
QTIP: Quantization with Trellises and Incoherence
Processing

Albert Tseng
Cornell University

albert@cs.cornell.edu

Qingyao Sun
Cornell University

qs234@cornell.edu

David Hou
dhou@alumni.caltech.edu

Christopher De Sa
Cornell University

cdesa@cs.cornell.edu

Abstract

Post-training quantization (PTQ) reduces the memory footprint of LLMs by quan-
tizing weights to low-precision datatypes. Since LLM inference is usually memory-
bound, PTQ methods can improve inference throughput. Recent state-of-the-art
PTQ approaches use vector quantization (VQ) to quantize multiple weights at once,
which improves information utilization through better shaping. However, VQ re-
quires a codebook with size exponential in the dimension. This limits current VQ-
based PTQ works to low VQ dimensions (≤ 8) that in turn limit quantization qual-
ity. Here, we introduce QTIP, which instead uses trellis coded quantization (TCQ)
to achieve ultra-high-dimensional quantization. TCQ uses a stateful decoder that
separates the codebook size from the bitrate and effective dimension. QTIP intro-
duces a spectrum of lookup-only to computed lookup-free trellis codes designed
for a hardware-efficient “bitshift” trellis structure; these codes achieve state-of-the-
art results in both quantization quality and inference speed.

1 Introduction

Large language models (LLMs) have accelerated advancements in fields ranging from natural
language processing [34] to scientific modeling [28]. However, the largest LLMs have hundreds of
billions of parameters that can take over a terabyte of memory to load in half-precision; this size
poses significant challenges for the practical deployment of LLMs [33, 17, 2]. For example, small-
batch autoregressive decoding, a common form of inference for LLMs, is memory bound [35]. Even
on a modern datacenter GPU with≈ 3TB/s memory bandwidth, a large LLM (> 200GB) can only be
directly run at < 20 tokens per second and may require multiple devices [35]. One way to accelerate
inference is by compressing LLMs. This directly reduces the memory footprint of the model and
increases the theoretical maximum inference throughput on any given machine.

One form of compression, weight-only post-training quantization (PTQ), quantizes trained model
weights to lower precision datatypes [9, 35, 5]. The latest state-of-the-art weight-only PTQ methods,
QuIP# and AQLM, use vector quantization (VQ) to achieve high-quality 2-bit models [35, 11]. In VQ,
a vector x ∈ Rd is quantized to one of 2kd vectors in Rd that form a codebook C ∈ R2kd×d. A higher
vector dimension d allows for better codebook shaping and packing density, improving information
utilization [19]. However, unstructured VQ requires exponential time and space in both the bitrate and
dimension, limiting its practicality. During quantization, VQ costs O(2kdd) time to perform nearest-
neighbor rounding to C, and during inference, C must fit in hardware cache for fast lookups. This
exponential scaling limits how high d can be and thus the advantages of VQ over scalar quantization.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Incoherent W

Ty
T x 00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

“Bitshift” Trellis Quantizer

Ultra-High Dimensional
Quantization

QTIP

BlockLDLQ 101

Total Model Size (GB)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

W
ik

ite
xt

2
Pe

rp
le

xi
ty

 (c
tx

. 4
09

6)

Llama 2 Scaling
QTIP 2 Bit
QTIP 3 Bit
QTIP 4 Bit
QuIP# 2 Bit
AQLM 2 Bit
FP16 @ 4 Bit

Figure 1: QTIP performs ultra-high dimensional (> 100) quantization by using Trellis Coded Quanti-
zation, which has linear cost in dimension. This enables QTIP to outperform Vector Quantization-
based approaches (QuIP#, AQLM) that are limited to low dimensions. With QTIP, 2 bit models
scale better than theoretically optimal 4 bit models.

To address this limitation, we propose QTIP, which uses trellis-coded quantization (TCQ) to enable
tractable ultra-high-dimensional (> 100) quantization and improve quantization quality over prior
VQ-based approaches. In the simplest scalar form of TCQ, a length-T sequence S is statefully
quantized using a trellis – a directed graph G with 2L nodes, each with 2k incoming and outgoing
edges and a scalar value [24]. The reconstructed sequence Ŝ corresponds to the node values of a
length-T walk on G, and quantization finds the walk that minimizes some distortion metric on S and
Ŝ. Since neighboring entries in Ŝ are connected by one of 2k edges, we only need to store which
edge an entry came from, which takes k bits. For additive distortion metrics such as squared error, the
optimal Ŝ can be found with the Viterbi algorithm, which runs in O(2LT) time [13, 24]. This means
that the cost of quantization is independent of the bitrate k and linear in the sequence dimension T ,
enabling tractable high dimensional quantization.

However, TCQ is not free. During inference, vanilla TCQ requires storing both G and the size 2L×V
node value codebook, which can be too large to fit in cache. TCQ-quantized sequences also cannot
generally be decoded in parallel, as tth elment of Ŝ could depend on up to the first tk encoded bits. In
QTIP, we solve these issues by introducing a series of fast compute-based Gaussian codes designed
for the hardware-efficient “bitshift trellis.” Specifically, the bitshift trellis supports parallel decoding,
does not require storing G, and our compute-based codes eliminate needing to store a large node
value codebook. This enables high-quality quantization of Gaussian sources while supporting fast
inference, and we adopt incoherence processing with the random Hadamard transform to ensure that
LLM weights are approximately i.i.d Gaussian distributed. Altogether, QTIP

1. Achieves a state-of-the-art combination of weight-only LLM PTQ quality and fast inference
through hardware-efficient trellis and codebook design.

2. Introduces multiple novel hardware-efficient (≤ 4 instructions per weight) compute-based
random Gaussian codes for TCQ on i.i.d. Gaussian sources.

2 Background and Related Works

We focus on weight-only post-training quantization (PTQ) of LLMs in this work; other model-
compression approaches include quantization-aware training (QAT) and pruning. These methods are
not strictly orthogonal to each other, as one could both prune and quantize a model. Since QTIP is a
weight-only PTQ method, the rest of this section focuses on this area. Most current state-of-the-art
PTQ methods round to minimize the per-layer proxy loss from Nagel et al. [27].

ℓ(Ŵ) = Ex

[
∥(Ŵ −W)x∥2

]
= tr

(
(Ŵ −W)H(Ŵ −W)T

)
(1)

2

Here, Ŵ ∈ Rm×n is the quantized weight matrix, x ∈ Rn is an input activation, and H =
Ex

[
xxT

]
∈ Rn×n is interpreted as a proxy Hessian matrix. This objective is defined per-layer,

making it tractable for very large models. However, minimizing it is difficult due to the non-
differentiable nature of quantization. Instead many works have proposed algorithms such as Hessian-
based adaptive rounding, alternating optimization, and even coordinate descent to approximately
minimize the proxy error [11, 5, 35, 14].

2.1 Incoherence Processing

The effectiveness of these methods depends on properties of W . For example, many works have
observed that weight and activation outliers cause poor quantization quality [10, 20, 29]. In QuIP,
Chee et al. [5] proposed that incoherence was important for quantifying this effect.

Definition 2.1 (Chee et al. [5]). A Hessian H ∈ Rn×n is µ-incoherent if its eigendecomposition
H = QΛQT has maxi,j |Qij | = maxi,j |eTi Qej | ≤ µ/

√
n. A weight matrix W ∈ Rm×n is µ-

incoherent if maxi,j |Wij | = maxi,j |eTi Wej | ≤ µ∥W∥F /
√
mn.

Essentially, incoherence means the weights and important rounding directions (Hessian eigenvectors)
are not too large in any direction, aiding quantization. To make W,H incoherent (small µ), one can
perform incoherence processing (IP) by conjugating W,H with random orthogonal matrices U, V :
W̃ ← UWV T , H̃ ← V HV T . QuIP# introduced IP with the random Hadamard transformation
(RHT), which performs W̃ ← VmSmWSnV

T
n , H̃ ← VnSnHSnV

T
n where Vk is a k × k Hadamard

matrix and Sk is a length k random sign vector. The RHT achieves, with probability ≥ 1− δ, µW̃ =

2 log(4mn/δ), meaning that W̃ ’s entries are approximately independently Gaussian distributed,
which can aid quantization [35, 3]. We choose to build on incoherence processing here because the
independent Gaussian-like weights it produces are suitable inputs for trellis coding [23].

2.2 Vector Quantization (VQ) for LLM PTQ

k-bit VQ quantizes a d dimensional vector S to one of 2kd d-dimensional vectors that form a
codebook C ∈ R2kd×d [1]. Since C is an unstructured collection of arbitrary vectors, VQ enables
better shaping and packing density than scalar product quantization (SPQ), where each entry in S is
quantized independently [19]. However, this also comes at the cost of exponential time quantization
and exponential space inference: finding the nearest neighbor in C requires O(2kdd) time, and storing
C requires O(2kdd) space. The current crop of state-of-the-art LLM PTQ methods, QuIP# and
AQLM, both use VQ to achieve high-quality 2-bit models. Since the shaping advantage of VQ comes
from high dimensionality, both QuIP# and AQLM attempt to maximize dimensionality. AQLM’s
uses a large 8D codebook (1MiB) that does not fit in L1 cache. QuIP# uses an 8D compressible
codebook based on the E8 lattice, which is highly symmetric. This codebook is compressible by
256× and barely fits in L1 cache. In either case, the VQ dimension is effectively hardware-limited to
≤ 8, motivating methods that enable even higher-dimensional quantization.

2.3 Trellis-Coded Quantization (TCQ)

TCQ was first proposed by Marcellin and Fischer [24] to apply the benefits of trellis coded modulation,
a conceptually dual problem, to quantization. Define a (L, k, V) trellis G as a directed graph with
2L nodes, each of which has 2kV incoming and outgoing edges and a value ∈ RV ; these values
form a codebook C ∈ R2L×V . To quantize a length-T sequence S ∈ RT , each contiguous length-V
subsequence of S is assigned to a node ∈ G, with the restriction that the assigned nodes form a walk.
The reconstruction Ŝ of S is then given by concatenating node values in the walk. When V = 1,
this setup describes Marcellin and Fischer [24]’s original scalar TCQ. When V > 1, this describes
TCVQ, which applies TCQ to vectors [12, 37].

Finding the optimal Ŝ under an additive distortion metric can be done with the Viterbi algorithm in
O(2LT) time. This is linear in sequence length, enabling ultra-high dimensional quantization. For
exposition, we briefly describe the Viterbi algorithm here. Concretely, if we want to quantize a T -
length scalar sequence reinterpreted as a sequence of vectors s1, s2, . . . , sT/V ∈ RV using a trellis

3

code with graph G and codebook C, this corresponds to solving the optimization problem

minimize
T/V∑
i=1

∥Cxi
− si∥2 over x1, x2, . . . , xT/V the vertex sequence of a walk on graph G.

This optimization problem can be solved exactly with dynamic programming via the value function

Vt(x) = min

{
t∑

i=1

∥Cxi
− si∥2

∣∣∣∣∣ x1, x2, . . . , xt the vertex sequence of a walk on G and xt = x

}
using the update rule

Vt(y) = min
(x,y)∈G

Vt−1(x) + ∥Cy − st∥2.

This Viterbi approach clearly takes time linear in T and in the number of edges of G; with a few simple
optimizations this can be brought to O(2LT). In comparison, brute-force-searching all possible 2kT

codes—which is what we would need to do for an unstructured k-bit T -dimensional codebook—
would take time proportional to 2LT/V . The ability to tractably find the closest representable vector
in RT , even for large T , is in some sense the “main benefit” of trellis coding. For i.i.d sources, as L
increases, TCQ efficiently approaches the infinite-length distortion-rate DR, which lower bounds
the attainable distortion of a k-bit quantizer [19]. As shown in Table 1, when quantizing an i.i.d.
Gaussian with k = 2, the scalar Lloyd-Max quantizer attains 0.118 MSE, QuIP#’s 8D E8P codebook
0.089 MSE, our (QTIP) 256D L = 16 TCQ quantizer 0.069 MSE, and DR = 0.063 [21, 25, 35, 8].

3 QTIP

Quantizing with TCQ requires storing both the codebook (2L × V) and trellis structure (2L × 2kV)
during inference. These components are too large for fast inference when L ⪆ 12, which is necessary
for high quality. Furthermore, for a generic trellis, recovering the state (and so the decoded value) at
step tth requires a graph walk using the first kt bits: this prevents parallel decoding. QTIP solves these
problems with a novel combination of incoherence processing, a hardware-efficient “bitshift trellis,”
and fast compute-based random Gaussian codes. Incoherence processing makes W approximatelly
i.i.d Gaussian, which reduces quantization to Gaussian source coding. The bitshift trellis removes
needing to store the trellis structure during decoding and also enables parallel decoding. Finally, the
fast compute-based random Gaussian codes remove the need to store the full codebook, completing
the equation for fast inference. On the quality side, the fast random Gaussian codes enable the simple
bitshift trellis to match complicated trellises and achieve state-of-the-art quantization quality.

The main focus of QTIP is on what to quantize with (i.e. TCQ) and not how to quantize (e.g. adaptive
rounding or descent methods). The general construction of QTIP can be used as a drop-in replacement
for VQ in any rounding framework. In the following sections, we first describe the “bitshift” trellis
(Section 3.1). Then, we describe a series of fast compute-based codes for i.i.d Gaussian sources,
aligning with different types of hardware (Sections 3.1.1 and 3.1.2). Finally, we give an approximation
for the tail-biting trellis problem, which lets us more efficiently load weights in hardware (Section 3.2).

3.1 “Bitshift” Trellis and Codebook Design

The bitshift trellis was introduced by Mao and Gray [23] as part of the “random permutation trellis
coder” (RPTC). In the bitshift trellis, node i has an edge to node j if ∃c ∈ Z, 0 ≤ c < 2kV , s.t.
j = (i2kV mod 2L) + c. Essentially, the top L − kV bits of j equal the bottom L − kV bits of i.
This means that the first group of V weights depends only on the bits at positions {1, 2, . . . , L}, the
second only on bit positions {kV + 1, kV + 2, . . . , kV + L}, and in general the tth on bit positions
{(t − 1)kV + 1, . . . , (t − 1)kV + L}. During inference, obtaining the next compressed group of
V weights in a sequence only requires bitshifting by kV bits, which is supported on virtually all
hardware. Furthermore, since each group of V weights only depends on a contiguous window of
L bits in Ŝ, decoding can be parallelized. Figure 2 shows a simple (L = 2, k = 1, V = 1) bitshift
trellis. Note that edges only exist between nodes that overlap by 1 bit, and storing the quantized
length 6 Ŝ indeed only requires 6 bits (plus the initial state).

Quantizing an i.i.d. source with the bitshift trellis is nontrivial because neighboring groups of weights
sharing many bits can potentially lead to strong correlations (Figure 3 LL). The RPTC permutes

4

Tr
el

lis
 W

al
ks

C
od

eb
oo

k

00

01

11

10

00

01

11

10

0.5

0.1

0.3

0.8

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

0.54 0.03 0.72 0.19 0.26 0.89

0.5 0.1 0.8 0.1 0.3 0.8

Unquantized S:

 Quantized Ŝ:

Minimize
Squared

Error

00 01

11 10

Trellis G

Figure 2: A bitshift trellis code with L = 2, k = 1, V = 1. Nodes 0, 1, 2, and 3 have code values 0.5,
0.1, 0.8, and 0.3, respectively. Each node can only transition to the 2kV = 2 nodes that share their
top L− kV = 1 bit with its bottom L− kV = 1 bit. In this example, Ŝ can be stored as 0010110.
Ŝ is also tail-biting, so the last L− kV = 1 bits can be dropped to give Ŝ = 001011.

Table 1: QTIP’s compute-based codes (1MAD, 3INST, HYB) achieve similar distortion rates as a
pure-lookup random Gaussian trellis code (RPTC) when quantizing an i.i.d Gaussian source to 2 bits.
All TCQ methods (L = 16) outperform SQ and VQ and are significantly closer to the infinite-length
distortion rate DR, which lower bounds the distortion a k-bit quantizer can attain.

SQ VQ 1D TCQ 2D TCQ
QUANT. LLOYD-MAX QUIP# E8P 1MAD 3INST RPTC HYB RPTC DR

DIM. 1 8 256 256 256 256 256 ∞
MSE. 0.118 0.089 0.069 0.069 0.068 0.071 0.069 0.063

the codebook to decorrelate neighboring weight groups (Figure 3 RR) [23]. However, this requires
storing the codebook or storing and applying the permutation, both of which are prohibitively
expensive during decoding. Instead, QTIP introduces a series of compute-based codes to produce
a psuedorandom code, which has the same decorrelating effect and admits fast inference. To
match approximately i.i.d. Gaussian RHT-transformed matrices, these codes produce psuedorandom
approximate Gaussians in as few as 2 instructions per weight (see Table 1 and Figure 3). To the best
of our knowledge, these code constructions alone are novel and we are the first to propose a lookup-
free Gaussian trellis code.

3.1.1 Lookup-Free Computed Codes

Here, we present two pure-computed lookup-free codes that produce a pseudorandom approximately
Gaussian number from a L bit word, enabling fast decoding on cache-limited hardware. These
codes avoid strong correlations and can be implemented in ≤ 4 hardware instructions per weight on
NVIDIA GPUs. We present two codes here to illustrate that multiple such codes are possible: in
practice a lookup-free code can be designed to use the instructions available on whatever hardware
we want to run on.

Algorithm 1 (1MAD) first runs a linear congruential generator (LCG) to produce a pseudorandom
32-bit word [32]. This requires 2 instructions (MAD and &). It then sums the 32-bit word as four 8-
bit unsigned integers; this sum is approximately Gaussian distributed. This requires 1 instruction
(vabsdiff4). Finally, this sum must be scaled and shifted (another MAD). Although there are only 210

representable values even when L > 10, this does not empirically affect quantization quality. 1MAD
requires choosing a and b to avoid strong correlations; we set a = 34038481 and b = 76625530
(Figure 3 LC).

Algorithm 2 (3INST) also first runs an LCG to produce a random 32-bit word X . Then, it XORs the
bottom 16 bits of X with the mantissa bits, bottom two exponent bits, and sign bit of a magic FP16
number m to produce an FP16 number m1. It then repeats this with the top 16 bits of X to produce
m2 and returns m1 +m2. This entire process can be implemented in 3 ALU instructions1 with a MAD
for the LCG, a lop3 to mask and XOR with a packed duplicated m, and then summing m1 and m2.

1As there is currently no instruction on NVIDIA GPUs that sums the top and bottom half of a 32-bit word as
two FP16s, this requires an extra data movement instruction to “split” the 32-bit word into two 16-bit registers.

5

Figure 3: Set of representable neighboring values in a bitshift trellis with L = 16, k = 2, V = 1 for
(far left) a code with strong correlations, (left center) algorithm 1 (“1MAD”), (right center) algorithm
2 (“3INST”), and (far right) a random Gaussian code. Note that while 1MAD has minor correlations,
both 1MAD and 3INST are close to a random Gaussian, resulting in good quantization quality.

Algorithm 1 Computed Gaussian Code “1MAD”
input L-bit 0 left-padded integer x, uint32 a, b.

x← (ax+ b) mod 232 {run LCG to get uniform random x}
{sum x as four 8-bit unsigned integers, this is approximately Gaussian}
x← (x & 255) + ((x >> 8) & 255) + ((x >> 16) & 255) + ((x >> 24) & 255)
x← (x− 510)/147.8

output Pseudorandom approximate Gaussian x.

m1 +m2 is approximately distributed by the sum of two mirrored exponential distributions, which is
close to Gaussian. Like with Algorithm 1, a, b, and m must be chosen to avoid correlations; we used
a = 89226354, b = 64248484,m = 0.922 (Figure 3 right).

3.1.2 Hybrid Lookup-Computed Codes

Here, we describe a hybrid computed-lookup code that computes a pseudorandom (or hashed) index
into a 2D vector codebook (V = 2). This code is tailored for modern GPUs, which have enough cache
for a small in-memory LUT—one benefit of using such a LUT over a purely computed codebook is
that a LUT can be fine-tuned after quantization. Algorithm 3 first performs the hash X ← X2+X to
mix the lower order and upper order bits of X [18]. Then, it takes bits (14−Q+1)− 14 (0 indexed)
as an index into a 2Q × 2 LUT to get two 16-bit floats. (The reason why we chose a 2D codebook
here is that shared memory on NVIDIA GPUs is accessed in 32-bit-word elements, and each such
word can contain two 16-bit floats.) Finally, it XORs bit 15 of X to flip the sign of the second entry
of the codebook vector. Algorithm 3 can be implemented with MAD, bitshift, mask, and lop3, giving
an amortized 2 instructions per weight. This effectively assigns a L bit word to one of 2Q+1 2D
vectors, each of which can be fine-tuned to improve quality. Algorithm 3 can also be implemented to
XOR bit 31 alongside bit 15 (this is free in the lop3) to give an effectively 2Q+2-sized codebook,
which can improve quantization quality. We only realized this after running all the experiments, so
the numbers in this paper use the “one sign flip” version of Algorithm 3. In QTIP, we initialize the
LUT using K-means on an empirical 2D i.i.d. Gaussian distribution.

3.2 Tail-Biting Trellises

Directly quantizing a length-T sequence to a (L, k, V) trellis results in a total of kT + L− kV bits
since the starting state takes an additional L− kV bits to store. If we run inference on a machine with
w-bit words where w|kT , we must read an extra ⌈L−kV

w ⌉w − (L− kV) wasted bits per sequence.
For common w (e.g. 32), setting L = kV + w makes the Viterbi algorithm intractable. One way to
solve this is by enforcing that the start and end state share L− kV bits, i.e. the trellis is tail-biting
[4]. Exactly solving the tail-biting trellis problem via dynamic programming takes time quadratic in
the state space (2L), making this problem intractable for reasonable L ≥ 12 [30]. However, since
RHT-processed weights are approximately i.i.d., simple algorithms can be effective for approximately
solving the tail-biting problem. We propose Algorithm 4, which first rotates the sequence by T/2,
quantizes it, and then extracts the overlap between the rotated start and end states. It then requantizes
the original sequence with this overlap as the tail-biting overlap. This only requires two Viterbi calls

6

Algorithm 2 Computed Gaussian Code “3INST”
input L-bit 0 left-padded integer x, uint32 a, b, float16m.

x← (ax+ b) mod 232 {run LCG to get uniform random x}
{modify sign, mantissa, and bottom 2 exponent bits of m and sum, this is approximately Gaussian}
m← reinterpret(m, uint32) << 16 + reinterpret(m, uint32)
x← (x & b10001111111111111000111111111111) XOR m
x← reinterpret(x & 216 − 1, float16) + reinterpret((x >> 16) & 216 − 1, float16)

output Pseudorandom approximate Gaussian x.

Algorithm 3 Hybrid Computed-Lookup 2D Gaussian Code “HYB”

input L-bit 0 left-padded integer x, codebook C ∈ R2Q×(V=2).
x← x · x+ x mod 232 {calculate hash}
v ∈ R2 ← C[(x >> (15−Q)) & 2Q − 1] {lookup from symmetric codebook}
v ← v XOR (x & (1 << 15)) {apply sign flip}

output Pseudorandom approximate Gaussian vector v.

in total. Table 2 shows that in practice, Algorithm 4 can find close-to-optimal tail-biting sequences
while being significantly cheaper to run than other tail-biting approximation algorithms [30].

4 Experiments

Here, we present experiments quantizing the Llama family of models with QTIP [33, 34, 26]. These
models offer strong performance across a wide range of sizes, allowing us to compare how different
quantization methods perform and scale. We primarily compare QTIP against QuIP# and AQLM. For
Llama 1, we include GPTVQ-2D instead of AQLM since AQLM does not publish Llama 1 numbers
[36]. GPTVQ-2D performs 2D VQ inside GPTQ and offers strong performance. These methods
outperform scalar quantization methods including GPTQ, AWQ, and OmniQuant; comparisons to
those methods can be found in QuIP# and AQLM [20, 14, 29, 35, 11]. We mainly focus on the
hybrid code (Section 4.2) since it is tailored for modern GPUs, and present a full suite of results for it.
For the computed codes (Section 4.1), we present results for Llama 2.

Since the proxy error is not an additive distortion metric, we cannot minimize it by quantizing W
as one sequence. Instead, for all experiments, we use QTIP as a quantizer in QuIP#’s BlockLDLQ,
which allows us to simultaneously achieve high dimensionality and low proxy error [35]. Specifically,
we quantize a block of Tx × Ty weights as a sequence, where Tx and Ty span the output and input
dimensions of W , respectively. Since BlockLDLQ only specifies feedback along the input dimension,
this is equivalent to BlockLDLQ with g = Ty but a vector dimension of TxTy ≫ Ty. This has the
benefit of limiting the effect of g in BlockLDLQ’s error bound gmµ2σ2tr(H1/2)2/n while achieving
a high dimension for TCQ. Algorithm 5 in the Appendix describes this in more detail.

4.1 Lookup-Free Computed Codes

Here, we use 1MAD and 3INST with L = 16, V = 1, Tx = Ty = 16. Setting Tx = Ty = 16 enables
using a 16 × 16 MMA tile per trellis sequence to perform matrix multiplication during inference.
16× 16 MMA tiles form the basis of many types of “AI hardware,” making fast decoding relatively
simple [6]. We do not perform fine-tuning since the codes themselves are not tunable, but these codes
are fully compatible with QuIP#-style fine-tuning (recall that QuIP#’s codebook is also not tunable).
Table 3 shows that both 1MAD and 3INST significantly outperform QuIP# without fine-tuning
(AQLM does not have numbers without fine-tuning). Even at 4 bits, where all methods are close
to lossless, QTIP results in significant improvements. Notably, the computed-code QTIP variants
without fine-tuning outperforms both QuIP# and AQLM with fine-tuning on almost all models and
sizes, showing that fine-tuning is not a silver bullet.

4.2 Hybrid Lookup-Computed Codes

7

Algorithm 4 Tail-biting Trellis Approx.
input Sequence S ∈ RT , (L, k, V) Trellis G.
S′ ← Rotate S to the right by ⌊T/2⌋
Ŝ′ ← Viterbi(S′, G)
O ← L− kV bit overlap of Ŝ′

⌊T/2⌋Ŝ
′
⌊T/2⌋+1

Ŝ ←Viterbi(S, G) with start/end overlap = O

output Tail biting Ŝ

Table 2: Quantizing 4K T = 256 i.i.d Gaus-
sian seqs. with a tail-biting (12, k, 1) trellis.

k Alg. 4 MSE Optimal MSE

1 0.2803 0.2798
2 0.0733 0.0733
3 0.0198 0.0198
4 0.0055 0.0055

Table 3: Wikitext2 and C4 perplexity (↓), ctx. 4096, QTIP with pure-computed codes. Even without
fine-tuning, pure-computed QTIP outperforms QuIP# and AQLM, both of which use fine-tuning, at
almost all models sizes.

4 BIT NO FT ≈4 BIT 3 BIT NO FT ≈3 BIT 2 BIT NO FT ≈2 BIT

FP16 1MAD 3INST QUIP# QUIP# AQLM 1MAD 3INST QUIP# QUIP# AQLM 1MAD 3INST QUIP# QUIP# AQLM

W2 5.12 5.17 5.17 5.22 5.19 5.21 5.38 5.40 5.60 5.41 5.38 7.05 6.82 8.22 6.19 6.142-7 C4 6.63 6.71 6.71 6.79 6.75 6.75 6.99 7.01 7.34 7.04 7.01 9.14 8.96 11.0 8.16 8.09
W2 4.57 4.62 4.62 4.65 4.63 4.64 4.74 4.74 4.90 4.78 4.78 5.59 5.52 6.06 5.35 5.332-13 C4 6.05 6.10 6.10 6.15 6.13 6.14 6.28 6.28 6.50 6.35 6.33 7.46 7.39 8.07 7.20 7.19
W2 3.12 3.16 3.16 3.18 3.18 3.19 3.27 3.27 3.41 3.35 3.36 3.87 3.90 4.16 3.91 3.832-70 C4 4.97 5.00 5.00 5.02 5.02 5.03 5.09 5.09 5.20 5.15 5.17 5.70 5.69 6.01 5.71 5.62

Table 4: Batch size 1 decoding throughput
on a RTX6000 Ada (960GB/s mem. BW).
METHOD BITS 2-7B TOK/S 2-70B TOK/S

FP16 16 55.9 OOM
AQLM 2 81.5 8.78
QUIP# 2 186 22.2
QTIP 2 188 23.5
QTIP 3 161 19.1
QTIP 4 140 16.3

Here, we use the hybrid lookup-computed code with
L = 16, V = 2, Tx = Ty = 16, Q = 9. Setting Q = 9
gives a 2KiB codebook, which fits in L1 cache even
after duplication for bank conflicts (32×) on modern
GPUs. This codebook is differentiable, so we can fine-
tune it: to evaluate this, we fine-tune using QuIP#’s
methodology, tuning both the codebook entries and
the as-yet-unquantized weights in a blockwise fashion.
Table 5 shows the perplexity of quantized Llama 1 and
2 models. In all cases, QTIP outperforms the other
vector quantization-based methods. Even at 3 and 4
bits, where QuIP# and AQLM are close to lossless,
QTIP roughly halves the perplexity gap. These results also show the importance of dimensionality.
Note that the 3- and 4-bit Llama 2 70B numbers here match those in 3. Since Table 3 uses a pure-
computed code without fine-tuning, fine-tuning has no effect in these regimes and the improvement
over QuIP# is purely from dimensionality.

Table 6 shows zeroshot results computed with LM Eval, which are slightly random; QTIP generally
matches or exceeds QuIP# and AQLM on these tasks [15]. Table 7 contains results on Llama 3.
Like other works, we have observed that Llama 3 (especially 70B base) is harder to quantize than
Llama 2 [16]. Since the contribution and focus of this work is what to round with (TCQ) and not
how to round (BlockLDLQ), we only compare against the proximal baseline QuIP#, which uses
BlockLDLQ with VQ. QTIP significantly improves upon QuIP# at all model sizes and bitrates, once
again showing the dimensionality advantage of TCQ over VQ. Table 8 shows results for Llama 3.1
instruct-tuned models, including Llama 3.1 405B. At all sizes, QTIP achieves strong results. Notably,
QTIP is able to match or exceed PV-Tuning, a recent quantization method that focuses on better fine-
tuning algorithms [22]. However, PV-Tuning is based off of AQLM and inherits its slow inference
speed, making it significantly slower than QTIP. Finally, Table 9 shows results for quantizing Llama
3.2 instruct-tuned models to 4 bits. Since the embedding layers are very large relative to the decoder
layers for small Llama 3 models (≈ 500− 750MB), quantizing the decoder layers to fewer than 4
bits does not make a significant difference on the final model size. Here, QTIP is still able to achieve
a meaningful end-to-end compression rate (2.5-3X) without degrading the final model.

8

Table 5: Wikitext2 and C4 perplexity (↓), QTIP with the hybrid-computed code. QTIP enables high-
dimensional quantization and outperforms state-of-the-art vector quantization approaches.

CTX. 2048, X = GPTVQ, Y = 0.13 CTX. 4096, X = AQLM, Y ≈ 0

WIKTEXT2 C4 WIKITEXT2 C4

METHOD BITS 1-7 1-13 1-30 1-65 1-7 1-13 1-30 1-65 2-7 2-13 2-70 2-7 2-13 2-70

FP16 16.0 5.68 5.09 4.10 3.53 7.04 6.61 5.98 5.62 5.12 4.57 3.12 6.63 6.05 4.97
X 4+Y 5.94 5.20 4.18 3.64 – – – – 5.21 4.65 3.19 6.75 6.14 5.03

QUIP# 4.00 5.76 5.17 4.18 3.60 7.18 6.67 6.03 5.66 5.19 4.63 3.18 6.75 6.13 5.02
QTIP 4.00 5.72 5.15 4.15 3.58 7.13 6.65 6.01 5.64 5.17 4.61 3.16 6.69 6.09 5.00

X 3+Y 6.32 5.31 4.38 3.79 – – – – 5.38 4.78 3.36 7.01 6.33 5.17
QUIP# 3.00 5.98 5.31 4.36 3.70 7.39 6.83 6.17 5.77 5.41 4.78 3.35 7.04 6.35 5.15
QTIP 3.00 5.85 5.24 4.26 3.68 7.26 6.74 6.09 5.71 5.28 4.69 3.26 6.87 6.22 5.08

X 2+Y 9.64 6.58 5.63 4.91 – – – – 6.14 5.33 3.83 8.09 7.19 5.62
QUIP# 2.00 6.86 5.97 5.02 4.36 8.36 7.48 6.71 6.19 6.19 5.35 3.91 8.16 7.20 5.71
QTIP 2.00 6.52 5.80 4.83 4.21 7.99 7.31 6.56 6.08 5.86 5.11 3.70 7.73 6.85 5.48

Table 6: Zeroshot accuracy (↑), QTIP with the hybrid-computed code.

2-70 2-13 2-7

MTHD. BITS ARCC ARCE PIQA WINO BITS ARCC ARCE PIQA WINO BITS ARCC ARCE PIQA WINO

FP16 16 51.1 77.7 81.1 77.0 16 45.6 73.3 73.5 69.6 16 40.0 69.3 78.5 67.3
AQLM 4.14 50.7 77.3 81.5 76.5 3.94 44.8 73.3 78.4 69.9 4.04 41.0 70.2 78.2 67.3
QUIP# 4 50.5 77.7 81.4 77.3 4 43.6 71.3 78.7 69.6 4 40.4 68.6 78.5 67.4
QTIP 4 50.0 77.8 81.3 76.9 4 44.8 73.6 78.9 69.9 4 40.0 68.9 78.4 67.1

AQLM 3.01 50.3 78.0 80.7 75.3 3.03 42.8 72.9 78.5 68.8 3.04 38.5 66.8 77.3 65.4
QUIP# 3 50.9 77.6 81.4 76.1 3 44.0 72.5 78.4 69.1 3 39.2 68.4 77.3 66.5
QTIP 3 50.3 78.2 80.6 77.0 3 44.0 72.8 78.0 69.5 3 38.9 68.1 78.1 66.9

AQLM 2.07 47.9 77.7 80.4 75.9 1.97 38.8 69.3 75.9 68.8 2.02 32.8 63.7 74.8 65.7
QUIP# 2 47.6 77.1 79.5 74.6 2 39.6 69.0 77.3 67.4 2 35.2 65.3 75.4 64.9
QTIP 2 48.0 76.3 80.2 75.1 2 41.4 70.8 77.3 67.6 2 35.7 65.6 75.9 64.7

4.3 Inference Speed

Table 4 shows the batch size 1 inference speed of QTIP, QuIP#, and AQLM on Llama 2 7B and
70B with matrix fusion. Here, the design choices of QTIP and QuIP# become apparent. Whereas
AQLM uses a codebook that is too large to fit in cache and thus prevents fast inference, both QTIP
and QuIP# achieve significant speedups over FP16. Furthermore, while it is impressive that both
QuIP# and QTIP are > 2× faster than AQLM, it is even more impressive that QTIP is able to match
QuIP#’s throughput with an effective dimension size of 256, or 32× larger than QuIP#’s. This
means that the improved quantization quality of QTIP comes with no additional inference-time cost.
Although our empirical throughput numbers were timed on NVIDIA GPUs, QTIP can be fast on
a broad class of accelerators due to its flexibility. QTIP only requires generating a pseudorandom
Gaussian efficiently, and can work on devices with no cache as well as devices with lookup hardware.
For example, if we were using a ARMv8 CPU, we could use the vqtbl4q_u8 NEON intrinsic to
look up 16 indices in a 64-entry codebook. This would let us use a 6 bit 1D codebook with the HYB
code (Q=6, V=1). Quantizing Llama 2 7B to 2 bits with this setup and w/out fine-tuning gives 6.89
Wikitext2 perplexity – essentially the same state-of-the-art quality as 3INST.

5 Conclusion

We present QTIP, a weight-only post-training quantization algorithm that achieves state-of-the-
art results through the use of trellis-coded quantization (TCQ). TCQ enables tractable ultra-high
dimensional quantization, significantly reducing quantization distortion over vector quantization (VQ).
However, naive TCQ does not admit fast inference due to sequential bottlenecks during decoding
and needing to store a large codebook. QTIP solves this problem through a novel combination of
incoherence processing, the hardware-efficient bitshift trellis, and fast computed codes. Specifically,
QTIP introduces a series of compute-based pseudorandom Gaussian codes that, when used in

9

Table 7: QTIP vs. QuIP#, Llama 3 (ctx. 8192 for perplexity). Although Hessian-based rounding
generally underperforms on Llama 3, the focus of this work is on what to quantize with (TCQ vs. VQ).
Here, the high-dimensionality of TCQ in QTIP improves over the low-dimensional VQ in QuIP#.

3-70 PPL (↓) 3-70 ZEROSHOT ACC (↑) 3-8 PPL (↓) 3-8 ZEROSHOT ACC (↑)

MTHD. BITS W2 C4 ARCC ARCE BOOLQ PIQA WINO W2 C4 ARCC ARCE BOOLQ PIQA WINO

BF16 16.0 2.59 5.78 60.5 86.9 85.3 82.4 80.3 5.54 7.10 50.2 80.1 81.0 79.7 72.9
QUIP# 4.00 2.99 5.96 35.0 67.3 84.7 71.9 76.7 5.81 7.32 50.2 79.7 81.3 79.7 73.1
QTIP 4.00 2.75 5.83 56.1 83.9 85.8 81.3 80.6 5.67 7.20 50.2 79.6 79.5 79.4 73.4

QUIP# 3.00 3.59 6.18 31.1 36.6 85.7 58.8 76.4 6.27 7.71 46.4 77.4 79.9 77.9 72.9
QTIP 3.00 3.18 5.98 48.6 77.8 85.0 77.8 79.7 6.01 7.48 49.2 79.3 80.0 79.2 74.5

QUIP# 2.00 5.77 7.46 18.3 32.2 82.1 54.7 68.9 7.84 9.06 39.2 72.9 76.6 75.6 68.2
QTIP 2.00 4.97 6.80 28.0 35.2 83.6 57.1 72.6 7.33 8.62 44.2 75.2 76.7 77.6 70.7

Table 8: Llama 3.1 instruct-tuned model results (ctx. 8192 for perplexity). QTIP performs well at all
model sizes and generally outperforms PV-Tuning, a recent quantization method that focuses on fine-
tuning algorithms. The zeroshot results in this table use LM Eval 0.4.4 and the “standard” versions of
each task instead of the Meta versions in [26].

PPL. (↓) ZEROSHOT (↑)

BITS W2 ARCC ARCE HSWAG PIQA

META "FP8" 16 ATTN. / 8 MLP 1.70 61.6 81.4 67.1 83.8
QTIP 4 1.79 61.3 80.9 66.7 84.2
QTIP 3 2.05 61.5 81.4 66.8 83.53.1 405B INST.

QTIP 2 3.29 60.7 81.1 65.4 82.2
BF16 16 3.52 56.7 75.6 61.5 82.8
QTIP 4 3.73 56.3 75.8 61.4 83.0
QTIP 3 4.12 55.1 75.1 60.8 82.6
QTIP 2 5.08 54.4 72.6 59.4 82.5

3.1 70B INST.

PV-TUNING 2.01 5.70 52.7 72.2 60.2 82.6
BF16 16 6.50 51.6 77.8 57.7 80.0
QTIP 4 6.61 50.7 78.0 57.5 80.1
QTIP 3 6.80 50.4 77.7 56.9 79.3
QTIP 2 7.82 45.1 75.6 54.5 79.0

3.1 8B INST.

PV-TUNING 2.07 8.45 46.2 75.4 54.4 78.7

Table 9: Llama 3.2 instruct-tuned results when quantizing to 4 bits (ctx. 8192 for perplexity). Even
on extremely small models, QTIP is still able to achieve meaningful compression without sacrificing
quality. This table uses the same LM Eval setup as Table 8.

PPL (↓) ZEROSHOT (↑)

SIZE (GB) W2 ARCC ARCE HSWAG PIQA

BF16 6 9.58 43.3 74.3 52.2 75.73B QTIP 2.1 9.77 43.5 74.3 51.9 75.1
BF16 2.4 11.57 36.0 68.5 45.2 74.21B QTIP 0.97 11.93 34.8 68.4 44.5 73.3

conjunction with the bitshift trellis and incoherence processing, simultaneously achieves state-of-
the-art PTQ quality and fast inference. QTIP improves quantization quality at all tested bitrates
over the latest VQ-based PTQ methods, QuIP# and AQLM, further pushing the boundary of LLM
PTQ. QTIP’s codes use as few as 2 instructions per weight during decoding, enabling matrix-vector
multiplication to run at over 80% of peak memory bandwidth on modern GPUs. Altogether, our
results indicate that high dimensional quantization is necessary for high-quality compression, and
QTIP is the first LLM PTQ method to scale to ultra-high dimensions while supporting fast inference.

Acknowledgements

C.D. was supported by NSF-2046760 CAREER. We thank Together AI for compute resources.

10

References
[1] An algorithm for vector quantizer design. IEEE Transactions on communications, 28(1):84–95,

1980.

[2] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra
Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malar-
tic, Daniele Mazzotta, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The falcon
series of open language models, 2023.

[3] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Martin Jaggi, Dan
Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated
llms, 2024.

[4] A.R. Calderbank, G.D. Forney, and A. Vardy. Minimal tail-biting trellises: the golay code and
more. IEEE Transactions on Information Theory, 45(5):1435–1455, 1999. doi: 10.1109/18.
771145.

[5] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. QuIP: 2-bit quantization
of large language models with guarantees. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=xrk9g5vcXR.

[6] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky. Nvidia
a100 tensor core gpu: Performance and innovation. IEEE Micro, 41(2):29–35, 2021. doi:
10.1109/MM.2021.3061394.

[7] Together Computer. Redpajama: An open source recipe to reproduce llama training dataset,
2023. URL https://github.com/togethercomputer/RedPajama-Data.

[8] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006. ISBN
0471241954.

[9] Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling
laws. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 7750–7774.
PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/dettmers23a.
html.

[10] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix
multiplication for transformers at scale, 2022.

[11] Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization, 2024.

[12] T.R. Fischer, M.W. Marcellin, and M. Wang. Trellis-coded vector quantization. IEEE
Transactions on Information Theory, 37(6):1551–1566, 1991. doi: 10.1109/18.104316.

[13] G.D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278, 1973. doi:
10.1109/PROC.1973.9030.

[14] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

[15] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

11

https://openreview.net/forum?id=xrk9g5vcXR
https://github.com/togethercomputer/RedPajama-Data
https://proceedings.mlr.press/v202/dettmers23a.html
https://proceedings.mlr.press/v202/dettmers23a.html
https://openreview.net/forum?id=tcbBPnfwxS
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

[16] Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng, Chengtao Lv, Hong Chen, Jie Luo,
Xiaojuan Qi, Xianglong Liu, and Michele Magno. How good are low-bit quantized llama3
models? an empirical study, 2024.

[17] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mixtral of experts, 2024.

[18] Alexander Klimov and Adi Shamir. A new class of invertible mappings. In Cryptographic
Hardware and Embedded Systems-CHES 2002: 4th International Workshop Redwood Shores,
CA, USA, August 13–15, 2002 Revised Papers 4, pages 470–483. Springer, 2003.

[19] Victoria Kostina and Sergio Verdu. Fixed-length lossy compression in the finite blocklength
regime. IEEE Transactions on Information Theory, 58(6):3309–3338, 2012. doi: 10.1109/TIT.
2012.2186786.

[20] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, Chuang Gan, and Song Han.
Awq: Activation-aware weight quantization for llm compression and acceleration, 2023.

[21] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28
(2):129–137, 1982.

[22] Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Burlachenko,
Kai Yi, Dan Alistarh, and Peter Richtarik. Pv-tuning: Beyond straight-through estimation for
extreme llm compression, 2024. URL https://arxiv.org/abs/2405.14852.

[23] Mark Z. Mao and Robert M. Gray. Stationary and trellis encoding for iid sources and simulation.
In 2010 Data Compression Conference, pages 3–12, 2010. doi: 10.1109/DCC.2010.8.

[24] M.W. Marcellin and T.R. Fischer. Trellis coded quantization of memoryless and gauss-markov
sources. IEEE Transactions on Communications, 38(1):82–93, 1990. doi: 10.1109/26.46532.

[25] J. Max. Quantizing for minimum distortion. IRE Transactions on Information Theory, 6(1):
7–12, 1960. doi: 10.1109/TIT.1960.1057548.

[26] meta llama. llama3. https://github.com/meta-llama/llama3, 2024.

[27] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort.
Up or down? Adaptive rounding for post-training quantization. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 7197–7206. PMLR, 13–18 Jul 2020.
URL https://proceedings.mlr.press/v119/nagel20a.html.

[28] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Callum Birch-Sykes, Michael
Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon,
Stephen A. Baccus, and Chris Ré. Hyenadna: Long-range genomic sequence modeling at single
nucleotide resolution. 2023.

[29] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng
Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quan-
tization for large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=8Wuvhh0LYW.

[30] Y. Shao.Rose, Shu Lin, and Marc P. C. Fossorier. Tail biting trellis representation of codes:
Decoding and construction. 1999. URL https://api.semanticscholar.org/CorpusID:
3727533.

[31] Neil Sloane. Hadamard Matrices — neilsloane.com. http://neilsloane.com/hadamard/.
[Accessed 02-02-2024].

12

https://arxiv.org/abs/2405.14852
https://github.com/meta-llama/llama3
https://proceedings.mlr.press/v119/nagel20a.html
https://openreview.net/forum?id=8Wuvhh0LYW
https://api.semanticscholar.org/CorpusID:3727533
https://api.semanticscholar.org/CorpusID:3727533
http://neilsloane.com/hadamard/

[32] W. E. Thomson. A Modified Congruence Method of Generating Pseudo-random Numbers. The
Computer Journal, 1(2):83–83, 01 1958. ISSN 0010-4620. doi: 10.1093/comjnl/1.2.83. URL
https://doi.org/10.1093/comjnl/1.2.83.

[33] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

[34] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[35] Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks, 2024.

[36] Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality in llm
quantization. arXiv preprint arXiv:2402.15319, 2024.

[37] H.S. Wang and N. Moayeri. Trellis coded vector quantization. IEEE Transactions on
Communications, 40(8):1273–1276, 1992. doi: 10.1109/26.156629.

13

https://doi.org/10.1093/comjnl/1.2.83

A Appendix

A.1 Additional Results

A.1.1 Ablations on Trellis Size

Table 10 shows an ablation on L for quantizing Llama 2 7B with K = 2, V = 1, the bitshift trellis, a
pure-lookup codebook, and no fine-tuning. L = 8 is the largest L achievable if we had to store the
trellis and codebook in the same amount of cache as the HYB code (2KiB). L = 10 is the largest
L achievable if we only had to store the codebook. As expected, increasing L improves quality.
Table 10 also shows very little difference between an equal-sized LUT codebook and QTIP’s codes,
meaning that QTIP isn’t sacrificing quality for speed. However, an equal-sized LUT would need
> 10× more cache than the latest GPUs have, making the bitshift trellis and compute-based codes
necessary to achieve both quality and speed. Table 11 shows an ablation on V with L = 12 and 16,
K = 2, and the same settings as Table 10. Increasing V generally decreases quality, but this can be
recovered with a larger L. It is hard to measure V ’s impact on decoding speed since this is highly
implementation and hardware dependent, so V is more of a user-chosen hyperparameter.

Table 10: Ablation on L when quantizing Llama 2 7B to 2 bits (K = 2 and V = 1).

L Trellis Size CB size total size W2 C4

QuIP# - 8Kb 8Kb 8.22 11.0
8 8.19 Kb 4.10 Kb 12.29 Kb 7.83 10.3

10 40.96 Kb 16.38 Kb 57.34 Kb 7.49 9.67
12 196.61 Kb 65.54 Kb 262.14 Kb 6.97 9.21
16 4.19 Mb 1.05 Mb 5.24 Mb 6.83 8.92
16 Bitshift 3INST 0Kb 6.82 8.96

Table 11: Ablation on V when quantizing Llama 2 7B to 2 bits (K = 2).

Codebook L V W2 C4

LUT 12 1 6.97 9.21
LUT 12 2 7.09 9.24
LUT 12 4 7.55 9.88
LUT 16 1 6.83 8.92
LUT 16 2 6.79 8.97

QTIP HYB (no FT) 16 2 6.83 8.97
LUT 16 4 6.92 9.07

A.1.2 Zeroshot Results

Table 12: Zeroshot results for the 1MAD code.

Bits ArcC (acc) ArcE (acc) BoolQ (acc) PiQA (acc) Wino (acc)

2-7 16 39.9 69.3 71.1 78.4 67.2
2-7 4 39.0 69.4 72.0 78.4 67.9
2-7 3 38.8 68.0 68.2 77.6 68.4
2-7 2 32.1 63.5 66.3 73.3 62.7
2-13 16 45.6 73.3 69.1 78.7 69.7
2-13 4 45.6 72.9 68.1 78.7 70.3
2-13 3 42.2 71.0 69.9 78.6 69.8
2-13 2 38.5 71.5 71.4 75.9 68.9
2-70 16 51.2 77.7 76.7 81.1 76.9
2-70 4 51.1 77.8 75.2 81.5 77.0
2-70 3 50.8 77.8 77.9 80.7 76.3
2-70 2 49.3 77.7 83.3 80.4 75.7

14

Table 13: Zeroshot results for the 3INST code.

Bits ArcC (acc) ArcE (acc) BoolQ (acc) PiQA (acc) Wino (acc)

2-7 16 39.9 69.3 71.1 78.4 67.2
2-7 4 40.2 68.5 70.3 78.0 67.7
2-7 3 40.2 68.6 73.0 77.5 65.4
2-7 2 32.9 61.9 65.5 74.5 65.0

2-13 16 45.6 73.3 69.1 78.7 69.7
2-13 4 45.4 72.7 67.9 78.5 69.9
2-13 3 44.5 72.6 70.1 78.5 69.4
2-13 2 38.7 68.2 63.6 75.6 68.7
2-70 16 51.2 77.7 76.7 81.1 76.9
2-70 4 50.3 77.9 77.3 80.7 76.5
2-70 3 50.9 78.3 78.8 81.1 77.5
2-70 2 48.0 76.5 76.7 80.1 77.6

Table 14: Llama 1 Zeroshot results for the Hybrid code

Bits ArcC (acc) ArcE (acc) BoolQ (acc) PiQA (acc) Wino (acc)

1-7 16 38.2 67.4 73.1 78.4 67.0
1-7 4 38.8 67.1 74.2 78.3 67.1
1-7 3 37.0 65.7 74.1 77.7 67.3
1-7 2 35.3 64.9 72.9 76.1 65.4

1-13 16 43.9 74.6 68.5 78.8 70.1
1-13 4 43.4 73.7 68.2 79.1 70.1
1-13 3 42.2 74.2 68.0 78.7 70.5
1-13 2 39.7 72.1 66.6 77.6 68.9
1-30 16 46.7 75.4 68.4 81.0 72.6
1-30 4 46.7 75.4 69.9 81.0 73.3
1-30 3 47.8 75.0 70.0 80.4 73.6
1-30 2 44.0 72.7 72.8 78.7 71.7
1-65 16 47.0 75.3 82.3 81.5 77.2
1-65 4 46.8 74.5 82.8 81.4 76.6
1-65 3 46.8 75.3 83.0 81.3 75.9
1-65 2 44.4 74.2 83.1 80.4 75.7

A.1.3 Lookup-Only Codes

Table 15: Wikitext2 and C4 perplexity (↓), ctx. 4096, QTIP with a size 214 LUT codebook. This
codebook is too large (32KB) for current GPU L1 caches, but could fit on near-future hardware.

∼4 Bit ∼3 Bit ∼2 Bit

FP16 QTIP QuIP# AQLM QTIP QuIP# AQLM QTIP QuIP# AQLM

W2 5.12 5.16 5.19 5.21 5.30 5.41 5.46 5.89 6.19 6.642-7 C4 6.63 6.68 6.75 6.75 6.86 7.04 7.08 7.78 8.16 8.56
W2 3.12 3.15 3.18 3.19 3.26 3.35 3.36 3.77 3.91 3.942-70 C4 4.97 4.99 5.02 5.03 5.07 5.15 5.17 5.55 5.71 5.72

Here, we use a pure-lookup code ∼ N (0, 1) with L = 14, V = 1, Tx = 32, Ty = 8, and QuIP#’s
fine-tuning scheme. These parameters show what performance QTIP could achieve if we did not
care about fast inference today. Specifically, a pure-lookup codebook is tunable, and setting Ty = 8
reduces the BlockLDLQ group size while maintaining high dimensionality (256). This codebook
uses 32KB; this only fits in GPU L1 cache with bank conflicts. Setting Tx = 32, Ty = 8 corresponds
to using a larger MMA tile size than current GPUs allow for. The largest tile size is usually 16 in the
Tx dimension, meaning that a 32× 8 trellis needs two tiles. Thankfully, hardware required to serve

15

Table 16: Wikitext2 and C4 zeroshot accuracy (↑), QTIP with a size 214 LUT codebook. This
codebook is too large (32KB) for current GPU L1 caches, but could fit on near-future hardware.

Bits ArcC (acc) ArcE (acc) BoolQ (acc) PiQA (acc) Wino (acc)

2-7 16 40.0 69.3 71.0 78.5 67.3
2-7 4 40.3 69.2 73.0 78.1 67.5
2-7 3 39.1 69.3 69.6 77.8 66.3
2-7 2 37.0 64.6 67.2 75.6 66.9
2-70 16 51.1 77.7 76.6 81.1 77.0
2-70 4 50.1 77.5 76.4 81.3 77.3
2-70 3 50.6 77.9 78.0 81.1 76.1
2-70 2 47.1 76.9 79.5 80.1 76.3

such a model quickly is likely only a few years away, as these parameters are only slightly outside of
what today’s hardware is capable of.

Table 15 shows that QTIP outperforms both QuIP# and AQLM at all compression ratios, with 3
bit QTIP achieving similar quality as 4 bit AQLM. While it is not fair to compare this QTIP setup
with QuIP#, since QuIP# was designed for fast inference, we note that AQLM’s VQ codebook uses
216 × 8× 2 = 1 MiB. This is 32 times larger than the QTIP codebook here, and would require 32
MiB of L1 cache to read from without bank conflicts. Not only is this orders of magnitude larger
than current L1 caches (256KB on the H100), it is even larger than many L2 caches!

A.1.4 Decoding Speed on Different GPUs

Table 17: Decoding speed on different Ampere and Lovelace GPUs.

GPU Model Model 2-bit tok/s 3-bit tok/s 4-bit tok/s FP16 tok/s

RTX 3090 2-7 127 119 109 52.5
RTX 3090 2-70 15.3 OOM OOM OOM

RTX A6000 Ampere 2-7 116 106 95 43.5
RTX A6000 Ampere 2-70 15.0 13.1 11.7 OOM

RTX 6000 Ada 2-7 188 161 140 55.9
RTX 6000 Ada 2-70 23.5 19.1 16.3 OOM

A.2 QTIP with BlockLDLQ

Here, we detail how we use TCQ within BlockLDLQ to produce our experimental setup. Essentially,
QTIP is used as a high dimensional TxTy quantizer within BlockLDLQ and is a drop-in replacement
for vector quantization in BlockLDLQ. The regular blockLDLQ step Q(W + (W − Ŵ)A) is exactly
the same, and the only difference is in how Q rounds. Instead of rounding each row of x = W+(W−
Ŵ)A independently, it groups Tx rows into a block to round as m/Tx high-dimensional sequences.

A.3 Implementation Details

A.3.1 Code

Our code is available at https://github.com/Cornell-RelaxML/qtip.

A.3.2 Hessian Generation

Hessian matrices were generated with 6144 sequences of length 2048 for Llama 1, 6144 sequences
of length 2048 for Llama 2, 4096 sequences of 8192 for Llama 3, and 4096 sequences of 8192 for
Llama 3.1 except for 405B, which only used 2048 sequences due to time constraints. All sequences
were sampled from the RedPajama dataset [7].

16

https://github.com/Cornell-RelaxML/qtip

Algorithm 5 QTIP with BlockLDLQ
input W ∈ Rm×n, H ∈ Rn×n, Tx, Ty, L, k, V, code C.

Ŵ ← 0m,n

LDLT ← Ty-block LDL decomposition of H
A← L− I
for j ∈ {n/Ty − 1, n/Ty − 2, ..., 0} do
x←W:,jTy :(j+1)Ty

+ (W:,jTy : − Ŵ:,jTy :)AjTy :,jTy :(j+1)Ty

x← x.reshape(m/Tx, TxTy)
x̂← Viterbi(x, (L, k, V) bitshift trellis, C) (row-wise)
Ŵ:,jTy :(j+1)Ty

← x̂.reshape(m,Ty)
end for

output Quantized Ŵ .

A.3.3 Hadamard Matrices

We use Hadamard matrices from Neil Sloane’s website [31].

A.3.4 Perplexity

We use the OPTQ “Wikitext2” and “C4” test splits to calculate perplexity [14].

A.3.5 Fine Tuning

We use the same fine-tuning hyperparemters as QuIP#, except that we do not perform matrix fusion
[35]. This results in having to quantize 7 matrices (q, k, v, o, up, gate, down) instead of 4 (qkv, o,
upgate, down). We quantize and fine tune in the following order: (v, q, k, o, up gate, down).

A.4 Example Generations

The following are some sample generations from Llama 2 70B (not instruction tuned) quantized to 2
bits with QTIP, truncated to 256 tokens.

Prompt: It is a truth universally acknowledged

QTIP: It is a truth universally acknowledged that a single man in possession of a good fortune
must be in want of a wife. However little known the feelings or views of such a man may be
on his first entering a neighbourhood, this truth is so well fixed in the minds of the surrounding
residents, that he is considered the rightful property of some one or other of their daughters.
“My dear Mr. Bennet,” said his lady to him one day, “have you heard that Netherfield Park is
let at last?” “But it is,” returned she; “for Mrs. Long has just been here, and she told me that
Netherfield is taken by a young man of large fortune from the north of England; that he came
down on Monday in a chaise and four to see the place, and was so much delighted with it that
he agreed with Mr. Morris immediately; that he is to take possession before Michaelmas, and
that he is now in town in search of a wife.” “I see no occasion for that. You and the girls may
go, or you may send them by themselves, which do you prefer? Only let me know what you
are meaning to do, for I shall certainly not be at home. You

17

Prompt: Call me Ishamel

QTIP: Call me Ishmael. Some years ago—never mind how long precisely—having little
or no money in my purse, and nothing particular to interest me on shore, I thought I would
sail about a little and see the watery part of the world. It is a way I have of driving off the
spleen, and regulating the circulation. Whenever I find myself growing grim about the mouth;
whenever it is a damp, drizzly November in my soul; whenever I find myself involuntarily
pausing before coffin warehouses, and bringing up the rear of every funeral I meet; and
especially whenever my hypochondriacal palate is out of sorts, and I am desperately dull, and
in the dumps, and have such an overpowering sense of fatality that I find myself involuntarily
gravitating toward Cemeteries—and especially toward those open ones which are occasionally
cheered by the gleam of a bonfire, or a cigar, or a pipe, or a lantern, or a candle, or a torch, or
the moon, I then take to the ship. There is nothing surprising in this,

The following is a sample generation from Llama 3.1 405B Instruct quantized to 2 bits with QTIP.

Prompt: Give a proof for why the square root of 2 is irrational:

QTIP: The proof that the square root of 2 is irrational is as follows: Assume, for the sake of
contradiction, that

√
2 is rational. This means it can be expressed as the ratio of two integers,

a and b, where b is non-zero:
√
2 = a/b

We can further assume that a and b are not both even (i.e., they do not share a common factor
of 2), because if they were, we could divide both by 2 and obtain a smaller representation of√
2. Squaring both sides of the equation, we get:

2 = a2/b2

Multiplying both sides by b2, we get:

2b2 = a2

This means that a2 is even, because it is equal to 2 times an integer (b2). Therefore, a must
also be even, because the square of an odd number is always odd. Since a is even, we can
write a = 2c, where c is an integer. Substituting this into the equation above, we get:

2b2 = (2c)2

Expanding the right-hand side, we get:

2b2 = 4c2

Dividing both sides by 2, we get:

b2 = 2c2

This means that b2 is even, and therefore b is also even. However, this contradicts our
assumption that a and b are not both even. Therefore, our original assumption that

√
2 is

rational must be false, and
√
2 is actually irrational. This proof is often attributed to the

ancient Greek mathematician Euclid, and it is still considered one of the most elegant and
simple proofs of the irrationality of

√
2.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The main text describes limitations of the work that the authors were able
perceive at submission time.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

19

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper’s method is well documented and can be easily reproduced. The
code will be made publicly available at a later date as well.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code will be made publicly available at a later date.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: Yes, details are listed in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It is standard practice in LLM quantization papers to not report error bars on
metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See the appendix for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are not aware of any violations of the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper concerns foundational research on LLM quantization. There is not
a direct path to any negative applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All such instances were properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Background and Related Works
	Incoherence Processing
	Vector Quantization (VQ) for LLM PTQ
	Trellis-Coded Quantization (TCQ)

	QTIP
	``Bitshift'' Trellis and Codebook Design
	Lookup-Free Computed Codes
	Hybrid Lookup-Computed Codes

	Tail-Biting Trellises

	Experiments
	Lookup-Free Computed Codes
	Hybrid Lookup-Computed Codes
	Inference Speed

	Conclusion
	Appendix
	Additional Results
	Ablations on Trellis Size
	Zeroshot Results
	Lookup-Only Codes
	Decoding Speed on Different GPUs

	QTIP with BlockLDLQ
	Implementation Details
	Code
	Hessian Generation
	Hadamard Matrices
	Perplexity
	Fine Tuning

	Example Generations

