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ABSTRACT

Learning to perform tasks by leveraging a dataset of expert observations, also
known as imitation learning from observations (ILO), is an important paradigm
for learning skills without access to the expert reward function or the expert ac-
tions. We consider ILO in the setting where the expert and the learner agents
operate in different environments, with the source of the discrepancy being the
transition dynamics model. Recent methods for scalable ILO utilize adversarial
learning to match the state-transition distributions of the expert and the learner,
an approach that becomes challenging when the dynamics are dissimilar. In this
work, we propose an algorithm that trains an intermediary policy in the learner
environment and uses it as a surrogate expert for the learner. The intermediary
policy is learned such that the state transitions generated by it are close to the state
transitions in the expert dataset. To derive a practical and scalable algorithm, we
employ concepts from prior work on estimating the support of a probability dis-
tribution. Experiments using MuJoCo locomotion tasks highlight that our method
compares favorably to the baselines for ILO with transition dynamics mismatch.

1 INTRODUCTION

Imitation Learning (IL) is a framework that trains an agent to perform desired skills by leverag-
ing expert demonstrations of those skills. Compared to the standard Reinforcement Learning (RL)
approach, IL offers the benefit of not requiring a reward function, that can be difficult to specify
for complicated objectives. Recent IL methods that integrate efficiency with deep-RL and are per-
formant in high-dimensional state-action spaces include behavioral-cloning-based algorithms (Ross
et al., 2011; Brantley et al., 2019), and adversarial IL algorithms inspired by maximum entropy
inverse-RL (Ho & Ermon, 2016; Finn et al., 2016). Imitation Learning from Observations (ILO)
refers to the setting where the expert demonstrations consist of only observations (or states), while
the expert actions are unavailable. ILO is beneficial when the measurement of the expert action is
difficult, e.g., in kinesthetic teaching in robotics or when learning with motion capture datasets.

Adversarial IL methods frame the problem as the minimization of an f-divergence between the state-
action visitation distributions of the expert and the learner (Ke et al., 2019). Since expert actions are
absent in ILO, the analogous methodology here is to minimize the f-divergence between the state-
transition distributions of the expert and the learner (Arumugam et al., 2020). A state-transition dis-
tribution for a policy is the joint distribution over the current state and the next state, and is defined
formally in Section 2. Choosing the f-divergence to be the Jensen–Shannon (JS) divergence has en-
abled successful imitation using algorithms such as GAIL (Ho & Ermon, 2016) and GAIfO (Torabi
et al., 2018b), for IL and ILO, respectively.

The transition dynamics model of an environment governs the distribution over the next state, given
the current state and action. In this paper, we focus on ILO in the scenario of a transition dynamics
mismatch between the expert and the learner environments. Such discrepancy could manifest in
real-world applications of imitation learning when there are subtle differences in the physical at-
tributes of the system used to collect the demonstrations and the system where the learner policy
is run. Adversarial ILO methods such as GAIfO, that attempt to train the learner by matching its
state-transition distribution with that of the expert, perform very well when the expert and learner
operate in a shared environment, under the same dynamics. When the dynamics differ, however,
matching the state-transition distributions becomes challenging since the state transitions provided
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in the expert demonstrations could be infeasible under the dynamics in the learner’s environment.
To form some intuition, consider ILO in a 2D grid with discrete states, where the path demonstrated
by the expert follows the main diagonal from the bottom-left grid-cell to the top-right grid-cell. Sup-
pose that the transition dynamics for the learner environment are such that only horizon and vertical
moves are permitted on the grid, i.e., no diagonal motion for the learner. In this case, an optimal
learner’s movement is still in the same general direction as the expert, and it covers all the expert
states (along with some adjacent states). However, matching the state-transition distributions is an
ineffective strategy since the learner cannot reproduce the (one-step) state transitions of the expert.

To alleviate the challenges of ILO under dynamics mismatch, we propose an algorithm that trains an
intermediary policy in the learner environment, and hope to use it as a surrogate expert for training
the learner (imitator). We refer to this policy as the advisor. For the advisor to be effective, the
state transitions generated by it in the learner environment should be as close as possible to the state
transitions in the expert dataset. We formalize this concept in terms of the cross-entropy distance
between state-conditional next-state distributions of the expert and the advisor. To convert this into
a practical and scalable algorithm for training the advisor, we incorporate ideas from distribution
support estimation (Wang et al., 2019). Simultaneous to the advisor training, the learner agent
is updated to imitate the advisor. Crucially, the advisor operates in the same environment as the
learner, making the distribution-matching IL objective amenable.

We evaluate the efficacy of our ILO algorithm using five locomotion control tasks from OpenAI Gym
where we introduce a mismatch between the dynamics of the expert and the learner by changing
different configuration parameters. We demonstrate that our approach compares favorably to the
baseline ILO algorithms in many of the considered scenarios.

2 PRELIMINARIES

We model the RL environment as a discounted, infinite horizon Markov Decision Process (MDP).
At every discrete timestep, the agent observes a state (s ∈ S), generates an action (a ∈ A) from
a stochastic policy π(a|s), receives a scalar reward r(s, a), and transitions to the next state (s′)
sampled from the transition dynamics model p(s′|s, a). In the infinite horizon setting, the future
rewards are discounted by a factor of γ ∈ [0, 1). Let dtπ(s) denote the distribution induced by π
over the state-space at a particular timestep t. The stationary discounted state distribution of π is
then defined as ρπ(s) = (1 − γ)

∑∞
t=0 γ

tdtπ(s). The RL objective of maximizing the cumulative
discounted sum of rewards can be framed as maxπ Eρπ(s,a)[r(s, a)], where ρπ(s, a) = ρπ(s)π(a|s)
is the state-action distribution (also known as the occupancy measure). Lastly, we define the state-
transition distribution for a policy as ρπ(s, s′) =

∑
a p(s

′|s, a)ρπ(s, a) 1.

2.1 GAIL AND GAIFO

Generative Adversarial Imitation Learning (Ho & Ermon, 2016) is a widely popular model-free IL
method that builds on the Maximum Causal Entropy Inverse-RL (MaxEnt-IRL) framework (Ziebart,
2010). MaxEnt-IRL models the expert behavior with a policy that maximizes its γ-discounted causal
entropy, H(π) = Eπ[− log π(a|s)], while satisfying a feature matching constraint. GAIL consid-
ers a regularized version of the dual to this primal problem. It shows that RL with the reward
function recovered as the solution of the regularized dual is equivalent to directly learning a policy
whose state-action distribution is similar to that of the expert. For a specific choice of the regu-
larizer, this similarity is quantified by the JS divergence between the two state-action distributions,
DJS [ρπ(s, a) || ρπe(s, a)]. Based on these ideas, GAIL seeks to learn a policy with the objective:

min
π

max
D

Eρπ
[
logD(s, a)

]
+ Eρπe

[
log(1−D(s, a))

]
− λH(π)

where D : S×A → (0, 1) is the discriminator that provides the rewards for training the learner pol-
icy π, and the inner maximization overD approximatesDJS(·) similar to GANs (Goodfellow et al.,
2014). To empirically estimate the expectation under ρπe(s, a), state-action pairs are sampled from
the available expert demonstrations. In the ILO setting, however, expert actions are not included in
the demonstrations. To mitigate this challenge, Torabi et al. (2018b) propose GAIfO, which adapts

1With slight abuse of notation, we use the symbol ρπ for state, state-action, and state-transition distributions
of a policy π. We would provide context around their usage to avoid any confusion.
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to ILO by modifying the GAIL objective to match the state-transition distributions of the expert
and the learner, i.e., DJS [ρπ(s, s

′) || ρπe(s, s′)]. Correspondingly, the discriminator in GAIfO is a
function of the state transitions D(s, s′).

2.2 SUPPORT ESTIMATION VIA RED

We summarize a recently proposed method for estimating the support of a distribution in high di-
mensions (RED; Wang et al. (2019)), since it forms a core ingredient of our final algorithm. Let X
denote a set and p be a probability distribution on X . Denote by supp(p) = {x ∈ X | p(x) 6= 0},
the support of the distribution p. Given any x ∈ X , the task is to know if x ∈ supp(p). Towards this
goal, Wang et al. (2019) combine ideas from kernel-based support estimation (De Vito et al., 2014)
and RND (Burda et al., 2018), and consider the following objective:

θ∗ = argmin
θ

Ex∼p(x)‖fθ(x)− fθ̃(x)‖
2
2

where fθ : X → RK is a trainable function parameterized by θ, while fθ̃ is a fixed function with
randomly initialized parameters θ̃. Define the score function as (with constant positive scalar λ):

rRED(x) = exp(−λ‖fθ∗(x)− fθ̃(x)‖
2
2)

Wang et al. (2019) conclude that the score rRED(x) is high if x ∈ supp(p), and is low otherwise.
With neural network function approximators, we thus obtain a smooth metric whose value decreases
(increases) as we move farther from (closer to) the support of the distribution p.

3 METHODS

We begin by defining some notations for our setup. We denote the MDP in which the expert policy
(πe) operates as the e-MDP, while the learner (or imitator) policy is run in the l-MDP. The two
MDPs share all the attributes, except for the transition dynamics function, which we symbolize with
pe(s

′|s, a) and pl(s′|s, a), for the e-MDP and l-MDP, respectively. ρe(s), ρe(s, a), and ρe(s, s′)
are the state, state-action, and state-transition distribution for the expert policy. These distributions
depend on the e-MDP dynamics pe(s′|s, a). The corresponding distributions for the learner are
denoted by ρπ(·) and they depend on the l-MDP dynamics pl(s′|s, a).
Adversarial ILO methods, such as GAIfO, that learn the imitator policy by matching the state-
transition distributions of the expert and learner aim to solve the following primal problem:

max
π
H(π) s.t. ρe(s, s

′) = ρπ(s, s
′) ∀ (s, s′) ∈ S × S (1)

If the expert and the learner operate under different transition dynamics, depending on the extent
of the mismatch, it is possible that some (or all) of the one-step state transitions of the expert are
infeasible under the dynamics function in l-MDP. Said differently, given a (se, s′e) pair sampled from
the expert demonstrations, there could be no action in the l-MDP from the state se that results in s′e
as the next state, as per the dynamics pl(s′|s, a). This renders the state-transition matching objective
hard to optimize in practice. For instance, in the practical implementation of GAIfO, the rewards
for the imitator policy are computed from a discriminator that is trained with binary classification
on (s, s′) pairs from the expert and the learner. If the expert transitions can’t be generated in l-MDP
by the learner, then a high-capacity discriminator could achieve perfect accuracy and thus fail to
provide informative rewards for imitation.

Consider a sequence of states {s1, s2, . . . } generated by the expert policy in the e-MDP, as shown
in Figure 1a. Given an expert state si, it may not be possible to reach si+1 in a single timestep in
the l-MDP. Instead, we would like to find an alternative state s̃i+1 that is reachable from si in one
step (i.e., feasible under the dynamics pl) and is close to the desired destination si+1. For instance,
in Figure 1a, starting from the expert state s1, s̃2 is a more desirable next state compared to ŝ2.

3.1 GUIDANCE VIA AN ADVISOR POLICY

To discover such feasible states s̃i, we introduce an advisor policy πa that operates in the l-MDP. πa
is invoked only for action selection on the expert states, rather than being run in a closed feedback
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(a) State transitions (b) Comparison between GAIfO (left) and our approach (right)

Figure 1: (a) A sequence of states si from the expert dataset. The states s̃i are reached by sampling
an action from the advisor policy πa from every expert state. State ŝ2 is less desirable than s̃2 since
the latter is closer to the expert state s2. The squiggly lines show the path that a learner, that is
optimized to match the state-action distribution of the advisor, may take. (b) A high-level overview
of our approach. While GAIfO directly matches the state-transition distributions of the expert and
the learner, we learn an intermediary policy (advisor) in the l-MDP that acts as the surrogate expert
for the learner. D is used to denote the corresponding distance metric.

loop in the learner environment. In this way, πa is akin to a contextual bandit policy. The goal
with πa is to produce an action ai ∼ πa(·|si) from the expert state si such that the next state in the
l-MDP, s̃i+1 ∼ pl(·|si, ai), is close to the next state si+1 in the e-MDP under the expert policy. We
expand on the measure of closeness and the methodology to train the advisor in the next subsection.

When the expert and learner dynamics are the same, the optimal advisor would take the same actions
as the expert policy. In the presence of a dynamics mismatch, however, the advisor actions provide
reasonably good guidance on how to stay close to the expert’s state trajectory (Figure 1a). Therefore,
the advisor πa could act as a surrogate expert for the learner and the learner’s imitation learning
objective could be suitably modified. The main advantage of the learner and the advisor operating in
the same l-MDP is that we could now attempt to match their visitation distributions, which is much
more structured than matching distributions across dynamics (Eq. 1). We consider the IL objective:

max
π
H(π) s.t. ρπa(s, a) = ρπ(s, a) ∀ (s, a) ∈ S ×A

where ρπa(s, a) is the state-action distribution of πa. Since the advisor is invoked only on the
expert states, effectively, ρπa(s, a) = ρe(s)πa(a|s). We can convert the above objective to an
unconstrained optimization by using a parametric function fω(s, a) as the Lagrange multiplier:

J (π, ω) = min
ω

max
π
H(π) + Eρe(s)πa(a|s)[fω(s, a)]− Eρπ(s,a)[fω(s, a)] (2)

We note that this objective bears resemblance to entropy-regularized apprenticeship learn-
ing (Abbeel & Ng, 2004; Syed et al., 2008; Syed & Schapire, 2008), modulo the use of an advisor
policy that contributes the favorable actions, instead of the expert policy.

3.2 TRAINING THE ADVISOR

The advisor policy generates an action (deterministic πa), or a distribution over actions (stochastic
πa), given an expert state sampled from the demonstration data. One suitable objective for training
the advisor is to minimize the dissimilarity between the destination state achieved with the expert
policy in e-MDP and that achieved with the advisor in l-MDP. For instance, consider the scenario
where the dynamics functions are deterministic and known, denoted by fe and fl for the e-MDP
and l-MDP, respectively. Also, the policies πe and πa are deterministic. Then, the advisor could be
optimized with the following loss:

J (πa) = min
πa

Es∼ρe(s)
[
D
[
fe(s, πe(s)), fl(s, πa(s))

]]
where D is a distance measure, e.g., the L2-norm in the state space. However, we are interested
in the setup with stochastic, unknown dynamics functions and stochastic policies. To compute a
distance metric in this setting, we first define the state-conditional next-state distributions for the
expert and the advisor, by marginalizing over the actions:

pe,πe(s
′|s) =

∑
a

pe(s
′|s, a)πe(a|s) ; pl,πa(s

′|s) =
∑
a

pl(s
′|s, a)πa(a|s)
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We then use the cross-entropy distance (H) between these distributions as a measure of closeness
between the expert and the advisor:

J (πa) = min
πa

Es∼ρe(s)
[
H
[
pl,πa(s

′|s), pe,πe(s′|s)
]]

= max
πa

Es∼ρe(s)Ea∼πa(a|s)Es′∼pl(s′|s,a)
[
log pe,πe(s

′|s)
]

= max
πa

Es∼ρe(s)Ea∼πa(a|s)Es′∼pl(s′|s,a)
[
log ρe(s, s

′)
] (3)

where, in the last equation, we have multiplied the term inside the log with ρe(s), a quantity inde-
pendent of πa. Figure 1b provides a high-level overview of our approach.

3.2.1 AN APPROXIMATION BASED ON RED

The objective in Eq. 3 presents a couple of challenges. Firstly, it is infeasible to evaluate the den-
sity of any state transition (s, s′) under the expert’s state-transition distribution ρe(s, s′), since this
distribution is unknown and only a few samples from this distribution are available to us in the form
of the expert demonstrations. Secondly, and more importantly, note that the state transition that
ought to be evaluated under ρe(s, s′) is generated by the advisor policy in the l-MDP. If no advisor
policy can replicate the state transition behavior of the expert, as is likely when there is a dynamics
mismatch, then the objective becomes degenerate with an optimal value of −∞.

Our approach to mitigate these issues is to replace the log-density term in Eq. 3 with an estimated
value that quantifies the proximity of a given state transition (s, s′) to the manifold of the expert’s
support in this space, i.e., ρe(s, s′). To get this value, we leverage RED (Wang et al., 2019), which
pre-trains a deep neural network using data samples from the distribution of interest. Then, given
a test sample, the network outputs a continuous value that provides an estimate of how far the test
sample is from the distribution’s support. Section 2.2 provides a short background on RED.

In our instantiation, we pre-train a RED network rφRED(s, s
′) with state transitions from the expert

demonstrations. The network is then frozen and utilized in the objective to train the advisor:

J (πa) = max
πa

Es∼ρe(s)Ea∼πa(a|s)Es′∼pl(s′|s,a)
[
rφRED(s, s

′)
]

(4)

For any advisor-generated state transition, rφRED(s, s
′) provides a smooth metric in the range (0, 1],

whose value increases (decreases) as the transition moves closer to (farther from) the support of
the distribution ρe(s, s′). Thus, training πa to maximize this value yields an advisor that provides
guidance on how to stay close to the expert’s state trajectory when operating in l-MDP (Figure 1b).

To provide further intuition on the use of RED, Table 1 shows the rφRED(s, s
′) values obtained

from a trained RED network in two environments—Walker2d and HalfCheetah. The RED network
y Increasing

noise Walker2d HalfCheetah

N/S = 0 0.93 0.96
N/S = 0.2 0.80 0.71
N/S = 0.5 0.44 0.23
N/S = 1 0.12 0.04
N/S = 2 0.01 0.001

Table 1: Averaged rφRED(s, s
′)

values for different noise levels.

is trained with 50 state transitions {se, s′e} sampled from ρe(s, s
′)

and then evaluated under several noisy transitions {se, s′e+η}, where
η denotes zero-mean Gaussian noise. We show the rφRED values aver-
aged across the transitions for different settings of the noise-to-signal
ratio (N/S), i.e., the ratio of the standard deviation of the noise to the
standard deviation of the states. We observe that rφRED(s, s

′) is close
to 1.0 when the transitions are on the support of the expert, and it
gradually decreases as the transitions drift away from the support as
a result of a larger amount of added noise.

3.3 ALGORITHM AND IMPLEMENTATION

It is possible to use a two-stage training procedure for the overall algorithm—first, learn the advisor
in l-MDP with Eq. 4, and then use it in the IL objective laid out in Eq. 2 to optimize for the reward
network fω and the learner policy π. In the first stage of advisor learning, although the RED network
is trained offline, computing the gradients for optimizing πa still requires environment interaction.
More importantly, since the advisor is only trained on the expert states, the objective in Eq. 4 requires
the capability to reset the environment to the expert states in the l-MDP.
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Algorithm 1: AILO (Advisor-augmented Imitation Learning from Observations)
Input: A dataset of expert state transitions De = {se, s′e} collected in e-MDP

/* initialization and offline pre-training */
Initialize: advisor πa, learner π, reward network fω(s, a), RED network rφRED(s, s

′)

Pre-train rφRED(s, s
′) with De using the algorithm in Wang et al. (2019)

for iter in {1, . . . , N} do
/* data collection */
Roll out trajectories τ using π

Update reward network fω using τ , πa and De (Eq. 2)

/* update learner */
Compute reward fω(s, a) for each transition in τ . Use τ to update π with MaxEnt RL

/* update advisor */
Compute reward rφRED(s, s

′) for each transition in τ . Use τ to update πa with Eq. 5
end

To alleviate this problem, we propose to train the advisor (πa), the reward network (fω) and the
learner (π) jointly, in an iterative manner, and reuse the environment interaction data generated
with π for training πa as well, using the importance sampling trick. Specifically, let β denote the
parameters of πa. Then the gradient of the objective J (πa) is:

∇ = ∇β
(
Es∼ρe(s)Ea∼πa(a|s)Es′∼pl(s′|s,a)

[
rφRED(s, s

′)
])

= Es∼ρe(s)Ea∼πa(a|s)
(
Es′∼pl(s′|s,a)[r

φ
RED(s, s

′)].∇β log πa(a|s)
)

= Eρπ(s,a)
ρe(s)

ρπ(s)

πa(a|s)
π(a|s)︸ ︷︷ ︸

IS ratios

(
Es′∼pl(s′|s,a)[r

φ
RED(s, s

′)].∇β log πa(a|s)
) (5)

where the second equation uses the score function estimator (Kleijnen & Rubinstein, 1996), and
the third employs two importance sampling ratios. These ratios are easy to estimate for our set-
ting (please see Appendix A.1 for details). Crucially, since the gradient is now computed with
state-action data from ρπ(s, a), we no longer require environment resets. Further, we observe that
approximating the inner expectation with a single sample is sufficient for our tasks.

We abbreviate our method as AILO, short for Advisor-augmented Imitation Learning from Obser-
vations. Algorithm 1 provides an outline. We start with the offline pre-training of the RED network
using a dataset of expert state transitions collected in the e-MDP. Then, we perform iterative opti-
mization in the l-MDP where each iteration involves generating trajectories with the current learner
π, followed by gradient updates to the reward network fω , and to the advisor and learner poli-
cies. Following Eq. 2, the learner policy is trained with a MaxEnt RL algorithm with per-timestep
entropy-regularized reward given by fω(st, at)− α log π(at|st), where α is the entropy coefficient.
In our experiments, we use the clipped-ratio PPO algorithm (Schulman et al., 2017) and adaptively
tune α as suggested in prior work (Haarnoja et al., 2018).

4 RELATED WORK

There is a vast amount of literature on IL since it is a powerful framework to train agents to perform
complex behaviors without a reward specification. ILO, where no expert action labels are available,
presents several benefits as well as some unique challenges, and thus, has garnered significant at-
tention from the community in recent times (Torabi et al., 2018a;b; Liu et al., 2018; Edwards et al.,
2019; Sun et al., 2019; Yang et al., 2019; Zhu et al., 2021). ILO methods adapted from GAIL have
been proposed for one-shot imitation of diverse behaviors (Wang et al., 2017), training policies to
generate human-like movement patterns using motion-capture data (Peng et al., 2018; Merel et al.,
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2017), and for locomotion control from raw visual data (Torabi et al., 2018b). Arumugam et al.
(2020) introduce a framework that casts adversarial ILO as f -divergence minimization and provide
insights on the design decisions that impact performance.

Several approaches have been proposed to handle the differences between the expert and the learner
environments in terms of viewpoints, visual appearances, presence of distractors, and morphology
changes (Stadie et al., 2017; Gupta et al., 2017; Liu et al., 2018; Sermanet et al., 2018). They typ-
ically proceed by learning a domain-invariant representation and matching features in that space.
Learning such a representation is not required in our setup since the state-space is shared between
the l-MDP and the e-MDP. Methods for robustness to shifts in the action-space and the dynamics
model have also been researched. Zolna et al. (2019) propose to match state-pair distributions of the
expert and the learner, where the states in a pair are sampled with random time gaps, rather than be-
ing consecutive. Liu et al. (2019) learn an inverse action model to predict deterministic actions in the
l-MDP that could generate expert-like state transitions and use it to regularize policy updates. Gang-
wani & Peng (2020) filter the trajectories generated in l-MDP based on their similarity to the states
in the expert dataset and perform (self-) imitation on these. The key methodological difference be-
tween these methods and our work is that we learn an intermediary stochastic policy (advisor) in
the l-MDP by bringing its state-conditional next-state distribution closer to that of the expert, and
propose an instantiation of this idea using an approximation based on support estimation.

5 EXPERIMENTS

We evaluate the efficacy of AILO using continuous-control locomotion environments from OpenAI
Gym (Brockman et al., 2016), modeled using the MuJoCo physics simulator (Todorov et al., 2012).
We include a description of the tasks, the baselines, and the learning curves. Further details on the
architectures and the hyperparameters are provided in Appendix A.2.

Environments. We consider five tasks - {Half-Cheetah, Walker, Hopper, Ant, Humanoid}. To
create a discrepancy between the expert and the learner transition dynamics, we modify one physical
property in the learner environment from the set - {density, gravity, joint-friction}. Specifically, for
a task T from the task-set, we denote:

• T (heavy)→ learner agent has 2× the mass of the expert agent
• T (light)→ gravity in the learner’s environment is half the value in the expert’s
• T (drag)→ the friction coefficient for all the joints in the learner is 2× the value in the expert

Baselines. We contrast AILO with two baselines – a.) GAIfO strives to minimize the JS divergence
between the state-transition distributions and is briefly described in §2.1; b.) VAIL (Peng et al., 2018)
applies the concept of variational information bottleneck (Alemi et al., 2016) to the GAIL discrimi-
nator for improved regularization and has been successfully used for ILO with motion-capture data.
To limit the effect of confounding factors during comparison, we share modules across AILO and
the two baselines to the best of our ability. Concretely, all discriminator/reward networks use the
same architecture and the gradient-penalty regularization (Mescheder et al., 2018) and thus exhibit
the same reward biases. Furthermore, the MaxEnt-RL PPO module is the same for all algorithms.

Performance. Figures 2a–2c plot the learning curves for all the algorithms across the different
tasks (heavy, drag, light). We show the average episodic returns achieved by the learner in the l-
MDP, normalized to the returns achieved by the expert in e-MDP. The plots include the mean and
the standard deviation of returns over 6 independent runs with random seeds.

We observe that AILO provides a noticeable improvement in learning efficiency in several situations,
such as Half-Cheetah (heavy, drag, light), Walker (heavy), Hopper (heavy), Ant (drag), Humanoid
(drag, light); while being comparable to the best baseline in other cases. For GAIfO, we find that it
does not learn any useful skill for Walker (heavy) and exhibits training instability for Half-Cheetah
(heavy, drag). We attribute this to the difficulty of matching the state-transition distributions across
different dynamics. VAIL, which matches state distributions, instead of state-transition distributions,
is a stronger baseline and works well in several cases. Lastly, we highlight a few failure modes of
AILO – in Ant (light) and Humanoid (heavy), we note that AILO (and baselines) do not make much
progress towards imitating the demonstrated behavior within our time budget, motivating the need
for future enhancements to enable efficient skill transfer in these challenging setups.

7



(a) Performance on T (heavy) environments

(b) Performance on T (drag) environments

(c) Performance on T (light) environments

Figure 2: Learning curves for AILO and the baselines for different environments with discrepancy in dynamics

Ablation on the degree of dynamics mismatch. For the empirical results in Figure 2, the variation
in mass, gravity, or friction, between the e-MDP and the l-MDP was kept at a constant factor.

Figure 3: Results with different
amount of dynamics mismatch

In Figure 3, we consider the Walker task and plot the system-
atic degradation in the performance of AILO and the base-
line GAIfO, as the l-MDP parameters drift further from the
e-MDP parameters. We show the final average episodic returns
achieved by the learner in the l-MDP, normalized to the returns
achieved by the expert in e-MDP, as a function of the degree of
dynamics mismatch. In the plots, the expert parameters (mass,
friction) are kept constant and the learner parameters are varied
such that the ratio increases from a starting value of 1 (no mis-
match). We observe that although imitation naturally becomes
more challenging as the dynamics become more different, the
degradation with AILO is more graceful compared to GAIfO.
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6 CONCLUSION

In this paper, we present AILO, our algorithm for imitation learning from observations under transi-
tion model disparity between the expert and the learner environments. Rather than directly matching
the state-transition distributions across environments, we train an intermediary policy (advisor) in
the learner environment and use it as a surrogate expert for the learner. Towards learning an advi-
sor that acts as an effective surrogate, we propose to minimize the cross-entropy distance between
the state-conditional next-state distributions of the advisor and the expert. To realize this idea into
a scalable ILO algorithm, we leverage prior work on support estimation (RED). Our experiments
on five MuJoCo locomotion tasks with different types of dynamics discrepancies show that AILO
compares favorably to the baseline ILO methods in many cases.

7 REPRODUCIBILITY STATEMENT

The authors pledge to make the source code for reproducing all the experiments of this paper pub-
lic upon the de-anonymization of the paper. The hyperparameters used for the results and some
implementation details are included in Appendix A.2.
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A APPENDIX

A.1 IMPORTANCE SAMPLING FOR ADVISOR TRAINING

Following Eq. 5, the importance sampling factor to be estimated is ρe(s)
ρπ(s)

πa(a|s)
π(a|s) , which is a product

of two ratios. The second ratio πa(a|s)
π(a|s) is easily computable since we have both the advisor policy

(πa) and the learner policy (π) as parameterized Gaussian distributions. The first ratio ρe(s)
ρπ(s)

can be
approximated by training a binary classifier to distinguish the states sampled from the distributions
ρe(s) and ρπ(s). Concretely, consider the objective:

D′ = argmax
D:S→(0,1)

Eρe(s)
[
logD(s)

]
+ Eρπ(s)

[
log(1−D(s))

]
Then, we can estimate the ratio of the state distributions as ρe(s)

ρπ(s)
≈ D′(s)

1−D′(s) .

A.2 HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Hyperparameter Value
Discriminator / Reward network (fω)

architecture 3 layers, 128 hidden-dim, tanh
# updates per iteration 5

optimizer Adam (lr = 1× 10−4)

RL agent (shared)
policy arch. 3 layers, 64 hidden-dim, tanh
critic arch. 3 layers, 64 hidden-dim, tanh

PPO clipping 0.2
PPO epochs per iteration 5

optimizer Adam (lr = 1× 10−4)
discount factor (γ) 0.99

GAE factor (Schulman et al., 2015) 0.95
entropy target −|A|

Table 2: Hyperparameters for AILO and the baselines

The hyperparameters used for our experiments are mentioned in Table 2. The discriminator network
used by the baselines and the reward network employed in AILO share a common structure. The
same RL agent is used across AILO and all the baselines. Additionally, for the baselines, we tested
the hyperparameters mentioned in the respective papers and tuned them with grid-search.

Expert data collection. We train the expert policy in e-MDP using environmental rewards with
the PPO algorithm. We then generate a few rollouts with the trained policy and sub-sample state
transitions from these rollouts. We create the expert dataset with 50 such transitions for {Half-
Cheetah, Walker, Hopper, Ant}, and 1000 transitions for Humanoid.

Absolute value for the expert scores. In Figure 2, we plot the average episodic returns achieved
by the learner in the l-MDP, normalized to the returns achieved by the expert in the e-MDP. For
completeness, Table 3 reports the absolute value of the expected returns obtained by the expert per
episode (max-episode-length = 1000 timesteps) in the e-MDP.

Task Returns
Half-Cheetah 6441

Walker 4829
Hopper 3675

Ant 5765
Humanoid 9678

Table 3: Expert’s performance in e-MDP
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