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Abstract

Commonsense plausibility estimation is crit-001
ical for evaluating language models (LMs),002
yet existing generative approaches–reliant on003
likelihoods or verbalized judgments–struggle004
with fine-grained discrimination. In this paper,005
we propose ComPaSS, a novel discriminative006
framework that quantifies commonsense plau-007
sibility by measuring semantic shifts when aug-008
menting sentences with commonsense-related009
information. Plausible augmentations induce010
minimal shifts in semantics, while implausible011
ones result in substantial deviations. Evalua-012
tions on two types of fine-grained common-013
sense plausibility estimation tasks across vary-014
ing input formats and commonsense knowledge015
levels based on different backbones, including016
LLMs and vision-language models (VLMs),017
show that ComPaSS consistently outperforms018
baselines. It demonstrates the advantage of dis-019
criminative approaches over generative meth-020
ods in fine-grained commonsense plausibil-021
ity evaluation. Experiments also show that022
(1) VLMs yield superior performance to LMs,023
when integrated with ComPaSS, on vision-024
grounded commonsense tasks. (2) contrastive025
pre-training sharpens backbone models’ ability026
to capture semantic nuances, thereby further027
enhancing ComPaSS.028

1 Introduction029

Commonsense knowledge–the shared understand-030

ing of everyday phenomena and human experiences031

(Schank, 1983; Winograd, 1986; Hobbs, 1990)–is032

foundational to natural language understanding and033

generation. Despite the remarkable progress in034

large language models’ (LLMs) text generation035

capabilities, ensuring commonsense plausibility036

in their outputs remains an unresolved challenge037

(Marcus, 2020; Elazar et al., 2021; Mahowald et al.,038

2024; Chen et al., 2023). This challenge arises not039

only from the inherent difficulty of acquiring and040

applying commonsense knowledge but also from041

the absence of reliable frameworks for evaluating 042

textual plausibility. Effective evaluation of com- 043

monsense plausibility addresses this gap twofold: it 044

identifies commonsense violations (Miranda et al., 045

2024; Saravanan et al., 2024) while offering quan- 046

tifiable metrics to guide the development of tech- 047

niques that augment LLM outputs (Tian et al., 048

2023). 049

In this work, we focus on developing general- 050

izable methods for commonsense plausibility esti- 051

mation (CSPE) that can be applied across diverse 052

domains and tasks. This leads us to investigate 053

zero-shot and few-shot approaches based on pre- 054

trained LMs, which leverage their inherent knowl- 055

edge without requiring additional training data or 056

domain-specific fine-tuning. 057

Previous studies on zero or few-shot CSPE pri- 058

marily adopt a generative perspective and can 059

be categorized into two main approaches, likeli- 060

hood estimation and verbalized judgments. The 061

likelihood-based methods (Trinh and Le, 2018; 062

Tamborrino et al., 2020; Holtzman et al., 2021) uti- 063

lize token prediction probabilities from language 064

models as an indicator, with the assumption that 065

sentences consistent with commonsense knowledge 066

tend to have a higher likelihood for their component 067

tokens. The verbalization-based methods (Brown 068

et al., 2020; Krause and Stolzenburg, 2024) ask 069

pre-trained LMs to answer the plausibility of a sen- 070

tence through natural language. The models can 071

generate the answer based on knowledge stored in 072

their parameters. 073

However, approaches based on the generative 074

perspective could be suboptimal for CSPE, since 075

it is essentially a discriminative task. In this paper, 076

we adopt a discriminative perspective for CSPE. 077

In communication, commonsense knowledge is 078

often assumed and left unstated, yet such omis- 079

sions rarely hinder mutual understanding (Clark, 080

1996; Noveck and Sperber, 2004). Inspired by 081

this, we propose ComPaSS, a method that mea- 082
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sures Commonsense Plausibility through Semantic083

Shifts introduced when augmenting sentences with084

commonsense-related information. Plausible addi-085

tions yield minimal semantic shifts, whereas im-086

plausible ones result in substantial deviations. For087

instance, adding ‘black’ to ‘There is a penguin’ re-088

sults in a minor semantic shift, aligning with the089

penguins’ natural coloration. By contrast, intro-090

ducing ‘green’ creates a substantial shift, highlight-091

ing the implausibility of such an atypical attribute.092

To quantify semantic shifts, ComPaSS computes093

the similarity between embeddings of the origi-094

nal sentence (without explicit commonsense ref-095

erences) and its modified counterpart augmented096

with commonsense-related information.097

Two aspects of semantic representations could098

influence the capability of ComPaSS in CSPE: the099

inclusion of commonsense knowledge and the dis-100

crimination of semantic nuances. These correspond101

to two key aspects of models used for obtaining102

sentence embeddings: 1) Modality. Language Mod-103

els (LMs) often suffer from reporting bias (Gor-104

don and Durme, 2013), which involves systematic105

distortions due to omitted commonsense details106

(e.g., ‘penguins are black’ is rarely stated) and sta-107

tistical biases from fixed linguistic patterns (e.g.,108

‘black sheep’). In contrast, vision-language mod-109

els (VLMs) incorporate visual information, thus110

mitigating reporting bias, especially for visually-111

grounded commonsense knowledge (e.g., object112

colors or spatial relations) (Paik et al., 2021; Zhang113

et al., 2022). 2) Contrastive learning. By training a114

model to distinguish between semantically similar115

and dissimilar instances, it enhances the model’s116

discriminative power. Representations from con-117

trastively trained models exhibit sharper separabil-118

ity, which directly impacts the precision of seman-119

tic shift measurements. Given these considerations,120

we study how ComPaSS performs based on vari-121

ous backbones of both LMs and VLMs, with and122

without contrastive learning.123

We evaluate ComPaSS against baselines on two124

fine-grained CSPE tasks that require ranking can-125

didate answers by plausibility rather than binary126

classification. These tasks prioritize nuanced plau-127

sibility judgments, where answers may hold vary-128

ing degrees of validity. The first task, attribute129

value ranking (CoDa (Paik et al., 2021) and Vi-130

ComTe (Zhang et al., 2022)), involves ranking can-131

didate attribute values (e.g., color, shape, material)132

for objects using structured triplets as input (e.g.,133

determining that "black" is more plausible than134

"green" for penguin-color). The second task, com- 135

monsense frame completion (Cheng et al., 2024), 136

challenges models to rank plausible completions 137

for free-form open-ended questions (e.g., select- 138

ing ‘farm’ over ‘truck’ for ‘Where are farmers 139

with newly harvested crops?’), testing alignment 140

with human preferences and broader commonsense 141

reasoning. Together, these tasks assess ComPaSS 142

across input formats (structured triplets vs. free- 143

form text) and knowledge types (object-specific 144

attributes vs. general everyday commonsense). 145

Our experiments reveal three critical insights. 146

First, as a discriminative approach, ComPaSS con- 147

sistently outperforms prior generative methods in 148

fine-grained plausibility estimation, achieving su- 149

perior results across diverse model backbones. This 150

highlights the advantage of discriminative methods 151

in capturing subtle plausibility distinctions. Sec- 152

ond, utilizing ComPaSS, VLMs significantly out- 153

perform LMs for vision-grounded commonsense 154

(e.g., object colors or shapes), demonstrating that 155

visual information enhances representations and 156

benefits CSPE. Third, models with contrastive pre- 157

training yield significantly better results than those 158

without, emphasizing the importance of representa- 159

tions that capture semantic nuances in plausibility 160

measurement through ComPaSS. 161

2 Related Work 162

2.1 CSPE Based on Internal Knowledge 163

The sentence probability and perplexity computed 164

by LMs can serve as indicators of commonsense 165

plausibility, even in zero-shot settings (Trinh and 166

Le, 2018; Davison et al., 2019; Liu et al., 2021a). 167

For LLMs with instruction-following capability, 168

they can be directly prompted to judge whether 169

a given input is consistent with commonsense or 170

not (Zhao et al., 2024). Beyond directly judg- 171

ing plausibility, some methods (Jung et al., 2022; 172

Tafjord et al., 2022) evaluate the plausibility of hy- 173

potheses by scoring the validity of entailment paths 174

generated by the LLMs, i.e., the reasoning chains 175

justifying ‘reasonable’ or ‘unreasonable’ conclu- 176

sions, and selecting the final prediction based on 177

the highest-scoring path. VERA (Liu et al., 2023) 178

adopts a discriminative approach, training a classi- 179

fication head to make predictions based on model 180

representations, which fine-tunes LLMs on~7 mil- 181

lion commonsense statements. In contrast, our ap- 182

proach also leverages internal knowledge from a 183

discriminative perspective but does not require ad- 184
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There is a red penguin.

Question:    color distribution of 
penguins

Candidates: {red, gray, ...}

template for candidates

template for anchor There is a penguin.

There is a gray penguin.
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e

sim

...
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...

The farmers with newly 
harvested crops are in a 
truck.

Question:    Where are the 
farmers with newly harvested 
crops?

Candidates: {truck, farm, ...}

prompt for candidates

prompt for anchor The farmers with newly 
harvested crops are .

The farmers with newly 
harvested crops are at 
the farm. 

...
Enco

d
e

sim

...

sim

farm

market

truck
...

＞
＞

(a) An Example of Task Involving Structured Input (b) An Example of Task Involving Free-form Input

Figure 1: How ComPaSS works on different tasks.

ditional training.185

2.2 CSPE Based on External Knowledge186

Language models (LMs) may have insufficient or187

inaccurate knowledge, which led to some meth-188

ods to incorporate external knowledge to bet-189

ter estimate commonsense plausibility. A typi-190

cal approach is to augment the model’s knowl-191

edge by retrieving relevant sentences from external192

sources (Zhang et al., 2021; Yu et al., 2022). Com-193

monsense knowledge bases (KBs) (Speer et al.,194

2016; Sap et al., 2019; Hwang et al., 2020) store195

extensive commonsense knowledge, enabling the196

extraction of relevant subgraphs to evaluate sen-197

tence consistency with commonsense (Choi et al.,198

2022). To alleviate the coverage limitations of the199

KBs while leveraging the extensive knowledge en-200

coded in LMs, COMET (Bosselut et al., 2019) in-201

troduced a dynamic KB by pre-training LM on202

existing commonsense KBs. Methods that utilize203

this dynamic KB (Ghazarian et al., 2023; Tian et al.,204

2023) demonstrate improved generalization across205

various commonsense reasoning tasks.206

3 Task Definition207

Formally, given an input instance xi = (c; aci )208

consisting of a context c and a candidate infor-209

mation aci ∈ A, where Ac = {ac1, ac2, ..., acK} de-210

notes the context-dependent candidate set with size211

K, the task is to predict a plausibility score set212

Pc = {pc1, pc2, ..., pcK} for all candidates, where213

each pci ∈ R quantifies the plausibility of augment-214

ing c with aci . The ground-truth scores are denoted215

as Gc = {gc1, gc2, ..., gcK}, where gci indicates the216

true score of aci . Performance is measured by the217

correlation between Pc and Gc.218

The input can take two specific forms: for at-219

tribute value ranking task, the input is a structured220

triplet xi = (o, has property p; aci ). The context221

c = (o, has property p), where o is a common ob-222

ject and p is a property. The candidate aci represents223

the i-th attribute value for the specified property.224

For the commonsense frame completion task, the225

context c = q is a free-form question, the input is a 226

question-answer pair xi = (q; aci ), where aci is the 227

i-th plausible answer to this question. 228

4 ComPaSS 229

Our method, ComPaSS, is a zero-shot approach for 230

estimating commonsense plausibility. We demon- 231

strate in Figure 1 how this method works on differ- 232

ent tasks. For each input, we first construct an an- 233

chor sentence (omitting the commonsense-related 234

detail) and a candidate sentence (augmenting that 235

detail). We then encode both sentences individu- 236

ally to obtain their semantic representations. Next, 237

we calculate their semantic similarity, where the 238

degree of semantic shift—inversely proportional to 239

similarity—quantifies plausibility. 240

4.1 Constructing Sentences 241

For each input context c and the candidate to be 242

evaluated aci , we construct two types of sentences: 243

an anchor sentence sanchor that contains only the 244

base context c while omitting target details, and a 245

candidate sentence scandi that further incorporates 246

commonsense-related information aci . The con- 247

struction process varies based on input type but 248

follows a unified framework: 249

sanchor = fanchor(c, zanchor), (1) 250

251
scandi = fcandi(c, a

c
i , zcandi), (2) 252

where f(·) ∈ {fanchor(·), fcandi(·)} denotes the con- 253

struction function, and z ∈ {zanchor, zcandi} denotes 254

task-specific templates or prompts. 255

As illustrated in Figure 1, the framework is in- 256

stantiated differently based on the input format: For 257

structured triplet inputs, we employ template-based 258

construction, where z represents a pre-defined tem- 259

plate (see Appendix A) and f(·) represents apply- 260

ing this template to generate a sentence. In contrast, 261

for tasks involving free-form question-answer pairs 262

as input, we query GPT-4 (Achiam et al., 2023) to 263

generate contextually coherent sentences, where 264

z denotes the prompt (see Appendix B) and f(·) 265
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represents querying GPT-4 using the prompt. Since266

questions cannot be directly converted into coher-267

ent statements, we use a blank space as a place-268

holder when constructing anchor sentences. Such269

an adaptive sentence construction method enables270

ComPaSS to be applicable to different input forms.271

4.2 Representing Sentences272

Given anchor and candidate sentences, we encode273

them into dense semantic representations using a274

pre-trained model θ, which can be either a LM or275

a VLM. For each sentence s ∈ {sanchor, scandi}, the276

model first processes the sentence along with spe-277

cial tokens (e.g., [CLS], [EOS], or others depend-278

ing on the model architecture) and then outputs279

token hidden states:280

H = θ(s) = {h0, h1, ..., hl}, (3)281

where l denotes the sequence length, including the282

special tokens. The final sentence representation283

r ∈ {ranchor, rcandi} is derived through architecture-284

specific strategies.285

For encoder models, we use the hidden state286

of the designated semantic aggregation token287

as sentence representation. Some models (e.g.,288

RoBERTa (Liu et al., 2021b)) use the initial ‘[CLS]’289

token for sentence representation (r = h0), while290

others (e.g., CLIP (Radford et al., 2021)) utilize the291

final ‘[EOS]’ token embedding (r = hl).292

For decoder models, we use the hidden state of293

the last token as sentence representation r = hl,294

which naturally encapsulates the accumulated con-295

text. Alternatively, PromptReps (Zhuang et al.,296

2024) prompts the model to generate a new repre-297

sentative token at position l + 1, using its hidden298

state as the sentence representation (r = hl+1). We299

apply this strategy to models that are not enhanced300

by contrastive learning.301

This architecture-aware representation strategy302

ensures ComPaSS’s flexibility across different303

model backbones while maintaining optimal per-304

formance for each specific architecture.305

4.3 Ranking with Semantic Shifts306

We rank the candidate option aci by measuring how307

naturally it integrates into the context, quantified308

through semantic similarity between the anchor309

sentence representation ranchor and the candidate310

sentence representation rcandi. The underlying prin-311

ciple is that the more plausible the information, the312

smaller the semantic shifts it induces when added313

to the context, leading to higher semantic similarity. 314

Formally, we define the commonsense plausibility 315

score pci for each candidate aci as: 316

pci ∝ sim(ranchor, rcandi), (4) 317

where sim(·) denotes a similarity function (e.g., co- 318

sine similarity or dot product). Candidates are then 319

ranked by their plausibility scores descendingly, 320

with higher-ranked candidates representing more 321

commonsense-consistent answers. 322

4.4 Discussion of Applicable LMs 323

This paragraph discusses the differences in applica- 324

ble LMs between ComPaSS and generative meth- 325

ods based on likelihoods and verbalization. Com- 326

PaSS can utilize both encoder and decoder models 327

as long as they can yield reasonable sentence repre- 328

sentations. Likelihood-based approaches can also 329

leverage these two types of LMs. Candidate like- 330

lihoods can be estimated based on masked/next 331

token prediction for encoders and decoders respec- 332

tively. In contrast, verbalization-based approaches 333

require LLMs–decoder-only LMs–to answer the 334

plausibility estimation questions. This indicates 335

the broader applicability of ComPaSS. 336

5 Experimental Setup 337

5.1 Datasets 338

We evaluate methods through two types of 339

fine-grained commonsense plausibility estimation 340

(CSPE) tasks, where candidates should be ranked 341

based on commonsense plausibility. These tasks 342

are chosen to comprehensively evaluate meth- 343

ods across varying input formats (from structured 344

triplets to free-form text) and commonsense knowl- 345

edge levels (from specific attribute knowledge to 346

general everyday commonsense knowledge). 347

5.1.1 Structured Attribute Knowledge 348

Color Dataset (CoDa) 1 (Paik et al., 2021) is a 349

human-annotated dataset used for attribute value 350

ranking, which provides color distributions for 351

commonly recognized objects. It contains 521 ob- 352

jects, each with 11 candidate color attributes. 353

Visual Commonsense Tests (ViComTe) 2 354

(Zhang et al., 2022) is another dataset used for at- 355

tribute value ranking, which is derived from Visual 356

Genome (Krishna et al., 2017). It offers attribute 357

1https://github.com/nala-cub/coda
2https://github.com/ChenyuHeidiZhang/

VL-commonsense
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value distributions across broader properties, in-358

cluding color, shape, and material. It contains 2,877359

objects with 12 candidate color attributes, 706 ob-360

jects with 12 candidate shape attributes, and 1,423361

objects with 18 candidate material attributes.362

5.1.2 Free-form General Knowledge363

Commonsense Frame Completion (CFC) 3364

(Cheng et al., 2024) is a dataset designed to eval-365

uate implicit commonsense reasoning, which con-366

sists of questions accompanied by multiple plau-367

sible answers with human-annotated preference368

scores. It requires models to make probabilistic369

judgments about answer plausibility, which should370

align with human preferences. As the test set is371

not public, we use the validation set containing 55372

questions for zero-shot evaluation.373

5.2 Evaluation Metrics374

Spearman’s rank correlation coefficient ρ: We375

choose this as the primary metric following CoDa376

and ViComTe. It measures the rank correlation377

between predicted and ground-truth plausibility or-378

derings. This emphasis on relative ordering aligns379

with the nature of commonsense plausibility assess-380

ment, where the exact probability values are less381

important than correctly identifying more plausible382

options over less plausible ones.383

Accuracy: CoDa and ViComTe also include bi-384

nary comparison tasks where each object is paired385

with two attribute values, with one more plausi-386

ble than the other. Models need to rank the more387

plausible value higher. Accuracy quantifies the suc-388

cess rate of these binary selections. This metric is389

suitable for cross-attribute comparisons as it is un-390

affected by variations in the number of candidates,391

unlike Spearman’s rank correlation coefficient.392

5.3 Methods for Comparison393

5.3.1 ComPaSS with Various Backbones394

We evaluate ComPaSS across diverse model archi-395

tectures to assess its adaptability:396

For LMs, we evaluate both base models and397

their contrastive learning pre-trained variants:398

RoBERTa-Large (Liu et al., 2021b) (RoBERTa) is399

a widely-used encoder-only LM with fewer param-400

eters. Mistral-7B-Instruct (Jiang et al., 2023) (Mis-401

tral) and Qwen2-7B-instruct (qwe, 2024) (Qwen2)402

are two decoder-only LLMs with strong instruction-403

following capabilities. We also evaluate their404

3https://github.com/qxc101/PROBEVAL_CFC/

contrastive learning pre-trained variants, i.e., 405

sup-SimCSE-RoBERTa-Large (Gao et al., 2021) 406

(RoBERTaw/ CL), E5-Mistral-7B-Instruct (Wang 407

et al., 2023, 2022) (Mistralw/ CL) and gte-Qwen2- 408

7B-instruct (Li et al., 2023) (Qwen2w/ CL). Please 409

note that all contrastive learning procedures are pre- 410

training stage optimizations unrelated to our task. 411

We directly use their released checkpoints without 412

task-specific fine-tuning. 413

For VLMs, we test CLIP-ViT-L/14 (Radford 414

et al., 2021) (CLIP), a multimodal representa- 415

tion model trained on image-text pairs using con- 416

trastive learning, which aligns semantically sim- 417

ilar images and text into closely matching repre- 418

sentations. We also consider its advanced variant 419

EVA-CLIP-8B (Sun et al., 2023) (EVA-CLIP). 420

5.3.2 Baselines 421

Commonsense models (CSMs): These models are 422

specifically designed for modeling commonsense 423

knowledge: COMET-Atomic-2020-Bart (Bosselut 424

et al., 2019) (COME-Atomic) is a commonsense 425

LM pre-trained on commonsense KBs. COMET 426

is suitable for processing triple input, which can 427

generate a probability score for each candidate. AC- 428

CENT (Ghazarian et al., 2023) assesses the com- 429

monsense plausibility of a sentence by first extract- 430

ing structured tuples and then scoring them based 431

on their compatibility with a commonsense KB. 432

VERA-T5-XXL (Liu et al., 2023) (VERA-T5) is 433

trained on ~7M commonsense statements and can 434

directly estimate the commonsense plausibility of 435

statements. 436

Language models (LMs): We evaluate all open- 437

source LMs used as the backbone of ComPaSS 438

with two methods. For the likelihood based method, 439

the plausibility of a sentence is proportional to the 440

normalized probability of predicting each token 441

sequentially. For the verbalization based method, 442

pre-trained LMs are prompted in natural language 443

(see Appendix C) to rank candidates based on plau- 444

sibility. We also test closed-source LLMs including 445

gpt-3.5-turbo-0125 (OpenAI, 2022) (GPT-3.5) and 446

gpt-4-0125-preview (Achiam et al., 2023) (GPT-4), 447

the latter introduces multimodal technology with 448

superior capabilities. 449

5.4 Implementation Details 450

All experiments are carried out in a zero-shot or in- 451

context few-shot setting. Closed-source models are 452

accessed via official APIs, while open-source im- 453

plementations run on a single NVIDIA A800 80G 454

5
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Model (#Inference Parameters) CoDa Color Shape Material CFC

Baselines
C

SM
ACCENT (440M) 10.07 10.35 -2.10 16.99 35.04
COMET-Atomic (440M) 22.91 26.98 40.44 25.72 -
VERA-T5 (5B) 58.93 45.08 30.31 33.51 45.81

L
M

RoBERTa+likelihood (355M) 24.37 33.63 36.12 24.23 42.46
RoBERTaw/ CL+likelihood (355M) 23.36 31.51 26.69 22.23 38.03
Mistral+verbal. (7B) 46.64 38.63 30.46 36.34 32.06
Mistral+likelihood (7B) 51.30 34.31 26.70 37.03 47.98
Qwen2+verbal. (7B) 57.40 41.59 38.30 36.76 29.32
Qwen2+likelihood (7B) 50.25 40.99 32.52 37.13 45.10
Qwen2w/ CL+likelihood (7B) 49.65 41.75 32.80 37.30 43.00

ComPASS

L
M

RoBERTaw/ CL (355M) 44.59 38.92 42.92 33.55 44.46
Mistralw/ CL (7B) 58.54 42.20 43.75 38.77 49.01
Qwen2w/ CL (7B) 59.16 44.61 47.51 38.49 46.41

V
L

M CLIP (124M) 58.10 45.55 45.82 33.56 35.13
EVA-CLIP (695M) 62.87 51.73 48.05 38.67 41.46

Table 1: Spearman’s rank correlation coefficient ρ between the predicted ranks of candidates and their ground-truth
on CoDa, ViComTe (Color, Shape, and Material), and CFC, shown in percentage. The best and second best results
are highlighted in bold and underlined, respectively. ‘+verbal.’ indicates using the verbalization-based method.

GPU. For ACCENT, the beam number is 10 as the455

official setting. When testing the CFC dataset using456

the verbalization method, we sample the model 100457

times for each question with a temperature of 0.7,458

and cluster answers follow the official protocol.459

6 Results and Analysis460

6.1 Overall Results461

The overall experimental results are presented in462

Table 1, which reveals several key findings:463

ComPaSS achieves the best performance464

compared to baselines across both structured465

triplets (attribute ranking) and free-form text466

(CFC) inputs. This demonstrates its robustness467

to diverse input formats without relying on task-468

specific templates. Further comparison between469

RoBERTa, Mistral, and Qwen2, with and with-470

out ComPaSS, shows a consistent improvement471

when ComPaSS is applied. This validates our472

method’s architecture-agnostic effectiveness. No-473

tably, even VERA, which was specifically fine-474

tuned for CSPE, achieves only comparable per-475

formance to ComPaSS-enhanced models. Compar-476

ing the performance of different methods on LMs477

in the baseline, we find that verbalization-based478

methods fail to consistently outperform likelihood-479

based approaches, even when applied to generative480

Method CoDa Color Shape Material

likelihood 24.37 33.63 36.12 24.23
ComPaSS 24.63 22.68 26.77 19.93

w/ unsup-CL 32.67 32.00 42.18 31.12
w/ sup-CL 44.59 38.92 42.92 33.55

Table 2: Performance of different Roberta variants. By
default we use the vanilla RoBERTa. ‘w/ unsup-CL’ and
‘w/ sup-CL’ denote RoBERTa pre-trained with unsuper-
vised and supervised contrastive learning, respectively.

models. This limitation highlights the challenges 481

such methods face in making fine-grained distinc- 482

tions required for precise plausibility estimation, 483

whereas ComPaSS succeeds by unifying seman- 484

tic shift measurement across both templated and 485

non-templated scenarios. 486

VLMs demonstrate superior effectiveness in 487

learning visual-related commonsense knowl- 488

edge. Comparing the ComPaSS methods based 489

on various backbones, we find VLMs exhibit par- 490

ticular strength in visual attribute ranking, with 491

EVA-CLIP achieving the highest scores on CoDa 492

(62.87), Color (51.73), and Shape (48.05), signif- 493

icantly outperforming even 7B parameter LLMs. 494

This performance gap persists despite the LLMs’ 495

access to large-scale text corpora and additional pa- 496
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Figure 2: Binary classification accuracy of models with ComPaSS on different groups.
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Figure 3: ComPaSS performance with different context formats and ensemble settings.

rameters, underscoring the unique value of visual497

supervision. This performance gap highlights the498

limitations of text-only training, as even extensive499

textual data and additional parameters cannot fully500

compensate for the lack of visual grounding, which501

underscores the importance of multimodal learning502

for comprehensive commonsense understanding.503

Discriminative approaches may offer a more504

parameter-efficient pathway compared to gen-505

erative methods. Our experiments reveal that506

encoder-only models with millions of parameters507

like RoBERTa and CLIP-series models achieve508

comparable or even superior results to much larger509

decoder-only models (with billions of parameters)510

when combined with ComPaSS. This suggests511

that our discriminative method effectively lever-512

ages the semantic representation strengths of en-513

coder models, which are generally more parameter-514

efficient than generative models. By focusing on515

representation-level semantics rather than token516

generation, ComPaSS aligns closely with the pre-517

training objectives of encoder models, maximizing518

their representation power.519

The ability to discern semantic nuances in sen-520

tence representations is crucial for ComPaSS521

performance. As shown in Table 2, experiments522

with different RoBERTa variants reveal that apply-523

ing ComPaSS to vanilla RoBERTa leads to perfor-524

mance degradation due to its weaker representation525

capabilities. However, incorporating contrastive526

learning (even via unsupervised training) signifi-527

cantly improves performance by enabling subtle528

plausibility distinctions to manifest as measurable529

embedding space shifts. Crucially, ComPaSS does530

not require custom contrastive pre-training in prac-531

tice. It directly leverages contrastively pre-trained532

Model CoDa Color Shape Material

GPT-3.5 94.05 92.25 90.08 89.60
GPT-4 94.63 93.29 89.24 88.76

Mistralw/ CL 94.97 86.06 91.50 91.27
Qwen2w/ CL 94.71 86.79 94.04 90.42
EVA-CLIP 95.39 93.29 94.33 90.79

Table 3: Binary comparison accuracy on CoDa and
ViComTe. The best results are highlighted in bold. All
results are shown in percentage. Both Mistral and EVA-
CLIP use the ComPaSS method.

SOTA embedding models, enabling continuous 533

performance gains from evolving embedding tech- 534

niques without task-specific fine-tuning or architec- 535

tural modifications. 536

6.2 Further Analyses 537

6.2.1 Comparisons to Closed-source Models 538

We extend our evaluation to include state-of-the-art 539

closed-source models, with results presented in Ta- 540

ble 3. Notably, our method outperforms even GPT- 541

4 across multiple tasks, demonstrating its effective- 542

ness in fine-grained CSPE. This performance gap 543

further highlights the limitations of verbalization- 544

based approaches in capturing subtle distinctions 545

required for precise plausibility estimation. 546

6.2.2 Granular Analysis of Attribute Types 547

We analyze binary comparison results on CoDa 548

and ViComTe across three attribute groups: single: 549

includes objects with one dominant attribute value 550

(e.g., snow’s color), multi: includes objects with 551

attributes mainly distributed among the top four 552

values (e.g., a penguin’s color), and any: includes 553

7



Task             : Rank the candidate colors according to the frequency with which a sheep is observed in each color.
Human                : white, gray, black, brown
GPT-3.5        : white, black, brown, gray
GPT-4           : white, black, brown, gray
E5-Mistral*  : white, gray, black, brown 
get-Qwen2* : white, brown, gray, black
EVA-CLIP*   : white, gray, black, brown 

photo of sheep in physical world

Figure 4: The ranking of sheep colors by humans and different models, along with corresponding images from the
physical world (from Google). The ‘*’ in the upper right represents the model with ComPaSS method.

objects with a broader attribute distribution (e.g.,554

a T-shirt’s color). As shown in Figure 3, VLMs555

demonstrate particular strength in the single group.556

We attribute this advantage to visual grounding557

overcoming textual reporting bias: stereotypical558

attributes are rarely explicitly stated in text due559

to their commonsense nature, creating a reporting560

bias in language data. However, these attributes561

are consistently and explicitly depicted in images,562

enabling VLMs to overcome linguistic omissions.563

This finding demonstrates that visual grounding564

serves as a critical compensator for missing com-565

monsense in text-based training.566

6.2.3 Effect of Context Format567

We investigate the importance of sentence-level568

context in semantic shift measurement by compar-569

ing two approaches: word collocation compari-570

son (e.g., ‘penguin’ and ‘black penguin’) and full571

sentence construction (e.g., ‘There is a penguin’572

and ‘There is a black penguin’). As shown in573

Figure 3(a), sentence-level inputs consistently out-574

perform word-level comparisons for both LLMs575

and VLMs. This performance gap underscores576

the importance of complete sentence construction577

for ComPaSS, as sentence-level inputs better align578

with models’ pre-training data formats.579

6.2.4 Template Ensemble Methods580

For the template-based method, we investigate581

three ensemble strategies: The single-optimal en-582

semble approach uses the unified best-performing583

template, serving as an implicit ensemble. For584

explicit ensemble methods, score-level ensemble585

averages prediction scores across multiple tem-586

plates, and representation-level ensemble fuses sen-587

tence representations from several templates be-588

fore computing the final score. As shown in Fig-589

ure 3 (b), both explicit ensemble strategies signif-590

icantly further improve LLM performance, with591

the score-level ensemble showing more consistent592

gains. However, VLM shows limited improvement593

from ensemble methods, likely due to its simpler594

pre-training data structure. This contrast highlights 595

LLMs’ sensitivity to linguistic variations and their 596

ability to benefit from diverse syntactic structures. 597

6.3 Case Study 598

We use the classic ‘black sheep problem’ to intu- 599

itively explain why ComPaSS is effective. Since 600

‘black sheep’ is an idiom, one is much more likely 601

to mention a ‘black sheep’ than to specify the color 602

of a sheep. Such reporting bias confuses the LMs 603

that learn knowledge through probabilistic model- 604

ing. As shown in Figure 4, GPT-3.5 and GPT-4 605

both overestimate the probability of ‘black’ being 606

the color of sheep even though sheep in black are 607

rare. In contrast, our approach relies on semantic 608

rather than probabilistic likelihood is able to dis- 609

tinguish between the linguistic meaning and the 610

visual recognition of ‘a black sheep’, resulting in 611

a more accurate estimation of the sheep’s color. 612

In addition, VLM calibrates the color distribution 613

well by incorporating visual information. 614

7 Conclusion 615

We introduce ComPaSS, a discriminative frame- 616

work for fine-grained commonsense plausibility 617

estimation via semantic shift measurement. By 618

leveraging the idea that plausible commonsense 619

augmentations cause minimal semantic deviation, 620

ComPaSS offers a generalizable approach for vari- 621

ous tasks and model architectures. Our experiments 622

show that discriminative methods outperform gen- 623

erative approaches in capturing nuanced plausibil- 624

ity distinctions, with ComPaSS consistently sur- 625

passing likelihood-based and verbalization-based 626

baselines. Vision-language models also excel on 627

visually-grounded commonsense tasks, addressing 628

reporting bias through multimodal alignment. Fi- 629

nally, we emphasize the role of contrastive pre- 630

training in improving semantic representation qual- 631

ity, directly enhancing plausibility estimation ac- 632

curacy. Overall, ComPaSS highlights the value of 633

utilizing semantic embeddings to extract common- 634

sense knowledge from pre-trained models. 635

8



8 Limitations and Ethical Considerations636

ComPaSS faces challenges in making absolute637

pointwise judgments. The method’s reliance on638

semantic shift measurement inherently provides639

comparative assessments rather than definitive plau-640

sibility scores. This limitation stems from the dif-641

ficulty in establishing absolute semantic distance642

thresholds for plausibility classification. Future643

work could explore calibration techniques to bridge644

this gap.645

As our method relies on LLMs and VLMs, it646

inherits potential biases present in the training647

data. These biases, whether related to societal648

stereotypes or uneven distribution of information649

across certain attributes, could affect the model’s650

judgment in ranking attribute plausibility. Con-651

sequently, our method may inadvertently perpetu-652

ate or amplify these biases, especially in scenarios653

where the model’s understanding of an attribute is654

skewed by biased representations in the data. Ad-655

dressing these biases is an important avenue for656

future work.657
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A Templates for Sentence Construction882

The templates we used to construct anchor sen-883

tences and candidate sentences of different property884

are shown in Table A.885

B Prompt for Sentence Transformation886

The prompt we use for converting question-answer887

pair can be found in Figure 5. For the Common-888

sense Frame Completion (CFC) task, answers with889

similar semantics (e.g., “person” vs. “a person”)890

will be further grouped into equivalence clusters891

during evaluation rather than being considered as892

individual answers. Following the dataset’s official893

protocol, each question is asked multiple times to894

estimate the sampling probability of the model as895

accurately as possible, and different expressions of896

the same type of answer are allowed to avoid the897

influence of vocabulary selection on the model.898

C Prompt for Verbalization-based 899

Method 900

The prompt we use for the verbalization-based 901

method can be found in Figure 6. 902

D More Experimental Results 903

Since not all models are compatible with all meth- 904

ods, we exclude the results of incompatible model- 905

method combinations from the main text. The com- 906

plete results are provided in Table 5. Notably, the 907

results of Mistralw/ CL with the verbalization-based 908

method is 0, as this model, trained via contrastive 909

learning, has significantly lost its ability to follow 910

instructions, preventing it from generating reason- 911

able responses based on prompts. 912
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Transform the problem into declarative sentence based on each answer with minimal modifications. Do not 
introduce more information, and do not lose any information in the questions and answers.

For Example:
Question 1:
who was driving through the night, shooting blurred lights out of focus?
Answers 1:
1. person, 2. chauffeur, 3. taxi driver, 4. a person, 5. or a driver.
Sentences 1:
1. A person was driving through the night, shooting blurred lights out of focus.
2. A chauffeur was driving through the night, shooting blurred lights out of focus.
3. A taxi driver was driving through the night, shooting blurred lights out of focus.
4. A person was driving through the night, shooting blurred lights out of focus.
5. A driver was driving through the night, shooting blurred lights out of focus.
Question 2:
why would a goat eat hay in a stable?
Answers 2:
1. gain energy, 2. to fulfill hunger, 3. to get nutrition, 4. get nutrition
Sentences 2:
1. a goat eats hay in a stable to gain energy.
2. a goat eats hay in a stable to fulfill hunger.
3. a goat eats hay in a stable to get nutrition.
4. a goat eats hay in a stable to get nutrition.
Question 3:
why would an aircraft receive fuel from a cargo aircraft?
Answers 3:
1. longer flight times, 2. takeoff, 3. traveling, 4. enable travel, 5. refill fuel
Sentences 3:
1. an aircraft receives fuel from a cargo aircraft because of longer flight times.
2. an aircraft receives fuel from a cargo aircraft for takeoff.
3. an aircraft receives fuel from a cargo aircraft for traveling.
4. an aircraft receives fuel from a cargo aircraft to enable travel.
5. an aircraft receives fuel from a cargo aircraft to refill fuel.

New Task:
Question 4:
<Q>
Answers 4:
<A>
Sentences 4:

Figure 5: The prompt for converting question-answer pair into sentence. The blue part is the instruction, the green
part is the 3-shot example, and the red part is the placeholder for the specific input.
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Property Templates for anchor Templates for candidate

Color

A photo of a [o]. A photo of a [c] [o].
A picture of a [o]. A picture of a [c] [o].
An image of a [o]. An image of a [c] [o].
An image of a [o]. An image of a [o] which is [c].

There is an image of a [o]. There is an image of a [c] [o].
There is a photo of a [o]. There is a photo of a [c] [o].
There is a picture of a [o]. There is a picture of a [c] [o].
There is an image of a [o]. There is an image of a [o] which is [c].
There is a photo of a [o]. There is a photo of a [o] which is [c].

It is an image of a [o]. It is an image of a [o] which is [c].
It is a photo of a [o]. It is a photo of a [o] which is [c].

There is a [o]. There is a [o] in [c].
There is a [o]. There is a [o] which is [c].

Everyone knows [o]. Everyone knows that [o] is [c].
Everyone knows [o]. Everyone knows that [o] is [c].

Shape

This is a [o]. This is a [o] with [c] shape.
There is a [o]. There is a [c] [o].
There is a [o]. There is a [o] which shape is [c].

It is an image of a [o]. It is an image of a [o] which shape is [c].
There is an image of a [o]. It is an image of a [o] which shape is [c].
There is an image of a [o]. There is an image of a [c] [o].
There is a picture of a [o]. There is a picture of a [c] [o].
There is a picture of a [o]. There is an picture of a [o] which shape is [c].
There is a picture of a [o]. There is an picture of a [c] [o].
This is a picture of a [o]. This is a picture of a [o] has [c] shape.

A picture of a [o]. A picture of a [o] has [c] shape.
An image of a [o]. An image of a [c] [o].
A photo of a [o]. A photo of a [c] [o].
A picture of a [o]. A picture of a [c] [o].
[o] is of shape . [o] is of shape [c].

The shape of [o]. The shape of [o] can be [c].
The shape of the [o]. The shape of the [o] is [c].

Material

This is an image of a [o]. This is an image of a [o] made of [c].
This is an image of a [o]. This is an image of a [o] which made from [c].
This is an image of a [o]. This is an image of a [o] which made of [c].
This is a photo of a [o]. This is a photo of a [o] made of [c].
This is a picture of a [o]. This is a picture of a [o] made of [c].
This is a picture of a [o]. This is a picture of a [o] which made of [c].

It is a picture of a [o]. It is a picture of a [o] made of [c].
A picture of a [o]. A picture of a [o] which made from [c].
A picture of a [o]. A picture of a [o] which made of [c].
A picture of a [o]. A picture of a [c] [o].

There is an image of a [o]. There is an image of a [c] [o].
There is a photo of a [o]. There is an photo of a [c] [o].
There is a picture of a [o]. There is an picture of a [c] [o].

An image of a [o]. An image of a [c] [o].
A photo of a [o]. A photo of a [c] [o].
A picture of a [o]. A picture of a [c] [o].

Table 4: Templates we used for constructing anchor sentences and candidate sentences. The templates for CoDa are
the same as Color.
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Sort all the <PROP>s in candidate set based on how frequently the object is observed to be each <PROP>. 
The higher the <PROP> is ranked, the more commonly the object is of that <PROP>. The candidate set is 
<PROP_LIST>. The output must be a sorted result that includes all candidate <PROP>s as in the example.

Here are some samples:
object: <OBJ0>
result: <RES0>
object: <OBJ1>
result: <RES1>
object: <OBJ2>
result: <RES2>

New Task:
object: <OBJ>
result:

Answer the question based on commonsense. Your answer should be brief. You cannot refuse to answer 
for any reason.

Example 1: 
Question: who was driving through the night, shooting blurred lights out of focus?
Answer: person
Example 2: 
Question: why would an aircraft receive fuel from a cargo aircraft?
Answer: to fly
Example 3: 
Question: where's the heart-shaped hot dog and some pizza on a big tray?
Answer: restaurant

New Task:
Question: <Q>
Your answer:

The Prompt of Verbalization-based Method for Attribute Value Ranking

The Prompt of Verbalization-based Method for Commonsense Frame Completion

Figure 6: The prompt for attribute value ranking task and commonsense frame completion task.
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Model (#Inference Parameters) CoDa Color Shape Material CFC

Baselines

C
SM

ACCENT (440M) 10.07 10.35 -2.10 16.99 35.04
COMET-Atomic-2020-Bart (440M) 22.91 26.98 40.44 25.72 -
VERA-T5-XXL (5B) 58.93 45.08 30.31 33.51 45.81

L
M

RoBERTa+likelihood (355M) 24.37 33.63 36.12 24.23 42.46
RoBERTaw/ CL+likelihood (355M) 23.36 31.51 26.69 22.23 38.03
Mistral+verbal. (7B) 46.64 38.63 30.46 36.34 32.06
Mistral+likelihood (7B) 51.30 34.31 26.70 37.03 47.98
Mistralw/ CL+verbal. (7B) 0.0 0.0 0.0 0.0 0.0
Mistralw/ CL+likelihood (7B) 25.70 4.72 18.81 5.96 35.46
Qwen2+verbal. (7B) 57.40 41.59 38.3 36.76 29.32
Qwen2+likelihood (7B) 50.25 40.99 32.52 37.13 45.10
Qwen2w/ CL+verbal. (7B) 11.12 15.28 -24.21 0.45 21.39
Qwen2w/ CL+likelihood (7B) 49.65 41.75 32.8 37.3 43.00

ComPASS

L
M

RoBERTaw/ CL (355M) 44.59 38.92 42.92 33.55 44.46
Mistralw/ CL (7B) 58.54 42.20 43.75 38.77 49.01
Qwen2w/ CL (7B) 59.16 44.61 47.51 38.49 46.41

V
L

M CLIP (124M) 58.10 45.55 45.82 33.56 35.13
EVA-CLIP (695M) 62.87 51.73 48.05 38.67 41.46

Table 5: Spearman’s rank correlation coefficient ρ between the predicted ranks of candidates and their ground-truth
on CoDa, ViComTe (Color, Shape, and Material), and CFC, shown in percentage. The best and second best results
are highlighted in bold and underlined, respectively. ‘+likelihood’ indicates using the likelihood-based method and
‘+verbal.’ indicates using the verbalization-based method.
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