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Abstract7

Recent studies have proposed employing biologically plausible recurrent neural networks (RNNs)8

to investigate flexible decision-making in the brain. However, the mechanisms underlying the9

integration of bottom-up sensory inputs and temporally varying top-down factors (such as task10

instructions and selective attention) remain poorly understood, both within the context of these11

models and the brain. To address this knowledge gap, we trained biologically inspired RNNs on12

complex cognitive tasks that require adaptive integration of these factors. Through comprehensive13

analyses of RNNs and neural activity from mouse primary visual cortex, we show that sensory14

neurons in low-level areas possess the remarkable ability to multiplex and dynamically combine15

both bottom-up and top-down information via local inhibitory-to-inhibitory connections. Our16

results shed light on the role of disinhibitory circuits in the intricate interplay between bottom-up17

and top-down factors to enable flexible decision processes.18

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2023.10.17.562828doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.17.562828
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction19

Successfully navigating complex environments requires neural systems to efficiently encode and20

process incoming sensory inputs alongside contextual cues and task goals [1–3]. This capacity to21

integrate across different sources of information allows the brain to dynamically convert identical22

sensory inputs into diverse behavior in a context-dependent manner. Sensory inputs can be under-23

stood as bottom-up signals with regards to their encoding within lower cortical areas. In contrast,24

top-down factors refer to information regarding behavioral relevance of each stimulus, prior expec-25

tations about sensory statistics, and task contexts which provide guidelines for how the encoded26

sensory information should be interpreted and mapped onto behavior [4–8].27

The ability to rapidly adapt to temporally varying top-down factors is a hallmark of cognitive28

flexibility and has been primarily attributed to the frontoparietal networks and medial temporal29

lobes [9–15]. However, the extent to which lower cortical areas contribute to this adaptive process is30

not well understood. Past works have shown that responses within sensory areas could be modulated31

by top-down signals such as selective attention [16–25], and that non-sensory information such as32

memory content can be decoded from activity within sensory areas [26–29]. Yet, it remains poorly33

understood how these neural codes complement computations that take place in higher cortical34

areas. This knowledge gap highlights the need for deeper insight into the computational principles35

and circuit mechanisms that enable flexible information processing for adaptive behavior.36

In nature, where identical stimuli elicit diverse responses, inhibition may be a key mechanism37

in averting conflicting behaviors. This ensures the selection of appropriate sensorimotor mapping,38

aligning behavioral outcomes with the current task contexts rather than being driven solely by the39

stimuli. This account of inhibition as a modulatory mechanism, crucial for shaping task-optimized40

behavior, has been supported by past studies demonstrating the role of inhibition for the integration41

of top-down factors within the cortical hierarchy [17, 30–32]. In addition, discoveries of specialized42

sensory microcircuits that rely on inhibitory-to-inhibitory connections among local interneurons43

further highlight the importance of inhibitory function in flexible information processing [33–36].44

Notably, disinhibitory circuits have been proposed as key in facilitating top-down modulation of45

sensory coding [37–40], highlighting the plastic nature of neural codes within lower cortical areas.46

This account underscores the flexibility of neural codes along the cortical hierarchy and suggests a47
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potential mechanism for sensory multiplexing [41, 42].48

Models based on recurrent neural networks (RNNs) of continuous-variable firing rate units have49

been widely used to provide computational explanations of experimental findings and to investigate50

neural correlates of cognitive functions, including sensory discrimination and working memory [9,51

43–49]. However, these studies primarily examine scenarios in with task goals and contextual cues52

remain fixed over time. This results in the models basing their responses largely on bottom-up53

processes such that the generated behaviors are mainly governed by the encoding of sensory inputs.54

This approach may not fully capture the dynamics of the natural environment, where top-down55

information about current task demands is consistently present, exerting continuous influence on56

how we optimize the conversion of sensory inputs into appropriate behaviors. Importantly, these57

top-down factors, including selective attention, task contexts, and prior knowledge, can exhibit dis-58

tinct temporal structures, imposing varied but complementary guiding rules on how sensory input59

should be processed. This results in temporally rich and highly dynamic decision-making, a phe-60

nomenon that has proven challenging to investigate in artificial neural network models, including61

RNNs. Neglecting to account for the nuanced dynamics of top-down factors and their temporal62

influence limits our understanding of how neural systems efficiently integrate bottom-up and top-63

down signals to consistently produce optimal behavior. Additionally, we can gain better insights64

into this dynamic process through modifying the architecture of past models to incorporate several65

fundamental properties inherent in biological neural networks. These constraints, such as heteroge-66

nous neuronal timescales, cortical hierarchies, and the balance between inhibitory and excitatory67

connections, can offer valuable insights into the functionality of neural networks and the types of68

computations they can perform [50–53].69

To address these knowledge gaps, we designed dynamic decision-making tasks that require70

seamless integration of bottom-up sensory inputs with top-down factors. These tasks included71

diverse top-down signaling with varying temporal dynamics as well as orthogonal manipulation72

of bottom-up and top-down signals. By training biologically plausible RNNs on these tasks and73

parsing the trained networks, we show that disinhibitory circuit motifs governed by inhibitory-to-74

inhibitory connections are critical for the intricate interplay between the two essential components75

of decision processes. By extending our model to incorporate the functional cortical hierarchy, we76
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further demonstrate that feedback signaling from higher-level areas and selective local inhibition77

enable lower-level areas to differentially process identical sensory inputs in a context-dependent78

manner. Moreover, we tested our model predictions using publicly available data recorded from79

the mouse primary visual cortex [54] and confirmed that local inhibitory-to-inhibitory connections80

within the visual cortex play an integral role in encoding top-down information.81

Our results offer mechanistic insights into the dynamic integration of top-down and bottom-up82

signals during flexible information processing in a biological context. Within this comprehensive83

theoretical framework, we elucidate the computational principles employed by RNN models to84

flexibly utilize distinct top-down signals for guiding the analysis of sensory input, thereby optimizing85

behavior.86

Results87

Recurrent neural network (RNN) model and dynamic decision-making tasks. To un-88

derstand the cortical computations required for flexibly and optimally integrating bottom-up and89

top-down information, we employed a biologically plausible recurrent neural network (RNN) model90

consisted of continuous-variable firing units (model schematic shown in Fig. 1a right; see Methods)91

and trained the model to perform novel dynamic decision-making tasks (Fig. 1a,b). We utilized a92

gradient descent approach to train the RNN model, optimizing the recurrent connectivity weights,93

readout output weights, and synaptic decay time constants (see Methods for details). In addition,94

Dale’s principle was enforced using the weight parametrization method introduced in [43].95

These RNNs were employed to execute flexible decision-making tasks designed to achieve several96

distinct objectives. The first aim was to investigate how identical sensory inputs might be processed97

differently depending on distinct top-down inputs. These tasks also allowed for the independent98

manipulation of both bottom-up and top-down inputs. Lastly, the task incorporated separate99

stimulus modalities, each providing independent sources of top-down information. To meet these100

criteria in task design, we modified the classic delayed match-to-sample (DMS) task, commonly101

used in experimental studies [55–59], to develop one-modality DMS and two-modality DMS tasks.102

For the one-modality DMS task (Fig. 1a), the RNN model received one stream of input stimulus103

signal (bottom-up) containing two sequential stimuli separated by a delay period. Each stimulus104
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was set to either +1 or -1. The model additionally received a task cue signal (top-down), indicating105

whether the network should employ the pro- or anti-DMS stimulus-response mapping. For the pro-106

DMS task (a task cue of +1 during the instruction period), the network was required to generate107

an output of +1 if the signs of the two stimuli matched, and -1 otherwise. For the anti-DMS108

(a task cue of -1 during the instruction period), the network was required to generate a negative109

output if the signs of the two stimuli were the same, and a positive output otherwise. The task cue110

was given either before (early instruction; 150-400 ms) or after the first stimulus (late instruction;111

650-900 ms; Fig. 1a).112

Critically, in nature, not all aspects of sensory input are relevant to the task at hand (i.e., one-113

modality DMS task). To effectively navigate this, organisms rely on additional top-down signals,114

such as selective attention, alongside direct task signals to optimize decisions. To study this more115

complex scenario, we developed the two-modality DMS task by incorporating two streams of input116

stimulus signals (bottom-up; modality 1 and modality 2) and an attention cue (top-down) which117

instructs the model which stimulus modality is behaviorally relevant on a given trial and thus118

should be attended to (Fig. 1b; see Methods). An attention signal of -1 during the instruction119

period informs the model to focus on modality 1 while ignoring modality 2, and vice versa for a +1120

attention cue signal. The task cue manipulation is identical to that used in the one-modality DMS121

task. Similar to the one-modality task, the timing of the instruction period was manipulated such122

that task and attention cues were delivered either before (early instruction) or after the presentation123

of the first stimulus (late instruction).124

For each decision task (one-modality DMS and two-modality DMS), we trained 20 RNNs to125

perform the task with high accuracy (> 95%; see Methods). For the one-modality DMS, the models126

performed the task accurately regardless of the timing of the instruction window (Fig. 1c). The127

model performance on the two-modality DMS was lower when the top-down cues were provided128

early (p < 0.001, two-sided Wilcoxon rank-sum test Fig. 1c). This can be attributed to the129

model’s requirement to retain both the task and attention signals for a longer duration in the130

early instruction condition.131

Dynamic encoding of top-down information by RNNs. After training RNNs to perform132

the dynamic decision tasks, we next investigated the effects of the top-down factors (task and133
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attention cues) on the network dynamics. To visualize RNN dynamics in response to distinct134

external inputs of both bottom-up and top-down signals under various conditions, we plotted135

the kinetic energy landscape (see Methods) of a representative RNN. This was achieved by using136

two principal components (Fig. 2a,b; see Methods). The kinetic energy landscape provides a useful137

guideline for understanding RNNs as dynamical systems. It offers a visual summary that illustrates138

how external inputs shape the structure of fixed points and “slow” points (local minima in the139

energy landscape) as well as neural trajectories within the state space [60–62]. Therefore, seeking140

to identify these fixed and “slow” points in the two-dimensional energy landscape enabled us to141

gain insight into how the task and attention signals influenced the RNN network dynamics.142

We hypothesized that the presence of top-down cues would condition network dynamics even143

before the arrival of the bottom-up sensory inputs. In addition, we postulated that opposing cues144

would correspondingly lead to separable shifts in fixed point structure, which we first visualized145

through the energy landscape of the network during the first instruction period (150-400 ms, see146

Fig. 1a). For the one-modality DMS task, the energy landscape of the example RNN model147

displayed an area with an inverted U-shape where the kinetic energy was notably low (darker148

blue area in Fig. 2a). The local minimum of the landscape stayed around the center of this U-149

shaped profile during the period before the first stimulus presentation when the task cue was not yet150

presented (no instruction). However, when the task cue was presented early (early instruction), the151

local minimum shifted to the left and to the right for the pro- and anti-DMS condition, respectively152

(Fig. 2a).153

For the two-modality DMS task, the energy landscape again revealed a U-shaped region char-154

acterized by a low-energy profile (dark blue in Fig. 2b). Consistent with what we observed in the155

one-modality task, the local minimum was situated at the center of the low energy structure during156

the first instruction period for late instruction trials, where no task or attention cues were yet157

presented (no instruction). Analyzing different combinations of the task and attention cue signals158

displayed distinct local minima points along the low-energy profile. For instance, the local minima159

corresponding to the pro-DMS signal were positioned to the right of the no-instruction minima.160

Along this pro-DMS “arm” of the energy trajectory, two local minima were observed: one corre-161

sponding to the modality-one attention signal and the other to the modality-two attention signal.162
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These results suggest that network dynamics shift as a function of the combination of top-down163

attention and task signals, in a dissociable manner even before the sensory inputs arrive.164

Subsequently, we performed a quantitative fixed point search analysis [60] for different values165

of external input to the network during the first instruction period (150-400 ms, Fig. 1a). During166

this time, the network could receive either a pro-DMS, an anti-DMS, or no task cue (i.e., late167

instruction trials). We plotted network trajectories as well as fixed points discovered for each168

of these conditions in the principal component space, for the representative RNN performing the169

one-modality (Fig. 2c) and the two-modality DMS tasks (Fig. 2d). We observed that the presence170

and content of top-down signals given to the network not only altered its trajectories in the state171

space but also affected its fixed point structure. The network performing the two-modality DMS172

task exhibited a branching pattern that reflected symmetrical top-down coding across attended173

modalities for each task cue condition (anti- vs. pro-DMS).174

To further examine network dynamics as a function of distinct top-down and bottom-up in-175

formation, we performed a manifold discovery analysis, utilizing the CEBRA method [63]. This176

approach enables latent structure discovery and has the advantage of conditioning latent structure177

discovery over variables of interest. Here, we performed an unsupervised analysis with regards to178

all task covariates except for time. This ensured that adjacent time points were mapped to closer179

points in latent space and that smooth latent dynamics were obtained. This method allowed us to180

determine the latent trajectory bifurcations in the state space following presentation of stimuli and181

top-down cues in the network performing the one-modality DMS (i.e., one-modality RNN; Fig. 2e)182

and the two-modality DMS tasks (i.e., two-modality RNN; Fig. 2f–i). In the one-modality RNN,183

the trajectories during the first instruction period were separated into three pathways correspond-184

ing to the pro-DMS cue signal (light green and light purple in Fig. 2e), anti-DMS cue signal (dark185

green and dark purple in Fig. 2e), and the absence of the task cue instruction (i.e. late instruction186

condition; gray in Fig. 2e). The pro-DMS and anti-DMS pathways were then further bifurcated187

based on the identity of the first stimulus during the first stimulus period. For the two-modality188

RNN, we observed similar latent trajectories for the attended modality (Fig. 2f). However, the bi-189

furcations driven by the identity of the first stimulus were not as well separated in the unattended190

modality (Fig. 2g). This pattern held true across pro- and anti-DMS trials, which exhibited qualita-191
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tively similar bifurcations (Fig. 2h,i). These findings were further confirmed by the cross-temporal192

discriminability analysis, which revealed that the identity of the first stimulus of the attended193

modality was more robustly encoded throughout the trial duration compared to the unattended194

modality (Fig. 2j–m; see Methods). Linear support vector machine (SVM) decoding analysis also195

revealed that the top-down cue signals were robustly encoded by the RNN models (Extended Data196

Fig. 1; see Methods for more details). These results suggest that lower-dimensionality represen-197

tations of network dynamics sufficiently capture the network’s flexibility in encoding stimuli in a198

context-dependent manner, depending on stimulus relevance, as flexibly determined by top-down199

cues.200

Inhibitory units play a critical role in both encoding and maintaining top-down infor-201

mation. After establishing the model’s capacity for flexible encoding of top-down information, we202

next investigated the relative contributions of excitatory and inhibitory units in facilitating this203

process. Through dissection of the RNNs performing the one-modality and two-modality DMS204

tasks, we found that the optimized synaptic decay time constants for the excitatory units were205

significantly larger compared to the time constants of the inhibitory units (p < 0.001, two-sided206

Wilcoxon rank-sum test, Fig. 3a,b).207

Building on these findings, which indicate distinct roles for excitatory and inhibitory units,208

we conducted a series of linear support vector machine (SVM) decoding analyses. These analyses209

aimed to decode the task cue identity (anti- vs. pro-DMS) from the activity of excitatory and210

inhibitory units within RNNs engaged in the one-modality DMS task (see Methods). While the211

task cue identity could be readily decoded from the activities of both excitatory and inhibitory212

units following the cue presentation on early instruction trials, the SVM decoding accuracy was213

significantly higher for the inhibitory units throughout the trial duration (p < 0.05, 2-sample KS214

test, Bonferroni corrected across time; Fig. 3c). We observed similar trends for RNNs performing215

the two-modality DMS task (Fig. 3d). In these models, the inhibitory units also exhibited stronger216

maintenance of the attention signal compared to the excitatory units (Fig. 3e). Interestingly,217

decoding performance for stimulus identity was higher in inhibitory units for both the attended218

and unattended modalities, when compared to excitatory units (Fig. 3f,g).219

Given these findings that highlight the distinct role of inhibitory units on maintaining task-220
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related information, we next investigated their network-level implications through the functional221

connectivity patterns of inhibitory units. More specifically, we measured the functional closeness222

centrality of all units in each network across time (see Methods). Assuming that correlations223

between activation rates over time establish a metric of distance between units, it follows that224

units with greater centrality emerge as potential candidates for serving as functional hubs in their225

respective networks. While both excitatory and inhibitory units increased in centrality following226

the top-down cue presentation (early instruction) for the RNNs performing the one-modality and227

two-modality DMS tasks, the average centrality was higher for the inhibitory units after the onset228

of task and attention cue presentation (p < 0.05, two-sided 2-sample KS-test, Fig. 3h,i). Comparing229

the distribution of the centrality measure from individual units in the one-modality RNNs before230

(at 145 ms) and after (at 395 ms) the first instruction period on early instruction trials revealed231

that the centrality values of inhibitory units were distributed more widely post-instructions. This232

finding indicates the formation of inhibitory functional connectivity hubs following the top-down233

cue presentation (Fig. 3j,k). Taken together, these results suggest a central role for inhibitory units234

in encoding task-specific top-down information, as well as stimulus identity.235

Inhibitory-to-inhibitory connections carry top-down information. Given the crucial role236

of inhibitory units in encoding and sustaining top-down signals, we next investigated the neural cir-237

cuitry surrounding these inhibitory units to further elucidate their contribution to the maintenance238

of task-specific top-down information.239

Lesioning inhibitory connections to inhibitory units selective for the anti-DMS task cue (by240

reducing synaptic weights by 50%; see Methods) in a representative RNN trained to perform the241

one-modality DMS task resulted in the disruption of anti-DMS task signaling (Fig. 4a). Conse-242

quently, the network exhibited a tendency to perform the pro-DMS task irrespective of the task243

cue presented. By visualizing the neural dynamics of this lesioned RNN using CEBRA [63], we244

confirmed that the neural trajectories were no longer separated by the task cue condition during245

the first instruction period in early instruction trials (Fig. 4b).246

Motivated by these findings, we employed a systematic approach where we lesioned synaptic247

connections based on task cue selectivity (pro- vs. anti-DMS) and unit type (excitatory vs. in-248

hibitory) for the one-modality DMS task. We found that disrupting inhibitory-to-inhibitory (I → I)249
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connections led to profound impairment in task performance (Fig. 4c top; **p < 0.01, ***p < 0.001250

by two-sided Wilcoxon rank-sum test). Disrupting similarly tuned inhibitory connections impaired251

performance in both pro- and anti-DMS trials (Ia → Ia and Ip → Ip in Fig. 4c top; **p < 0.01,252

***p < 0.001 by two-sided Wilcoxon rank-sum test). However, lesioning oppositely tuned I → I253

connections resulted in greater impairment in one type of task trials (Ia → Ip and Ip → Ia in254

Fig. 4c top; **p < 0.01, ***p < 0.001 by two-sided Wilcoxon rank-sum test). We also observed255

significant changes in task performance when the I → E connections were lesioned (Fig. 4c bot-256

tom; **p < 0.01, ***p < 0.001 by two-sided Wilcoxon rank-sum test). The effects of lesioning task257

cue-specific connections were similar in the RNN models trained to perform the two-modality task258

(Fig. 4d,e). In addition, I → I connections also carried attention cue-specific information in RNNs259

performing the two-modality DMS task (Fig. 4f,g).260

These findings suggest that inhibitory-to-inhibitory connections are essential for integrating261

context-defining top-down information.262

Two-module RNN model with hierarchical organization. Recent empirical studies have263

shown that inhibitory-to-inhibitory connections within early sensory areas receive strong task-264

specific and context-based modulation by higher cortical areas [37, 54, 64].265

Based on our results thus far, which underscore the significance of I → I connections in contex-266

tual coding, we next investigated whether inhibitory-to-inhibitory connections in low-level sensory267

areas would emerge as a critical target for task-oriented top-down modulation in our model. To268

accomplish this, we developed a two-module RNN model inspired by the cortical hierarchy. In this269

model, the first module (sensory module) is modeled after the early sensory cortex and receives270

the stimulus input signal only (Fig. 5a). The first module subsequently conveys the processed271

sensory signal to the second, non-sensory module through exclusively feedforward excitatory con-272

nections. Given previous findings from animal studies that showed lack of long-range feedforward273

inhibitory connections ([31]), we trained our two-module RNNs to perform the one-modality DMS274

task without intermodule feedforward inhibitory projections. The second module of the model, de-275

signed after higher cortical areas, receives the task cue signal (Fig. 5a). Using this architecture, we276

trained 20 two-module RNNs to perform the one-modality DMS task. On average, the two-module277

RNNs took longer to learn the one-modality task compared to the one-module networks (mean ±278
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stdev, 38,571 ± 6,306 trials for the one-module RNNs vs. 55,221 ± 10,187 trials for the two-module279

RNNs; Extended Data Fig. 2).280

To investigate if the two-module RNNs processed the task cue signal in a manner similar to that281

observed in the one-module RNNs, we characterized the kinetic energy landscape and performed the282

fixed-point analysis on the two-module networks during the first instruction period (150-400 ms; see283

Methods). Similar to the landscape and energy minima seen in the one-module RNNs (Fig. 2a), we284

observed an inverted U-shaped energy landscape and displacement of energy minima as a function285

of the task cue identity (Fig. 5b). In addition, the fixed point analysis revealed a line attractor286

structure which was also displaced based on the task cue signal presented to the network (Fig. 5c).287

These results suggest that network trajectories are conditioned by a systematic shift in fixed point288

structure, which is brought about by the presence of distinct top-down signals in the form of task289

instructions.290

Characterizing the synaptic decay dynamics of the two-module RNNs revealed slower excitatory291

dynamics in the non-sensory module compared to the sensory module (Fig. 5d; p < 0.001 by292

two-sided Wilcoxon rank-sum test). The inhibitory units exhibited the opposite trend (Fig. 5e;293

p < 0.001, two-sided Wilcoxon rank-sum test). Investigating the average synaptic connection294

strength revealed strong excitatory connections within the sensory module and from non-sensory295

to sensory modules (Fig. 5f; p < 0.001, Kruskal-Wallis test followed by Dunn’s multiple comparison296

test). Interestingly, the average inhibitory signaling was the strongest within the non-sensory297

module (Fig. 5g; p < 0.001, Kruskal-Wallis test followed by Dunn’s multiple comparison test).298

Both I → E and I → I connections within the non-sensory module were significantly stronger than299

their counterparts in the sensory module (Extended Data Fig. 3). These findings are consistent300

with previous empirical evidence suggesting increased inhibitory strength and diversity along the301

cortical hierarchy [53, 65].302

Linear SVM decoding analyses in the two-module RNNs showed that the task signals were more303

readily decodable from the inhibitory units than from the excitatory units in both sensory and non-304

sensory modules (Fig. 5h,i; see Extended Data Fig. 4 for the non-sensory module results, p < 0.05,305

two-sided KS test with Bonferroni corrected across time). Most notably, the SVM decodability of306

the task signal decayed slower for the inhibitory units compared to the excitatory units in both307
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modules.308

Inhibitory-to-inhibitory connections in both sensory and non-sensory modules encode309

top-down information. Analyzing the neural trajectories of an example two-module RNN during310

the first stimulus period for early instruction trials revealed trajectory grouping based on the task311

cue identity (Fig. 6a). Lesioning I → I connections in both sensory and non-sensory modules by312

reducing the weights by 50% abolished this top-down modulation (Fig. 6b), mirroring the results313

observed in the one-module RNN (Fig. 4b). Lesioning other synaptic connections (i.e., E → E,314

E → I, I → E) did not lead to disruption of the top-down information encoding. Thus, these results315

suggest that the hierarchical, two-module RNNs also rely on inhibitory-to-inhibitory connections316

to encode contextual information.317

Performing a systematic lesioning analysis, similar to the one utilized for the one-module RNNs318

in Figure 4, demonstrated the importance of inhibitory units with opposite tuning to the task cue319

(i.e., anti- vs. pro-DMS) in the sensory module for reliably encoding the task signal (Fig. 6c). In320

addition, disrupting I → I connections within the non-sensory module severely impaired the task321

performance of all the RNNs, confirming that top-down information is primarily encoded by I → I322

connections in the non-sensory module (Fig. 6d). Lesioning feedback inhibitory connections had323

minimal influence on the task performance (Fig. 6e,f).324

These results suggest that the task cue information is encoded by I → I synapses in the non-325

sensory module. What is even more unexpected is that the top-down information is transmitted to326

the sensory module via feedback connections and encoded by I → I connections within the sensory327

module (Fig. 6a). Although some connections did not reach statistical significance, based on the328

observed trend, it is likely that I → E connections play a significant role in transmitting top-down329

information from the non-sensory module to the sensory module (Fig. 6f).330

Disinhibitory circuits in mouse primary visual cortex and RNN sensory module en-331

code top-down information. Building on the findings from the previous section, which indicate332

the role of sensory areas in encoding both stimulus-driven (bottom-up) and task-related (top-down)333

information, we proceeded to test our hypothesis. Specifically, we proposed that cortical I → I con-334

nections within early sensory processing regions represent top-down information via feedback from335

higher cortical areas. To investigate this, we analyzed a publicly available experimental data which336
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demonstrated the capability of the mouse primary visual cortex (V1) in representing contextual in-337

formation [54]. This electrophysiology dataset was collected with a linear array recording electrode338

covering all layers of V1 and preprocessed with standard filtering and spike sorting pipelines.339

In this study, during V1 activity recording, mice were trained to identify the location of a salient340

grating visual pattern (“figure”) that stood out from the visual background (“ground”) [54]. These341

patterns were distinguished based on either orientation, phase, or texture (Fig. 7a). Crucially,342

in each of these conditions, the sensory inputs chosen to fall within the exact receptive fields of343

the recorded neurons remained strictly identical in both the figure and background conditions344

(see Methods). This implies that any observed difference in figure versus ground coding within345

V1 neurons representing these receptive fields would stem from coding dependent on top-down346

feedback. This mirrors our approach in configuring our RNNs to process identical bottom-up347

sensory information under varying contexts informed by top-down cues. Therefore, any disparity348

in neural activity observed across conditions in the mouse dataset would be attributed to the349

context indicated by stimulus regions outside of the measured neural receptive field.350

First, we tested whether the activity of V1 neurons could differentiate between figure and ground351

conditions, even when the sensory information within their receptive fields remained identical. A352

successful figure vs. ground decodability would be an evidence for feedback from regions outside353

receptive fields into the measured V1 sites. Performing a linear SVM decoding analysis on the354

V1 activity to decode the condition label (figure vs. ground) revealed that the V1 responses were355

modulated by the task context (Fig. 7b; p < 0.05, permutation test, Bonferroni corrected). The356

high decoding accuracy indicates that feedback signals from regions outside the receptive fields357

robustly modulate V1 activity in response to information about task context.358

In sensory cortical areas, including V1, vasoactive intestinal peptide-expressing (VIP) interneu-359

rons send inhibitory projections to somatostatin-positive (SST) interneurons. This forms micro-360

circuitry characterized by inhibitory-to-inhibitory connections, similar to the I → I connections361

observed in the sensory module of our two-module RNN model (Fig. 5a). Leveraging the experi-362

ments within the dataset where VIP interneurons of mouse V1 were optogenetically silenced, we363

analyzed the role of VIP neurons in figure-background discrimination. Through the SVM decoding364

analysis, we observed a decrease in decoding accuracy following optogenetic silencing of V1 VIP neu-365
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rons (p < 0.05, one-sided Kolmogorov-Smirnov test, Bonferroni corrected; Fig. 7c). These results366

demonstrate the importance of intact inhibitory-inhibitory projections for successfully encoding367

top-down information in V1 circuits.368

We next utilized CEBRA [63] to analyze the neural dynamics of the sensory module in an369

example two-module RNN model during the first stimulus presentation in early instruction trials370

of the one-modality DMS task. The recovered latent space revealed distinct neural trajectories371

delineated by the task cue signal (Fig. 7d). The trajectories were initially divided into two arms372

based on the identity of the task cue (light green and light purple vs. dark green and dark purple373

trajectories in Fig. 7d). Within each arm, the trajectories were further separable by the first374

stimulus identity (+1 or -1). Removing all the inhibitory-to-inhibitory connections within the375

sensory module abolished the effects of the task signal in the sensory module (Fig. 7e). These results376

highlight a convergence between theoretical models and experimental evidence for the importance377

of feedback into lower sensory areas in coding top-down information.378

Performing the cross-temporal discriminability analysis on the sensory module across all 20379

trained two-module RNNs demonstrated that the task cue identity could be reliably decoded,380

providing additional confirmation of the top-down modulation imposed by the non-sensory module381

(Fig. 7f; see Methods). When the sensory I → I connections were removed, the task cue identity382

could not be decoded as reliably as in the intact model (Fig. 7f), indicating the crucial role of these383

connections in facilitating top-down modulation within the network architecture.384

Introducing retro-cue condition elicits shift in strategy. Identifying relevant sensory stimuli385

and determining the timing of their relevance is often dynamic in the real world. To better capture386

this, we modified the two-modality DMS task by introducing a retro-cue condition as illustrated387

in Figure 8a. The task still involves two streams of stimuli (modality 1 and modality 2) along388

with the task cue (pro- and anti-DMS). In this task version, the task cue was fixed to be given389

before the first stimulus; see Methods). Notably, in this modified version, the attention cue may be390

presented before the first stimulus (early instruction), after the first stimulus (late instruction), or391

after the second stimulus (retro-cue), as depicted in Figure 8a. This modification provides a more392

nuanced exploration of attentional processes by allowing flexibility in the timing of attention cue393

presentation.394
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We trained 20 one-module RNNs to perform this modified two-modality DMS task. We then395

compared the resulting network dynamics for the case where top-down cues (both task and attention396

cue signals) were given before the first stimulus against the dynamics observed from the RNNs397

trained for the original two-modality DMS task (Fig. 2). Applying CEBRA to an example RNN398

trained for the modified two-modality DMS task revealed that the trajectories for the attended399

modality closely resembled those obtained from the example RNN trained for the original two-400

modality DMS (i.e., compare Fig. 8b with Fig. 2f). The trajectories were initially distinguished by401

the task cue (pro- vs. anti-DMS). Subsequently, each task “arm” bifurcated based on the identity of402

the attended first stimulus (Fig. 8b). Interestingly, in the case of pro-DMS, where the unattended403

first stimulus had an identity of +1, the trajectories diverged based on the identity of the attended404

first stimulus (illustrated by the green trajectories in Fig. 8c). This stands in stark contrast to the405

trajectories observed in the RNN model performing the original two-modality DMS task, where406

the trajectories of the unattended modality were unaffected by the attended modality (Fig. 2g).407

In other words, the introduction of the retro-cue condition to the two-modality task forced the408

RNNs to maintain not only the attended but also the unattended stimuli throughout the trial409

period. This is further underscored by the robust temporal discriminability of the first stimulus of410

the unattended modality across the three attention cue conditions (i.e., early, late, and retro cue411

conditions) in the 20 RNNs trained for the modified two-modality DMS task (Fig. 8d–f; compare412

these to Fig. 2l,m).413

Overall, introducing the retro-cue condition resulted in the RNN model employing a different414

strategy to flexibly prioritize and maintain relevant information throughout the task execution.415
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Discussion416

The present study provides a unique set of cognitive tasks that require flexible stimulus-response417

mapping and enable investigation into the interaction between bottom-up and top-down signaling.418

By constructing and training biologically constrained recurrent neural networks (RNNs) on these419

tasks, we elucidate and propose possible neural mechanisms essential for such flexible information420

processing and cognitive control. Importantly, we show that selective inhibition plays a central421

role in shaping network dynamics during context-dependent decision-making. Moreover, through422

the utilization of hierarchically structured RNN models (i.e., two-module RNNs) and data from423

the mouse primary visual cortex, we demonstrate the involvement of selective inhibition in encod-424

ing top-down information within early sensory areas. Together, these findings offer a complete425

computational and empirical account for the role of top-down feedback into lower level sensory426

areas.427

Previous experimental and computational studies have highlighted the significance of disin-428

hibitory circuits governed by inhibitory-to-inhibitory signaling in performing high-level cognitive429

functions [33, 40, 66–68]. For instance, disinhibitory effects exerted by vasoactive intestinal pep-430

tide–expressing (VIP) and somatostatin-positive interneurons (SST) in higher-level cortical areas,431

such as the prefrontal cortex, have been shown to be critical for working memory and social memory432

[52, 69]. While recent animal studies have started to explore how these mechanisms are utilized for433

other cognitive functions [70–72], the role of inhibitory-to-inhibitory connections in facilitating flex-434

ible cognitive switching remains poorly understood. This ambiguity is primarily attributed to the435

lack of computational models incorporating relevant biological constraints, coupled with scarcity of436

cognitive tasks that allow for orthogonal manipulation of sensory and temporally varying top-down437

signals. To bridge this gap, we trained RNNs composed of model neurons to perform cognitive tasks438

requiring adaptive switching. Through several computational analyses, including lesion studies, we439

demonstrate that a subset of I → I synapses naturally emerge in our model to adeptly map sensory440

information into context-dependent decisions. Consistent with our findings, recent animal studies441

have identified disinhibitory circuit motifs facilitating flexible routing of sensory information [33,442

37, 38, 54, 72].443

Particularly noteworthy are our findings that I → I connections within the sensory module of444
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our two-module RNN model encode top-down information, and that these connections are necessary445

for context-dependent mapping of the sensory information. Furthermore, we reported that feedback446

signals from higher-level cortical areas contribute to emergence of these I → I connections in early447

sensory areas. These findings indicate a hierarchical organization of inhibitory circuits involved in448

encoding and processing top-down information. In support of this, Kirchberger et al. demonstrated449

the critical role of feedback inputs from higher visual areas in generating context-dependent signals450

in the mouse primary visual cortex through optogenetic manipulation [54]. While the authors451

observed reduced context-encoding upon optogenetic silencing of excitatory neurons in the higher452

visual cortex [54], the specific circuitry underlying these feedback projections warrants further453

investigation.454

The possibility that aspects of complex computations, typically ascribed to higher cortical areas,455

may also occur in lower-level areas challenges the prevailing notion of the cognitive limitations of456

lower-level areas. Building in representational redundancies throughout cortical hierarchies allows457

for complex computations to occur in both lower sensory areas and higher-level areas [25, 41,458

42]. This mechanism enhances the robustness of representations and facilitates efficient processing,459

enabled by top-down feedback signals guiding multiplexing in sensory areas.460

Building on the insights gained from this study, future directions could explore whether similar461

circuit mechanisms are employed across various cognitive domains, potentially uncovering universal462

circuit motifs underlying flexible sensory processing and cognitive control across various contexts.463

Furthermore, enhancing the biological realism of computational models and RNNs by incorpo-464

rating spiking model neurons and biologically plausible learning rules could unveil other neural465

mechanisms based on precise timing-based computations. Finally, validating our experimentally466

testable hypotheses and predictions using neural data from both non-human primates and humans,467

particularly epilepsy patients with depth electrodes implanted for seizure monitoring and potential468

intervention, represents a crucial future direction. This step would provide an improved under-469

standing of representational redundancies within cortical networks and help identify compensatory470

mechanisms that preserve flexible computation in networks disrupted by disorders. Additionally,471

these insights will inform the development of targeted interventions and therapeutic strategies for472

neurological disorders that impair sensory processing and cognitive control.473
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Methods676

Continuous-rate recurrent neural network (RNN) model. In this study, we constructed the677

following continuous-variable recurrent neural network (RNN) model:678

τ
dx

dt
= −x(t) + wr(t) + winu(t) (1)

r(t) = σ(x(t)) =
1

1 + exp(−x(t))
(2)

o(t) = woutr(t) + b (3)

where τ ∈ R1×N refers to the synaptic time constants, x ∈ RN×T denotes the synaptic current679

variable from from N units across T time points. By applying a sigmoid nonlinearity, we estimated680

the firing rates r ∈ RN×T based on the synaptic current values (x). The connection weights from681

the time-varying inputs (u ∈ RNin×T ; Nin, the number of input channels) to the network were682

represented by the weight matrix win ∈ RN×Nin . Additionally, w ∈ RN×N contains connection683

weights between the N units.684

To compute the network output (o ∈ R1×T ), we linearly combined all the firing rates specified685

by the output connection weight matrix, wout ∈ R1×N , along with the constant bias term, b. The686

network size (N) was set to 1000 for all the networks.687

For the one-modality DMS task, the input signals (u) contained three channels: two channels688

for the two sequential stimuli and one channel for the task cue signal (Fig. 1a). For the two-modality689

DMS task, u contained 6 channels, corresponding to two stimulus modalities (two channels for each690

modality), one channel for the task cue signal, and another one for the attention cue (Fig. 1b).691

For the one-module RNNs, u was projected to all the units in the network. However, for the692

two-module RNNs, the stimulus signals were injected into the first 200 units, while the task and693

attention cues were provided to the second module comprising 800 units (Fig. 5a).694

For the two-module RNN model, the recurrent connectivity weight matrix (w) was constrained695

to remove the feedforward inhibitory connections from the first module (first 200 units; sensory696

module) to the second module (non-sensory module) by applying a binary mask.697
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Training and task details. The dynamics in Eq. (1) were discretized using the first-order Euler698

approximation method and using the step size (∆t) of 5 ms:699

xt =

(
1 − ∆t

τ

)
xt−1 +

∆t

τ
(wrt−1 + winut−1) (4)

where xt = x(t). Given that the units in this network model communicate through differentiable700

and continuous signals, a gradient-descent supervised method, known as backpropagation through701

time (BPTT; [73]), was employed to train our RNNs to perform cognitive tasks. Specifically, the702

trainable parameters of the model included w, τ , wout, and b. We used Adam (adaptive moment703

estimation) optimization algorithm to update these parameters. The learning rate was set to 0.01,704

and the TensorFlow default values were used for the rest of the parameters including the first705

and second moment decay rates. To further impose biological constraints, we enforced Dale’s706

law (uniform neurotransmitter release characteristics within separate excitatory and inhibitory707

neurons) using methods similar to those implemented in previous studies ([43, 49, 74]). To adhere708

to empirical findings regarding the ratio of excitatory and inhibitory neurons observed in the brain,709

each RNN consists of 80% excitatory and 20% inhibitory units (i.e., E-I ratio of 80/20; [30, 75,710

76]).711

Importantly, instead of fixing the synaptic decay constant (τ ) to a fixed value for all the units,712

we optimized the parameter for each unit. The parameter was trained to range from 20 ms to713

125 ms to model heterogeneous synaptic dynamics of different receptors in the cortex [77, 78]. We714

initialized the synaptic decay time constant parameter (τ ) using715

τ = σ(N (0, 1))τstep + τmin (5)

where σ(·) is the sigmoid function and N (0, 1) refers to the standard normal Gaussian distribution.716

τmin = 20 ms and τstep = 105 ms were used to constrain the parameter to range from 20 ms to717

125 ms.718

Our model training was deemed successful if the following two criteria were satisfied within the719

first 70,000 epochs: 1) loss value (defined as the root mean squared error between the network720

output and target signals) < 7; and 2) task performance > 95% for the one-modality DMS task721
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and > 85% for the two-modality DMS task. If the network did not meet the criteria within the first722

70,000 epochs, the training was terminated. For each successfully trained RNN, we simulated 400723

trials for the one-modality task and 1,000 trials for the two-modality task, randomizing each trial724

to contain one possible combination of instruction order, top-down cues, and stimulus identities.725

Using these criteria, we trained 20 RNNs for each task.726

One-modality DMS task. For the one-modality DMS task, the trial duration was set to 350 steps727

with 5 ms step size, and the input matrix (u ∈ R3×350) contained two input channels for the two728

sequential stimuli (Stim 1 and Stim 2 in Fig. 1a). The third channel was used to deliver the task cue729

signal. The first channel was employed to present Stim 1 (lasting 250 ms) at 400 ms, and the second730

channel delivered Stim 2 (lasting 250 ms) 250 ms after the offset of the first stimulus. During the731

stimulus period, the input channel was set to either -1 or +1. For the early instruction condition,732

the task cue channel was set to either -1 or +1 from 150 ms to 400 ms. For the late instruction733

condition, the task cue channel was adjusted to -1 or +1 during the delay period, spanning from734

650 ms to 900 ms.735

Two-modality DMS task. The input matrix for the two-modality task contained 6 input channels736

(u ∈ R6×350). The initial two channels were employed to present two sequential stimuli for the737

first modality, whereas the subsequent two channels delivered stimuli for the second modality. The738

fifth channel was dedicated for the task cue signal, while the last channel was used to present the739

attention cue. For the early instruction condition, both task and attention signals were delivered at740

150 ms. For the late instruction condition, the task and attention signals were presented at 650 ms.741

Modified two-modality DMS task. For the modified version of the two-modality DMS task (Fig. 8),742

the input matrix closely resembled that of the standard two-modality task (see above). The trial743

duration for this variant was reduced to 250 steps (1,250 ms), and the stimulus window was also744

shortened to 125 ms. In this task, the task cue signal was always delivered before the first stimulus745

at 125 ms. However, the attention cue signal was randomly delivered either before the first stimulus746

(early instruction), after the first stimulus at 375 ms (late instruction), or after the second stimulus747

at 625 ms (retro-cue).748
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SVM decoding and state space analyses. We performed decoding on RNN activity with a749

5-fold cross-validated linear support vector machine analysis (SVM; sklearn function SVC). Given750

a trained RNN model, we first generated firing rate timecourses (r in Eq. (3)) of 1,000 units across751

1,000 simulated trials. Next, the data were randomly sampled for instruction order (early vs.752

late), stimulus identity (+1 vs. -1), and top-down task signals (pro-DMS vs. anti-DMS; as well753

as attended vs. unattended for the RNNs performing two-modality DMS). The SVM classifier was754

trained on the firing activities from either excitatory or inhibitory units and then tested on the755

left-out trials to distinguish each of the signals of interest.756

To characterize the network dynamics in response to distinct external inputs, we performed a757

fixed-point analysis [60] using the FixedPointFinder toolbox [61]. This method involves numerically758

minimizing a proxy energy function derived from the RNN update equations to identify fixed points759

and subsequently obtaining linearized dynamics around these points to describe their behavior. In760

our case, this is equivalent to minimizing q(x), defined from the RNN dynamics of Eq. (1):761

q(x) =
1

2

∣∣∣∣dxdt
∣∣∣∣2 =

1

τ
(−x(t) + wr(t) + winu(t)) (6)

We repeated this search for every set of external inputs u(t), which included null inputs for762

late instruction trials, task cue (pro-DMS vs. anti-DMS), and attention cues (for the two-modality763

DMS).764

For each optimization run, we randomly selected 200 out of the 1000 simulated trials to create765

initial conditions for the optimizer. From each trial, one initial condition was generated by taking766

the 1000-dimensional system state at the end of the first instruction period. Each optimization767

run had the following parameters: number of iterations = 30000; initial learning rate = 0.1; outlier768

distance scale = 10; unique tolerance = 10. The outlier distance scale servesd as a cutoff distance769

for discarding outlier putative fixed points, measured from the centroid of the vector of initial770

conditions. The unique tolerance is the numerical precision used to determine if two fixed points771

are unique. Fixed points that were too close to previously identified ones were discarded. Two772

fixed points were considered unique if their distance exceeded this threshold.773

To visualize the fixed points and RNN neural trajectories, we plotted them in principal com-774
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ponent space spanned by the top three principal components extracted from the average activities775

during the first instruction period. In addition, we visualized the entire landscape of the energy776

function q(x) in the top two principal components during the first instruction period along with777

their respective energy minima for each external input u(t) condition (Fig. 2a,b; Fig. 5b).778

CEBRA analysis. To visualize network dynamics and analyze the impact of top-down signaling779

on RNN dynamics, we applied unsupervised manifold discovery CEBRA [63] on the 1,000 simulated780

trials of representative RNN models during the first instruction and first stimulus periods. This781

method is capable of uncovering latent structures in multidimensional dynamical datasets, either782

unsupervised or conditioned on specific variables of interest. Throughout this study, we conducted783

unsupervised latent structure discovery based solely on the temporal sequence of data points across784

the entire dataset, without considering trial conditions, tasks, or stimulus identities. More specifi-785

cally, we utilized the default model parameters for the ‘offset10-model’ architecture, using a batch786

size of 256, time offsets of 10, learning rates of 3e− 4, and cosine as the distance measure.787

Cross-temporal discriminability analysis. In addition to the SVM decoding analysis (see788

above), we also quantified the amount of information encoded by each unit within RNNs using789

cross-temporal discriminability analysis ([79–81]). For Figure 2j–m, the firing rate estimate time790

courses of each unit for each first stimulus identity were initially divided into two splits (odd vs.791

even trials) and averaged across trials within each split. Subsequently, for each unit in each split, the792

difference in the average firing rates between the two conditions based on the first stimulus identity793

(i.e., +1 and -1) was computed. Next, Pearson’s correlation coefficient between the two splits was794

calculated. The discriminability score was then obtained by applying Fisher’s z-transformation.795

This process was carried out separately for the attended modality (Fig. 2j,k) and the unattended796

modality (Fig. 2l,m). For Figure 7f, the first stimulus identity was fixed to -1, and the discrim-797

inability of the task cue signal was computed using the two task cue identities (pro- vs. anti-DMS).798

The diagonal values of the discriminability matrices are shown. For Figure 8d–f, similar procedures799

to those employed for Figure 2j–m were implemented.800

Centrality measure. We utilized a functional closeness centrality measure to determine the cen-801

trality of each unit within RNNs. For this, we first defined a functional distance metric di,j between802

unit i and j a network, based on the absolute of the Pearson correlation (ρ) between their synaptic803
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current activity over time, denoted as xi and xj :804

di,j = 1 − |ρ(xi, xj)| (7)

This function ensures that unit pairs that are more predictive of each other’s activity, either805

via positive or negative correlation, have a distance function closer to 0, while unit pairs with weak806

correlations have a distance function closer to 1.807

Next, we used the complete distance matrix as the edge distances between nodes in a graph and808

employed the Python package networkx [82] to compute the network closeness centrality measure809

Ci for each unit i from all n units:810

Ci =
n− 1

n−1∑
j=1

S(i, j)

(8)

Here, S(i, j) represents the shortest path distance between two units i and j, computed utilizing811

the distance matrix di,j via Dijkstra’s algorithm with the distance attributes as edge weights.812

Identifying task and attention cue selective units. To identify unit selective for pro-DMS vs.813

anti-DMS task signals, we first generated 400 trials for the one-modality DMS and 1,000 trials for814

the two-modality DMS. We next extracted firing rate estimates of all units in each of the trained815

RNNs. Then, the trials and firing rate estimates were sorted based on the early task cue signal,816

separating them into pro-DMS and anti-DMS groups. For each unit, we averaged the firing rate817

estimates during the first instruction window for each trial. Subsequently, we performed the one-818

sided Wilcoxon rank-sum statistical test on the average firing rates from the two task groups for819

each unit. Units with significantly higher average firing rates in the pro-DMS group compared to820

the anti-DMS group were classified as pro-DMS selective units. Similar procedures were performed821

to identify attention-selective units for the two-modality RNNs.822

Lesioning analyses. For Figure 4 and Figure 6, trained synaptic connections were lesioned sys-823

tematically to identify specific connections important for encoding and maintenance of top-down824

information. For each trained network, connections were initially classified into four subgroups:825

I → I (inhibitory units inhibiting other inhibitory units), I → E (inhibitory units inhibiting ex-826

citatory units), E → I (excitatory units exciting inhibitory units), and E → E (excitatory units827
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exciting other excitatory units). Within each subgroup, connections were further categorized based828

on their selectivity for the task and attention cue signal (see above). The selective connections were829

then lesioned by reducing their strength by 50%.830

Experimental data. To further characterize the impact of top-down signaling over information831

processing, we utilized publicly available experimental data on the role of recurrent processing in832

the activity of mouse primary visual cortex [54]. In this task, mice had to determine the location833

of a salient grating visual pattern which contrasted from a visual background, distinguishing them834

based either on the orientation, the phase, or the texture of the grating pattern. For the purposes835

of our analyses, we averaged results across orientation, phase, and texture conditions. Target836

patterns could appear either in the right or left visual field, prompting mice to indicate their837

locations by licking a spout on the corresponding side to receive water or milk droplets as rewards.838

Crucially, neural recordings and stimuli were set up in such a way that image contents falling within839

the receptive fields of the recorded neurons were strictly identical in the figure and background840

conditions. Thus, any difference in neural activity measured across conditions was caused by the841

context indicated by image regions outside of the measured neural receptive field.842

We first sought to determine whether V1 activity contained information distinguishing target843

grated stimuli from non-target grated backgrounds even when the sensory input within receptive844

fields was identical. This would indicate that feedback from regions outside receptive fields into845

the measured V1 sites. For this analysis, neural activity consisted of multiunit activity from 198846

recording sites in 13 different V1 electrode penetrations in 6 awake mice. To determine which847

information was contained in V1 multiunit activity, we performed a 4-fold cross-validated linear848

SVM decoding analysis (MATLAB function fitcsvm), for figure versus background labels from 0.5 s849

before to 1 s after stimulus presentation, utilizing activity in separate channels as features. To850

obtain a null distribution for decoding accuracy, we generated 1,000 random label permutations851

and performed the same decoding analysis.852

Furthermore, we leveraged an additional analysis using the aforementioned dataset. Specifically,853

we determined whether activity of inhibitory neurons in V1 is necessary for figure versus background854

discrimination, as predicted by the central role of inhibitory neurons in our modeling approach.855

The analysis contained multiunit activities of different subgroups of inhibitory interneurons in856
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V1: vasoactive intestinal peptide–expressing (VIP) and somatostatin-positive interneurons (SST).857

In addition, the dataset also contains recordings when VIP or SST neurons were optogenetically858

inhibited (see [54] for more details).859

Using this dataset, we decoded figure versus background labels from V1 multiunit activity with860

a 4-fold cross-validated linear SVM, both with and without optogenetic VIP suppression. We then861

compared decoding accuracy between the laser-on and laser-off conditions by performing a two-862

sample one-sided Kolmogorov-Smirnov (KS) test for whether accuracy was larger in trials without863

laser suppression. We performed KS tests within the laser delivery time window (250 ms to 500 ms)864

and Bonferroni corrected p-values across different time bins.865

Statistical analyses. All RNNs trained in the present study were randomly initialized (with866

random seeds) before training. Nonparametric statistical methods were employed throughout the867

study. In figures containing boxplots, two-sided Wilcoxon rank-sum or signed-rank tests were868

performed to ascertain statistically significant differences between two groups.869

Following linear SVM decoding and functional centrality analyses, we aimed to determine870

whether decoding accuracy or functional centrality values were higher in excitatory or inhibitory871

neurons. To achieve this, we utilized the scipy.stats function kstest and performed two-sided872

Kolmogorov-Smirnov (KS) tests across all time bins and Bonferroni corrected for the number of873

tested time bins. Similarly, we performed Bonferroni corrected one-sided KS tests across time to874

specifically test the hypothesis that decoding accuracies in V1 would decrease following optogenet-875

ical silencing.876

For cross-temporal discriminability analyses, we performed binomial tests and Bonferroni cor-877

rected for the number of tests to determine whether each decoding accuracy value was higher than878

chance. Assuming a false positive rate of 5%, and a Bernoulli process to generate significant decod-879

ing events at this rate, the number of instances S falsely classified as significant within a population880

of size N is given by a binomial distribution: S ∼ binomial(N, 0.05). Accordingly, we derived a881

binomial p-value for the probability of obtaining an observed sensitive instance count K larger than882

expected by chance, using the cumulative binomial distribution: p = 1−binomialCDF (K,N, 0.05).883
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Code availability884

The code for the analyses performed in this study will be made available upon acceptance for885

publication.886

Data availability887

The trained RNN models used in the present study will be deposited as MATLAB-formatted data888

in Open Science Framework upon acceptance for publication.889
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Fig. 1 | Dynamic decision-making tasks and model schematic. a. Schematic of a one-modality
DMS task with sequential stimuli separated by a delay period. A task cue, indicating the stimulus-response
mapping, is presented either before (early instruction) or after stimulus 1 (late instruction). The recurrent
neural networks (RNNs) generate an output of +1 or -1 for matched and mismatched trials, respectively
(pro-DMS ; and vice versa for anti-DMS ). The schematic of the RNN model shown on the right. b. Schematic
of a two-modality DMS task where each stimulus comprises two modalities. In addition to the task cue,
an attention cue is presented on each trial, indicating the modality on which the RNNs need to perform
the DMS task. The task and attention cues are presented either before (early instruction) or after stimulus
1 (late instruction). The trial timing for both one- and two-modality DMS tasks is depicted in a. c.
Testing performance of the trained RNNs on the DMS tasks. The average accuracy of the trained RNNs is
presented, with statistical comparisons computed using two-sided Wilcoxon rank-sum tests. Boxplot: central
lines, median; bottom and top edges, lower and upper quartiles; whiskers, 1.5 × interquartile range; outliers
are not plotted. *p < 0.05; **p < 0.01; ***p < 0.001
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Fig. 2 | Flexible incorporation of task and attention signals. a. Heat map of kinetic energy in
an example RNN performing the one-modality DMS task during the first instruction period (150-400 ms;
Fig. 1a). Background heat maps belong to the late instruction condition. The middle cross indicates the
local energy minimum during the first instruction period for the late instruction condition (no instruction),
while the left and right crosses indicate the new local energy minima for the pro- and anti-DMS conditions,
respectively. b. Same as a, for an example RNN performing the two-modality DMS task. Legend: pro-
task modality 1, pro-DMS and first modality attended; pro-task modality 2, pro-DMS and second modality
attended; anti-task modality 1, anti-DMS and first modality attended; anti-task modality 2, anti-DMS and
second modality attended. c. Individual trial one-modality RNN trajectories in principal component space
during the first instruction period. Principal component projections of fixed points are included. Trial
top-down cue conditions are divided into pro-DMS (teal), anti-DMS (dark blue) or no instructions (gray).
d. Same as c, for a two-modality RNN. e. Latent space one-modality RNN trajectories during the furst
instruction and first stimulus periods (150-650 ms; Fig. 1a) for all combinations of top-down cues and
stimulus identities. f. Same as e, for a two-modality RNN, highlighting the attended stimulus modality. g.
Same as e, for a two-modality network, highlighting the unattended stimulus modality. h. Latent space
two-modality RNN trajectories for pro-DMS trials, splitting trajectories by the identity of attended versus
unattended stimuli. i. Same as h, for anti-DMS trials. j-k. Temporal discriminability for the first stimulus
identity of the attended modality when the attention signal is given early (j) or late (k). The task signal was
fixed to anti-DMS. l-m. Temporal discriminability for the first stimulus identity of the unattended modality
when the attention signal is given early (l) or late (m). The task cue was fixed to anti-DMS.
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Fig. 3 | Inhibitory units robustly maintain top-down signals and establish functional connec-
tivity hubs. a-b. Average synaptic decay time constants of inhibitory (blue) and excitatory (red) units
in one-modality RNNs (a) and two-modality RNNs (b). c. SVM decodability of the task signal from in-
hibitory (blue) and excitatory (red) units from the one-modality RNNs. d. SVM decodability of the task
signal from inhibitory (blue) and excitatory (red) units from the two-modality RNNs. e. SVM decodability
of the attention signal from inhibitory (blue) and excitatory (red) units from the two-modality RNNs. f.
SVM decodability of the attended first stimulus identity from inhibitory (blue) and excitatory (red) units
from the two-modality RNNs. g. SVM decodability of the unattended first stimulus identity from inhibitory
(blue) and excitatory (red) units from the two-modality RNNs. Black bars indicate significant differences
between excitatory and inhibitory units (p < 0.05, two-sided KS test). h. Average functional connectivity
centrality for all inhibitory (blue) and excitatory (red) units, across all one-modality RNNs, in early (solid)
or late (dashed) instruction trials. Arrows indicate start and end of the first instruction period. Shaded
areas indicate standard error of the mean. i. Same as h, for two-modality RNNs. j. Histogram of functional
centrality values for all units in all one-modality networks at the beginning of the first instruction period. k.
Same as j, at the end of the instruction period. Boxplot: central lines, median; bottom and top edges, lower
and upper quartiles; whiskers, 1.5 × interquartile range; outliers are not plotted. ***p < 0.001 by two-sided
Wilcoxon rank-sum test.
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Fig. 4 | Inhibitory-to-inhibitory connections primarily encode task and attention cue signals.
a. Reducing incoming inhibitory synaptic weights to inhibitory units selective to the anti-DMS cue by 50%
in an example one-modality RNN led to the network performing the pro-DMS even when the anti-DMS
cue was given (bottom). b) CEBRA neural trajectories of the lesioned model shown in a during the first
instruction and first stimulus periods. Inset, trajectories from the intact network (identical to Fig. 2e).
c. Performance of all 20 RNNs trained to perform the one-modality task when task-specific inhibitory-to-
inhibitory (I → I; top) or inhibitory-to-excitatory (I → E; bottom) synaptic weights were reduced by 50%.
d. Performance of all 20 RNNs trained to perform the two-modality DMS when task-specific I → I (top) or
I → E (bottom) synaptic weights were reduced by 50% when modality 1 was attended. e. Same as d, when
modality 2 was attended. f. Performance of all 20 RNNs trained to perform the two-modality DMS when
modality-specific I → I (top) or I → E (bottom) synaptic weights were reduced by 50% when the task signal
was fixed to pro-DMS. g. Same as f, when the task was fixed to anti-DMS. Ia, inhibitory units preferring
anti-DMS cue; Ip, inhibitory units preferring pro-DMS cue; Ea, excitatory units preferring anti-DMS cue;
Ep, excitatory units preferring pro-DMS cue; Im1, inhibitory units preferring modality-1 attention cue; Im2,
inhibitory units preferring modality-2 attention cue; Em1, excitatory units preferring modality-1 attention
cue; Em2, inhibitory units preferring modality-2 attention cue. Boxplot: central lines, median; bottom and
top edges, lower and upper quartiles; whiskers, 1.5 × interquartile range; outliers are not plotted. *p < 0.05,
**p < 0.01, ***p < 0.001 by two-sided Wilcoxon rank-sum test.
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Fig. 5 | Dynamic coding and emergence of hierarchical inhibitory organization in two-module
RNNs. a. Schematic of the two-module RNN model trained to perform the one-modality DMS task.
The sensory module (red shade) contains 200 units and the non-sensory module (blue shade) contains 800
units. The sensory module receives the input stimulua signal, while the non-sensory module receives the
task cue signal. There are no feedforward inhibitory projections from the sensory module to the non-sensory
module. b. Heat map of kinetic energy in an example one-modality two-module RNN during the first
instruction period. The middle cross indicates the local energy minimum for the late instruction condition
(no instruction), while the left and right crosses indicate the new local energy minima for the pro- and anti-
DMS conditions, respectively. c. Individual trial two-modality RNN trajectories in principal component
space during the first instruction period. Principal component projections of fixed points are included. Trial
task cues are divided into pro-DMS (teal), anti-DMS(dark blue) or no instructions (gray). d-e. Average
synaptic decay time constants of excitatory units (d) and inhibitory units (e) in the sensory and non-sensory
modules from 20 two-module RNN models trained to perform the one-modality DMS task. f-g. Comparison
of average excitatory (f) and inhibitory (g) synaptic connection strengths within and between the sensory
and non-sensory modules. h. Average decoding accuracy in early instruction trials for pro- vs. anti-DMS
signal in the sensory module of two-module networks, including either excitatory (red) or inhibitory (blue)
units. Shaded areas indicate standard error of the mean. Black bars indicate significant differences between
excitatory and inhibitory units (p < 0.05, two-sided KS test). i. Same, for late instruction trials. Boxplot:
central lines, median; bottom and top edges, lower and upper quartiles; whiskers, 1.5 × interquartile range;
outliers are not plotted. ***p < 0.001 by two-sided Wilcoxon rank-sum test (d and e) or Kruskal-Wallis test
followed by Dunn’s multiple comparison test (f and g).
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Fig. 6 | I → I connections in both sensory and non-sensory modules contribute to task cue
encoding. a. CEBRA neural trajectories during the first instruction and first stimulus periods from an
example two-module RNN. b. CEBRA trajectories during the first instruction and first stimulus periods
from the same RNN model shown in a, but with I → I connections lesioned. c-d. Performance of all 20 two-
module RNNs trained to perform the one-modality DMS task when task-specific I → I connection strengths
within the sensory module (a) or within the non-sensory module (b) were reduced by 50%. e-f. Performance
of all 20 two-module RNNs trained to perform the one-modality task when task-specific I → I connection
strengths (c) or I → E (d) from the non-sensory to the sensory module were reduced by 50%. Boxplot:
central lines, median; bottom and top edges, lower and upper quartiles; whiskers, 1.5 × interquartile range;
outliers are not plotted. *p < 0.05, ***p < 0.001 by two-sided Wilcoxon rank-sum test.
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Fig. 7 | Top-down encoding in mouse V1 and RNN sensory module. a. Task summary. In the
orientation condition, mice viewed an orientation pattern as either part of a figure (top left) or as part of
the background (top right). Phase and texture detection conditions (not shown) were also included in the
analysis. In control trials (bottom row), mice must contrast a target against a gray background which did not
require figure-ground segregation. This design ensured that the same sensory information within receptive
fields could possess different contextual meanings (figure vs. ground). Reproduced from [54]. b. SVM
decoding of top-down figure vs. ground signal from V1 neurons, holding sensory input constant. Black bars
indicate significant decoding (p < 0.05, random permutation test). Dashed lines indicate 95% confidence
intervals from permutations. c. SVM decoding of top-down signal during optogenetic I-I inhibition in V1,
in laser on (blue) and laser off (red) trials. Gray bar indicates laser on time window. Black bar indicates
significant difference in decoding across conditions (p < 0.05, one-sided KS test). d. CEBRA trajectories
within the sensory module of an example two-module RNN during the first stimulus period when the task
signal was presented early. e. Same as d but when the connections from the non-sensory module to the
sensory module were completely removed. f. Comparison of average within-time temporal discriminability
for the first stimulus identity across 20 trained, two-module RNNs under two conditions: one with intact
connections including feedback and the other without feedback (lacking connections from non-sensory to
sensory modules).
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Fig. 8 | Retro-cue signal forces the model to maintain both unattended and attended sensory
signals. a. Schematic of a modified version of the two-modality DMS task which includes a retro attention
cue signal. The task cue signal was always given early (before the onset of the first stimulus), while the
attention cue was given before the first stimulus (early instruction), during delay (late instruction), or after
second stimulus (retro-cue). b. CEBRA trajectories during the first instruction and first stimulus periods
for the attended modality when the attention cue signal was given early (example RNN). c. Same as b
but for the unattended modality. d-f. Average temporal discriminability of the first stimulus identity of
the unattended modality when the attention cue was given early (d), late (e), or after the second stimulus
(retro; f).
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Extended Data Figures

Extended Data Fig. 1 | Temporal encoding of top-down signals during DMS tasks. Cross-temporal
decodability of task and attention signals is shown as the average generalization accuracy for each pair of
training/testing time windows. Highlighted boundaries indicate significant decoding accuracy, p < 1e− 20,
binomial test, Bonferroni corrected. White lines denote the reference event of each trial period (task and
attention cues, stimulus onsets, response). a. One-modality DMS, task signal, early instruction. b. Same,
for late instruction. c. Two-modality DMS, task signal, early instruction. d. Same, for late instruction.
e. Two-modality DMS, attention signal, early instruction f. Same, for late instruction. g. Two-modality
DMS, attended modality signal, early instruction, attended modality. h. Same, for unattended modality.
i. One-modality DMS, stimulus identity. j. Two-modality DMS, stimulus identity, stimulus modality 1. k.
Same, for stimulus modality 2.
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Extended Data Fig. 2 | Training two-module RNNs takes longer for the one-modality DMS
compared to the one-module RNNs. a. Comparison of the number of training trials required for training
between the one-module and two-module RNNs, with 20 RNNs trained for each case. b. Both one-module
and two-module RNNs achieved high accuracy in performing the one-modality DMS task (mean±stdev;
97.7±1.3% for the one-module model; 97.6±1.2% for the two-module model). Boxplot: central lines, median;
bottom and top edges, lower and upper quartiles; whiskers, 1.5 × interquartile range; outliers are not plotted.
***p < 0.001 by two-sided Wilcoxon rank-sum test.
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Extended Data Fig. 3 | Comparison between I → E and I → I connection strength in two-
module RNNs. I → E (a) and I → I (b) connections were significantly stronger within the non-sensory
module than the sensory module. Boxplot: central lines, median; bottom and top edges, lower and upper
quartiles; whiskers, 1.5 × interquartile range; outliers are not plotted. ***p < 0.001 by two-sided Wilcoxon
rank-sum test.
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Extended Data Fig. 4 | Decoding task signals in non-sensory module of two-module RNNs. a.
Average decoding accuracy in early instruction trials for pro- vs. anti-DMS signal in the non-sensory module
of two-module networks, including either excitatory (red) or inhibitory (blue) units. Shaded areas indicate
standard error of the mean. Black bars indicate significant differences between excitatory and inhibitory
units (p < 0.05, two-sided KS test). b. Same, for late instruction trials.
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