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Abstract—This paper extends belief space control to continu-
ous, particle-based belief states in the context of contact-rich
manipulation under uncertainty with sparse tactile feedback.
We answer the open question of how to quantify information
gain for a continuous particle-based belief by proposing a new
approximation for the entropy of a particle belief that also
captures the object-robot interaction dynamics. Moreover, we ad-
dress the challenge of the discontinuous and sparse nature of the
measurement signal by proposing a sampling-based information-
gathering controller that selects the next best action from a set
of sampled candidate trajectories based on the approximated
entropy of predicted future belief states. In robot experiments,
we show that action selection based on the approximated particle
entropy significantly improves the information-gathering process
in terms of efficiency and success rate of a subsequent grasp.

I. INTRODUCTION

Successful manipulation requires tactile feedback [5, 24],
yet many robots only have access to limited tactile sen-
sors alongside other sensors which may be noisy or poten-
tially occluded when performing manipulation tasks. There-
fore, information-gathering actions are crucial to improve the
robot’s understanding of the environment. Planning in such
partially-observable and uncertain domains requires the robot
to reason about the probability distribution over the underlying
state, i.e. the belief state, and how it changes over time when
the robot interacts with its environment. Such problems are
generally formalised as partially-observable Markov decision
processes (POMDPs) [14], and more recently as belief space
control problems [22, 23]. Generating information-gathering
action sequences requires planning in belief space, but the
increased dimensionality of this space creates a more com-
plex planning problem. This complexity is often reduced
by making approximations, such as constraining the belief
space to Gaussian distributions [21]. However, this is not
suitable for contact-rich manipulation scenarios, as the contact
dynamics are highly non-linear and multi-modal [23]. Other
approaches reduce the complexity of the belief space control
problem by discretising the state space, but this only supports
reasoning about mild uncertainty [7, 16]. It hence remains
challenging to find information-gathering plans in continuous
and non-Gaussian belief spaces. Moreover a planner needs
to handle the discontinuous and sparse nature of a contact
measurement signal, i.e. contact or no-contact. Motivated by
the above, this paper extends belief space control algorithms

Fig. 1: Experimental setup of blind grasping. From left to
right: initial bi-modal particle belief with uniform weights (■);
information-gathering trajectory rejecting particle hypotheses
(■); converged belief after contact; successful grasp.

to continuous particle-based belief states in the context of
contact-rich manipulation with sparse tactile feedback. We
make following contributions: i) a new approximation for the
entropy of a particle belief that also captures the object-robot
interaction dynamics; and ii) a sampling-based information-
gathering controller that selects the next best action from
a set of sampled trajectories based on the approximated
entropy of predicted future belief states. In robot experiments
(cf. setup in Fig. 1), we show that action selection based
on the approximated particle entropy significantly improves
the information-gathering process in terms of efficiency and
success rate of a subsequent open-loop grasp.

II. RELATED WORK

Dexterous manipulation under uncertainty is particularly
challenging as state and action spaces are continuous, evaluat-
ing a physics model of the contact dynamics is computation-
ally expensive, and observations from contact sensors are in-
herently discontinuous [16]. A common approach is to plan for
a sequence of “move-until-touch” actions [7, 13, 19] to localise
an object, followed by an open-loop grasp. The policy is split
into an information-gathering (exploration) phase followed by
a goal-directed (exploitation) phase. A similar strategy has
been used in belief space control approaches for blind grasping
[22, 23], where the exploration actions are found by optimizing
a cost function that includes an information-theoretic measure
of the belief state. Other works switch between exploration and
exploitation phases based on the uncertainty of the belief state
[18]. This trade-off between information gathering and goal-
directed behaviour has been solved more formally within the
context of POMDPs [16, 8, 10, 27]. Yet, all these approaches



are subject to at least one of the following two limitations:
i) the problem space is typically subject to discretisation for
means of tractability, which limits the applicability of such
methods to cases with only mild uncertainty; and ii) most
approaches ignore the dynamics of the object-robot interaction,
by assuming either a static object [22, 29, 7, 13, 18] or
only very limited dynamics [10]. While the first limitation
is a common one in many POMDP and belief space control
settings, the second limitation is particularly relevant for the
computation of information-theoretic measures, such as the
relative entropy, which typically does not account for the
fact that the robot actions can also increase uncertainty, e.g.
by pushing an object over. While the dynamics have been
considered in the context of POMDPs [16, 8], the problem is
typically solved in a discrete state space, which limits the com-
plexity of the problem. Consequently, our work addresses the
two limitations above by using a continuous non-parametric
representation of the belief state and by incorporating the
object-robot interaction dynamics in the planning process,
which we capture in a new approximation for the entropy of
a particle belief.

III. PROBLEM FORMULATION

This paper addresses the problem of blindly grasping an
object o using highly sparse tactile feedback via belief space
control. In order to reach a state where grasping is likely
to succeed, the robot needs to perform information-gathering
actions w.r.t. the object location. Let xk = (qr, qo) ∈
R(nr

dof+no
dof ) describe the state of the underactuated robotic

system, which includes the pose of the object qo
k ∈ Rno

dof ,
and the robot configuration qr

k ∈ Rno
dof at time step k. We

can only control the object configuration by executing robot
control commands uk ∈ Rnr

dof . The system changes over
time according to stochastic dynamics xk+1 ∼ p(·|xk,uk).
Measurements zk are taken by the system that follow a
stochastic model zk ∼ p(·|xk). Due to the uncertainty and
partial observability of the system, the system state is a
continuous random variable. The system’s belief of its state
bk=p(xk|u0:k−1, z1:k, b0) depends on the history of actions
and measurements taken, as well as the initial belief b0.

For a given sequence of control actions u0:k−1, the system
may estimate information gain IG(b0,u0:k−1) using its model
of the dynamics and its sensor model. We formulate the
problem of information gathering as trajectory optimization
in belief space:

max
u0:K−1

IG(b0,u0:k−1). (1)

Estimating the information gain is challenging as it involves
predicting possible future measurements. Hence, in the follow-
ing, we present our approach to estimating information gain
for an information-gathering controller.

IV. INFORMATION-GATHERING CONTROLLER

We propose a belief-based controller that samples candidate
trajectories that are likely to make contact with the object
according to the current belief. The controller selects the

Fig. 2: Computation of uniform kernel Ω that is used to
construct the probability density function p for a set of
weighted particles (•). After fitting a tight bounding box ρΩi

(■) to the ρ = 6 nearest neighbors of each particle, we scale
the mean bounding box ρΩ̄ to obtain the uniform kernel Ω (■)
that is used across all particles.

next best trajectory based on its expected information gain.
In order to predict the expected information gain for each
sampled trajectory, we need to anticipate future belief states
given the current belief state and the trajectory. The idea of
generating candidates and selecting the best one according to
the information gain is similar to the approach in [7], and
more generally to the concept of predictive sampling [9].
Yet, to apply these ideas to continuous belief space control
for blind grasping we need to solve two open questions: i)
how to quantify information gain for a continuous particle-
based belief, and ii) how to consider object-robot interaction
dynamics that possibly reduce or increase uncertainty.

A. Particle-based Entropy Approximation

This section addresses the first open question by proposing
a new approximation of the relative entropy for a particle-
based belief. The differential entropy of a random, continuous
variable x following a probability distribution p(x) is defined
as

H [x] = −
∫
X
p(x)log(p(x))dx. (2)

However, the entropy of a set of particles is not clearly defined.
This is due to the fact that there is no unique way to define
a probability density function that is parameterized by Np

weighted samples {ix, iw}Np

i=1. Without considering dynamics,
the particle-based belief may be treated as a discrete probabil-
ity distribution with the weights representing the probability
of each particle. The corresponding entropy is then given
by Ĥw [x] =−∑i

iw log(iw). While this approximation cap-
tures information gained through observations, it does not
capture the spatial density of particles, i.e. the local distance
between the states of the particles. We thus propose to model
the continuous belief with a uniform mixture distribution

b = p
(
x
∣∣{ix, iw}Np

i=1

)
=
∑
i

iw U(x− ix,Ω), (3)

where Ω ⊆ X , the kernel of the uniform components,
is a bounded region in state space with hypervolume
V (Ω)=

∫
Ω
1dx. The probability density of the uniform dis-

tribution U(x,Ω) is equal to 1/V (Ω) if x ∈ Ω and equal to



zero otherwise. We impose that all particles have the same
shared kernel. The kernel Ω is computed in three steps, which
are additionally illustrated in Fig. 2: 1) For each particle i, fit a
tight bounding box ρΩi to the ρ nearest neighbors. 2) Compute
the average bounding box ρΩ̄ by taking the mean size in each
dimension. 3) Scale the bounding box based on the number
of dimensions d and the number of nearest neighbors ρ with

Ω = ρΩ̄ ( d
√
ρ− 1)

−1
. (4)

The kernel Ω centred at a particle state is the average support
of the uniform distribution contributed by that particle. Hence,
Ω encodes the density of particles and can be used for com-
puting the entropy: the higher the density of the particles, the
lower the hypervolume V (Ω). The approximation parameter
ρ tunes the locality of the approximation of the belief based
on particles. A small ρ allows us to approximate multi-modal
beliefs by approximating the density locally. A large ρ takes
into account the global density of the particle set and thus
does not capture clusters of particles. This is in contrast to the
work in [18], where all particles are used to compute a shared
Gaussian kernel. Using the mixture distribution in Eq. (3), the
entropy cannot be evaluated efficiently in closed-form due to
overlaps of the uniform components. However, we compute an
upper-bound Ĥ [x]≥H [x] of the differential entropy in Eq. (2)
analytically by using the inequality log(p(x))≥log(pi(x)),
where pi(x) is the probability density contribution of the i-th
component. As a result, the upper-bound of the differential
entropy of the particles is given by

Ĥ [x] = −
∑
i

iw log(iw) + log(V (Ω)). (5)

The approximation in Eq. (5) has a term that only depends
on the particle weights, i.e. Ĥw [x] =−∑i

iw log(iw), and
a term that depends on the local density of the particles,
i.e. ĤΩ [x] =log(V (Ω)). We recover the mutual information
I(xk; zk) of the system state xk and the measurement zk, i.e.
the amount of information obtained about x when observing
z at time step k:

I(xk; zk) = H [xk|xk−1,uk−1]−H [xk|zk,xk−1,uk−1]

= Ĥw [xk−1]− Ĥw [xk] .
(6)

As a result, the entropy difference between two consecutive
time steps ∆Ĥk−1,k = Ĥ [xk−1]− Ĥ [xk] can be written as

∆Ĥk−1,k = I(xk; zk) + log

(
V (Ωk−1)

V (Ωk)

)
. (7)

If the dynamics of the system keep the particle density
constant, i.e. Ωk−1=Ωk, the entropy change is equal to the
information gained by taking a measurement z. A detailed
derivation of the particle entropy approximation and quanti-
tative experiments proving the validity of the approximation
as an upper-bound to the true entropy of the particles can be
found in Sec. A in the Appendix.

Limitation of the Differential Entropy: While the differential
entropy measure is an attempt to extend the concept of entropy

Algorithm 1: Prediction of Information Gain

Input: Belief {ix0, iw0}
Np

i=1, Controls u0:K−1

Output: Max. information gain ∆Ĥ

1 Ĥw,0 ← −
∑

i
iw0 log(iw0)

2 for k = 0, . . . ,K−1 do
3 Sample transitions: ixk+1 ∼ p(·|ixk,uk), ∀i
4 Compute expected weight term
5 E[Ĥw,k+1]← (9)
6 Compute particle density:
7 ĤΩ [xk+1]← (8)
8 Compute expected entropy reduction:

∆Ĥ0,k+1 ← Ĥw,0 − E[Ĥw,k+1] + ĤΩ [x0] + ĤΩ [xk+1]
9 end

10 ∆Ĥ← max
k

∆Ĥ0,k+1

to continuous random variables, it has some limitations. The
main one is that the differential entropy will become minus
infinity if the probability distribution collapses in one of its
dimensions. This problem is also reflected in the density-based
term ĤΩ [x] in the entropy approximation in Eq. (5), as the
hypervolume of the uniform kernel Ω will become zero if the
particles collapse in one of the dimensions. Hence, in practice,
we will use the weight-based term Ĥw [x] and the density-
based term ĤΩ [x] as separate cost-terms in the cost function
of the belief space control problem. Moreover, we reformulate
the density-based term as the sum over the dimensions of the
bounding box Ω instead of computing its hypervolume. More
precisely, with Ωi being the size of the bounding box in the
i-th dimension, we reformulate the density-based term as

ĤΩ [x] = log

(
1

d

d∑
i=1

Ωi

)
, (8)

B. Expected Information Gain
Given the new measure of the entropy of a particle-based

belief state, we estimate the expected information gain of
a candidate trajectory u0:K−1 by predicting future belief
states and their associated expected relative entropy based
on hypothetical measurements generated from the predicted
belief states, as summarised in Alg. 1. While rolling out
the dynamics for each candidate is straight-forward (Alg. 1,
lines 3-4), updating the weights of the particles based on
the measurement model is more challenging, as it requires
predicting future measurements ẑ0:K−1 (Alg. 1, lines 4-5).
A common approach to predicting measurements the robot
observes during a candidate trajectory is to use the maximum
likelihood estimate of the belief distribution [21, 17, 4, 23].
However, if the particle weights are all similar, as frequently
happens after a resampling step within a particle filter, using
exactly one state as a hypothesis for the real system state
creates a possibly unreasonably strong bias towards a single
point in the state space. Consequently, we propose to use
every particle in the particle set as a hypothetical underlying
state of the system to generate Np hypothetical measurements
in each time step. When a particle is used as a hypothetical
state, the measurement is generated by a simple check if the
robot is in contact at the given time step for that particle. Its
probability is then computed using the measurement model



Fig. 3: Candidate Sampling: Starting from the current belief
(■), particles are sampled using importance sampling (■). Uni-
formly sampled points within the object volume are processed
through inverse kinematics to derive final robot configurations
for candidate trajectories towards the object.

P (zk|xk) from the particle filter. We marginalize over all
particles and weight the contribution of each particle to the
expected entropy reduction based on the particle weights at
time step 0. Note that this procedure only concerns the weight
term in the entropy approximation, as the density term only
depends on the dynamics of the system and the particle set, but
not on the measurements. Hence the expected entropy weight
term at time step k is computed as

E[Ĥw,k] =
∑
j

(
−
∑
i

i,jŵk log(i,jŵk)

)
jw0, (9)

with i,jŵk being the updated weight estimate of the ith particle
at time step k when assuming the jth particle as the underlying
state of the system, i.e.

i,jŵk =
iw0 P (zk|jxk)∑
l
lw0 P (zk|lxk)

. (10)

The particle density HΩ is computed using the predicted
belief state xk+1 (Alg. 1, lines 6-7). Thus, for each time
step we compute the expected entropy reduction as the sum
of the expected entropy weight term and the particle den-
sity in the given time step (Alg. 1, lines 8-9). Eventually,
the maximum expected information gain is computed as the
maximum expected entropy reduction over all time steps. The
best candidate trajectory is pruned at the time step with the
maximum expected information gain, which avoids executing
parts of the trajectory that gain no more information or even
increase the belief entropy due to the dynamics of the system.

C. Belief-Dependent Candidate Sampling

While our approach does not make any assumptions about
the specific form of candidate trajectories, we sample trajecto-
ries that are likely to result in contact events. Given the current
belief state bk at time step k, we sample Nsamples particles via
importance sampling. For each particle, we uniformly sample
a point within the object volume and compute the inverse
kinematics solution such that the robot’s end-effector reaches
the sampled point. Adopting the spline-based representation
from [11] (cf. Appendix Sec. D), we construct candidate
trajectories ul

0:K−1 that end in these robot configurations, as
illustrated in Fig. 3.

TABLE I: Results of proposed approach compared to baseline.

Models Success rate [%] Avg. num. iterations

Proposed 80 10.5
Baseline 50 15

V. EXPERIMENTS

We evaluate the proposed method in a real robot setup,
where a Franka Emika Panda robot is tasked to localise
and grasp a box in its workspace with solely sparse tactile
feedback, given a prior bi-modal particle belief about the
box pose. After every iteration of the information-gathering
controller, the probability of grasp success is estimated on
the current belief. If it is above a given threshold, the robot
attempts an open-loop grasp of the object. The experimental
setup is shown in Fig. 1. While the focus of this paper is on the
information-gathering controller, the underlying assumption is
that the robot is able to accurately track its belief state through
a particle filter. We provide a novel measurement model and an
adapted resampling strategy designed for sparse binary contact
measurements and corresponding ablation studies concerning
the particle filter, alongside an algorithmic overview and
additional implementation details in the Appendix. We com-
pare our information-gathering controller to an “uninformed”
baseline that is the same as our system but without access to
the information gain metric when choosing trajectories. This is
a strong baseline, as opposed to a non-belief-informed random
exploration baseline, such as uniformly sampling trajectories.
We recorded 10 runs on the robot for each method with
random initial box poses and a fixed maximum number of
iterations (15). As metrics, we use the success rate of grasping
and the average number of iterations until a successful grasp.
The results, summarised in Table I, show that the proposed
method significantly outperforms the uninformed baseline in
terms of success rate and efficiency. We include a video
summarising the experiments in the supplementary material.

VI. CONCLUSION

This paper proposes a novel information-gathering con-
troller for contact-rich manipulation tasks based on the ap-
proximated entropy of a particle-based belief state. We have
demonstrated the effectiveness of the proposed method in a
real robot setup for blind grasping under uncertainty. The
results show that the proposed entropy approximation is a
suitable measure for the expected information gain of a
candidate control sequence, significantly outperforming an
uninformed baseline in terms of success rate and efficiency.
Yet, we acknowledge several limitations alongside possible
future directions. The real-time applicability is limited by the
computational complexity of the information-gathering con-
troller, as rolling out the dynamics for each candidate control
trajectory is still computationally expensive. We believe that
learning the contact dynamics from data, replacing the physics
engine, could be a promising future direction. This would
remove required knowledge about object properties, such as
mass and friction, reduce the computational complexity of
the information-gathering controller, and would also render



the dynamics stochastic, which possibly reflects the inherent
multi-modality of the contact dynamics in a more realistic
way. Last, we believe that an exciting future direction is
to extend the information-theoretic approach by not only
considering actions that generate sensory information about
the environment, but also actions that funnel uncertainty about
the system into smaller regions of the state space, such as in
[3, 2] or more recently [12].
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APPENDIX

A. Entropy Approximation: Quantitative Evaluation

Figure 4 shows a quantitative evaluation of the performance
of the proposed entropy approximation. While the approxi-
mation for a newly sampled set of particles can be noisy,
it is important to note that the approximation captures the
monotonic trend of the ground truth entropy. Even more
importantly for reducing uncertainty, the approximation is
deterministic and thus captures small changes to a given set
of particles.

Upper-bound Entropy Approximation of a Uniform Mix-
ture Distribution: In the following, we derive the upper-bound
approximation of the differential entropy

Ĥ [x] = −
∫
X
p(x)log(p(x))dx, (11)

where the probability density function is given as a mixture
of uniform distributions

p(x) =
∑
i

iw U(x− ix,Ω). (12)

Each uniform component is defined as

U(x,Ω) =
{

1
V x ∈ Ω

0 otherwise
, (13)

where V =
∫
Ω
1dx is the hypervolume of the common kernel

Ω. In the following, the uniform components are abbreviated
with Ui(x) = U(x− ix,Ω).

By inserting Eq. (12) into Eq. (11), one obtains

Ĥ [x] = −
∫
X

(∑
i

iwUi(x)

)
log

∑
j

jwUj(x)

 dx.

(14)

Fig. 4: Particle-entropy approximation for three different
ground truth probability distributions. Comparing analytic
differential entropy of the ground truth distribution against
the differential entropy computed according to Eq. (5) after
sampling the particles from the ground truth distribution. Pa-
rameter β scales the entropy of the ground truth distributions,
shown on the left-hand side for β=1, as follows: Top row:
The covariance matrix of the Gaussian distribution is scaled by
β. Middle row: The rate parameter of the Gamma distribution
is equal to β. Bottom row: The Gaussian mixture distribution
has two fixed components on the right-hand side and one
component on the left-hand side where β scales the variance
in y-direction.

This can be rewritten by pulling the first sum out of the
integral:

Ĥ [x] = −
∑
i

iw

∫
X
Ui(x)log

∑
j

jwUj(x)

 dx. (15)

Due to Eq. (13), the integration domain can be reduced to
Ωi = Ω− xi and thus

Ĥ [x] = −
∑
i

iw

∫
Ωi

1

V
log

∑
j

jwUj(x)

 dx. (16)

The log-term can not be simplified any further and thus
the integral can only be approximated, e.g. by numerical
integration or via importance sampling. Instead, we use a
lower-bound approximation of the integral for each individual
component, i.e.

∫
Ωi

1

V
log

∑
j

jwUj(x)

 dx ≥
∫
Ωi

1

V
log

(
iw

1

V

)
dx.

(17)
Note that this inequality becomes an equality if the uniform
components do not overlap, i.e. Ωi ∩ Ωj = ∅,∀i ̸= j. By



inserting the inequality (17) in Eq. 16, one obtains

Ĥ [x] ≤ −
∑
i

iw

∫
Ωi

1

V

(
logiw + log

1

V

)
dx. (18)

Since the integrand is now constant over the integral domain,
the integral can be resolved and one obtains

Ĥ [x] ≤ −
∑
i

iw

(
logiw + log

1

V

)
. (19)

Further simplifications and using the equality
∑

i
iw = 1, we

obtain the final inequality

Ĥ [x] ≤ −
∑
i

iwlogiw + logV. (20)

B. Overview of Algorithmic Framework

Fig. 5 outlines the full proposed algorithmic framework
for blind grasping under uncertainty. The robot iteratively
refines its belief about the object pose through a particle
filter and an information-gathering controller. The termination
criterion for this exploration phase is based on the probability
of grasp success, which is estimated on the updated belief
after each iteration of the information-gathering controller. If
the probability of grasp success is above a given threshold,
the robot transitions to the grasping phase.

C. Particle Filter for Continuous Object Pose Estimation
through Contact

The information-gathering controller builds on the ability
to accurately track the current belief, as well as being able
to predict future belief states. Given the continuous belief
space control problem in Eq. (1), we use a particle filter to
represent and track the belief state. Thus, the belief state is
represented by a set of Np particles {ix, iw}Np

i=1, where each
particle consists of a state sample ix and a corresponding
weight iw ∈ [0, 1] subject to

∑
i
iw=1. As is standard for a

particle filter, the belief is updated by applying a dynamics
model and weighting the particles according to the likelihood
of the observed measurements, defined by the measurement
model [25]. For the dynamics model, assuming that we know
the physical properties of the object, we simulate the contact
dynamics between the robot and the object using a physics
engine, such as MuJoCo [26]1. While these dynamics are
non-linear, they will be deterministic given the same initial
conditions, as the physics engine is deterministic. In contrast
to prior work [18, 15], we do not assume that the object pose is
constant when the robot is in contact with it. We also note that
almost all approaches to tactile exploration use richer sensor
modalities, such as tactile sensors that typically provide the
point of contact, as well as the contact normal, or force/torque
sensors that provide precise measurements of contact forces. In
contrast, we use only the torque sensors in the robot’s joints,
which we found in only one other work by [8] where the
uncertainty is much smaller than in our scenario. This setting

1The simulation mirrors the impedance control of the robot, which regulates
the interaction forces with the environment.

also implies that we cannot track our belief with standard
measurement models [1], as they assume that contact force
sensors perfectly determine whether the robot is in contact
with the object. Similarly, we cannot use the measurement
models from [20, 19] as they only work for tactile sensors.
Therefore, we propose a new measurement model for state
estimation from noisy binary contact feedback.

Smooth Measurement Model: The measurement model is
used to refine the belief state after rolling out the dynamics
model with control action uk through the observed measure-
ment zk. Given the sparse and noisy nature of the contact
signal, the binary detection model of an imperfect contact
measurement process, i.e. contact or no-contact, proposed in
[7] does not account for the fact that the robot might be close to
the object without actually making contact. We provide more
technical details concerning the actual measurements within
our experiments, which are based on the torques measured
in the robot’s joints, in the appendix. Importantly, unlike
other works [15, 10], we do not assume that the contact
measurements are discriminative, i.e. accurately distinguish
between contact and no-contact. Therefore, we propose a
measurement model that incorporates proximity estimates to
smooth the discontinuous measurement signal. We model the
probability of positive contact such that it decays exponentially
with the minimum distance between the robot and the object.
While this is similar to the observation model formulated by
Zito et al. [29], it does not assume that the robot makes contact
with its end-effector, but rather anywhere on the robot’s body.
The likelihood of a contact measurement zk = 1 given the
particle’s pose ixk is given by:

P (zk = 1|ixk) = αfp+(αtp−αfp) exp(−γ·d(qr
k,

iqo
k)), (21)

where αtp and αfp are the true and false positive rates of
a contact measurement respectively, and γ is the distance-
based decay rate of the probability of contact. Based on the
assumption that the contact point on the object is the one
closest to the robot, the distance d(qr

k, q
o
k) is computed as the

minimum Euclidean distance between the robot configuration
iqr

k and the object configuration iqo
k. The probability of a no-

contact measurement is inferred by 1−P (zk = 1|ixk). In our
experiments, we show that the proximity-based measurement
model leads to more accurate belief tracking with lower
chance of particle depletion. Yet, the downside is that it is
computationally more expensive than the binary model, as it
requires additional distance computations.

Resampling Strategy: While for a sparse binary con-
tact sensor, smoothing measurements with proximity esti-
mates helps spreading the contact observations over a non-
infinitesimal region, the sparse nature of the contact signal still
leads to a higher likelihood of particle starvation, a problem
that has been particularly recognised in the context of contact
sensing [15, 28]. Particle starvation occurs when there are no
particles in the vicinity of the true state. This often links to
a loss of diversity in the particle set, which can lead to a
divergence of the particle filter. A common strategy to miti-
gate particle starvation is resampling, e.g. through importance



Fig. 5: Proposed pipeline for blind grasping under uncertainty. The robot localises the object through a particle filter and an
information-gathering belief space controller. The robot transitions to the grasping phase if the probability of grasp success is
above a given threshold.
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Fig. 6: The probability distribution for a positive contact
measurement for the proximity-based P (zk|xk) measurement
model. The distance on the x-axis is measured as the closest
Euclidean distance between the object surface and the robot’s
last four links.

sampling [25]. Yet in the context of contact-rich manipulation,
resampling in the case when contact is observed is more chal-
lenging as the likelihood of sampling particles from the contact
manifold, i.e. contact points with zero-distance between object
and robot, is very low [15]. While Koval et al. [15] offer
methods of how to construct such contact manifolds, they are
still difficult to construct in more general and high-dimensional
spaces. We thus propose a resampling strategy that is based on
the estimated proximity of the object particles to the current
robot pose and the contact signal. If the measurement was
a contact measurement, we resample M new particles based
on importance sampling with added noise and compute the
probability of the new samples matching the last observation
via our smooth measurement model. We then replace the
particles that have low weights with the new best samples
in terms of the probability of matching the last observation. If
the measurement was a no-contact measurement, we perform
standard importance sampling. Resampling is triggered if one
or more particles have a low weight.

TABLE II: Ablation results of particle filter

Binary Smooth
Smooth

& Resampled
MSE 0.40 ± 0.97 0.35 ± 0.87 0.45 ± 0.61
Share of AP 0.19 ± 0.20 0.36 ± 0.28 1.00 ± 0.00

Simulation Experiments: We evaluate the proposed
smooth sensor model and resampling strategy for sparse binary
contact measurements in a 2D simulated environment. In
an ablation study, we compare our smooth sensor model to
the binary sensor model from Hebert et al. [7] without our
resampling strategy and the smooth sensor model with our
resampling strategy. We show a qualitative comparison in
Fig. 7. We report the mean and standard deviation of the
weighted average of the mean squared error (MSE) using
the particle weights and the share of active particles (AP)
after the last time step in Table II. The results have been
generated in 10k experiment runs with the ground truth object,
robot trajectory and initial belief sampled from the same
distribution as shown in Fig 7. We only used 15 particles in the
experiment in order to make the particle depletion more likely.
The results show that the smooth sensor model outperforms
the binary sensor model in terms of belief tracking, as well
as much higher particle diversity, i.e. a higher share of active
particles with weights that are not close to zero. While it is
straightforward that the resampling leads to all particles being
active, the results show that the diversity is also increased
through the resampling strategy.

D. Spline-based Trajectory Representation

We adopt the spline-based representation from the work of
[11] for constructing reference trajectories from a parameter θ.
The spline-based representation maps a phase variable s∈[0, 1]
and the parameter θ to a reference position

u(s) = Φθ(s)θ +Φλ(s)λ. (22)
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Fig. 7: Ablation Study: We compare the performance of the binary sensor model without resampling (left), the smooth sensor
model without resampling (middle), and the smooth sensor model with resampling (right). The smooth sensor model with
resampling shows the best performance in terms of belief tracking and particle diversity.

The parameter θ=θ1:Nvia contains Nvia via-points the result-
ing trajectory u(s) will pass through, i.e. u(s=n/Nvia)=θn,
∀n=1:Nvia. The parameter λ=

[
u⊤
0 , u̇

⊤
0 , u̇

⊤
K−1

]⊤
contains

information about the first set-point u(s=0)=u0, the velocity
of the first set-point u̇(s=0)=u̇0 and the velocity of the final
set-point u̇(s=1)=u̇K−1, which are assumed to be given. The
velocities of the the first and last set-points are set to zero in
our experiments.

E. Implementation Details
Contact Measurement Signal: The robot’s torque sensors

provide information about the torques acting on the robot’s
joints. We use this information to detect whether the robot
is in contact with the object and to estimate the object pose.
As the torque sensors from the Franka robot arm are quite
noisy, we cannot directly use them as observations, but rather
transform the signal into a binary contact/no-contact signal.
More precisely, we filter the signal from measurements due
to gravity, friction and the actual actuation of the robot joints
through an observer [6]. Then, we compute the norm of the
torques measured in the first five joints of the robot and use
a threshold to determine whether the robot is in contact with
the object. This binary measurement zk ∈ {0, 1} is then used
as an observation in the particle filter. We only use the first
five joints as the last two joints are particularly noisy and do
not provide useful information about the contact state.

Low-level Control: We ensure moderate contact forces
throughout the robot operation via an impedance controller

on the low-level. While the control gains are higher during
the localisation phase, we reduce the gains in the moment of
grasping to allow for a more robust grasp. In parallel, we
keep track of the contact forces acting on the robot’s end
effector by projecting the torques measured in the robot’s
joints onto the end effector frame. If the contact forces exceed
a given threshold, the robot stops the current action early and
transitions to the particle filter update phase.

Initial Belief: The initial belief about the object pose is
represented as a set of particles, where each particle is a 6D
pose of the object. The particles are sampled from a Gaussian
mixture model with two components. For each component,
we use a standard deviation of σpos=0.05 [m] for the box
position and a standard deviation of σori=0.4 [rad] for the
yaw orientation. All weights are set to 1/Np, where Np=100
is the number of particles.

Hyperparameters: In all experiments, the threshold on
the probability of grasp success is set to 0.75. The number
of candidates sampled in each iteration of the predictive
sampling-based planner is set to Nsamples=20. The parameters
for the proximity-based measurement model are set to αtp =
0.5, αfp = 0.1 and γ = 1000. The probability distribution for
a positive contact measurement for these parameters is shown
in the Appendix in Fig. 6. Moreover, in the experiments, we set
the maximum number of iterations, i.e. a maximum number
of localising actions, to 15. After this number of iterations,
the robot stops the localisation phase and transitions to the
grasping phase, regardless of the probability of grasp success.
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