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Abstract
The ability of Graph Neural Networks (GNNs) to capture long-range and global
topology information is limited by the scope of conventional graph Laplacian,
leading to unsatisfactory performance on some datasets, particularly on het-
erophilic graphs. To address this limitation, we propose a new class of parame-
terized Laplacian matrices, which provably offers more flexibility in controlling
the diffusion distance between nodes than the conventional graph Laplacian,
allowing long-range information to be adaptively captured through diffusion
on graph. Specifically, we first prove that the diffusion distance and spectral
distance on graph have an order-preserving relationship. With this result, we
demonstrate that the parameterized Laplacian can accelerate the diffusion of long-
range information, and the parameters in the Laplacian enable flexibility of the
diffusion scopes. Based on the theoretical results, we propose topology-guided
rewiring mechanism to capture helpful long-range neighborhood information for
heterophilic graphs. With this mechanism and the new Laplacian, we propose
two GNNs with flexible diffusion scopes: namely the Parameterized Diffusion
based Graph Convolutional Networks (PD-GCN) and Graph Attention Networks
(PD-GAT). Synthetic experiments reveal the high correlations between the param-
eters of the new Laplacian and the performance of parameterized GNNs under
various graph homophily levels, which verifies that our new proposed GNNs
indeed have the ability to adjust the parameters to adaptively capture the global
information for different levels of heterophilic graphs. They also outperform
the state-of-the-art (SOTA) models on 6 out of 7 real-world benchmark datasets,
which further confirms their superiority.

1 Introduction

Combining graph signal processing and Convolutional Neural Networks (CNNs) [1], Graph Neural
Networks (GNNs) has achieved remarkable success on machine learning tasks with non-Euclidean
data [2–11]. In GNNs, high-order neighbors are recursively incorporated through diffusion across
multiple stacked layers. In each layer, unlike CNNs where neighbors are weighted differently, the
convolutional kernel in the vanilla GNNs [3] and many other popular variants [4, 6] assign the same
weight in a neighbourhood, or use weights determined by commonly used normalization of adjacency
or Laplacian matrices.

Recent studies show that the optimal choice of a normalized Laplacian is data-dependent [12, 13].
Aggregation with learnable weights has been proposed to enrich GNNs expressiveness [14]. However,
limited knowledge about long-range neighbors and the global graph structure prevents conventional
local aggregation from achieving optimal performance [15]. For example, while GAT [5] allows for
learnable weights, it generates node representations solely based on the representations of its direct
neighbours. This works well on the homophilic graphs [16, 17], where a node and its neighbours are
likely to have the same label. However, as the limited and fixed diffusion scope, GAT suffers from
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significant performance loss in node classification tasks involving heterophilic graphs [18, 19], where
nodes from different classes tend to be connected.

Non-local neighborhood information is found to be helpful to deal with heterophily problem for
GNNs [18, 20–25], but it has not been fully explored considering the design of graph Laplacian and
its diffusion scope. We will address this issue in this paper. The main contributions of our work are
as follows: (1) We propose a new class of parameterized normalized graph Laplacian matrices, which
offer better control over the diffusion process, and include several widely used normalized Laplacians
as special cases. Through the parameters in new Laplacian, we can adjust the diffusion and spectral
distances between nodes by altering spectral properties of the graph, and thus enable flexible message
passing to capture local and global information adaptively. (2) We establish a theorem to prove
that spectral distance can be used as a surrogate function of diffusion distance, which significantly
reduces the computational cost for comparing relative distance between nodes. The theoretical results
substantially extends the scope of [8] and overcomes some of its shortcomings. (3) Based on the
new graph Laplacian and the theorem, we propose two architectures, the Parameterized Diffusion
based Graph Convolutional Networks (PD-GCN) and Graph Attention Networks (PD-GAT), which
enable flexible diffusion 1. The empirical results demonstrate the effectiveness and superiority of the
proposed models compared with SOTA GNNs for node classification tasks on graph across various
homophily levels, especially on heterophilic graphs. The proposed strategy is characterized by its
flexibility and seamless integration with other types of graph aggregation.

This paper is organized as follows: notation and background knowledge are introduced in Section 2;
in Section 3, we propose the new class of Laplacian, show its properties, prove the theoretical results
on spectral and diffusion distances and present the proposed architectures; in Section 4, we show the
experimental results and comparisons on synthetic and real-world graphs, and conduct ablation study.

2 Preliminaries
In this section, we introduce notation and background knowledge. We use bold font for vectors and
matrices. For a matrix B = (bij), |B| = (|bij |) and its ith row is denoted as Bi,: or bT

i . We use
B||C and [B,C] to denote column and row concatenation of matrices B and C, respectively. We
use G = (V, E) to denote an undirected connected graph with the vertex set V (with |V| = N ) and
the edge set E . We have a node feature matrix X ∈ RN×d0 whose ith row is the transpose of the
feature vector xi ∈ Rd0 of node vi. The learned node representation matrix at the lth layer of GNNs
is denoted by H(l) ∈ RN×dl . For a node vi ∈ V , N (vi) ⊆ V denotes the set of neighbouring nodes
of vi. The adjacency matrix of G is denoted by A = (aij) ∈ RN×N with aij = 1 if eij ∈ E and
aij = 0 otherwise. The degree matrix of G is D = diag(dii) ∈ RN×N with dii =

∑
j aij . Three

Laplacian matrices, namely the combinatorial Laplacian, random-walk normalized Laplacian and
symmetric normalized Laplacian are respectively defined as:

L = D−A, Lrw = D−1L, Lsym = D− 1
2LD− 1

2 . (1)
We use ϕ(k) to denote the kth eigenvector of a Laplacian corresponding to the kth smallest positive
eigenvalue λ(k).

2.1 Local Graph Aggregation

Most modern GNNs adopt the message-passing framework [26], in which the representation hu of
node u is generated by iterative local aggregation of its neighbors and its own representation from the
previous layer [26]. The local graph aggregation at the lth layer is expressed as:

H(l) = σ(SH(l−1)W(l)), (2)
where W(l) ∈ Rdl×dl−1 is a learnable parameter and σ(·) is a non-linear activation function. Here S
is the aggregation operator that provides weights for neighboring messages. Common choices for
a fixed S include adjacency matrices corresponding to L, Lrw, and Lsym. Alternatively, learnable
weights can be assigned. One approach to assigning learnable weights is graph attention [27], where,
r
(l)
ij , the unnormalized attention score that node vi gives to node vj at the l-th layer is defined as

r
(l)
ij = LeakyReLU

(
(a(l))T[W(l)h

(l−1)
i ||W(l)h

(l−1)
j ]

)
, (3)

where a(l) ∈ R2dl is trainable. The aggregation at the l-th layer is weighted by S
(l)
ij = softmaxj(r

(l)
ij ).

1Code available at https://github.com/wzzlcss/Flexible_Diffusion_for_Graph
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2.2 Spectral-based Nodes Relative Distances

The relative position of nodes on the graph could be told by eigenvectors of Laplacian matrices [28].
As the graph data is non-Euclidean, various measurements are proposed to describe the distance
between nodes [29–31]. Among them, the diffusion distance is often used to model how node vi
influence node vj by considering random walks along edges [8]. At the initial step, the random walk
starts at a node, and moves to one of its neighbours at the next step. The diffusion distance between
vi and vj is proportional to the probability that the random walk starting at node vi meets the random
walk starting at node vj at step t. Based on Lrw, the diffusion distance is calculated as (see [32]):

dt(vi, vj ;Lrw) =
(N−1∑

k=1

e−2tλ(k)

(ϕ
(k)
i − ϕ

(k)
j )2

) 1
2

. (4)

Another measure of the distance between vi and vj is the spectral distance defined as (see [31]):

ds(vi, vj ;Lrw) = |ϕ(1)
i − ϕ

(1)
j |. (5)

Note that ϕ(1) gives positional information of nodes [28, 33, 34]. A more general definition of ds
involves the k eigenvectors corresponding to the k smallest eigenvalues, but here we take k = 1 for
simplicity and informativeness.

2.3 Related Works

Design of Graph Laplacian and Adjacency Matrices. Efforts have been made to overcome
the drawbacks of message passing with the conventional graph Laplacian or adjacency matrices.
This includes works that incorporate novel attention mechanisms into GNNs [35–39], as well as
transformer-based GNNs that consider fully connected graphs [28, 34]. The parameterized graph
shift operator (PGSO) [12] generalizes conventional adjacency matrices, while ωGNN [14] offers
trainable weighting factors for aggregation. The Directional Graph Network (DGN) [8] proposes
aggregation matrices, namely the directional average matrix Bav and the directional derivative matrix
Bdx, which contain weights that represent the topological importance based on eigenvectors of the
conventional Laplacian. Based on a given eigenvector ϕ, they are defined as:

Bav(ϕ)= |∇ϕ|, Bdx(ϕ)=∇ϕ− diag(∇ϕ1), ∇ϕij = ϕj − ϕi if eij ∈ E else 0. (6)

The proposed flexible diffusion with the new class of parameterized Laplacian matrices in our work
differs from these works as it offers a theoretical way to control the spectral properties of graphs and
allows adaptation to different homophily levels. Our proposed method enhances conventional message
passing, and is independent of the specific local aggregation framework or attention mechanism it is
combined with, offering the potential to improve various GNNs, including graph transformers.

Heterophily and Long-range Topology Information. On heterophily graphs, nodes tend to
connect others that have different labels. Regarding to heterophilic graph learning, recent studies have
found that the global receptive field is more desired and necessary than local information [23, 40–
42], as the information from the same class are more likely to come from distant nodes. However,
GNNs will suffer from information loss with an increased number of diffusion steps, a phenomenon
known as over-squashing [43]. Thus, the difficulty in obtaining long-range neighborhood information
without compromising its quality explains the unsatisfactory performance of GNNs on heterophilic
graphs. Meanwhile, transformer-based GNNs still fall short on existing heterophilic benchmarks [34],
suggesting that naively creating edges between distant nodes cannot handle this issue. Various
rewiring methods also have been proposed [20, 43–46]. Our work addresses the learning challenge
on heterophilic graphs by accelerating diffusion from long-range neighbors, and is characterized by
both the flexibility of the parameterized diffusion and the topology-guided rewiring strategy.

3 Parameterized Normalized Laplacian and Flexible Diffusion
We first propose a new parameterized normalized Laplacian matrix, which defines a new class of
graph Laplacians with its directional information that adapts to the graph’s homophily levels, as
described in Section 3.1. Then we discuss how this new Laplacian enables local aggregation to
become aware of the global graph structure. Specifically, we propose two variants that incorporate
the new parameterized normalized Laplacian into GNNs in Section 3.2: the Parameterized Diffusion
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based Graph Convolutional Networks (PD-GCN) and Graph Attention Networks (PD-GAT). Based on
the new Laplacian, we propose the topology-guided graph rewiring strategy, and its ability to capture
long-range neighborhood information in heterophily graphs is theoretically justified in Section 3.3.

3.1 Parameterized Normalized Laplacian

In order to gain a more refined control over the diffusion on a graph, we define a new class of
Laplacian matrices, denoted by L(α,γ), where the two parameters γ and α determine its spectral
properties. Then, we propose an efficient method to compare the relative diffusion distances.
Definition 3.1. A parameterized normalized Laplacian matrix is defined as

L(α,γ) = γ[γD+ (1− γ)I]−αL[γD+ (1− γ)I]α−1 (7)

and the corresponding parameterized normalized adjacent matrix is defined as

P(α,γ) = I− L(α,γ), (8)

where the parameters γ ∈ (0, 1] and α ∈ [0, 1].

The normalized Laplacian matrices defined in Eq. (1) are special cases of this new class of Laplacian
matrices: when α = 1 and γ = 1, L(α,γ) = Lrw; when α = 1

2 and γ = 1, L(α,γ) = Lsym. Although
we cannot choose α and γ such that L(α,γ) becomes L, we have the following result:

lim
γ→0

1

γ
L(α,γ) = lim

γ→0
(γD+ (1− γ)I)−αL× lim

γ→0
(γD+ (1− γ)I)α−1 = L, (9)

which implies that when γ is small enough, an eigenvector of L(α,γ) is a good approximation to an
eigenvector of L. The following theorem justifies the definition of P(1,γ) as a random walk matrix,
which generalizes the classic random walk matrix D−1A.
Theorem 3.1. The P(α,γ) defined in (8) is non-negative (i.e., all of its elements are non-negative),
and when α = 1, P(α,γ)1 = 1. See the proof in Appendix B.1.

The properties of eigenvalues of L(α,γ) are given in the following Theorem.
Theorem 3.2. Suppose the graph G is connected. Then the symmetric L(1/2,γ) ∈ Rn×n has the
eigendecomposition:

L(1/2,γ) = UΛ(γ)UT, (10)
where U ∈ RN×N is orthogonal and Λ(γ) = diag(λ(i)(γ)),

0 = λ(0)(γ) < λ(1)(γ) ≤ · · · ≤ λ(N−1)(γ) ≤ 2. (11)

Each λ(i)(γ) is strictly increasing with respect to γ for i = 1 : N − 1. Furthermore, L(α,γ) has the
eigendecomposition

L(α,γ) =
(
[γD+ (1− γ)I]

1
2−αU

)
Λ(γ)

(
[γD+ (1− γ)I]

1
2−αU

)−1

, (12)

i.e., L(α,γ) share the same eigenvalues as L(1/2,γ) and the columns of [γD+ (1− γ)I]
1
2−αU are

the corresponding eigenvectors. See proof in Appendix B.2.

The following theorem shows the monotonicity of the diffusion distance with respect to the spectral
distance under certain conditions. Here both distances are defined in terms of eigenvectors of L(1,γ),
cf. (4) and (5), which involve the eigenvectors of Lrw.
Theorem 3.3. Let vi, vj and vm be nodes of the graph G such that ds(vm, vj ;L

(1,γ)) <

ds(vi, vj ;L
(1,γ)). Then there is a constant C such that for t ≥ C,

dt(vm, vj ;L
(1,γ)) < dt(vi, vj ;L

(1,γ)), (13)

with the reduction in distance being proportional to to e−λ(1)(γ).

Generally, for the diffusion distance and spectral distance defined by L(α,γ) [28, 47], the monotonicity
demonstrated in Theorem 3.32 also holds. Therefore, the spectral distance can be used as a good

2Theorem 3.3 substantially extends the scope of [8], which deals with the diffusion distance defined by Lrw.
Furthermore, Theorem 3.3 overcomes some shortcomings of [8], see details in Appendix B.3.
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indicator of the diffusion distance, i.e., if node i has a larger spectral distance to node j than node m,
then node i would also have a larger diffusion distance to node j after enough time steps. According
to (4), we needs to find all eigenvalues and eigenvectors of the Laplacian to calculate the diffusion
distance, which is computationally expensive. But as Theorem 3.3 shows, we can easily compute
the spectral distance and use it as a surrogate function of diffusion distance, which is much more
efficient. Since a smaller diffusion distance implies greater influence between two nodes in GNNs,
DGN [8] defines the directional aggregation operator that embeds the diffusion distance. However,
DGN [8] requires k eigenvectors of Lrw, where a larger k is preferred for better capturing of the
actual diffusion process. We can encode such global structural information directly into the local
aggregation by utilizing the spectral distance, which only involves the first non-trivial eigenvectors.

Furthermore, L(α,γ) allows for nuanced control over message passing. For graphs with different
homophily levels, the node would prefer neighborhood information from different diffusion distances.
Specifically, nodes with small diffusion distance would be favored on homophilic graphs and nodes
with large diffusion distance would be helpful on heterophilic graphs to reduce the effect of noises [48].
Adjusting α and γ can change the eigenvalues and eigenvectors of L(α,γ), thereby altering diffusion
distance. For instance, we can employ a smaller γ on heterophilic graphs to help the propagation of
long-range neighborhood information and employ a larger γ on homophilic graphs to let GNNs focus
on useful local information. Therefore, α and γ can be tuned as hyperparameters to enhance GNNs
expressiveness according to the homophily levels.

3.2 Parameterized Diffusion Augmented GNNs

We present the proposed methods, which aim to adapt the diffusion process to the graph homophily
levels. Two GNNs, the Parameterized Diffusion based GCN (PD-GCN) and GAT (PD-GAT), achieve
such flexible diffusion through the new parameterized normalized Laplacian L(α,γ). These paradigms
overcome the limitations of message passing on the graph structures encoded by the conventional
Laplacian, and can accelerate the diffusion of long-range information in heterophilic graphs.

PD-GCN: The one-hop neighborhood aggregation in GCN [3] is a first-order approximation of the
graph convolution using a polynomial filter on the graph Laplacian [49]. Accordingly, we propose
Parameterized Diffusion based Graph Convolutional Networks (PD-GCN), where the aggregation
utilizes the parameterized normalized adjacent matrix P(α,γ) = I− L(α,γ) instead. In PD-GCN, the
lth layer computes the updated representation as:

H(l) = σ(P(α,γ)H(l−1)W(l)), (14)

here P(α,γ) serves as weights for aggregating neighboring nodes. While the vanilla GCN sets the
weights solely based on paired nodes degrees, PD-GCN is able to encode global information into the
local aggregation with its flexible diffusion scopes, surpassing the expressiveness of GCN for the
following reasons: The first non-trivial eigenvector of the graph Laplacian tells the diffusion distance
between nodes, as shown in Theorem 3.3, and thus indicates the dominant direction of diffusion.
However, whether a graph is homophilic or heterophilic is independent of its spectral properties. As
a result, the diffusion governed by the conventional Laplacian may not be optimal. In L(α,γ), with
suitable values of α and γ that account for the graph’s homophily levels, PD-GCN can adjust its
diffusion scopes accordingly to perform more effective message propagation.

PD-GAT: The learnable aggregation weights in GAT are merely based on local node features,
and does not adapt to the specific characteristics of the global topology. PD-GAT addresses this
shortcoming by equipping the attention mechanism with parameterized edge features. Denote the
first non-trivial eigenvector of L(α,γ) as ϕ(1)(α, γ), the feature of eij ∈ E is defined as follows:

f (i,j)(α, γ) =
[
Bav(ϕ

(1)(α, γ))ij ,Bdx(ϕ
(1)(α, γ))ij

]T
, (15)

where Bav(ϕ
(1)(α, γ)) and Bdx(ϕ

(1)(α, γ)) are matrices corresponding to the aggregation and di-
versification operations utilizing the vector field ∇ϕ(1)(α, γ) (see (6)). Here B{av,dx}(ϕ

(1)(α, γ))ij
contains information of the diffusion distance between vi and vj , which describes the relative position
of vi and vj on the graph. Instead of regarding them as edge weights in DGN [8], we use this node
relative distance information to assist the learning of attention between nodes. We propose to define
the attention score at the lth layer between vi and vj before normalization as:

r
(l)
ij (α, γ) = LeakyReLU((a(l))T[W(l)

n h
(l−1)
i ||W(l)

n h
(l−1)
j ||W(l)

e f (i,j)(α, γ)]), (16)
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where W
(l)
n and W

(l)
e are learnable weights for node representation and edge features respectively.

We use α
(l)
ij (α, γ) to denote the attention score after softmax normalization. The PD-GAT with

multi-heads attention compute the new representation as:

h
(l)
i =

wwwwM

m=1

σ
( ∑
j∈{N (i),i}

α
(l,m)
ij (α, γ)W(l,m)h

(l−1)
j

)W(l) (17)

where M is the number of heads. Compared with GAT, the additional number of parameters in
PD-GAT introduced by (16) is negligible, since f (i,j)(α, γ) ∈ R2.

3.3 Topology-Guided Rewiring Mechanism for Long-range Diffusion

This subsection introduces a graph rewiring technique to further enhance the proposed parameterized
diffusion on heterophilic graphs. Since diffusion distance is a criterion for the efficiency of message
passing, we regard locally disconnected nodes with large diffusion distance as long-range neighbors.
According to Theorem 3.3, large spectral distances also identify long-range neighbors. Therefore, the
first non-trivial eigenvector ϕ(1)(α, γ) of L(α,γ) can be regarded as a one-dimensional embedding of
nodes, and we refer to it as the (parameterized) spectral embedding. We refer to the node v(α,γ) as
the gradient node, whose corresponding element in ϕ(1)(α, γ) is the maximum, i.e., v(α,γ) is located
at the rightmost position in the 1D spectral embedding. In heterophilic graphs, our proposed rewiring
strategy connects other nodes in the graph with the gradient node under a certain configuration of
L(α,γ). The reasons for its effectiveness on heterophilic graph learning are provided below.

On heterophilic graphs, our proposed rewiring strategy aims to accelerate the diffusion process
starting from a disconnected long-range neighbors vj to target node vi. To find a proper candidate
vj efficiently, we assume that: (1) vj is to the right of vi in the spectral embedding without loss of
generality; (2) vi and the gradient node v(α,γ), are locally disconnected in the original graph; (3)
ϕ

(1)
j (α, γ) − ϕ

(1)
i (α, γ) ≥ 1

2 (maxmϕ
(1)
m (α, γ) − minnϕ

(1)
n (α, γ)) to reduce the number of long-

range candidate neighbors of vi. Based on Theorem 3.3, we know that the newly created connection
by the rewiring strategy between vi and v(α,γ) reduces the number of diffusion steps required for a
message sent by vj to reach vi. In other words, the diffusion from vj to v(α,γ), and then from v(α,γ)
to vi, is faster than the diffusion from vj to vi when vi and v(α,γ) are disconnected. Therefore, the
proposed rewiring benefit the long-range diffusion thus enhance the learning on heterophilic graphs.

4 Experiments
In this section, we evaluate the effectiveness of our proposed models on synthetic and real-world
benchmark datasets. In Section 4.1, we conduct ablation study to validate the effectiveness of each
proposed component. In Section 4.2, we generate synthetic graphs to study how the performance
of the proposed parameterized diffusion varies with the graph homophily levels. In Section 4.3, we
compare the proposed architectures with baselines and SOTA models on 7 real-world datasets and the
results show that parameterized diffusion augmented GNNs outperform the SOTA models on 6 out of
7 node classification tasks. These results highlight the explainability of our parameterized diffusion
with L(α,γ), and verify that the proposed GNNs indeed can adaptively capture global information by
adjusting parameters in L(α,γ) for graphs with different levels of homophily.

4.1 Ablation Study

In this subsection, we conduct ablation study to investigate the effectiveness of (1) parameterized
normalized Laplacian L(α,γ) and its corresponding adjacency matrix P(α,γ), (2) the topology-guided
graph rewiring strategy and (3) the parameterized diffusion based GCN and GAT, referred to as
PD-GCN and PD-GAT. The ablation results on 7 heterophily datasets are summarized in Table 1.
Note that both the parameterized diffusion and the rewiring step are influenced by α and γ. The
optimal α and γ used in the ablation studies are provided in Appendix E. Appendix F provides a
comparison with message passing over graphs with virtual nodes [51].

From Table 1, we make the following observations: (1) The rewiring strategy improves both baseline
models and the proposed models; (2) Comparing PD-GAT and GAT, even without leveraging L(α,γ),
i.e., using only the default Lrw with α = 1, γ = 1, both the rewiring strategy and the parameterized
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Method L(α,γ) PD R(G) roman-empire amazon-ratings minesweeper tolokers questions squirrel filtered chameleon filtered

GAT 80.87 ± 0.30 49.09 ± 0.63 92.01 ± 0.68 83.70 ± 0.47 77.43 ± 1.20 35.62 ± 2.06 39.21 ± 3.08
✓ 81.21 ± 0.71 47.27 ± 0.52 92.86 ± 0.53 84.28 ± 0.68 78.79 ± 1.01 40.45 ± 1.36 43.51 ± 5.06

✓ ✓ 82.27 ± 0.60 47.69 ± 0.64 92.94 ± 0.55 84.59 ± 0.53 78.97 ± 1.04 41.49 ± 2.72 43.89 ± 4.67

✓ 82.50 ± 0.60 49.29 ± 0.57 92.07 ± 0.69 84.11 ± 0.41 77.82 ± 0.78 36.50 ± 1.37 41.84 ± 2.76
PD-GAT ✓ ✓ 86.82 ± 0.60 47.81 ± 0.54 93.15 ± 0.80 84.39 ± 0.49 79.40 ± 0.79 41.48 ± 2.34 43.09 ± 4.13

✓ ✓ 83.46 ± 0.39 49.69 ± 0.51 92.15 ± 0.71 84.11 ± 0.41 78.66 ± 0.97 37.83 ± 1.54 43.37 ± 3.01
✓ ✓ ✓ 87.27 ± 0.64 48.03 ± 0.58 93.27 ± 0.56 84.74 ± 0.59 79.55 ± 0.81 42.09 ± 2.65 44.16 ± 4.20

73.69 ± 0.74 48.70 ± 0.63 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27 39.47 ± 1.47 40.89 ± 4.12
GCN ✓ 74.50 ± 0.58 48.32 ± 0.54 89.93 ± 0.60 83.41 ± 0.93 77.24 ± 1.14 40.92 ± 1.49 43.60 ± 1.91

✓ ✓ 74.60 ± 0.65 48.45 ± 0.48 89.94 ± 0.61 83.46 ± 0.92 77.27 ± 1.14 41.12 ± 1.29 45.34 ± 4.53

✓ 73.97 ± 0.46 49.38 ± 0.80 91.60 ± 0.62 81.35 ± 0.66 74.80 ± 0.76 36.19 ± 2.45 41.65 ± 2.81
PD-GCN ✓ ✓ 78.05 ± 0.49 49.49 ± 0.67 91.60 ± 0.62 83.83 ± 0.86 78.04 ± 0.91 43.31 ± 1.92 46.67 ± 3.56

Table 1: Ablation study on real-world heterophily datasets proposed by [50]. Here, GCN and GAT
are baseline models. A checkmark on L(α,γ) indicates the use of the parameterized normalized
Laplacian (or the corresponding parameterized normalized adjacency P(α,γ)) with optimally tuned
α and γ, while an unchecked L(α,γ) denotes the use of the default L(1,1) = Lrw and P(1,1) = Prw.
The term PD stands for “parameterized diffusion", which refers to the weighted aggregation with
P(α,γ) for PD-GCN and the incorporation of edge features defined by L(α,γ) in the graph attention for
PD-GAT, whereas unchecking PD means that the vanilla GCN or GAT is used. Lastly, R(G) stands
for the graph rewiring strategy. Results for baselines with R(G) are obtained by applying baselines
to the rewired graph, while results for baselines with both L(α,γ) and R(G) are from applying the
rewiring technique with the optimally α and γ. Note that the rewiring technique is not applicable to
PD-GCN, as PD-GCN assigns parameterized edge weights based on the original graph structure. The
best results are highlighted in bold format respectively for GCN and GAT-based architectures.

diffusion can individually improve model performance; (3) PD-GCN is more sensitive to the choice
of Laplacian parameters. PD-GCN with the default parameters achieves performance gain over GCN,
except on the questions and squirrel-filtered. However, with optimal parameters, PD-GCN even
outperforms PD-GAT on these two datasets; (4) After incorporating L(α,γ), i.e., perform a grid-search
for the optimal α, γ for each graph to find the most suitable relative node positions, the effectiveness
of the parameterized diffusion and the rewiring strategy is further enhanced; (5) Each component is
indispensable for the success of PD-GCN and PD-GAT, except for the amazon-ratings dataset, where
the rewiring does not provide a benefit3.

4.2 Synthetic Experiments

In this subsection, we investigate the behavior of parameterized diffusion under different homophily
levels, focusing on its performance and the optimal choice of γ. We follows [20, 52] to generate
synthetic graphs characterized by a homophily coefficient µ ∈ {0.0, 0.1, . . . , 0.9}, representing the
chance that a node forms a connection to another node with the same label. We say the graph is more
heterophilic for a smaller µ. A detailed explanation about how the synthetic graph are generated is
given in Appendix D.2. We generate 5 synthetic graphs under each homophily coefficient µ. Node
features are sampled from overlapping multi-Gaussian distributions. And for each generated graph,
nodes are randomly partitioned into train/validation/test sets with a ratio of 60%/20%/20%. Each
model (MLP, GAT, GCN, PD-GCN, PD-GAT) is trained under the same hyperparameter setting with
the learning rate 0.01, weight decay 0.001 and dropout rate 0.1. The number of layers is set to be 2 for
each model. Each model use 64 hidden units and the attention-based model use 8 heads with 8 hidden
states per head. For simplicity in comparison, the rewiring strategy is not applied to the proposed
methods. For PD-GCN and PD-GAT, we fix α = 1.0 and only vary γ ∈ {0.0, 0.1, . . . , 0.9}.

As shown in Figure 1 (a), both PD-GCN and PD-GAT outperform MLP, GCN and GAT across
all homophily levels, particularly in heterophilic cases. PD-GCN with the optimal γ achieves the
best overall performance. However, the effectiveness of PD-GCN relies on a well-chosen γ, as its
performance drops considerably with the worst γ, becoming worse than the baseline GNNs on more
homophilic graphs. On the other hand, the performance of PD-GAT is more robust to γ. Even with
the worst γ, PD-GAT still performs better results than the baselines. This difference arises because
PD-GCN encodes the parameterized topology knowledge in the aggregation weights, whereas PD-

3It can be explained by the results in [50], which show that the GNNs yield negligible improvement over the
graph-free models on amazon-ratings.
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Figure 1: Experiments on synthetic graphs with varying levels of homophily. The y-axis represents
averaged test accuracy. (a) Comparison of PD-GCN and PD-GAT with baseline models. The x-axis
denotes the graph homophily level, where a larger value indicates a more homophilic graph. The
solid lines for the proposed models represent performance with the optimal γ, while the dashed lines
show performance with the worst γ. (b) Each line corresponds to synthetic graphs with a specific
homophily level, illustrating the relationship between the performance of a one-layered PD-GCN
and γ. The line color indicates the homophily coefficient, with blue representing low homophily and
yellow indicating high homophily. The dot markers denote the optimal γ for each homophily level.

GAT incorporates it into the edge features. As a result, the choice of parameter has a more direct
impact on the performance of PD-GCN than PD-GAT.

Figure 1 (b) shows the performance of a one-layered PD-GCN to demonstrate the strong correlation
between the parameter γ and the model performance across different graph homophily levels. We
find that: (1) As the graph becomes more heterophilic, the optimal γ (the dot marker on each
curve) for PD-GCN decreases, and vice versa. This suggests that the reduction of the diffusion
distance between distant nodes, according to Theorem 3.3, is favored on heterophilic graphs. This
also verifies that PD-GCN can indeed achieve flexible diffusion scopes by adjusting γ and γ is an
interpretable parameter. (2) The performance changes smoothly with the value of γ. The curves
corresponding to larger homophily levels are always higher than those with smaller homophily levels,
which implies that, given a fixed γ, PD-GCN consistently performs better on more homophilic graphs.
(3) Furthermore, the more heterophilic the graph is, the less satisfactory the performance with the
default γ = 1. This phenomenon highlights that the limitations of the conventional Laplacian are
significant in heterophilic cases, and the proposed new Laplacian effectively addresses this issue
through parameterized diffusion.

4.3 Experiments on Real-world Datasets

In this subsection, we compare PD-GCN and PD-GAT with 6 baseline models4: GAT [5], GAT-sep 5,
GCN [3], SAGE [4], Graph Transformer (GT) [53] and GT-sep, and 11 heterophily-specific SOTA
models: H2GCN [18], CPGNN [54], GPR-GNN [55], FSGNN [56], GloGNN [57], FAGCN [58],
GBK-GNN [59], JacobiCov [60], BernNet [22], LINKX [61] and APPNP [62]. The comparison
also contains GNNs with novel aggregation including DGN [8], ωGCN [14] and PGSO-GCN [12].
The experiments are conducted on 7 recently proposed heterophily benchmark datasets [50]: roman-
empire, amazon-ratings, minesweeper, tolokers, questions, Chameleon-filtered and Squirrel-filtered6.
Experimental Setups. For the 7 new heterophily datasets, we evaluate PD-GCN and PD-GAT and
their variants under the same experiment settings for baseline models with fixed splits used in [50],
with learning rate of 3 · 10−5, weight decay of 0, dropout rate of 0.2, hidden dimension of 512 and

4Baseline models adopt residual connections at each layer, following the implementation provided by [50].
5Here "sep" means to concatenate the ego feature of node and the aggregated neighborhood information,

which is the trick used in [50] and we follow this setting.
6The overall statistics of these real-word datasets are given in Appendix D.1. And additional results on

homophilic datasets are provided in Appendix G
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roman-empire amazon-ratings minesweeper tolokers questions squirrel-filtered chameleon-filtered Rank

GCN 73.69 ± 0.74 48.70 ± 0.63 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27 39.47 ± 1.47 40.89 ± 4.12 12.14
SAGE 85.74 ± 0.67 53.63 ± 0.39 93.51 ± 0.57 82.43 ± 0.44 76.44 ± 0.62 36.09 ± 1.99 37.77 ± 4.14 10.29
GAT 80.87 ± 0.30 49.09 ± 0.63 92.01 ± 0.68 83.70 ± 0.47 77.43 ± 1.20 35.62 ± 2.06 39.21 ± 3.08 11.57

GAT-sep 88.75 ± 0.41 52.70 ± 0.62 93.91 ± 0.35 83.78 ± 0.43 76.79 ± 0.71 35.46 ± 3.10 39.26 ± 2.50 8.71
GT 86.51 ± 0.73 51.17 ± 0.66 91.85 ± 0.76 83.23 ± 0.64 77.95 ± 0.68 36.30 ± 1.98 38.87 ± 3.66 10.43

GT-sep 87.32 ± 0.39 52.18 ± 0.80 92.29 ± 0.47 82.52 ± 0.92 78.05 ± 0.93 36.66 ± 1.63 40.31 ± 3.01 8.43

H2GCN 60.11 ± 0.52 36.47 ± 0.23 89.71 ± 0.31 73.35 ± 1.01 63.59 ± 1.46 35.10 ± 1.15 26.75 ± 3.64 22.14
CPGNN 63.96 ± 0.62 39.79 ± 0.77 52.03 ± 5.46 73.36 ± 1.01 65.96 ± 1.95 30.04 ± 2.03 33.00 ± 3.15 22.29

GPR-GNN 64.85 ± 0.27 44.88 ± 0.34 86.24 ± 0.61 72.94 ± 0.97 55.48 ± 0.91 38.95 ± 1.99 39.93 ± 3.30 18.57
FSGNN 79.92 ± 0.56 52.74 ± 0.83 90.08 ± 0.70 82.76 ± 0.61 78.86 ± 0.92 35.92 ± 1.32 40.61 ± 2.97 9.86
GloGNN 59.63 ± 0.69 36.89 ± 0.14 51.08 ± 1.23 73.39 ± 1.17 65.74 ± 1.19 35.11 ± 1.24 25.90 ± 3.58 22.86
FAGCN 65.22 ± 0.56 44.12 ± 0.30 88.17 ± 0.73 77.75 ± 1.05 77.24 ± 1.26 41.08 ± 2.27 41.90 ± 2.72 13.71

GBK-GNN 74.57 ± 0.47 45.98 ± 0.71 90.85 ± 0.58 81.01 ± 0.67 74.47 ± 0.86 35.51 ± 1.65 39.61 ± 2.60 15.29
JacobiCov 71.14 ± 0.42 43.55 ± 0.48 89.66 ± 0.40 68.66 ± 0.65 73.88 ± 1.16 29.71 ± 1.66 39.00 ± 4.20 19.86
BernNet 65.56 ± 1.34 44.64 ± 0.56 77.99 ± 0.95 77.00 ± 0.65 70.43 ± 1.38 41.18 ± 1.77 40.90 ± 4.06 15.71
LINKX 56.15 ± 0.93 52.66 ± 0.64 56.78 ± 2.47 81.15 ± 1.23 71.96 ± 2.07 40.10 ± 2.21 42.34 ± 4.13 13.14
APPNP 65.87 ± 0.53 46.02 ± 0.73 69.62 ± 2.11 76.98 ± 1.03 64.77 ± 1.32 35.12 ± 1.12 37.50 ± 3.69 20.00

DGN 83.12 ± 0.47 47.65 ± 0.71 90.64 ± 0.61 OOM OOM 38.56 ± 1.84 41.24 ± 3.62 11.20
ωGCN 74.79 ± 0.46 51.79 ± 0.74 90.71 ± 0.67 80.96 ± 1.04 71.10 ± 1.45 35.65 ± 2.06 40.93 ± 3.48 13.00

PGSO-GCN 74.72 ± 0.59 48.43 ± 0.41 87.84 ± 1.95 78.58 ± 1.73 OOM 41.06 ± 3.05 43.91 ± 3.04 11.83

PD-GCN 78.05 ± 0.49 49.49 ± 0.67 91.60 ± 0.62 83.83 ± 0.86 78.04 ± 0.91 43.31 ± 1.92 46.67 ± 3.56 6.57
PD-GAT 83.46 ± 0.39 49.69 ± 0.51 92.15 ± 0.71 84.11 ± 0.41 78.66 ± 0.97 37.83 ± 1.54 43.37 ± 3.01 6.71

PD-GAT (R(G)) 87.27 ± 0.64 48.03 ± 0.58 93.27 ± 0.56 84.74 ± 0.59 79.55 ± 0.81 42.09 ± 2.65 44.16 ± 4.20 4.57
PD-GAT-sep 88.46 ± 0.58 52.57 ± 0.95 93.81 ± 0.42 84.04 ± 0.51 77.29 ± 0.73 37.01 ± 2.97 41.40 ± 4.74 6.14

PD-GAT-sep (R(G)) 89.23 ± 0.56 50.96 ± 0.43 94.03 ± 0.45 84.83 ± 0.40 78.88 ± 0.94 39.69 ± 2.28 41.15 ± 4.66 4.29

Table 2: Experiment results on heterophily datasets proposed by [50]. Values stand for mean and
standard deviation of evaluation metrics on the test datasets. Here roman-empire, amazon-ratings,
squirrel-filtered and chameleon-filtered use accuracy for evaluation, while minsweeper, tolokers and
questions use ROC AUC. The "sep" refers to the trick proposed in [18] which concatenates node’s
and the mean of neighbours’ embedding in each aggregation step, instead of adding them together.
For fair comparison, we use the same experimental setup in [50] for proposed models. Results for
heterophily GNNs, except for BernNet, LINKX and APPNP, are reported by [50]. The top three
results are highlighted in red, blue, and violet, respectively.

attention head of 8, and number of layers from 1 to 5. Following [50], the proposed models are also
trained for 1000 steps with Adam optimizer and select the best step based on the performance on
the validation set. For other GNNs, we perform a grid search for the learning rate, weight decay and
dropout rate, and model-specific hyperparameters, with details provided in Appendix E.

The results are summarized in Table 2, where GNN baselines are organized in the top block,
heterophily-specific GNNs are placed in the second block, models with novel aggregation oper-
ators are in the third block, and our proposed methods are listed in the bottom block.

Results and Comparisons. (1) In most cases, the proposed parameterized diffusion augmented
GNNs obtain significant performance improvement against the baseline models, i.e., PD-GCN, PD-
GAT, PD-GAT-sep outperform GCN, GAT and GAT-sep, respectively. (2) The proposed models
consistently surpass SOTA GNNs specifically designed to address heterophily, as well as GNNs
utilizing various aggregation paradigms. The "sep" trick further enhances PD-GAT’s performance
on roman-empire, minesweeper and tolokers. The “sep" trick allows the aggregation step to assign
negative weights to the propagated message, enabling node-wise diversification, which has been
shown to be useful for heterophily data [19, 63]. (3) The superior performance of PD-GAT over GT-
based methods indicates that finding the useful graph for message propagation with sparse attention is
more effective than considering message passing between all pairs of nodes. (4) The topology-guided
rewiring mechanism is effective for GAT and GAT-sep on most real-world benchmark datasets.

5 Conclusion
In this paper, we address the limitations of GNNs in capturing long-range and global topology
information, particularly in heterophilic graphs, by proposing a novel class of parameterized normal-
ized Laplacian matrices. The new Laplacian provides greater flexibility in controlling the diffusion
distance between nodes, enabling adaptive diffusion scopes to accommodate varying levels of graph
homophily. Then, we prove that the order-preserving relationship between the diffusion distance
and spectral distance. With this result and the new Laplacian, we propose two models with flexible
diffusion scopes, PD-GCN and PD-GAT, along with a topology-guided rewiring strategy that further
enhances performance. The effectiveness of the proposed methods is justified both theoretically and
empirically.
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A Homophily Metrics

Here we review some commonly used metrics to measure homophily [23, 64]. We denote z ∈ RN as
labels of nodes, and Z ∈ RN×C as the one-hot encoding of labels, where C is the number of classes.
Edge homophily Hedge and node homophily Hnode are defined as follows:

Hedge =
{eij |eij ∈ E , zi = zj}

|E|
, Hnode =

1

|V|
∑
u∈V

|yu = yv : v ∈ N (v)|
|N (u)|

. (18)

Adjusted edge homophily H∗
edge considers classes imbalance and is defined as [50] :

H∗
edge =

Hedge −
∑

c p
2(c)

1−
∑

c p
2(c)

. (19)

Here p(c) =
∑

i:zi=c Dii/(2|E|), c = 1 : C, defines the degree-weighted distribution of class labels.
The class homophily is also proposed to take class imbalance into account [65]:

Hclass =
1

C − 1

∑
c

[
hc −

|{vi|zi = c}|
N

]
+

(20)

hc =

∑
vi:zi=c |{eij |eij ∈ E , zi = zj}|∑

vi:zi=c Dii
. (21)

Label informativeness, which indicates the amount of information a neighbor’s label provides about
node’s label, is defined as follows [50]:

LI = 2−
∑

c1,c2
p(c1, c2) log p(c1, c2)∑
c p(c) log p(c)

, (22)

where p(c1, c2) = |{eij |eij ∈ E , zi = c1, zj = c2}|/(2|E|). The aggregation homophily HM
agg(G)

measures the proportion of nodes that assign greater average weights to intra-class nodes than
inter-class nodes. It is defined as follows [39]:

HM
agg(G) =

1

|V|
∣∣{vi|Meanj({S(Â,Z)ij |zi = zj}) (23)

≥ Meanj({S(Â,Z)ij |zi ̸= zj})}
∣∣,

where S(Â,Z) = ÂZ(ÂZ)T defines the post-aggregation node similarity, with Â = A + I, and
Meanj({·}) takes the average over node vj of a given multiset of values. Under the homophily
metrics mentioned above, a smaller value indicates a higher degree of heterophily. While H∗

edge can
assume negative values, the other metrics fall within the range [0, 1].

B Proof of Theorem

B.1 Proof of theorem 3.1

Proof. By Definition 3.1, we have

P(α,γ) = I− L(α,γ) = I− γ[γD+ (1− γ)I]−αL[γD+ (1− γ)I]α−1

= [γD+ (1− γ)I]−α[γD+ (1− γ)I− γL][γD+ (1− γ)I]α−1

= [γD+ (1− γ)I]−α[γA+ (1− γ)I][γD+ (1− γ)I]α−1

It is easy to see that all elements in P(α,γ) are non-negative. Since A1 = D1, we have

P(1,γ)1 = (γD+ (1− γ)I)−1 (γA+ (1− γ)I)1 = 1,

completing the proof.
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B.2 Proof of theorem 3.2

Proof. For any nonzero x ∈ RN , write y := [γD+ (1− γ)I]−1/2x. Then we have

xTL(1/2,γ)x

xTx
=

xTγ[γD+ (1− γ)I]−1/2L[γD+ (1− γ)I]−1/2x

xTx

=
γyTLy

yT[γD+ (1− γ)I]y
=

γ
2

∑
ij aij(yi − yj)

2

γ
∑

ij aijy
2
i + (1− γ)

∑
i y

2
i

By the Rayleigh quotient theorem,

λ(0)(γ) = min
y ̸=0

γ
2

∑
ij aij(yi − yj)

2

γ
∑

ij aijy
2
i + (1− γ)

∑
i y

2
i

= 0, (24)

where the minimum is reached when y is a multiple of 1 and

λ(N−1)(γ) = max
y ̸=0

γ
2

∑
ij aij(yi − yj)

2

γ
∑

ij aijy
2
i + (1− γ)

∑
i y

2
i

≤ max
y ̸=0

∑
ij aij(y

2
i + y2j )∑

ij aijy
2
i

≤ 2,

leading to Eq. (11). The proof of showing λ(1)(γ) ̸= 0 if and only if G is connected is similar to [31],
thus we omit the details here.

By the Courant-Fischer min-max theorem, for γ ̸= 0,

λ(i)(γ) = min
{S:dim(S)=i+1}

max
{x:0̸=x∈S}

xTL(1/2,γ)x

xTx

= min
{S:dim(S)=i+1}

max
{y:0 ̸=y∈S}

yTLy

yT[D− I+ (1/γ)I]y
.

It is obvious that the Rayleigh quotient yTLy
yT[D−I+(1/γ)I]y

is strictly increasing with respect to γ ∈ (0, 1]

if Ly ̸= 0, i.e., y not a multiple of 1. Note that λ(0)(γ) = 0 and it is reached when Ly = 0, or
equivalently y is a multiple of 1. Thus, λ(i)(γ) is strictly increasing with respect to γ for i = 1 : N−1.

From the eigendecomposition of the symmetric L(1/2,γ) in (10), we can find the eigendecomposition
of L(α,γ) as follows:

L(α,γ) = [γD+ (1− γ)I]1/2−αL(1/2,γ)[γD+ (1− γ)I]α−1/2

= [γD+ (1− γ)I]1/2−α(UΛ(γ)UT)[γD+ (1− γ)I]α−1/2

=
(
[γD+ (1− γ)I]1/2−αU

)
Λ(γ)

(
[γD+ (1− γ)I]1/2−αU

)−1

Thus, λ(i)(γ) is also an eigenvalue of L(α,γ) for i = 0 : N − 1, and the i-th column of [γD+ (1−
γ)I]1/2−αU is a corresponding eigenvector.

B.3 Proof of Theorem 3.3

Proof. The proof is similar to the proof of [8]. By [32], the diffusion distance at time t between node
vi and vj can be expressed as:

dt(vi, vj) =

(
n−1∑
k=1

e−2tλ(k)(γ)(ϕ
(k)
i (γ)− ϕ

(k)
j (γ))2

) 1
2

, (25)

where λ(1)(γ) ≤ λ(2)(γ) ≤ · · · ≤ λ(n−1)(γ) are eigenvalues of L(1,γ), and
{ϕ(1)(γ),ϕ(2)(γ), . . . ,ϕ(n−1)(γ)} are the corresponding eigenvectors. We omit the zero λ(0)(γ).
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The inequality dt(vm, vj) < dt(vi, vj) is then equivalent as(
n−1∑
k=1

e−2tλ(k)(γ)(ϕ(k)
m (γ)− ϕ

(k)
j (γ))2

) 1
2

<

(
n−1∑
k=1

e−2tλ(k)(γ)(ϕ
(k)
i (γ)− ϕ

(k)
j (γ))2

) 1
2

.

(26)

We can take out λ(1)(γ) and ϕ(1)(γ) and rearrange the above inequality as:

n−1∑
k=2

e−2tλ(k)(γ)
(
(ϕ(k)

m (γ)− ϕ
(k)
j (γ))2 − (ϕ

(k)
i (γ)− ϕ

(k)
j (γ))2

)
< e−2tλ(1)(γ)

(
(ϕ

(1)
i (γ)− ϕ

(1)
j (γ))2 − (ϕ(1)

m (γ)− ϕ
(1)
j (γ))2

)
.

(27)

The left-hand side of Eq. (27) has an upper bound:
n−1∑
k=2

e−2tλ(k)(γ)
∣∣∣(ϕ(k)

m (γ)− ϕ
(k)
j (γ))2 − (ϕ

(k)
i (γ)− ϕ

(k)
j (γ))2

∣∣∣
≤ e−2tλ(2)(γ)

n−1∑
k=2

∣∣∣(ϕ(k)
m (γ)− ϕ

(k)
j (γ))2 − (ϕ

(k)
i (γ)− ϕ

(k)
j (γ))2

∣∣∣ . (28)

Then Eq. (27) holds if:

e−2tλ(2)(γ)
n−1∑
k=2

∣∣∣(ϕ(k)
m (γ)− ϕ

(k)
j (γ))2 − (ϕ

(k)
i (γ)− ϕ

(k)
j (γ))2

∣∣∣
≤ e−2tλ(1)(γ)

(
(ϕ

(1)
i (γ)− ϕ

(1)
j (γ))2 − (ϕ(1)

m (γ)− ϕ
(1)
j (γ))2

)
,

(29)

which is equivalent to

log

 (ϕ
(1)
i (γ)− ϕ

(1)
j (γ))2 − (ϕ

(1)
m (γ)− ϕ

(1)
j (γ))2∑n−1

k=2

∣∣∣(ϕ(k)
m (γ)− ϕ

(k)
j (γ))2 − (ϕ

(k)
i (γ)− ϕ

(k)
j (γ))2

∣∣∣


× 1

2(λ(1)(γ)− λ(2)(γ))
< t.

(30)

Let the constant C be the left-hand side of Eq. (30), then if we take t ≥ ⌊C⌋ + 1, we have
dt(vm, vj) < dt(vi, vj). Note that C exits if

(ϕ
(1)
i (γ)− ϕ

(1)
j (γ))2 − (ϕ

(1)
m (γ)− ϕ

(1)
j (γ))2∑n−1

k=2

∣∣∣(ϕ(k)
m (γ)− ϕ

(k)
j (γ))2 − (ϕ

(k)
i (γ)− ϕ

(k)
j (γ))2

∣∣∣ > 0, (31)

which is satisfied since we assume |ϕ(1)
i (γ)−ϕ

(1)
j (γ)| > |ϕ(1)

m (γ)−ϕ
(1)
j (γ)|. The original theorem [8]

is only based on ϕ(1) and does not assume that vm must satisfy |ϕ(1)
i − ϕ

(1)
j | > |ϕ(1)

m − ϕ
(1)
j |, which

is necessary for the existence of C. In addition, the original theorem [8] assumes that vm is obtained
by taking a gradient step from vi, i.e., ϕm − ϕi = maxj:vj∈N (vi)(ϕj − ϕi), while this property is
not needed for the proof. Therefore, Theorem 3.3 both extends and overcomes the shortcomings
of [8].

C Computational Complexity Analysis
The complexity of obtaining the first non-trivial eigenvector of the Laplacian is O(|E|), aligning with
previous research [8, 28]. Here, we further explain the algorithm, where full eigendecomposition is
not required since we only need the first non-trivial eigenvector.
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Suppose the symmetrically normalized Laplacian Ls has eigen-pairs {(ui, λi)}i=1:N with 0 = λ1 <

λ2 ≤ · · · ≤ λN ≤ 2. The eigenvector corresponding to the smallest eigenvalue 0 is u1 = D
1
2 e,

where D is the degree matrix and e is a all-ones vector. To compute the first non-trivial eigenvector
u2 of Ls, we define L̄s = 2I− Ls and denote the eigenvalues of L̄s as λ̄i = 2− λi. We know that
L̄s and Ls shares eigenvectors, and λ̄1 > λ̄2 ≥ · · · ≥ λ̄N . Thus, we want to get the eigenvector
associated with λ̄2.

Next, we define the deflated matrix L̃s = L̄s − 2u1u
T
1/∥u1∥22. The largest eigenvalue of L̃s is λ̄2,

and the corresponding eigenvector is u2. This eigenvector can be obtained using power method on
L̃s. Note that during power iteration, we compute the multiplication of L̃s with a vector b, where
we do not need to form the L̃s explicitly and the complexity is O(|E|) with a reasonable precision
of stopping criterion: (1) L̄sb would take O(|E|), considering the sparsity of the graph; (2) The
multiplication of 2u1u

T
1/∥u1∥22 with b takes O(N) as we compute uT

1b first. Thus, the overall
complexity of computing u2 is in O(|E|) given that N < |E|.

D Datasets

D.1 Real-world Datasets

The overall statistics of the real-world datasets are presented in Table D.1 and Table D.1 provides
their heterophily levels calculated using various homophily metrics.

#Nodes #Edges #Features #Classes Metric

cora 2,708 5,278 1,433 7 ACC
citeseer 3,327 4,552 3,703 6 ACC
pubmed 19,717 44,324 500 3 ACC
roman-empire 22,662 32,927 300 18 ACC
amazon-ratings 24,492 93,050 300 5 ACC
minesweeper 10,000 39,402 7 2 ROC AUC
tolokers 11,758 519,000 10 2 ROC AUC
questions 48,921 153,540 301 2 ROC AUC
squirrel-filtered 2,223 46,998 2,089 5 ACC
chameleon-filtered 890 8,854 2,325 5 ACC

Table 3: Statistics of the benchmark dataset. Following pre-processing, the graph has been trans-
formed into an undirected and simple form, without self-loops or multiple edges.

Hnode Hedge Hclass HM
agg(G) H∗

edge LI

cora 0.83 0.81 0.77 0.99 0.77 0.59
citeseer 0.71 0.74 0.63 0.97 0.67 0.45
pubmed 0.79 0.80 0.66 0.94 0.69 0.41
roman-empire 0.05 0.05 0.02 1.00 -0.05 0.11
amazon-ratings 0.38 0.38 0.13 0.60 0.14 0.04
minesweeper 0.68 0.68 0.01 0.61 0.01 0.00
tolokers 0.63 0.59 0.18 0.00 0.09 0.01
questions 0.90 0.84 0.08 0.00 0.02 0.00
squirrel-filtered 0.19 0.21 0.04 0.00 0.01 0.00
chameleon-filtered 0.24 0.24 0.04 0.25 0.03 0.01

Table 4: Heterophily levels of benchmark datasets. The HM
agg(G) stands for the aggregation ho-

mophily, calculated using Â = A+ I. The H∗
edge stands for the adjusted edge homophily, and the LI

stands for the label informativeness. The definitions of these metrics can be found in Appendix A.
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D.2 Synthetic Datasets

In addition to the real-world datasets, we also tested parameterized diffusion on synthetic graphs
generated with different homophily levels ranging from 0 to 1 using the method proposed in [20].
Here we give a review of the generation process.

More specifically, when generating the output graph G with a desired total number of nodes N , a
total of C classes, and a homophily coefficient µ, the process begins by dividing the N nodes into C
equal-sized classes. Then the synthetic graph G (initially empty) is updated iteratively. At each step,
a new node vi is added, and its class zi is randomly assigned from the set {1, . . . , C}. Whenever a
new node vi is added to the graph, we establish a connection between it and an existing node vj in G
based on the probability pij determined by the following rules:

pij =

{
dj × µ, if zi = zj
dj × (1− µ)× wd(zi,zj), otherwise

. (32)

where zi and zj are class labels of node i and j respectively, and wd(zi,zj) denotes the “cost” of
connecting nodes from two distinct classes with a class distance of d(zi, zj). For a larger µ, the
chance of connecting with a node with the same label increases. The distance between two classes
simply implies the shortest distance between the two classes on a circle where classes are numbered
from 1 to C. For instance, if C = 6, zi = 1 and zj = 5, then the distance between zi and zj is 2. The
weight exponentially decreases as the distance increases and is normalized such that

∑
d wd = 1. In

addition, the probability pij defined in Eq. (32) is also normalized over the exiting nodes:

p̄ij =
pij∑

k:vk∈N (vi)
pik

Lastly, the features of each node in the output graph are sampled from overlapping 2D Gaussian
distributions. Each class has its own distribution defined separately.

E Hyperparameters
The following table lists the optimal γ and α used in models with the proposed methods.

roman-empire amazon-ratings minesweeper tolokers questions squirrel-filtered chameleon-iltered
GCN (R(G)) γ 0.1 0.3 0.1 0.9 0.1 0.1 0.1

α 0.6 0.3 0.3 0.9 0.2 0 0
GAT (R(G)) γ 0.8 0.2 0.2 0.5 0.5 0.2 0.1

α 0.7 0 0.3 0.9 1 0.9 1
PD-GCN γ 1 0.9 1 0.6 0.7 1 0.9

α 0 0.9 1 0.4 0.8 0.1 0
PD-GAT γ 0 0.9 0.4 1 0.1 0.4 0.6

α 0 0.9 0.2 1 0.4 0.3 0.2
PD-GAT (R(G)) γ 0.5 0.4 0.3 1 0.5 0.7 0.8

α 0.9 1 0 0.7 1 0.4 0.5
PD-GAT-sep γ 0.9 0.1 0.9 0.5 0.2 0.5 0.1

α 0.4 0.9 0 1 0.2 0.3 0.9
PD-GAT-sep (R(G)) γ 0.6 0.6 0.3 0.5 0.3 0.5 0.2

α 0.8 0.2 0 0.9 0.4 0.9 0.9

Table 5: Optimal γ and α for real-world datasets.

For BernNet, LINKX, APPNP and ωGCN in real-world benchmark, we perform a grid search for
learning rate ∈ {0.01, 0.05, 0.1}, weight decay ∈ {0, 5e − 7, 5e − 6, 1e − 5, 5e − 5, 1e − 4, 5e −
4, 1e − 3, 5e − 3, 1e − 2}, dropout ∈ {0, 0.1, 0.3, 0.5, 0.7}. Model specific parameters are: (1)
BernNet: the propagation steps K = 10; (2) LINKX: the numbder of layers of MLPA and MLPX in
{1, 2}; (3) APPNP: α ∈ {0.1, 0.2, 0.5, 0.9} and up to 10th power of the adjacency is used; (4) PGSO:
initialization ∈ { "GCN", "all zeros", "SymLaplacian", "RWLaplacian", "Adjacency"}. According
to [12], the weight decay is 5e − 4, the learning rate is 0.005 for the exponential parameters and
0.01 for all other model parameters. We perform a grid search for dropout ∈ {0, 0.1, 0.3, 0.5, 0.7};
(5) DGN: We compute the first two non-trivial eigenvectors of Lrw for DGN. We perform a grid
search for the hyperparameters of DGN according to [8] for the learning rate in {10−5, 10−4}, the
weight decay in {10−6, 10−5}, the dropout rate in {0.3, 0.5}, the aggregator in {"mean-dir1-av",
"mean-dir1-dx", "mean-dir1-av-dir1-dx" }, the net type in {"complex", "simple" }.
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F Comparison with Message Passing with Virtual Nodes
This section further demonstrates the effectiveness of the parameterized diffusion with rewiring by
comparing it to message passing with virtual nodes [51, 66], and the results are summarized in Table.
The virtual node is an additional node attached to the original graph and connected to all nodes in the
graph. While our rewiring strategy connects all nodes to the gradient node determined by L(α,γ). The
difference between this and the virtual node approach is threefold: (1) the gradient node is selected
from the original graph’s nodes, while the virtual node an artificially added node; (2) the selection
of the gradient node is determined by α and γ; and (3) the virtual node is incompatible with the
proposed parameterized diffusion, as we cannot define the weights or features for edges connecting
the virtual nodes based the first non-trivial eigenvector of the L(α,γ) from the original graph topology.

We apply the virtual nodes method to the baseline GNNs, with results provided in Table 6. The same
experiment settings from Section 4.3 are used, and results for baselines and the proposed rewiring
strategy are also reported in Table 2. In conclusion, the proposed rewiring approach yields a greater
performance improvement over the baselines compared to the virtual node method.

roman-empire amazon-ratings minesweeper tolokers questions squirrel-filtered chameleon-filtered

GCN 73.69 ± 0.74 48.70 ± 0.63 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27 39.47 ± 1.47 40.89 ± 4.12
GAT 80.87 ± 0.30 49.09 ± 0.63 92.01 ± 0.68 83.70 ± 0.47 77.43 ± 1.20 35.62 ± 2.06 39.21 ± 3.08

GAT-sep 88.75 ± 0.41 52.70 ± 0.62 93.91 ± 0.35 83.78 ± 0.43 76.79 ± 0.71 35.46 ± 3.10 39.26 ± 2.50

GCN-Virtual Nodes 74.47 ± 0.67 48.18 ± 0.64 89.92 ± 0.59 83.43 ± 0.92 77.26 ± 1.14 40.71 ± 2.67 43.94 ± 4.15
GAT-Virtual Nodes 79.35 ± 0.26 46.85 ± 0.56 92.62 ± 0.77 84.17 ± 0.70 78.47 ± 0.81 39.07 ± 1.81 43.47 ± 3.59

GAT-sep-Virtual Nodes 88.07 ± 0.61 48.92 ± 0.50 93.79 ± 0.46 84.11 ± 0.50 78.00 ± 0.96 37.76 ± 1.57 40.96 ± 3.54

PD-GAT (R(G)) 87.27 ± 0.64 48.03 ± 0.58 93.27 ± 0.56 84.74 ± 0.59 79.55 ± 0.81 42.09 ± 2.65 44.16 ± 4.20
PD-GAT-sep (R(G)) 89.23 ± 0.56 50.96 ± 0.43 94.03 ± 0.45 84.83 ± 0.40 78.88 ± 0.94 39.69 ± 2.28 41.15 ± 4.66

Table 6: Experiment results on heterophily datasets proposed by [50] for comparing baseline models
using virtual nodes methods [51, 66] and the proposed parameterized diffusion with topology-guided
rewiring.

G Comparison on Homophilic Datasets
The following table summarizes the results on homophilic datasets, where we perform a grid search
for learning rate ∈ {0.01, 0.05, 0.1}, weight decay ∈ {0, 5e− 7, 5e− 6, 1e− 5, 5e− 5, 1e− 4, 5e−
4, 1e − 3, 5e − 3, 1e − 2}, dropout ∈ {0, 0.1, 0.3, 0.5, 0.7}, and 64 hidden states. Note that the
implementation of baselines follows [50], where residual connections are adopted in each layer.

Cora Citeseer Pubmed

ResNet 72.03 ± 0.24 70.77 ± 1.81 88.01 ± 0.41
GCN 86.15 ± 1.24 74.58 ± 0.97 89.63 ± 0.44
SAGE 85.12 ± 1.64 74.47 ± 1.93 89.69 ± 0.51
GAT 86.46 ± 1.02 74.13 ± 1.85 88.87 ± 0.65

GAT-sep 84.24 ± 1.72 73.93 ± 1.93 89.14 ± 0.57
GT 86.19 ± 0.99 74.23 ± 1.12 89.48 ± 0.52

GT-sep 86.3 ± 1.13 74.14 ± 0.91 89.63 ± 0.52

DGN 85.16 ± 1.17 72.70 ± 1.17 87.35 ± 0.53
ωGCN 86.13 ± 1.38 74.74 ± 1.39 88.65 ± 0.42
PGSO 88.66 ± 0.94 76.55 ± 1.12 89.44 ± 0.53

PD-GCN 86.91 ± 1.45 75.17 ± 1.24 89.70 ± 0.45
PD-GAT 85.40 ± 1.41 74.83 ± 1.75 89.48 ± 0.45

Table 7: Experiments on homophily datasets proposed in [67].

H Training
In training and evaluating a model using a node classification benchmark dataset with C distinct
classes, each node vi ∈ V has a label zi associated with it. We denote Z ∈ RN×C as the one-
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hot encoding of labels. Moreover, nodes are divided into three sets: the training set Vtrain, the
validation set Vval and the test set Vtest. In the training phase, the model uses features of all nodes
under transductive learning. The model only has access to labels of nodes in Vtrain and in Vval (for
hyperparameter tuning), while labels of nodes in Vtest = V \ (Vtrain ∪ Vval) remain unknown to the
model. The cost function used in node classification tasks is the standard categorical cross-entropy
loss [26], which is commonly used for multi-class classification tasks:

L = − 1

|Vtrain|
trace(ZT logY), (33)

where Y is the output from the model after softmax and log(·) is applied element-wise.
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