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Abstract: Human demonstrations as prompts are a powerful way to program
robots to do long-horizon manipulation tasks. However, translating these demon-
strations into robot-executable actions presents significant challenges due to exe-
cution mismatches in movement styles and physical capabilities. Existing meth-
ods either depend on human-robot paired data, which is infeasible to scale, or rely
heavily on frame-level visual similarities that often break down in practice. To ad-
dress these challenges, we propose RHyME, a novel framework that automatically
aligns human and robot task executions using optimal transport costs. Given long-
horizon robot demonstrations, RHyME synthesizes semantically equivalent human
videos by retrieving and composing short-horizon human clips. This approach
facilitates effective policy training without the need for paired data. RHyME suc-
cessfully imitates a range of cross-embodiment demonstrators, both in simulation
and with a real human hand, achieving over 50% increase in task success com-
pared to previous methods. We release our datasets and graphics at this website.
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1 Introduction
Human demonstrations offer an effective approach for programming robots to execute long-horizon
manipulation tasks [1–4]. Unlike language instructions, demonstrations are grounded in the task
environment, providing rich cues for what steps to follow, which objects to interact with, and how
to interact with them [5, 6].

We view this as a translation problem where a human video must be translated into a series of robot
actions [7–10]. However, training such policies typically requires paired human-robot demonstra-
tions, which is impractical to collect at scale for long-horizon tasks. Although large-scale human
videos (e.g., YouTube) and robot datasets exist [11, 12], they are unpaired, making them unsuitable
for directly learning this translation.

Prior works leverage unpaired human and robot demonstrations to learn visual representations that
map both human and robot images into a shared embedding space [4, 6, 13–15]. A policy is then
trained to generate actions conditioned on robot video embeddings, and directly transferred at test
time to work with embeddings from a human prompt video. However, a key assumption these works
rely on is that the human and robot perform tasks with matched execution, i.e., the human executes
tasks in a visually similar way to that of the robot (e.g. slowly moving one arm with a simple grasp).
In reality, humans often act more swiftly, use both hands for manipulation, or even execute multiple
tasks simultaneously, creating a mismatch in execution styles. This mismatch leads to misalignment
between the human and robot embeddings, hindering direct policy transfer.

We tackle this problem of imitation under mismatched execution. Our key insight is that while a
human and robot may perform the same task in visually and physically different ways, we can
establish a high-level equivalence by reasoning over the entire sequence of image embeddings
they generate. We show that while individual image embeddings may appear different between
human and robot, we can construct sequence-level similarity functions where the two are closer.
Notably, we can do this without fine-tuning representations on paired data.

* Denotes equal contribution.

https://portal.cs.cornell.edu/rhyme/


Figure 1: Overview of RHyME. We introduce RHyME, a hierarchical framework that trains a robot policy to
mimic a long-horizon video from a demonstrator that exhibits mismatched task execution. Inference Time
(Left): Our robot policy translates a demonstrator video into actions to complete the same long-horizon tasks
specified by the input. Train Time (Right): Given unpaired robot-demonstrator datasets, RHyME ”imagines” a
paired dataset by employing sequence-level similarity metrics which can be used for training the policy.

We propose RHyME (Retrieval for Hybrid Imitation under Mismatched Execution), a framework which
trains a robot policy to follow a long-horizon demonstration from a mismatched expert without
access to paired human-robot videos (Fig. 1). First, RHyME defines a sequence-level similarity metric
between human and robot embeddings, using optimal transport to measure alignment. Given a robot
trajectory and a database of human play data, RHyME imagines a long-horizon video by retrieving and
composing short-horizon snippets of human demonstrations similar to the robot video. This retrieval
process is guided by an optimal transport similarity metric between human and robot sequences. The
framework trains a policy using a hybrid approach, incorporating both real robot demonstrations and
imagined human sequences. Our contributions can be summarized as:

1. We propose RHyME, a novel retrieval-based algorithm for one-shot imitation from videos of a
human demonstrator with mismatched execution. Without access to paired datasets, RHyME aligns
human and robot videos at a sequence-level using optimal transport costs.

2. We systematically study the performance of video retrieval methods both in simulation and the
real world. In simulation, we release three novel cross-embodiment demonstrator datasets (to-
taling over 10 hours of videos) exhibiting increasing levels of execution mismatch. We further
validate our algorithm by imitating real-world videos of a human hand.

3. We show that RHyME outperforms a range of baselines on all degrees of mismatches, yielding
over 50% increase in success rates in the most challenging scenarios.

2 Related Work
Human demonstrations have been utilized to guide robot manipulation policies in several different
ways. We place our work relative to each cluster of related research.

Tracking Reference Motion. The imitation challenge is reduced to motion tracking when the
robot receives the demonstrator’s motion as input. Robots with human-like joint configurations can
directly mimic human trajectories, a method applied to humanoid robots with similar morpholo-
gies [16–21] and robotic hands [22–29]. When the execution capabilities are mismatched, either
human models are simplified [16, 18, 20] or robot trajectories [17, 19, 30, 31] are optimized to ap-
proximately match the reference trajectory. [21] shows a method to extract human poses from videos
and use that as a reference for training reinforcement learning agents. Similarly, human demonstra-
tions have been used to guide reinforcement learning for robotic hands [22–25]. More recently,
large-scale video datasets of humans on the internet have been used to extract hand positions and
adapted for robot manipulation [26–29, 32], or rely on other common abstractions such as optical
flow as a common trajectory representation across embodiments [33], still requiring execution to be
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matched. Distinct from these works, we focus on learning robot manipulation tasks directly from
human RGB videos without explicit motion input.

Learning Reward Functions from Demonstrator Videos. These methods tackle the problem
of matching the demonstrator behaviors when their motion cannot be simply mimicked. Still, their
videos contain useful task information and can be used to learn reward functions for reinforcement
learning on the robot. A general method in this line of research [2, 34–36] is to extract reward func-
tions that encourage the robot to manipulate objects in the same way as the video. For example, [34]
self-supervises the robot by making it learn to match the demonstrations of a demonstrator perturb-
ing a rope. GraphIRL [2] extracts sequences of object pose movement from the demonstrator and
enforces temporal cyclic consistency with the robot’s execution. Other approaches frame the prob-
lem as task matching [37, 38], where the robot is rewarded when it is deemed to perform the same
skill as the demonstrator. While these papers tackle the problem of mismatched execution directly,
they require reinforcement learning to train robot policies, which is challenging for complex tasks.

Learning Aligned Human-Robot Representations. Another strategy for addressing this challenge
is to train representations for both the robot and the human that are indistinguishable when perform-
ing the same task. This approach often frames the task as a video translation challenge, where the
demonstrator’s video is converted into a robot’s perspective to simplify task mimicry [9, 10, 39].
Additionally, methods like WHIRL [3] align videos by effectively masking out both the robot and
the human, creating a neutral visual field. Embeddings can be aligned using datasets that either
directly pair human and robot actions or utilize human preference datasets to rank image frames,
as shown in X-IRL [1] and RAPL [40]. Unlike these methods, our approach does not depend on
labeled correspondences between robots and humans.

One-shot Visual Imitation from Demonstration Videos. We tackle this problem setting in our
work where the robot imitates actions from human demonstration videos in a one-shot setting, i.e.,
the robot uses a prompt video as a guide, aiming to replicate the demonstrated actions after view-
ing them once [4, 6–8, 32, 41–43]. If a paired dataset of human and robot videos executing the
same task exists, the robot can learn to translate a prompt video into actions directly [7, 8]. The
closest to our work is the setting without paired data of human and robot skills. Prior works [4, 6]
train policies conditioning on robot videos and zero-shot transfer to a prompt demonstration at test
time using aligned visual embeddings. For example, XSkill [4] uses a self-supervised clustering
algorithm based on visual similarity to align representations of human and robot videos. However,
such an approach can falter when there are significant mismatches in execution. We address this
issue by posing the visual imitation problem as a train-time retrieval problem. During training, we
match robot videos to the closest human snippets from an unpaired play dataset to imagine synthetic
demonstration videos. Training robot policies conditioned on these synthetic videos enable the robot
to translate demonstration videos into robot actions at test time.

3 Problem Formulation
Inference Time: Translate Human Demonstration Video to Robot Actions. The robot’s goal is
to replicate a series of tasks demonstrated in a video using a policy π(aR|sR,vH) that translates the
video into robot actions aR at state sR. The human demonstration video is a sequence of images
vH = {v0H , v1H , . . . , vTH}, where T is the length of the video.

Train Time: Learning from Unpaired Human and Robot Data. While training a policy with
paired human and robot data is feasible, collecting such data at scale is impractical. Instead, we
frame the problem as learning and leveraging aligned embeddings from unpaired data, enabling the
transfer of policies trained on robot embeddings to human embeddings.

We assume access to two datasets —a robot dataset (Drobot) of long-horizon manipulation tasks
and a play dataset (Dplay) of short-horizon human video clips showing interactions with objects
and the environment. The robot dataset, Drobot = {(ξR,vR)}, comprises pairs of state-action
trajectories and robot videos. Each robot trajectory, ξR = {(s0R, a0R), (s1R, a1R), . . . , (sTR, aTR)},
represents the sequence of robot states and actions throughout an episode. Correspondingly, the
video vR = {v0R, v1R, . . . , vTR} is a sequence of images of the robot executing the task. The play
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dataset, Dplay = {vH}, consists of human videos that do not have direct correspondences with the
robot dataset. At test time, the demonstrator’s video contains a set of tasks whose composition is
unseen by the robot during training. However, we assume that the constituent tasks are individually
covered both in Dplay and Drobot. This assumption is consistent with prior work [4].

Our goal is to train two modules: a vision encoder and a robot policy. The vision encoder maps
both human and robot videos into a shared embedding space to enable translation. We employ
a video encoder ϕ(v) to extract a sequence of embeddings z = {z0, z1, . . . , zT } for each frame
from all videos1. Then, given a human demonstration video vH, we generate a sequence of latent
embeddings zH. We aim to train a policy that conditions on the sequence of embeddings to predict
robot actions π(aR|sR, zH) without access to paired human and robot data. We discuss how to train
both the encoder and the policy in Section 4.

4 Approach
We present RHyME, a one-shot imitation learning algorithm that translates human videos into robot
actions, without paired data. Before policy training, we first train a video encoder using a dataset
of unpaired human and robot videos (Section 4.1). Then, this trained video-encoder is frozen and
utilized for retrieval during policy training (Section 4.2). At train time, given just a robot trajectory,
RHyME imagines a corresponding demonstration by retrieving and composing short-horizon human
snippets. It then trains a policy to predict robot actions, conditioned on the imagined demonstration.
We discuss details of the retrieval, training process, and video embeddings below.

Algorithm 1: RHyME: Retrieval for Hybrid im-
itation under Mismatched Execution

Input: Robot Dataset Drobot, Human Play
Dataset Dplay, Video Encoder ϕ(z|v)
Output: Trained Robot Policy πθ(a|s, z)
Initialize Robot Policy πθ

while not converged do
Get robot video and actions
ξR,vR ∼ Drobot

Generate robot embeddings zR = ϕ(vR)
// Retrieve human embeddings

ẑH ← Imagine-Demo(zR,Dplay)
// Hybrid Training

for (st, at) in ξR do
// Condition on imagined demo

Update-Policy(at, πθ(st, ẑH))
// Condition on robot video

Update-Policy(at, πθ(st, zR))

Return Trained Robot Policy π

Algorithm 2: Imagine-Demo: Retrieving
Matched Human Embeddings

Input: Robot Embeddings zR, Human Play
Dataset Dplay, Video Encoder ϕ(z|v),
Segment Length K, Distance Function d
Output: Imagined Demo ẑH
Initialize empty demo ẑH ← {}
// Divide long-horizon robot sequence

into short-horizon clips

ZR = {z1:KR , zK+1:2K
R , . . . , zT−K+1:T

R }
for robot segment zi:i+K

R in ZR do
// Find closest short-horizon clip

embedding in play dataset

ẑH ← argminzH∈Dplay
d(zH, zi:i+K

R )
// Extend imagined embedding

sequence with retrieved demo

ẑH.extend(ẑplay)
Return Imagined Demo ẑH

4.1 Training the Vision Encoder
We align the human and robot video embeddings in three ways: visually, temporally, and at the
task level, all without requiring trajectory-level correspondences. We employ unsupervised losses
Lvis(ϕ) and Ltemp(ϕ) for visual and temporal alignment, following prior works [44, 45], and intro-
duce an optional task alignment loss Ltask(ϕ).

Visual Alignment. To align human and robot embeddings (zR, zH), we use SwAV [44], a self-
supervised method that clusters images based on shared visual features. SwAV learns a set of K
prototype vectors, to which each image is assigned. The SwAV loss Lvis(ϕ) updates both the en-
coder and prototypes, aligning human and robot videos by clustering similar visual features.
Temporal Alignment. To align temporally adjacent frames in human and robot videos, we use Time
Contrastive Loss [45]. This loss encourages embeddings of frames close in time to be similar. For
each frame zt, we define a positive set z+ of frames within a temporal window w, and a negative set
z− for frames outside this window. Using the contrastive loss Ltemp(ϕ), we pull embeddings from

1We encode a 1-timestep sliding window of 8 neighboring images to generate each image embedding.
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the positive set closer and push negative set embeddings further apart, capturing temporal continuity
across videos.
Task Alignment. Task-level alignment Ltask(ϕ) is used when a small set of paired human and robot
snippets is available. Unlike frame-level methods, this aligns video embeddings of the robot zR and
demonstrator zH. We compute the optimal transport distance d(zR, zH) to measure the similarity
between two sequences of video embeddings. We then apply a contrastive learning objective (INFO-
NCE [46]) to pull matched embeddings closer and push different-task embeddings apart. The final
task alignment loss is: Ltask(ϕ) = −

∑
i

exp(−d(zR
i,zH

i))
exp(−d(zR

i,zH
i))+

∑
j ̸=i exp(−d(zR

i,zH
j))

Our final loss function for training the visual encoder ϕ is:

L(ϕ) = λvisLvis(ϕ) + λtempLtemp(ϕ) + λtaskLtask(ϕ) (1)

where λtask = 0 by default and non-zero only with access to short-horizon paired data.

4.2 Training the Robot Policy
Training Overview. Algorithm 1 details our approach to train robot policy πθ using both robot
trajectories and imagined human demonstration videos. The training process has two stages.
Stage 1: Create a Paired Dataset. For each robot trajectory ξR and video vR in Drobot, we encode
the robot video into embeddings zR = ϕ(vR) using the learned video encoder ϕ. We then retrieve
imagined human embeddings ẑH by aligning zR with demonstration snippets from the play dataset
Dplay, through the function Imagine-Demo. This produces a paired dataset Dpaired containing
(ẑH, zR, ξR).
Stage 2: Train Policy on Paired Dataset. The policy πθ is trained on the paired dataset Dpaired in
a hybrid fashion. For each element in Dpaired, we update the policy in two modes —Mode 1: The
policy is conditioned on the robot video embeddings zR to predict actions πθ(at|st, zR), Mode 2:
The policy is conditioned on the imagined human demonstration embeddings ẑH to predict actions
πθ(at|st, ẑH). By alternating between these two modes, the policy learns to generalize from both
robot and imagined human videos, enabling it to handle execution mismatches.
Imagining Human Demonstration Videos. Algorithm 2 details the retrieval process for imagining
a sequence of human embeddings. We break the robot’s video into short-horizon windows and com-
pare the embeddings with those from the play dataset, retrieving snippets with the lowest sequence-
level distance. These retrieved snippets are concatenated to form an imagined long-horizon human
demonstration video. The key challenge is defining a distance function d(zR, zH) that can handle
video sequences of varying lengths. We propose two methods to compute this distance: Optimal
Transport Distance and Temporal Cyclic Consistency (TCC) Distance.
Method 1: Optimal Transport Distance. We calculate the Wasserstein distance (Optimal Trans-
port) [47] between the human and robot video embeddings, i.e., the cost of the optimal transport
plan that transfers one sequence of video embeddings into another. The robot’s embedding distribu-
tion is defined as ρR = {1/T, 1/T, . . . , 1/T}, and the human’s embedding distribution is defined
as ρH = {1/T ′, 1/T ′, . . . , 1/T ′}, where T and T ′ are the lengths of the video sequences respec-
tively. The cost function for the transport is C ∈ RT×T ′

where Cij is the cosine distance between
the robot embedding ziR and the human embedding zjH . Our goal is to find the optimal assign-
ment M ∈ RT×T ′

that transports the distribution from ρR to ρH while minimizing the cost of the
plan. Formally, we need to find M∗ = argmin

M

∑
i

∑
j C

ijM ij . After solving the optimal trans-

port assignment, the distance function is the cost of the plan, i.e., d(zR, zH) =
∑

i

∑
j C

ijM∗ij . In
practice, we optimize an entropy-regularized version of this problem to find an approximate solution
efficiently using the Sinkhorn-Knopp algorithm [47].
Method 2: Temporal-Cyclic Consistency (TCC) Distance. We calculate the TCC loss between
human and robot videos following [48] which computes cycle consistency between robot video
embeddings zR = {z1R, z2R, . . . , zTR} and human video embeddings zH = {z1H , z2H , . . . , zT

′

H }. For
each robot frame ztR, we first compute a similarity distribution α of zRt with respect to the human’s
embeddings, to find a soft-nearest neighbor z̃H =

∑T ′

t′=1 αtz
t′

H . Then, z̃H cycles back to the robot
video by again computing its similarity distribution β with respect to robot video embeddings to get
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Figure 2: Performance on Mismatched Execution Datasets. We present results on three datasets (left). As
the demonstrator’s actions visually and physically deviate further from those of the robot, policies trained with
our framework RHyME consistently outperforms XSkill measured by task recall and imprecision rates.

Figure 3: Realworld Results. (Left) Task Embeddings: We use t-SNE to visualize cross-embodiment latent
embeddings from the human and robot completing three tasks. (Right) Task Completion: We compare the
performance of RHyME with XSkill on seen and unseen long-horizon tasks specified by human prompt videos.
Opaque segments indicate Task Completion rate, and augmented transparent bars indicate Task Attempt rate.

its soft-nearest neighbor z̃tR =
∑T

t=1 β
tztR. The TCC distance for a robot frame ztR is the mean

square error with its cycled-back frame z̃tR as ℓtcc = ||ztR − z̃tR||2. We define the video-level TCC
distance function by summing over the frame-level losses d(zR, zH) =

∑T
t=1 ℓtcc(z

t
R).

We hypothesize that video retrieval using TCC distance can be inaccurate in two cases: (1) When
human and robot embeddings differ due to variations in execution speed or style, leading to poor
frame alignment. (2) When multiple robot embeddings correspond to a single human frame, as in
sequential robot tasks versus parallel human actions, causing ambiguity.

5 Experiments
Setup. Simulation: We evaluate our approach using the Franka Kitchen simulator [49], where a
7-DOF Franka arm performs 7 different tasks. We generate 3 cross-embodiment video datasets each
progressively increasing the embodiment and execution mismatch, which contain 580 long-horizon
(∼25 seconds) robot trajectories completing a sequence of 4 tasks and a bank of cross-embodiment
demonstrator play data (> 3 hours) for training our models. First, in SPHERE-EASY, we replace
the robot’s visual rendering with a sphere following the gripper’s position, creating a visual gap
between robot and demonstrator. Second, in SPHERE-MEDIUM, we introduce manipulation style
mismatches by applying randomized motion primitives to the demonstrator, such as the robot drag-
ging an object while the demonstrator lifts and carries it. Finally, in SPHERE-HARD, we create a
further divergence where the demonstrator performs two tasks simultaneously, similar to how hu-
mans use two hands. Fig. 2 (left) illustrates the cross-embodiment datasets. Realworld: We use
a 7-DOF Franka arm to perform 4 different tasks. We train our models on 40 long-horizon (∼25
seconds) robot trajectories completing a sequence of 3 tasks and ∼15 minutes of human play data
with natural execution mismatch, holding out unseen compositions of 3 tasks for testing.
Baselines. XSkill [4] simply conditions on robot videos during train-time, and uses its shared rep-
resentation space to zero-shot generalize to inputs of human videos at test-time. OraclePairing [7,
8] is the gold-standard approach, assuming an oracle pairs human demonstrations with robot trajec-
tories, enabling conditioning on the human at train time. Our approach, RHyME, finds a middle
ground. Without pairing, it imagines human videos that perform the same tasks as a robot trajectory
(Section 4.2) by exploiting sequence-level correspondences. We compare two variants of our algo-
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Figure 4: Cross-Embodiment Vision Embeddings. (Left) Visualizing task embeddings. We use t-SNE to
visualize cross-embodiment latent embeddings generated by robot and demonstrator when executing different
tasks on all three datasets. (Right) TCC Failure Example: The robot and video clip are equivalent, but specific
frames have high TCC losses. For example, a frame showing the robot performing the ‘kettle’ action has a high
loss due to its nearest neighbor in the video performing both ‘kettle’ and ‘light’ actions. This frame cycles back
to the robot performing ‘light’, which is mismatched.

rithm, RHyME-TCC and RHyME-OT, which differ in their distance functions used for retrieval. In the
realworld, we use XSkill [4] as a baseline for RHyME-OT. We also show how vision representations
can be improved using short-horizon robot-demonstrator task pairs.

Evaluation and Success Metrics. At test-time, we provide the robot policy with long-horizon hu-
man videos as prompts. Simulation: We evaluate one-shot imitation performance across 20 different
demonstrator videos, rolling out the robot policy from the last 5 model checkpoints, yielding 100
total trials per dataset. We measure Task Recall, which assesses recall by counting the successfully
completed tasks shown in the demonstrator’s video, and Task Imprecision, which measures impre-
cision and reports the percentage of tasks the robot attempts incorrectly—those not specified in the
demonstrator’s video. Realworld: We evaluate performance across 30 different human videos (20
seen, 10 unseen). We break down Task Recall into two metrics: Task Attempts and Task Comple-
tions, which measure (a) the robot’s ability to attempt tasks specified by the human video and (b)
the low-level control policy’s ability to fully complete the tasks.

Q1. How does performance vary across different levels of execution mismatch?

As the cross-embodiment demonstrator’s execution deviates further from those of the robot, policies
trained with our framework RHyME consistently outperform XSkill (Fig. 2), with the largest gap in
the bimanual demonstrator setting SPHERE-HARD (53% vs 1%). The OraclePairing baseline
serves as an upper bound on performance.
Fig. 4 (left) investigates this trend by probing the visual representations of the video encoder ϕ,
common across policies. We plot the image embeddings of the robot and demonstrator across three
different tasks using a t-SNE plot. As execution mismatch increases, the robot and demonstrator
embeddings become less clustered by task, supporting XSkill’s inability to zero-shot transfer to
demonstrator embeddings at test-time in SPHERE-HARD. RHyME algorithms overcome this prob-
lem and successfully retrieve the correct demonstration videos at train-time by reasoning over se-
quences of embeddings. However, RHyME-OT outperforms RHyME-TCC across all three datasets in
both metrics, suggesting inaccurate train-time retrievals with TCC.

Q2. How does RHyME perform on real kitchen tasks when prompted with human videos?

With natural visual and execution mismatches between human and robot videos, RHyME consistently
outperforms XSkill when prompted with both seen and unseen human prompt videos (Fig. 3
Right). We observe marginal benefits in Task Attempts and Task Completions when faced with seen
task compositions, but record significant improvements in both metrics (83% vs. 50% and 67% vs.
33%, respectively) in the unseen setting which our framework aims to generalize to. These results
encourage greater investigation into the performance of both methods.

Q3. How does video retrieval using Optimal Transport and TCC impact policies at test-time?
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As task embedding clusters deviate due to execution mismatches, we observe inaccuracies in TCC
retrievals: in SPHERE-HARD (Fig. 4 (right)) when both clips complete the same two tasks, a bi-
manual task embedding lies in between two robot task clusters which results in cycling-back to the
incorrect robot frame, leading to high task imprecision. RHyME-OT performs strictly better across
datasets (Fig. 2).

Figure 5: Optimal Transport Distances. We
measure the similarity between robot and
demonstrator videos on the SPHERE-HARD
dataset by computing the cost of the Opti-
mal Transport (OT) plans. The sum over the
entire transport cost matrix costs yields the
distance between videos. OT costs are low-
est when tasks are the same between videos
(highlighted by a tick mark).

The key reason for this performance difference is that op-
timal transport computes distances by matching videos
across a sequence of embeddings. Fig. 5 visualizes the
cost of the optimal transport plan between prompt robot
clips and demonstration videos in the hard SPHERE-
HARD dataset. Comparing a robot clip doing two tasks
(e.g. kettle and light), the transport cost across assign-
ments is minimum only when compared to the demon-
strator performing those same two tasks. TCC, on the
other hand, attempts to establish one-to-one correspon-
dences between the robot and demonstration frames,
which are lacking in this dataset.

Q4. Where does RHyME succeed, and what are common
failure modes of other methods?

We visualize the vision embeddings using t-SNE (Fig. 3
Left). We find that task embeddings in the realworld
are generally clustered by task, but tend to deviate be-
tween human robot embeddings when completing the
Light Switch task. This is directly reflected in the performance of both methods, as we observed
that XSkill never attempts the task when prompted with human embeddings.
On the other hand, in unseen settings, RHyME always attempts the Light Switch task and completed
it 9 out of 10 times. The Optimal Transport retrieval (Sec. 4) used to imagine the paired dataset
recognizes can correctly match human and robot clips completing the same task by reasoning over
the distribution of embeddings rather than relying on perfect embedding alignment, so RHyME is
able to accurately pair action labels with imagined human videos at train time and obtain better
performance (Fig. 3 Right).

Figure 6: Performance Improves by
Pairing Skills on SPHERE-HARD. For
both non-retrieval and retrieval-based meth-
ods, performance improves when fine-tuned
when the visual encoder is finetuned short-
horizon robot-demonstrator snippet pairs us-
ing a contrastive optimal transport loss.

Q5. Does fine-tuning visual representations with task-
equivalent pairs improve one-shot imitation?

Following Section 4.1, we assume access to short-horizon
task pairings across embodiments and apply Ltask(ϕ) on
vision representations in the SPHERE-HARD setting. We
find that encouraging induced distributions over embed-
dings to be similar lifts the performance of both XSkill

and RHyME-OT (Fig. 6), and scales up with more paired
clips. Ultimately, comparing induced distributions over
embeddings with optimal transport is a beneficial design
choice for matching clips at a task-level in the face of
execution mismatches, as RHyME-OT (0% fine-tuned)

still significantly outperforms XSkill (fine-tuned).

6 Discussion and Limitations
This work addresses the challenge of one-shot imitation in the presence of mismatched execution by
the demonstrator. We propose RHyME, a novel framework that leverages task-level correspondences
to bridge frame-level visual disparities between the robot and the demonstrator, enabling the learning
of a video-conditioned policy without paired data.

Limitations. While the exact test-time task compositions are unseen during training, our method
relies on transitions between task pairs in the robot dataset to learn transition actions. This limits the
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ability to learn entirely new task sequences. We note that our method still generalizes well to new
compositions when such transitions are present.
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A Appendix

We report metrics associated with Fig 2 in Table 2 and run additional ablations to investigate the
importance of segment lengths when performing retrievals. We additionally provide more details
about our model architecture and implementation.

Model −→ BASELINE OURS GOLD STANDARD

Metric ↓ XSKILL RHYME-TCC RHYME-OT ORACLEPAIRING

E
A

S
Y Task Recall 82% (± 3.5) 75% (± 1.7) 96% (± 1.3) 92% (± 2.7)

Task Imprecision 5% (± 1.7) 5% (± 1.7) 5% (± 1.0) 7% (± 2.3)

M
E

D
. Task Recall 40% (± 2.7) 57% (± 4.2) 72% (± 5.8) 92% (± 2.9)

Task Imprecision 2% (± 1.1) 51% (± 3.4) 4% (± 1.9) 0% (± .00)

H
A

R
D Task Recall 1% (± 1.2) 34% (± 4.2) 53% (± 5.5) 92% (± 2.2)

Task Imprecision 53% (± 5.2) 65% (± 4.5) 28% (± 5.1) 1% (± 1.1)

Table 1: We report exact metrics and standard errors for the bar plots in Fig 2.

We also report metrics for the bar graphs in Fig. 3 for real world experiments.

Model −→ XSKILL RHYMEMetric ↓

S
E

E
N Tasks Completed 52% (± 4.2) 58% (± 2.0)

Tasks Attempted 75% (± 2.9) 83% (± 2.3)

U
N

S
E

E
N Tasks Completed 33% (± 1.5) 67% (± 0.0)

Task Attempted 50% (± 1.5) 83% (± 0.0)

Table 2: We report exact metrics and standard errors for the bar plots in Fig 3.

A.1 Segment Length for Retrievals

In this section, we vary the segment length K from Algorithm 2 for RHyME-OT on the Sphere-
Hard dataset and report Task Recall and Task Imprecision results in Table 3. Instead of a constant
K for all videos, we deploy K as a function of the video length: that is, for a sequence of T images,
K = T

K′ where K ′ is the total number of short horizon segments we split the video into. Increasing
K ′ yields more demonstrator clip retrievals. We qualitatively find that the synthesized videos with
lower K ′ often only consist of a strict subset of tasks from the original robot demonstration (thus
yielding the highest task imprecision when K ′ = 1), while those from higher K ′ are more likely
to accurately capture all the tasks in the robot demonstration. For our results throughout the paper,
we simply select K ′ = 2, but we show that as long as the segment lengths are not too long (i.e. K ′

is not too small), Optimal Transport retrievals provide similar results regardless of segment length.
While higher values of K ′ may lead to the construction of demonstrations with redundant tasks, the
Transformer-based Skill Alignment Transformer described in Section A.3 is able to learn relations
between the robot’s current state and the tasks in the entire demonstration video to extract the most
relevant task embedding for the policy.

Video Splits K ′ −→ RHYME-OT

Metric ↓ K ′ = 1 K ′ = 2 K ′ = 3 K ′ = 4

H
A

R
D Task Recall 49% (± 2.9) 53% (± 3.6) 58% (± 4.5) 53% (± 2.6)
Task Imprecision 28% (± 4.2) 21% (± 3.7) 12% (± 3.8) 14% (± 3.7)

Table 3: We report Task Recall and Task Imprecision rates when varying the number of short horizon segments
K′ we divide each long-horizon robot demonstration into to perform retrievals with RHyME-OT on the Sphere-
Hard dataset

.
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A.2 Representation Alignment

We utilize common representation alignment methods [4, 13, 44–46] to train our vision encoder ϕ
that is used to produce image embeddings from videos, and describe them briefly.

Temporal Alignment. This alignment method leverages that image frames temporally close in a
video are likely to be similar. We utilize the Time Contrastive Loss, used extensively in learn-
ing representations for robotics [13, 45]. For an image embedding at timestep t, zt, we define
a positive set z+ = {zt′ , |t′ − t| ≤ w} and negative set z− = {zt′ , |t′ − t| > w} (where
w is a hyperparameter specifying the positive window size). Intuitively, zt should be closer to
the positive set embeddings and further from the negative set embeddings measured by a similar-
ity function s(zt, zt

′
). Using the contrastive INFO-NCE [46] learning objective, we can define

Ltemp(ϕ) = −
∑

z+∈z+

exp(s(zt,z+)/τ)
exp(s(zt,z+)/τ)+

∑
z−∈z− exp(s(zt,z−)/τ) , with temperature parameter τ .

Visual Alignment. We utilize SwAV [44], a self-supervised learning algorithm to cluster im-
ages based on visual features. The algorithm learns a set of K learnable prototype vectors,
c = {c1, c2, . . . , cK} that are matched with individual images. For training these representations,
an image is first augmented in two different ways producing different embeddings z1 and z2. Then,
each embedding’s soft assignment to the K prototypes is computed using the Sinkhorn-Knopp algo-
rithm to produce codes, q1 and q2, K dimensional assignment probabilities to each prototype. The
SwAV loss function leverages that both embeddings, only differentiated by augmentations, should
map to the same codes. The loss function Lvis(ϕ, c) = lswav(z

1, q2) + lswav(z
2, q1), updates both

the video encoder as well as the prototype set. We refer the reader to the original paper for more
details. As used by XSkill [4], we map demonstrator and robot images to the same set of prototypes
using this loss function, where batches only consist of images from one embodiment. In our exper-
iments, we show that this way of learning representations maps robot and demonstrator tasks to the
same embedding space, but only when their object movements are similar.

A.3 Model Architecture Details

Video Encoding

The video encoder ϕ is modeled by a CNN-based vision backbone and transformer encoder. ϕ indi-
vidually extracts embeddings for each frame in a demonstration video, where in practice each frame
is represented by a 1-timestep sliding window of 8 neighboring images passed into the network to
produce a 256-dimensional flattened vision feature vector. At train time, we perform random image
augmentations to compute a self-supervised loss [44] and use K = 128 learnable prototype vectors
implemented as a linear layer with no bias as described in Section A.2.

Policy Structure

The policy π consists of two components: a Skill Alignment Transformer (SAT) (introduced by [4])
to model p(zt+1|st, zR), which allows the policy to extract zt+1, the next task embedding induced
by progressing in the tasks, based on the robot state st and prompt video zR. The second component
is a task-conditioned policy π(at|st, zt+1), which essentially serves as an inverse dynamics model
to decode the robot’s current state st and the next task embedding zt+1 (predicted by SAT) into the
correct action. The policy is modeled by Diffusion Policy [50].

Hyperparameters

We borrow hyperparameters from prior works [4, 44] for Temporal Alignment and Visual Alignment
(Section A.2), and present hyperparameters for our retrieval algorithm IMAGINE-DEMO (Alg. 2), as
well as the optional hyperparameters for fine-tuning the visual representation space (Section 4.2).
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IMAGINE-DEMO Hyperparam. ↓ Value

OT similarity temperature 0.05
TCC similarity temperature 0.1

Policy π Hyperparam. [50]↓ Value

Observation Horizon 2
Action Horizon 2
Action Pred. Horizon 16
State - Vision Feature Dim. 64
State - Proprio. Feature Dim. 9
Action Dim. 9
Batch Size 128
Training iteration 200
Learning rate 1e-4
Weight decay 1e-6
Optimizer ADAM

Video Encoder ϕ Hyperparam. [4] ↓ Value

Video Clip length l 8
Sampling Frames T 100
Sinkhorn iterations 3
Sinkhorn epsilon 0.03
Prototype loss coef 0.5
Prototype loss temperature 0.1
TCN loss coef 1
TCN positive window wp 4
TCN negative window wn 12
TCN negative samples 16
TCN temperature τtcn 0.1
Batch Size 28
Training iteration 100
Learning rate 1e-4
Optimizer ADAM
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