 we can express the k-step return of an algorithm in the
shaped BAMDP as:

Eπ̄[Ḡ′
k] = Eπ̄[Ḡk] + ET̄ ,π̄[γ

kϕk]− ϕ0. (16)

And so the k-step optimal algorithm in the shaped BAMDP can be expressed as:

π̄∗′
k = argmax

π̄
Eπ̄[Ḡ′

k] = argmax
π̄

Eπ̄[Ḡk] + ET̄ ,π̄[γ
kϕk] (17)

Evaluating this expression at π̄∗′
k and applying the bound on the potential function, we get:

(18)
Eπ̄∗′

k
[Ḡk] + ET̄ ,π̄∗′

k
[γkϕk] = max

π̄
Eπ̄[Ḡk] + ET̄ ,π̄[γ

kϕk]

≥ max
π̄

Eπ̄[Ḡk]− γkϕmax

= Eπ̄∗
k
[Ḡk]− γkϕmax

Rearranging the above inequality and applying the bound once more we get:

(19)Eπ̄∗
k
[Ḡk]− Eπ̄∗′

k
[Ḡk] ≤ γkϕmax + ET̄ ,π̄∗′

k
[γkϕk]

≤ 2γkϕmax.
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Corollary A.2. If F is a BAMPF with potential function of maximum magnitude ϕmax, and the
extrinsic reward has maximum magnitude Rmax, then the k-step learning-aware algorithm for the
shaped BAMDP, π̄∗′

k , has regret bounded by 2γk(ϕmax +Rmax
γ

1−γ ) in the underlying BAMDP, i.e.,

Eπ̄∗ [Ḡ]− Eπ̄∗′
k
[Ḡ] ≤ 2γk

(
ϕmax +Rmax

γ

1− γ

)
. (12)

Proof. Since magnitude of the reward is bounded by Rmax, we can upper bound the expected return
of π̄∗ by the optimal k-step return Eπ̄∗

k
[Ḡk] plus the maximum return from step k + 1 onwards:

(20)Eπ̄∗ [Ḡ] ≤ Eπ̄∗
k
[Ḡk] + γk+1 1

1− γ
Rmax

≤ Eπ̄∗′
k
[Ḡk] + 2γkϕmax + γk+1 1

1− γ
Rmax,

where we applied Lemma A.1 to substitute Eπ̄∗
k
[Ḡk] at the second line. Meanwhile, the full expected

return of π̄∗′
k can be lower bounded by its k-step return plus the minimum return from step k + 1

onwards:

(21)Eπ̄∗′
k
[Ḡ] ≥ Eπ̄∗′

k
[Ḡk]− γk+1 1

1− γ
Rmax

≥ Eπ̄∗ [Ḡ]− 2γkϕmax − 2γk+1 1

1− γ
Rmax,

where we substituted the Eπ̄∗′
k
[Ḡk] in the first line using the result in Equation 20.

Remark A.2. For RL algorithms that have a minimum resolution at which they distinguish returns,
BAMPF shaping ceases to affect their behavior once they are optimal over a long enough horizon.
More precisely, we call an RL Algorithm that does not distinguish returns less than d apart d-
insensitive. For k high enough that 2γkϕmax < d, all k-step optimal d-insensitive algorithms in a
BAMPF-shaped BAMDP are behaviorally equivalent to their counterparts in the original BAMDP.

A.3 MDP OPTIMALITY

Theorem 4.3 (Bounded Monotonic BAMPF Theorem). If the pseudo-rewards added to an MDP can
be expressed as a BAMPF with a bounded potential that is monotonic over time, it will eventually
preserve approximate optimality in the MDP, i.e.,

∀ϵ > 0 ∃H : ∀t > H : Eπ∗′
t
[G] > Eπ∗ [G]− ϵ, (6)

Where t is the training step, Eπ[G] denotes the expected (unshaped) return of MDP policy π, π∗′

t is
a policy maximizing BAMPF-shaped return at step t, and π∗ is an optimal policy for the underlying
MDP.

Proof. We first introduce a lemma to bound the maximum change in the potential function:

Lemma A.2. If ϕ is bounded and monotonic, then for any finite ϵ > 0 we have some point in time
H at which ϕ has changed by ϵ or more for the last time, and thus all future values of ϕ(ht) must be
within ϵ of each other, i.e.:

∀ϵ > 0 ∃H : ∀t > H,∆t ≥ 0 : |ϕ(ht+∆t)− ϕ(ht)|< ϵ (22)

Proof. Proof by contradiction: if this does not hold, because ϕ is monotonic we could keep stepping
ϕ in the same direction by fixed amount ϵ an infinite number of times, and thus ϕ would not be
bounded.
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Now we can express the expected return of a policy π shaped by the BAMPF at training step t,
Eπ[G

′
t], in terms of the unshaped return Eπ[G] and the episode length N :

(23)Eπ[G
′
t] = Eπ[G+ γϕ(ht+1)− ϕ(ht) + γ2ϕ(ht+2)− γϕ(ht+1)...+ γNϕ(ht+N )]

= Eπ[G]− ϕ(ht) + γNEπ[ϕ(ht+N )]

We use this to express the difference in shaped return between two policies π1, π2 in terms of the
difference in their unshaped returns:

Eπ1
[G′

t]− Eπ1
[G′

t] = Eπ1
[G]− ϕ(ht) + γNEπ1

[ϕ(ht+N )]− Eπ2
[G] + ϕ(ht)− γNEπ2

[ϕ(ht+N )]

= Eπ1
[G]− Eπ2

[G] + γN (Eπ1
[ϕ(ht+N )]− Eπ2

[ϕ(ht+N )])

(24)

If the left hand side is positive, the right hand side must also be positive:

Eπ1 [G
′
t]−Eπ1 [G

′
t] > 0 ⇐⇒ Eπ1 [G]−Eπ2 [G] + γN (Eπ1 [ϕ(ht+N )]−Eπ2 [ϕ(ht+N )]) > 0 (25)

Rearranging the inequalities, and then applying Lemma A.2 and using the fact that γ < 1:

(26)Eπ1
[G′

t] ≥ Eπ1
[G′

t] ⇐⇒ Eπ1
[G] ≥ Eπ2

[G]− γN (Eπ1
[ϕ(ht+N )]− Eπ2

[ϕ(ht+N )])

> Eπ2
[G]− ϵ

Thus, if π∗′

t maximizes return shaped by a bounded monotonic BAMPF at time t > H , i.e.,
∀π : Eπ∗′

t
[G′

t] ≥ Eπ[G
′
t], (27)

then it must also approximately maximize return in the underlying MDP:
∀π : Eπ∗′

t
[G] > Eπ[G]− ϵ. (28)

Specifically, we can plug in the actual optimal policy for the original MDP π∗ in the right hand side,
and we get our result:

Eπ∗′
t
[G] > Eπ∗ [G]− ϵ. (29)

B EXAMPLES OF PSEUDO-REWARD VALUE SIGNALLING

B.1 PURE V̄ ∗
O SIGNAL

These pseudo-rewards help when V̄ ∗
O has a large influence on Q̄∗ but the RL algorithm’s (implicit

or explicit) value estimate is misaligned with it. This often happens when there is significant prior
information of the relative values of reaching states in M , which the algorithm is not initialized with.
Thus F is often very problem-specific, to correct the perceived value of certain states according to
the actual distribution of the problem.

B.1.1 ATTRACTIVE V̄ ∗
O SIGNAL

These terms help where the RL agent underestimates the value of getting to certain states, by re-
warding it for reaching them. A common example is goal proximity-based reward shaping (Ng et al.,
1999; Ghosh et al., 2018; Lee et al., 2021; Ma et al., 2022); which rewards each step of progress
towards a goal in problems where the true reward is only at the goal itself. The goal location varies
across MDPs in p(M) but is fully observable from the initial state, therefore going towards it yields
no information and thus does not increase V̄ ∗

I , but is Bayes-optimal because it maximizes V̄ ∗
O. An

RL algorithm that is not initialized with this prior information would not prioritize going towards
the goal over any other state, and would have to discover the sparse reward there through blind trial
and error. Shaping rewards compensate for this, incentivizing behavior that approaches the goal.

Another common example with the same underlying mechanism is rewarding points scored in
points-based-victory games like Pong. But if winning is not purely points-based, this is not nec-
essarily good signal for V̄ ∗

O; e.g., Clark & Amodei (2016) found an agent learned to crash itself to
maximize points, when the true goal was to place first in the race.
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B.1.2 REPULSIVE V̄ ∗
O SIGNAL

Psuedo-rewards based on repulsive V̄ ∗
O signal help in RL problems where the agent would take

suboptimal actions because it overestimates the Value of Opportunity, again due to missing prior
knowledge, by penalizing behavior that goes to states with lower V̄ ∗

O. Prime examples are negative
surprise or information-cost-based IM (Berseth et al., 2019; Eysenbach et al., 2021) which give
negative rewards based on the unpredictability of the states and transitions experienced. This is
beneficial, assuming:

1. Unpredictable situations are undesirable in the MDPs in prior p(M), e.g. for driverless
cars where it is dangerous to drive near other erratic vehicles, or robotic surgery, where it
is dangerous to use unreliable surgical techniques with highly variable outcomes.

2. The RL algorithm does not a priori expect danger in unpredictable states and thus overesti-
mates the V̄O of exploring them; it could learn to avoid them by getting into accidents and
receiving negative task rewards, but that would be incredibly costly in the real world.

These rewards decrease the Bayesian regret of RL algorithms by decreasing their estimates of the
value of going to these dangerous states, better aligning them with the optimal p(M)-aware Q̄∗, so
they return to safety before getting into accidents.

More formally, negative surprise works under the assumption that on the distribution of trajectories
the agent actually experiences, surprise almost always correlates well with negative outcomes. An
example where this assumption wouldn’t hold is if Times Square were a popular and safe destination
for the driverless taxi, but the unpredictability of all the adverts were included in the surprise penalty.
This measure of surprise correlates poorly with negative outcomes in trajectories through Times
Square, so it would increase regret by making the agent unnecessarily reroute around it. In this
problem, the signal for V̄ ∗

O must be more specific- only penalizing surprise with respect to things
that could cause accidents, such as the positions of other vehicles.

B.2 ATTRACTIVE V̄ ∗
I SIGNAL

Many intrinsic motivation terms are intended to reward behavior that gains valuable experience.
These are helpful for RL algorithms which ignore the value of gaining information (e.g., see section
C), in problems containing significantly valuable information that is not immediately rewarding to
gather. These IM terms aim to reward the agent for reaching states with more valuable information
in ht, to incentivize information-gathering behavior. Note that different types of information are
valuable in different types of problems, i.e., for different p(M), and this determines which form of
IM provides the most helpful signal for V̄ ∗

I .

• Prediction Error-based IM (Schmidhuber, 1991; Pathak et al., 2017) rewards experiences
that are predicted poorly by models trained on ht. This helps when unpredictability given
ht is good signal for the Value of Information gained from the observation- thus, for F
based on dynamics models there must be minimal stochasticity (stochastic transitions are
always unpredictable but yield no information) and in general most information must be
task-relevant (so the information gained has value).

• Count-based IM (Bellemare et al., 2016; Burda et al., 2018; Lobel et al., 2023) provide a
reward bonus for visiting states that have been visited less frequently, or in the case of large
continuous state spaces pseudo-counts are used to group similar states into the same bucket.
For example, Burda et al. (2018) observed dynamics prediction error failing in the ‘noisy
TV’ problem, where a TV that changes channels randomly maximizes F despite providing
no information. This motivated their design of RND, which only predicts features of the
current state as an estimate for how many times that state, or similar states, had already
been visited. However, these types of IM can be counterproductive when the novelty of
a state is a poor signal for how valuable it is to explore it, e.g. an “infinite TV problem”
where the TV has infinite unique channels that provide useless information.

• Entropy bonus IM is proportional to the entropy of the MDP policy’s action distribution
(Szepesvári, 2010; Mnih, 2016; Haarnoja et al., 2017). This increases the estimated return
of more stochastic π, so it can be understood as adding in the value of exploring a wider
range of actions. This helps when RL algorithms get stuck in local maxima, but breaks
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down if the scale of the intrinsic rewards is too high, because overly random behavior is
unlikely to reach interesting states, or could even be dangerous, e.g., if the increase in
entropy when the robot overextends its joints outweighed the negative extrinsic rewards
from the damage that does, it could encourage the robot to destroy itself. Therefore it must
be carefully balanced with the scale and frequency of the extrinsic rewards (Hafner et al.,
2023).

• Mutual Information-based skill discovery (Sharma et al., 2019; Warde-Farley et al., 2018;
Eysenbach et al., 2018) rewards the agent based on the mutual information between the
skills (temporally correlated sequences of actions) it learns and the resulting states. The
higher this mutual information, the more diverse and controllable the skill set. It’s a good
signal for V̄ ∗

I in RL problems where this is a good measure for how useful the set of skills
is for maximizing return, which also depends on the choice of representation used for the
skills and states.

• Information Gain is a measure of the amount of information gained about the environment
(Lindley, 1956). Info gain-based IM has led to successful exploration in RL (Sekar et al.,
2020; Houthooft et al., 2016; Shyam et al., 2019); it is a good signal for V̄ ∗

I in problems
where all information about the MDP is useful for maximizing return. But it could be a
distraction in environments with many irrelevant dynamics to learn about, since the quantity
of information gained would not always align with the value of that information.

B.3 COMPOSITE SIGNAL

Finally, we can analyze more complex pseudo-rewards that signal a combination of both V̄ ∗
I and

V̄ ∗
O.

B.3.1 ATTRACTIVE VOI, REPULSIVE VOO

The Empowerment of an agent is typically measured as the mutual information I(s′; a|s) between
its actions and their effect on the environment (Klyubin et al., 2005; Salge et al., 2014a; Gregor
et al., 2016). In prior work, this was generally understood as motivating agents to move to the states
of “maximum influence” (Salge et al., 2014b; Mohamed & Jimenez Rezende, 2015), e.g., the center
of the room, or the junction of intersecting hallways. However, this does not always explain the full
story. Mohamed & Jimenez Rezende (2015) found that in problems with predators chasing or lava
flowing toward the agent, Empowerment motivates it to barricade itself from the lava or avoid the
predators- even when this requires holing up in a tiny corner of the room. We can understand this
by decomposing Empowerment into the sum of attractive V̄I and repulsive V̄O signals:

I(s′; a|s) = H(a|s)−H(a|s, s′), (30)

where we can view H(a|s) as adding attractive signal for V̄ ∗
I , similar to Entropy Regularization,

encouraging the exploration of different actions such as the barricade-placing action. Meanwhile
−H(a|s, s′) adds repulsive signal for V̄ ∗

O, similar to Negative Surprise, signalling that states where
the agent is caught or engulfed (which results in the agent’s actions ceasing to have any predictable
effect on the environment) have low value, and thus should be avoided. Empowerment intrinsic
motivation has mostly been tested in small finite environments, but this decomposition suggests its
potential for lifelong learning in open-ended worlds, where it can encourage the exploration of a
wide range of possibilities while staying out of danger.

Similar to Empowerment is Information Capture (Rhinehart et al., 2021) where the intrinsic reward
is based on the expected entropy of the belief distribution (encouraging exploration) minus the en-
tropy of the latent state visitation distribution (which is low when the agent has ”stabilized” the
environment by controlling it and creating a niche for itself).

B.3.2 ATTRACTIVE VOI AND ATTRACTIVE VOO

Another example of a composite value signal is pseudo-rewards based on the principle of optimism
in the face of uncertainty, e.g. Sorg et al. (2012); Qian et al. (2019), rather than just rewarding novel
experiences, aim to reward actions where there is a high upper confidence bound on the possible
value they could lead to. Thus, these types of pseudo-rewards encourage gaining information about
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the value of states and actions (signalling VOI), and/or reaching more valuable states (signalling
VOO).

Reward bonuses for completing necessary subtasks for the first time, e.g. the first time successfully
chopping wood as used in Crafter (Hafner, 2021), is one more example of a composite value signal.
It adds both the value of discovering how to complete the subtask (because more wood will be
needed) and the value of being one step closer to the ultimate objective of mining the diamond (one
less woodblock needed to build a pick-axe). This adds the prior knowledge that in all worlds under
p(M), wood is a prerequisite for diamonds, and that it is valuable to learn how to gather new types
of resources.

C CERTAINTY-EQUIVALENT RL ALGORITHMS UNDERESTIMATE THE
VALUE OF INFORMATION

Section 3.2 showed how we can understand many IM terms as encouraging and directing exploration
through encoding the value of the resulting information. This type of IM is so popular because many
commonly used RL algorithms under-estimate the value of information; we now introduce a model
of these algorithms to formalize this within the BAMDP framework. Many RL algorithms, from
policy-based methods like policy gradient (Sutton et al., 1999; Schulman et al., 2017) to value-based
methods like Q-Learning (Watkins, 1989; Mnih et al., 2015), avoid the intractability of belief-space
planning by acting as if beliefs are fixed. We formalize this objective with the Certainty-Equivalent5
RL algorithm π̄c.
Definition C.1 (Certainty-Equivalent RL Algorithm). At each step, the Certainty-Equivalent Algo-
rithm π̄c follows the MDP policy maximizing its estimated expected return under current beliefs:6

π̄c(⟨st, ht⟩) ∈ argmaxπ Ebc(ht)[V
π(st)], (31)

where bc(·) denotes how π̄c interprets its experience, which could be anything from a distribution
over world models maintained by updating a prior, to a point estimate of Q∗ maintained by training a
randomly initialized neural net on batches sampled from ht (Mnih et al., 2015). For ease of notation
we use πt and at interchangeably, since πt is only used at step t to output at.

For example, policy gradient algorithms like Reinforce sample actions from an MDP policy πθ, i.e.,
π̄Reinforce(⟨st, ht⟩) = πθ(st), where πθ is learnt by gradient updates towards maximizing the ex-
pected returns R(τ) of the trajectories τ that it generates, i.e. J(θ) = Eτ∼πθ

[R(τ)]. The algorithm
estimates J(θ) from environment interactions so far, i.e. ht, so Ĵ(θ) = Ebc(ht)[Eτ∼πθ

[R(τ)]] where
bc(ht) is concentrated on a point estimate of J(θ). If, as a model, we assume that policy gradient
were to maximize J(θ) between each interaction, then we find that it matches the behavior of π̄c:

argmaxθ Ĵ(θ) = argmaxθ Ebc(ht)[Eτ∼πθ
[R(τ)]] = argmaxπ Ebc(ht)[V

π(s)]. (32)

The Certainty-Equivalent algorithm effectively estimates the Q value as:

ˆ̄Q(s̄t, a) = maxπ Ebc(ht)[R(st, a) + γV π(st+1)]. (33)

Comparing this to the optimal value Q̄∗(s̄t, a) = Ep(M |ht)[R(st, a) + γV̄ ∗(⟨st+1, ht+1⟩)], we see
that, even assuming accurate beliefs bc(ht) = p(M |ht), the Certainty-Equivalent algorithm still
misses value from the ability to learn from the information in h, because with V π(st+1) it assumes
it would still follow the same π from step t+1, when in reality it would have updated it with the latest
observation. E.g., if sb in Fig. 2 was observed to be empty, π̄c would update π to return to sw forever,
resulting in higher return than if it kept following the same π back to sb (see section J.2 for the
calculations). Thus, adding pseudo-rewards signalling VOI can compensate for this underestimation,
causing the algorithm to predict higher value for behavior leading to valuable information.

5The idea of certainty equivalent solutions goes back to Simon (1956) and was also described by Duff
(2002) as the best reactive policy with respect to π̄c’s beliefs

6Note that this is focused on exploitation- other than IM, ad-hoc methods such as epsilon-greedy or Boltz-
mann exploration may also be used to encourage exploration (Kaelbling et al., 1996).
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D CURIOSITY CASE STUDY

Curiosity (Pathak et al., 2017) rewards the error in predicting a feature encoding e(s) of the state:

rit = ||ê(st+1)− e(st+1)||22, (34)

where ê is predicted with dynamics model d, which is continually trained to minimize this same
error on the past experiences ht of the agent, i.e.:

ê(st+1;ht) = d(e(st), at;ht). (35)

The feature encoding e(st+1|ht) is also continually trained to minimize the error of a learnt inverse
dynamics model i that predicts the action from the encoded state transition:

ât = i(e(st), e(st+1);ht). (36)

The encoder, inverse dynamics model and predictor are all trained on the history, so this can also
be converted to a BAMPF by directly using the error as the potential function ϕ(ht) = ||ê(st+1) −
e(st+1)||22. However, this potential is not monotonic. For example in the Noisy TV problem, the
prediction error always increases when the agent watches TV and decreases when it looks away,
because the prediction error of the next image on the TV screen is higher than the prediction error
for the next part of the maze.

Burda et al. (2018) mitigate this issue with Random Network Distillation (RND) by predicting fea-
tures of the current state rather than the next state. This would not get distracted by noisy transitions
such as the TV flipping randomly between a few images, but it would get trapped forever in front of
a TV that incremented through an infinite set of novel images. It would also under-explore parts of
the environment with novel dynamics, if the states themselves did not look very novel.

We could try to capture the same type of dynamics prediction-based IM of Curiosity by noting that
it is designed to get the agent to simultaneously improve its dynamics model and reach novel parts
of the environment. Specifically, it assumes that high prediction-error observations will improve the
dynamics model, decreasing the error and thus the reward, so that the agent moves on to new parts
of the environment. With the Noisy TV, the dynamics model can’t learn anything from the TV and
the error never decreases. We can split the novelty-seeking and dynamics model improvement into
two components:

Novelty Seeking: A PBSF with ϕ(s) equal to the error of a fixed model f̂ ’s prediction of fixed
features f of s (similar to RND):

ϕ1(st) = ||f̂(st)− f(st)||22 (37)

Model improvement: a bounded monotone BAMPF with ϕ(h) equal to the maximum accuracy of
the learnt dynamics model on a fixed set of transitions (s, a, s′) ∈ T :

ϕ2(ht+1) = max

(
ϕ(ht), −

∑
(s,a,s′)∈T

||ê(s′;ht+1)− e(s′;ht+1)||22
)

(38)

The total intrinsic reward would be:

γ(ϕ1(st+1) + ϕ2(ht+1))− ϕ1(st)− ϕ2(ht). (39)

The PBSF encourages going to parts of the environment with novel states, while the BAMPF en-
courages going to areas with unfamiliar dynamics that will improve its world model.

This form of Curiosity would no longer be susceptible to the Noisy TV problem, since even if
TV-watching transitions were in set T , the dynamics model’s accuracy over T would not increase
indefinitely while watching it. And even if the fixed model’s prediction error ϕ1(s) were higher at
the TV, Ng et al. (1999)’s result guarantees that a policy can’t maximize its total shaped return by
staying there because ϕ1 is a function of only the current MDP state.

To prevent stagnation, every few batches we could update f̂ (e.g., by training it to minimize pre-
diction error over the last batches of visited states), and we could refresh the set of transitions in
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T (e.g., with more recently observed transitions, or transitions that f̂ predicted the most poorly).
What matters for avoiding reward hacking is that the RL algorithm’s choice of policy π for the next
episode can’t affect f̂ within the episode (so ϕ1 remains a function of only the current MDP state),
and we give the algorithm enough episodes with a fixed T for ϕ2 to converge.

E MORE RELATED WORK

Henaff et al. (2023) study exploration bonuses in contextual MDPs, where the dynamics are sampled
from a distribution at the start of every episode, and the goal is to learn one policy that performs well
across all contexts. We instead study the setting where the RL algorithm learns a different policy
for each MDP, and the goal is to design an algorithm that can learn effectively across a distribution
of MDPs. Our goal is to be good at learning in general, their goal is to learn one policy well. They
find that global novelty bonuses work when the contexts are more similar, and episodic novelty
bonuses work when the contexts are more different. We can explain this in the BAMDP framework
by thinking of a CMDP as a lifelong infinite-sized MDP where the end of an episode corresponds
to transitioning to a new part of the state space and resetting the episodic novelty counter. The more
similar the contexts, the lower the V̄I of an experience that already happened in a previous context,
and thus the better signal a global novelty bonus will provide over episodic.

Value of Information The classical notion of the value of information originates in decision theory
(Howard, 1966). Early work in metareasoning for tree search considers the utility of the information
resulting from a computation (Russell & Wefald, 1989; 1991). Dearden et al. (1998) first applied
the concept to RL, computing an approximation to the value of information to help select the Bayes-
optimal action. They upper bound the “myopic value of information” for exploring action a by the
expected Value of Perfect Information, i.e. the expected gain in return due to learning the true value
of the underlying MDP’s Q∗(s, a) given prior beliefs. Chalkiadakis & Boutilier (2003) described
BAMDP Q values as including the value of information—defined as the value of the change in
beliefs quantified by its impact on future decisions—but they do not derive an expression for it.
Ryzhov & Powell (2011) define value of information of pulling a bandit arm as the expected resulting
increase in the believed mean reward of the best arm, and derive an exact expression for bandits
with exponentially distributed rewards. This value, which they also call the Knowledge Gradient, is
related but clearly not equal to the expected return due to the knowledge.

Reward Shaping and Meta-RL Meta-Learning has been used to learn intrinsic motivation and
reward shaping functions for RL (Zou et al., 2019; Alet et al., 2020; Li et al., 2021; Zou et al.,
2021), but few existing works use reward shaping or intrinsic motivation to guide the meta-learner
itself (Zhang et al., 2021).

Learning Awareness The idea of planning through learning has appeared across RL such as in
Bayesian RL and meta-RL (Thrun & Pratt, 1998; Duan et al., 2016; Finn et al., 2017; Mikulik et al.,
2020; Jackson et al., 2024) and multi-agent RL (Foerster et al., 2017; Cooijmans et al., 2023).

F SETTLING BAMPFS

We refer to a BAMPF where the potential eventually stops changing over time as a settling BAMPF.
First we formally define settling for BAMPFs.
Definition F.1 (Settling). For a given BAMPF and RL algorithm π̄, we say that the BAMPF set-
tles on the algorithm’s trajectory if the potential function ϕ eventually stops changing over time,
becoming a function of only the current MDP state for the rest of time, i.e.,

SETTLES(ϕ, π̄) := ∃H,ϕ′ : ∀t > H : ϕ(ht) = ϕ′(st). (40)

It is simple to verify if a BAMPF has settled while training an RL algorithm, by inspecting its values
over time.
Corollary F.1. If a BAMPF settles for an RL algorithm π̄, it will eventually preserve the ordering of
policies πt tried by that algorithm, i.e., for any policies πt, π

′
t tried at time t, t′ > H after settling,

SETTLES(ϕ, π̄) ⇒ Eπt
[G′] > Eπ′

t′
[G′] ⇐⇒ Eπt

[G] > Eπ′
t′
[G] (41)

Proof. Once a BAMPF settles, it can be expressed as a PBSF based on potential ϕ′ on the subset of
all MDP states visited from t′ onwards. We can construct an MDP from that subset where actions
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from the original MDP that aren’t taken have no effect, in which we can apply Ng et al. (1999) to
prove that the ordering of policies is preserved.

G LEVER BAMPF DETAILS

We used the DQN implementation from Allen et al. (2021), with the default hyperparameters except
for n_steps_init=20 and decay_period=100 due to the shorter time horizon used. This
agent uses epsilon-greedy exploration, with ϵ = 1 for the first 20 steps, decaying linearly to 0.05
over the next 100 steps (according to the schedule 1 − 0.95 ∗ min(0.01(t − 20), 1.0)). The None
condition with no pseudo-rewards relied purely on this epsilon-greedy behavior for exploration. In
this lifelong setting, the network is updated at every step with a batch of transitions from the full
trajectory so far. The value of γ used by both DQN and to define the BAMPF was 0.9. The Entropy
Bonus intrinsic reward was calculated as −10H(A) where H(A) is the entropy of the categorical
distribution of the last 10 lever pulls.

H BERNOULLI BANDITS META-RL DETAILS

We run the Bernoulli Bandits environment and A2C implementation in Gymnax (Lange, 2022a),
keeping all the default hyperparameter values except for changing the number of pulls in an episode
to 10. The discount factor used for the BAMPF is 0.8, matching the discount factor used by A2C.

Following Wang et al. (2016), we define the regret of an RL algorithm as
∑T

t=1 µ
∗ − µat

=∑10
t=1 0.9−µat , where µ∗ is the expected reward of the optimal arm and µat is the expected reward

of the arm chosen at time t, so always pulling the optimal arm yields regret 0, and only pulling it
half of the time (performance at random chance) has regret 4.

No rescaling was performed on either the BAMPF or the non-BAMPF pseudo-reward functions,
since they were already of the same order of magnitude as the extrinsic rewards.

To handle the finite time horizon, we followed the approach of Grzes (2017) and set ϕ(h10) = 0
at the final (10th) step of each RL algorithm’s trajectory, which ensures that the ϕ still sum to a
constant over the trajectory to preserve optimality, and intuitively represents the fact that the final
BAMDP state has no value, since the agent cannot collect any more rewards from it.

I MOUNTAINCAR DETAILS

We run MountainCar implemented in Gymnax (Lange, 2022a) using the PPO implementation
from (Lange, 2022b), keeping all the default hyperparameter settings. The MountainCar environ-
ment itself has discount factor 1 so the reported return is simply the sum of the rewards in each
episode, but the PPO algorithm uses discount factor γ = 0.99 so this was the discount used for both
the potential-based shaping and the BAMPF. To handle the finite episode lengths, we again follow
the approach of Grzes (2017) for the potential-based shaping, setting ϕ(st) = 0 when st is the last
step in an episode, ensuring that it preserves optimality within each episode. For the BAMPF, at
the last step in each episode we multiply ϕ(ht) by γ200−te (where te is the within-episode time-step
and the maximum episode length is 200). This corresponds to adding up all the remaining BAMPF
rewards that would have been added between that time-step and the final step if the episode hadn’t
been truncated. This does not preserve optimality in general, but we prove with Theorem 4.3 that
if ϕ is bounded and monotonic then it will eventually preserve approximate optimality, which holds
for the maximum displacement ϕ that we used. Our formula for exponential smoothing (α = 0.5)
on the maximum displacement is:

Mt = 0.5max(Mt−1, |−0.5− sxt|) + 0.5Mt−1, (42)

where Mt denotes the exponentially smoothed maximum displacement at training step t, sxt is the
x position of the car at time t and −0.5 is the x position of the lowest point between the two hills.
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Figure 7: The (undiscounted) shaped episodic return for PPO trained with each type of pseudo-
reward (mean and standard error of 10 seeds).

This PPO implementation runs 16 copies of the environment in parallel; we maintain a separate Mt

for each copy (whenever an episode ends, Mt is carried over to the next episode in that environment
copy) and plotted the mean over the 16 values of Mt in Fig. 5c.

For each form of pseudo-reward, we scale it by a constant to be on the same order of magnitude as
the environment rewards. For the BAMPF and PBS, we scaled it by 10, and for Displacement (non-
PBS version) we scaled it by 4. Note that whether Displacement preserves optimality is sensitive to
this scaling factor, but the BAMPF version preserves optimality no matter the scale.

J CATERPILLAR PROBLEM ANALYSIS

J.1 BAYES-OPTIMAL POLICY VALUES

In section 2.3 we describe the behavior for the Bayes-optimal algorithm: for large enough γ, π̄∗

should check sb first, then stay there forever if it’s alive, otherwise return to sw forever. Let’s look
at the Q̄∗ values in this case, with γ = 0.95. First, the value of going to sb:

Q̄∗(s̄0, go) = −5 + γE[V̄ ∗(⟨sb, hb
1⟩)], (43)

where the first term is the energy cost of travelling. Now the value from hb
1 is the weighted sum of

the values in the presence and absence of food at sb:

E[V̄ ∗(⟨sb, hb
1⟩)] = 0.1

150

1− γ
+ 0.9(−5γ +

21γ2

1− γ
) = 637, (44)

where the first term is the return from eating at sb forever, and the second is from going back to eat
at sw forever. Plugging this in, we get Q̄∗(s̄0, go) = 600.

Now, the Q value for eating at sw:

Q̄∗(s̄0, eat) = 21 + γE[V̄ ∗(⟨sw, hw
1 ⟩)]. (45)

Since hw
1 contains no more information than h0, π̄∗(⟨sw, hw

1 ⟩) would make the same choice as
π̄∗(s̄0) i.e. to check sb, so Ep(M)[V

∗(⟨sw, hw
1 ⟩)] = Q̄∗(s̄0, go) = 600. This gives us:

Q̄∗(s̄0, eat) = 21 + 600γ = 591 < Q̄∗(s̄0, go), (46)

and thus π̄∗ would first go to sb.

J.2 CERTAINTY-EQUIVALENT ALGORITHM VALUE CALCULATIONS

In section C we describe how the Certainty-Equivalent RL algorithm would act in the caterpillar
MDP example. Here we go through the full calculations.

Algorithm π̄c, assuming it had the correct prior p(M), would estimate the values of following vari-
ous π as follows:
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• πb goes to the bush and stays there: Ep(M)[V
πb(sw)] = −5 + 0.1× 150 γ

1−γ = 280

• πalt alternates between the plants: Ep(M)[V
πalt(sw)] = −5 1

1−γ = −100

• πw eats at the weed forever: Ep(M)[V
πw(sw)] = 21 1

1−γ = 420; and it would go from sb
so Ep(M)[V

πw(sb)] = −5 + γ420 = 394

• πeat always eats wherever it is, so Ep(M)[V
πeat(sw)] = 21 1

1−γ = 420 and
Ep(M)[V

πeat(sb)] = 0.1× 150 1
1−γ = 300

Because πw gets the highest estimated value, π̄c would choose to follow it, thus never learning about
the bush and staying at the weed forever.

As an example of π̄c underestimating its own value, take its estimate of its value of eating from
⟨sb, h0⟩, i.e. if s0 was actually at the bush. It assumes it would follow the best MDP policy under
current information at the next step no matter what it found at sb, which is still πw, giving estimate:

ˆ̄Qc(⟨sb, h0⟩, eat) = Ep(M)[R(sw, eat) + γV πw(sb)] = 0.1× 150 + 394γ = 369 (47)

However, this is very wrong. If π̄c ate at sb and found no food, it would update to πw to go and
eat at sw, and if it did find food it would update to a π that continues eating at sb. This behavior
corresponds to this much higher true value:

Q̄c(⟨sb, h0⟩, eat) = 0.1
150

1− γ
+ 0.9(−5γ +

21γ2

1− γ
)) = 637 (48)
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