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Abstract001

Creating AI systems that can interact with en-002
vironments over long periods, similar to hu-003
man cognition, has been a longstanding re-004
search goal. Recent advancements in multi-005
modal large language models (MLLMs) have006
made significant strides in open-world under-007
standing. However, the challenge of contin-008
uous and simultaneous streaming perception,009
memory, and reasoning remains largely unex-010
plored. Current MLLMs are constrained by011
their sequence-to-sequence architecture, which012
limits their ability to process inputs and gener-013
ate responses simultaneously, akin to being un-014
able to think while perceiving. Furthermore, re-015
lying on long contexts to store historical data is016
impractical for long-term interactions, as retain-017
ing all information becomes costly and ineffi-018
cient. Therefore, rather than relying on a single019
foundation model to perform all functions, this020
project draws inspiration from the concept of021
the Specialized Generalist AI and introduces022
disentangled streaming perception, reasoning,023
and memory mechanisms, enabling real-time024
interaction with streaming video and audio025
input. The proposed framework InternLM-026
XComposer2.5-OmniLive (IXC2.5-OL) con-027
sists of three key modules: (1) Streaming Per-028
ception Module: Processes multimodal infor-029
mation in real-time, storing key details in mem-030
ory and triggering reasoning in response to user031
queries. (2) Multi-modal Long Memory Mod-032
ule: Integrates short-term and long-term mem-033
ory, compressing short-term memories into034
long-term ones for efficient retrieval and im-035
proved accuracy. (3) Reasoning Module: Re-036
sponds to queries and executes reasoning tasks,037
coordinating with the perception and mem-038
ory modules. This project simulates human-039
like cognition, enabling multimodal large lan-040
guage models to provide continuous and adap-041
tive service over time. All code and mod-042
els of InternLM-XComposer2.5-OmniLive043
(IXC2.5-OL) will be publicly available.044
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Figure 1: Inspired by human-like cognition and Special-
ized Generalist AI, we introduce InternLM-XComposer2.5-
OmniLive (IXC2.5-OL), a system that facilitates real-time
interaction with: (1) a streaming perception module supports
streaming video and audio inputs; (2) a multi-modal long
memory module that compresses short-term memory into
long-term memory; and (3) a reasoning module that answers
queries based on retrieved memories.

1 Introduction 045

The goal of developing AI systems (LeCun, 2022) 046

that can understand and interact with environ- 047

ments over long periods, akin to human cogni- 048

tion, has been a central focus of research for 049

decades. The rise of large-scale data corpora (Lin 050

et al., 2014; Kuznetsova et al., 2020; Schuhmann 051

et al., 2022; Wang et al., 2023) and multimodal 052

large language models (OpenAI, 2023b, 2024; 053

Team, 2023) has driven significant advances in 054

free-form multimodal question answering. Recent 055

developments, such as Mini-Omni (Xie and Wu, 056

2024a), VideoLLM-Online (Chen et al., 2024a), 057

and VITA (Fu et al., 2024b), have made notable 058

strides toward enabling more natural and immer- 059

sive online interactions. However, challenges per- 060

sist in creating systems capable of continuous in- 061

teraction due to the intrinsic limitations of a single 062

decoder-only large language model architecture. 063

Existing architectures (Zhang et al., 2024e; Xie 064

and Wu, 2024a; Chen et al., 2024a; Fu et al., 065

2024b) encounter significant limitations in real- 066
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time and long-term streaming perception, rea-067

soning, and memory. The sequence-to-sequence068

decoder-only architecture used in current MLLMs069

forces a switch between perception (e.g., seeing070

and hearing) and thinking, limiting the simultane-071

ous processing of inputs and outputs. Additionally,072

existing works (Zhang et al., 2024b; Wang et al.,073

2024e; Fan et al., 2024) rely on the integration074

of multimodal memories within context windows.075

The reliance on long contexts to store historical076

information proves impractical for long-term use,077

especially in scenarios requiring continuous AI as-078

sistance. Multimodal data, like video streams, can079

quickly accumulate millions of tokens within a few080

hours, making it impractical to maintain context081

over multiple days of service. The cost and ineffi-082

ciency of storing all historical clues within the con-083

text further limit the system’s capacity to provide084

continuous and long-term service. In contrast, the085

human brain can effortlessly integrate perception086

and cognition, preserving long-term multimodal087

memories. This is believed to be closely related088

to the functional partitioning design of the human089

brain cortex, where different areas of the cortex are090

responsible for distinct tasks, such as perception,091

memory, and cognition.092

Inspired by the paradigm of Specialized Gener-093

alist AI (Zhang et al., 2024c), we propose a system094

InternLM-XComposer2.5-OmniLive (IXC2.5-095

OL) composed of fused specialized generalist mod-096

els for streaming perception, reasoning, and mem-097

ory, respectively. The system is designed to enable098

AI models to engage continuously with environ-099

ments while retaining observations over time. By100

integrating short-term and long-term multimodal101

memory, our approach attempts to emulate human-102

like cognition, enabling more dynamic and sus-103

tained interactions.104

As shown in Figure 1, the IXC2.5-OL system105

consists of three key modules: (1) Streaming Per-106

ception Module: This module processes the mul-107

timodal information stream on-the-fly. To ensure108

perception accuracy and efficiency, the video and109

audio streams are handled separately. A live video110

perception model processes the video stream, en-111

coding the information and storing key details in112

memory. Meanwhile, an audio model recognizes113

the contents of human speech and other sounds,114

, barking, knocking, or whistling. It triggers the115

reasoning process when human queries occur. (2)116

Multi-modal Long Memory Module: This com-117

ponent integrates both long-term and short-term118

memory, enabling the retrieval of detailed short- 119

term information as well as long-term historical 120

cues. It continuously compresses short-term mem- 121

ories into more information-rich long-term mem- 122

ories to enhance retrieval efficiency and accuracy. 123

(3) Reasoning Module: The reasoning module, ac- 124

tivated by the perception module, handles queries 125

and performs reasoning tasks. As the component 126

with the most model parameters, it serves as the 127

core of the system’s deep cognitive processes. 128

The proposed system empowers AI with the abil- 129

ity to perceive, think, and memorize simultane- 130

ously. By overcoming the limitations of alternating 131

perception and reasoning, IXC2.5-OL seeks to pro- 132

vide continuous, adaptive service, and long-term 133

AI service. The proposed system will not only en- 134

hance the performance of AI assistants but will also 135

contribute to the broader AI applications capable of 136

continuously interacting and adapting to dynamic 137

environments. 138

The IXC2.5-OL demonstrates strong perfor- 139

mance across both audio and video benchmarks. 140

Among the open-source models, IXC2.5-OL 141

achieves competitive results on audio recognition 142

(ASR) benchmarks such as Wenetspeech (Zhang 143

et al., 2022) for Chinese and LibriSpeech (Panay- 144

otov et al., 2015) for English. For video under- 145

standing benchmarks, IXC2.5-OL achieves state- 146

of-the-art results among models with less than 147

10B parameters, obtaining an M-Avg of 66.2% on 148

MLVU (Zhou et al., 2024) and an overall accuracy 149

of 68.7% on MVBench (Li et al., 2024d). Addi- 150

tionally, it demonstrates competitive performance 151

on Video-MME (Fu et al., 2024a) (60.6%) and 152

MMBench-Video (Fang et al., 2024) (1.42). On re- 153

cent streaming video bench StreamingBench (Lin 154

et al., 2024b), IXC2.5-OL achieves new SOTA re- 155

sults on open-source models (73.79%), highlight- 156

ing its exceptional capabilities for real-time video 157

interactions. 158

To foster the development of the multimodal 159

streaming interaction community, alongside the 160

model parameters, the inference and deployment 161

source code, encompassing both the web frontend 162

and backend code, will be released. 163

2 Related Works 164

MLLMs for Text-Image Conversation. Large 165

Language Models (LLMs) (Brown et al., 2020; 166

Ouyang et al., 2022; Qwen, 2023; Cai et al., 2024) 167

have garnered significant attention for their re- 168

2



markable capabilities in language comprehension169

and generation. Building on this success, Large170

Vision-Language Models (LVLMs) (Zhang et al.,171

2023d; OpenAI, 2023a; Chen et al., 2023; Dong172

et al., 2024; Lin et al., 2024a) have been developed173

by integrating LLMs with vision encoders (Rad-174

ford et al., 2021; Zhang et al., 2024a; Chen et al.,175

2024e; Zhang et al., 2024f), extending their abil-176

ity to comprehend visual content and enabling ap-177

plications like text-image conversations. Earlier178

LVLMs were primarily designed for single-image,179

multi-round conversations, whereas recent advance-180

ments (Alayrac et al., 2022; Bai et al., 2023; Dong181

et al., 2024; Zhang et al., 2024d; Li et al., 2024b)182

have expanded their capabilities to process and un-183

derstand multi-image inputs.184

MLLMs for Video Understanding. In addition to185

advancements in image understanding, the field of186

MLLMs has seen growing efforts in video analy-187

sis (Li et al., 2023b; Ning et al., 2023; Wang et al.,188

2024a). To address the complexity of video inputs,189

existing approaches leverage techniques such as190

sparse sampling or temporal pooling (Lin et al.,191

2023; Maaz et al., 2023; Huang et al., 2024; Yu192

et al., 2024a), compressed video tokens (Li et al.,193

2023a; Zhang et al., 2023c; Chen et al., 2024c),194

and memory banks (Song et al., 2023; He et al.,195

2024; Fan et al., 2024). Additionally, some meth-196

ods utilize language as a bridge for video under-197

standing (Kahatapitiya et al., 2024; Zhang et al.,198

2023a). Beyond these video-specific strategies,199

video analysis can also be framed as interpret-200

ing a high-resolution composite image generated201

from sampled video frames (Kim et al., 2024; Xu202

et al., 2024; Zhang et al., 2024e). Recent advance-203

ments (Chen et al., 2024a; Wang et al., 2024d; Wu204

et al., 2024; Zhang et al., 2024b) have increasingly205

focused on online video understanding, aiming to206

simulate real-world scenarios where AI processes207

video streams in real-time to comprehend the en-208

vironment on-the-fly. However, existing solutions209

still lack the capability to simultaneously perform210

perception, memory, and reasoning, limiting their211

applicability for consistent and long-term human-212

AI interactions.213

MLLMs for Audio Understanding. Audio under-214

standing can be effectively modeled as a sequence-215

to-sequence (Seq2Seq) task (Radford et al., 2023),216

which enables powerful integration with large lan-217

guage models by incorporating audio tokenizers218

and encoders (Zhang et al., 2023b; Chu et al., 2023;219

Zeng et al., 2024). In addition to receiving the220

audio input, recent research investigates stream- 221

ing duplex speech models (Wang et al., 2024b; Yu 222

et al., 2024b; Wang et al., 2024c) that allow speak- 223

ers to interrupt freely. Beyond audio-text models, 224

emerging research delves into audio-visual mod- 225

els (Shu et al., 2023; Li et al., 2024c) and unified 226

architectures that process audio, visual, and text 227

modalities (Zhan et al., 2024; Li et al., 2024e). 228

MLLMs for Omni-Modal Understanding. In- 229

tegrating multiple modalities into a single omni- 230

modal foundation model represents a promising re- 231

search direction. Existing works (Han et al., 2023; 232

Zhan et al., 2024; Xie and Wu, 2024b; Sun et al., 233

2024) explore models capable of processing omni- 234

modal inputs, typically combining video and audio, 235

to produce outputs in various formats. These out- 236

puts include text (Han et al., 2023; Fu et al., 2024b), 237

audio (Xie and Wu, 2024b), and omni-modal con- 238

tents (Zhan et al., 2024). In the current design of 239

IXC2.5-OL, we handle the audio and video modal- 240

ities separately to mitigate potential influence dur- 241

ing joint training. In future versions, our model 242

will incorporate joint training across all modalities, 243

enabling seamless omni-modality integration. 244

3 Method 245

As we briefly introduced in Sec.1, the IXC2.5-OL 246

has three disentangled modules: 1) the Streaming 247

Perception Module for on-the-fly visual and audio 248

information processing, 2) the Multi-modal Long 249

Memory Module for memory integration and re- 250

trieval, and 3) the Reasoning Module collect infor- 251

mation from the perception and memory module, 252

and handles queries and performs reasoning tasks. 253

All the modules work simultaneously and interact 254

asynchronously. 255

3.1 Streaming Perception Module 256

Besides nature language, the IXC2.5-OL could han- 257

dle video and audio. To realize this, the Streaming 258

Perception Module contains an Audio Translation 259

Module and a Video Perception Module. 260

Audio Translation Module contains an audio en- 261

coder, an audio projector, and a Small Language 262

Model (SLM). The audio encoder encodes the in- 263

put audio sample into high-dimension features, and 264

the audio projector further maps the feature to the 265

input space of the SLM. The SLM outputs both 266

the class (e.g. laughing, clapping, or raining) of 267

the audio and the natural language within the audio 268

(i.e. the automatic speech recognition). In practice, 269
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Figure 2: Pipeline of the InternLM-XComposer2.5-OmniLive. (IXC2.5-OL). The IXC2.5-OL is a real-time
interacting system that is constructed by three simultaneous modules: 1) the Streaming Perception Module, 2) the
Multi-modal Long Memory Module, and 3) the Reasoning Module.

we use the Whisper (Radford et al., 2022) model as270

the audio encoder and a Qwen2-1.8B (Yang et al.,271

2024) as the SLM. The training contains two stages272

and we list the training data in Table 1.273

Video Perception Module provides coarse-grained274

visual information to the Multi-modal Long Mem-275

ory Module. It processes the real-time video in-276

put stream and encodes each frame into semantic277

features. For efficiency, we use the OpenAI CLIP-278

L/14 (Radford et al., 2021) In practice.279

3.2 Multi-modal Long Memory Module280

The Multi-modal Long Memory Module is the core281

design to handle extremely long video input and282

helps the Reasoning Module to get rid of millions283

of tokens from its context window. It shares a284

similar idea from the VideoStreaming (Qian et al.,285

2024) that encodes video clips into short-term mem-286

ories and integrates them into long-term memory.287

With the given questions, it retrieved the most re-288

lated video clips for the Reasoning Module. For-289

mally, the Multi-modal Long Memory Module is 290

trained with three tasks: 291

Video Clip Compression. With features of kth 292

video clip extracted from the Perception Module 293

Fk ∈ RTN×C , we initialize its short-term mem- 294

ory Hk ∈ RTP×C by the spatial down-sampling 295

and its global memory Ĥk ∈ R1×C . We realize 296

the compression by the auto-regressive and feature 297

aggregation nature of LLMs: 298

Hk, Ĥk = Compressor([Fk ◦Hk ◦ Ĥk]). 299

300Memory Integration. Short-term memory repre- 301

sents the detailed information of each short video 302

clip while the model still lacks a macro view of the 303

video. To this end, with the short-term and global 304

memory of a list of video clips, we integrate them 305

into long-term memory by the Compressor in the 306

following format: 307

H̄1, H̄2, ..., H̄k = 308

Compressor([H1 ◦H2... ◦Hk ◦ Ĥ1 ◦ Ĥ2... ◦ Ĥk]). 309
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Table 1: Audio Datasets used in IXC2.5-OL. CLS de-
notes classification.

Stage Task Dataset Data Num

Pretrain ASR GigaSpeech (Chen et al., 2021) 8,282,987

SFT

ASR

WenetSpeech (Zhang et al., 2022) 17,821,017

LibriSpeech (Panayotov et al., 2015) 281,241
VCTK (Veaux et al., 2017) 44,070

AISHELL-1 (Bu et al., 2017) 120,098
AISHELL-4 (Fu et al., 2021) 102,254

MD-RAMC (Yang et al., 2022) 219,325
ASCEND (Lovenia et al., 2021) 12,314

KeSpeech (Tang et al., 2021) 888,428
DASR (Cornell et al., 2024) 190,732

CommonVoice (Ardila et al., 2019) 2,813,852

CLS
FSD50K (Fonseca et al., 2020) 40,966
AudioSet (Kong et al., 2018) 18,683

Silence 475

the H̄ = [H̄1, H̄2, ..., H̄k] ∈ Rk×C represents310

the video in a high-compressed way and we denote311

it as the long-term memory.312

Video Clip Retrieval. When users raise questions,313

the Multi-modal Long Memory Module retrieves314

the question-related video clips and provides both315

the video clips and their short-term memory to the316

Reasoning Module. In practice, we first encode317

the question to the feature space of the memory.318

We concatenate the long-term memory with the319

tokenized question as the Compressor input, and320

we view the last token of the output features as321

the memory-space-aligned question feature. Then322

we calculate the similarity between the question323

feature and each video’s global memory, and select324

the most related clips for the Reasoning Module.325

Implementation Detail. We use Qwen2-326

1.8B (Yang et al., 2024) as the LLMs and construct327

several kinds of training data for the three afore-328

mentioned tasks. As shown in Table. 2, we train the329

Video Clip Compression task with short video cap-330

tioning data from multiple sources, using the same331

prefix captioning task designed in VideoStream-332

ing (Qian et al., 2024). For the Memory Integra-333

tion task and Video Clip Retrieval task, besides the334

off-the-shelf video grounding data, we also con-335

struct data for two unique tasks: ‘Semantics Im-336

plicit Question’ and ‘Reference Implicit Question’.337

The ‘Semantics Implicit Question’ means the338

question does not point to some object directly,339

but mentions the usage or meaning of the object,340

and the model should find out the object by under-341

standing the implicit question. For example, when342

the user asks ‘How about the weather today?’, the343

model should find out some weather-related object344

in the past video stream, such as an umbrella, a345

sun-glass, or something. Another example could346

be ‘I’m hungry, where can I heat my sandwiches?’,347

Table 2: Video Datasets used in IXC2.5-OL.
Model Dataset

Memory Module

ShareGPT4Video (Chen et al., 2024b), Ego4D(Grauman et al., 2022)
ActivityNet (Fabian Caba Heilbron and Niebles, 2015)
Semantics Implicit QA
Reference Implicit QA

IXC2.5

ShareGPT4Video (Chen et al., 2024b)
ActivityNet (Fabian Caba Heilbron and Niebles, 2015)
FunQA (Xie et al., 2025), TrafficQA (Xu et al., 2021)
VideoChat2-IT(Li et al., 2023b), LLaVA-Video (Zhang et al., 2024h)

the model should find the microwave oven it has 348

seen before. 349

The ‘Reference Implicit Question’ means the 350

question uses pronouns rather than nouns. For ex- 351

ample, ‘What is this’ means the models should 352

retrieve the current frames, although it does not 353

mention any exact objects. 354

Both kinds of implicit questions are commonly 355

used in real-world communication while current 356

models failed to handle them, so we construct cor- 357

responding training data to empower the model 358

with these capabilities. 359

3.3 Reasoning Module 360

The Reasoning Module is initialized by an 361

improved version of InternLM-XComposer2.5 362

(IXC2.5 in the following for simplified statement) 363

and we add a memory projector to align the mem- 364

ory feature with IXC-2.5. For a given questions 365

and both visual and memory information provided 366

by the Memory Module, we formulate the input as: 367

368
Question: < |Que| >, 369

Here is the question related video clip < |Img| >; 370

Here is the question related memory < |Mem| > 371

372In real-world usage, there exists some noisy in- 373

put that should not be answered (e.g., the user says 374

‘enn...’ or ‘ok...’), the model should keep salient 375

util the next question. To realize this, we add an 376

additional ‘Instruction Prediction’ process for each 377

question to decide it should be answered or not. 378

3.4 System Pipeline 379

As illustrated in Figure 3, the system comprises the 380

Frontend, SRS Server, and Backend Server. 381

Frontend. The frontend application, developed 382

with JavaScript, enables the camera and micro- 383

phone to capture video and audio stream inputs, 384

which are then pushed to the SRS server. Concur- 385

rently, it establishes a WebSocket connection with 386

the backend to listen for audio outputs and interrupt 387

signals. When audio data is received, the frontend 388

plays it. Upon receiving an interrupt signal, the 389

frontend suspends the audio playback and discards 390

the pending audio. 391
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Figure 3: System pipeline of the IXC2.5-OL. The system comprises the Frontend, SRS Server, and Backend
Server. The Frontend is utilized for capturing video and audio streams and for playing audio from the Backend
Server. The SRS Server is employed for managing live streams. The Backend Server is responsible for reading
audio and video, extracting memory, and answering questions. The green boxes represent a thread or a process.

SRS Server. SRS (Simple Realtime Server) is392

a straightforward and efficient real-time video393

server, adept at supporting a multitude of real-time394

streaming protocols such as RTMP, WebRTC, HLS,395

HTTP-FLV, SRT, and others. It is renowned for its396

ability to reliably receive and deliver audio and397

video streams.398

Backend Server. After establishing a WebSocket399

connection with the frontend, the backend will pull400

streaming from the SRS Server and initiate separate401

threads to read audio and video.402

The audio reading thread will segment the audio403

stream into 4096-bit chunks and enqueue them into404

the Audio Queue. The Voice Activity Detection405

(VAD) (Gao et al., 2023) thread continuously reads406

data from Audio Queue and detects the start and407

end of voice activity. Upon detecting the start of408

voice activity, the backend sends an interrupt signal409

to the frontend to pause the currently playing audio,410

and at the same time, dispatches a backup signal to411

the video process, directing it to save the current412

memory state. When detecting the end of voice413

activity, the entire voice segment will be enqueued414

into ASR Todo Queue. The ASR thread continu-415

ously reads audio segments from ASR Todo Queue,416

performs background noise classification and voice417

recognition on them, and then enqueues the results418

into LLM Todo Queue for use by the LLM.419

The video reading thread reads video frames at a420

rate of 1 frame per second and enqueues them into421

Frame Queue. The compressor process reads video422

frames from the queue, recognizes them, extracts423

relevant memory, and stores it. Upon receiving a424

backup signal from the VAD thread, the compressor425

process will save the current memory state for later426

retrieval. 427

The LLM process reads text from the LLM Todo 428

Queue and determines whether it is an instruction 429

that requires a response from the model. For texts 430

identified as instructions, the compressor process 431

will use the current instruction and the backed-up 432

memory to perform memory grounding, in order to 433

retrieve memories related to the instruction. The 434

LLM process will then generate a response based 435

on the retrieved memories and the instruction, and 436

enqueue the resulting output into TTS Todo Queue. 437

An additional TTS thread (, F5-TTS (Chen et al., 438

2024d), MeloTTS (Zhao et al., 2023)) will convert 439

the text from the TTS Todo Queue into audio and 440

send it to the frontend. 441

4 Experiments 442

In this section, we validate the benchmark perfor- 443

mance of our InternLM-XComposer2.5-OmniLive 444

(IXC2.5-OL), including both audio and video 445

benchmarks. 446

4.1 Audio Benchmarks 447

We evaluate our audio models on two prominent 448

ASR benchmarks: Wenetspeech (Zhang et al., 449

2022) for Chinese (CN) and LibriSpeech (Panay- 450

otov et al., 2015) for English (EN). WenetSpeech 451

includes two test sets: Test_Net, which represents 452

high-quality and relatively clean Chinese speech, 453

and Test_Meeting, which captures more challeng- 454

ing conversational scenarios. LibriSpeech consists 455

of four splits: Dev_clean and Test_clean, which 456

contain clean, high-quality English speech, and 457

Dev_other and Test_other, which include noisier, 458

more complex utterances. 459
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Table 3: Results on ASR tasks: "CN" refers to Chinese speech, while "ENG" refers to English speech. The
performance is measured using WER ↓ (Word Error Rate).

Method LLM
Wenetspeech (CN) Librispeech (ENG)

Test_Net ↓ Test_Meeting ↓ Dev_clean ↓ Dev_other ↓ Test_clean↓ Test_other↓

Qwen2-Audio (Chu et al., 2024) Qwen2-7B (Yang et al., 2024) 7.8 8.4 1.3 3.4 1.6 3.6
Mini-Omni (Xie and Wu, 2024a) Qwen2-0.5B (Yang et al., 2024) - - 4.5 9.7 4.6 9.2
VITA (Fu et al., 2024b) Mixtral-8x7B (Jiang et al., 2024) 12.2 16.5 7.6 16.6 8.1 18.4
IXC2.5-OL Qwen2-1.5B (Yang et al., 2024) 9.0 9.2 2.5 5.7 2.6 5.8

Table 4: Results on MLVU benchmark. IXC2.5-OL has demonstrated excellent performance, surpassing both
open-source models and closed-source APIs, achieving SOTA at the 7B model scale.

Method Params Topic Rea. Anomaly Recog. Needle QA Ego Rea. Plot QA Action Or. Action Co. M-Avg

Closed-source APIs.

Claude-3-Opus - 67.2 43.5 21.6 40.2 47.8 18.2 16.7 36.5
Qwen-VL-Max - 67.4 63.5 40.3 40.9 43.3 25.0 14.8 42.2
GPT-4 Turbo - 79.5 68.0 45.9 47.4 60.6 26.5 16.1 49.2
GPT-4o - 87.4 74.5 64.8 57.1 65.1 56.7 46.3 64.6

Open-source models.

MovieChat (Song et al., 2024a) 7B 29.5 25.0 24.2 24.7 25.8 28.6 22.8 25.8
LLaMA-VID (Li et al., 2025) 7B 50.8 34.5 30.1 32.7 32.5 23.9 27.8 33.2
LLaVA-1.6 (Liu et al., 2024a) 7B 60.6 41.0 43.1 38.4 41.0 25.5 25.7 39.3
ShareGPT4Video (Chen et al., 2024b) 7B 75.8 51.5 47.6 43.2 48.4 34.0 23.3 46.4
VideoLlaMA2 (Cheng et al., 2024) 7B 74.6 64.5 49.9 43.8 45.1 34.0 27.4 48.5
LongVA (Zhang et al., 2024e) 7B 83.3 58.5 69.3 50.0 67.2 38.6 27.2 56.3
IXC2.5 (Zhang et al., 2024d) 7B - - - - - - - 58.8
InternVL2 (Chen et al., 2024e) 8B - - - - - - - 64.0
LLaVA-OneVision (Li et al., 2024a) 7B - - - - - - - 64.7
Video-XL (Shu et al., 2024) 7B - - - - - - - 64.9

IXC2.5-OL 7B 84.1 68.5 76.6 60.8 75.1 57.1 41.3 66.2

Table 5: Results on Video-MME benchmark. IXC2.5-
OL demonstrates performance close to that of the open-
source SOTA.

Method Params Short Medium Long Overall

Closed-source APIs.

GPT-4V - 70.5 55.8 53.5 59.9
Claude 3.5 Sonnet - 71.0 57.4 51.2 60.0
GPT-4o mini - 72.5 63.1 58.6 64.8
GPT-4o - 80.0 70.3 65.3 71.9
Gemini 1.5 Pro - 81.7 74.3 67.4 75.0

Open-source models.

ShareGPT4Video (Chen et al., 2024b) 7B 48.3 36.3 35.0 39.9
VideoLlaMA2 (Cheng et al., 2024) 7B - - - 47.9
LongVA (Zhang et al., 2024e) 7B 61.1 50.4 46.2 52.6
Video-XL (Shu et al., 2024) 7B 64.0 53.2 49.2 55.5
VITA (Fu et al., 2024b) 8×7B 65.9 52.9 48.6 55.8
IXC2.5 (Zhang et al., 2024d) 7B - - - 55.8
InternVL2 (Chen et al., 2024e) 8B - - - 56.3
LLaVA-OneVision (Li et al., 2024a) 7B - - - 58.2
mPLUG-Owl3 (Ye et al., 2024) 7B 70.0 57.7 50.1 59.3
MiniCPM-V 2.6 (Yao et al., 2024) 8B - - - 60.9

IXC2.5-OL 7B 72.7 58.2 50.8 60.6

As shown in Table 3, our IXC2.5-OL demon-460

strates superior performance compared to recent461

streaming audio LLMs such as VITA and Mini-462

Omni, particularly achieving lower Word Error463

Rates (WER) across both CN and EN benchmarks464

with merely a lightweight 1.5B LLM.465

4.2 Video Benchmarks466

In Tables 4, 5, 8 and 7, we compare IXC2.5-OL467

with both closed-source APIs and open-source468

models on conventional video understanding bench-469

marks, including MLVU (Zhou et al., 2024), Video-470

MME (Fu et al., 2024a), MMBench-Video (Fang471

et al., 2024) and MVBench (Li et al., 2024d). Fur-472

thermore, we also assess the performance of dif-473

ferent models on the recently proposed Stream-474

ingBench (Lin et al., 2024b), which is designed475

to better evaluate performance for real-time video476

interactions. The results of this comparison are477

presented in Table 6. For the video benchmarks, 478

the base model utilizes 64 sampled frames for each 479

video during evaluation. 480

MLVU MLVU is a comprehensive benchmark 481

designed for evaluating Multimodal Large Lan- 482

guage Models in Long Video Understanding tasks. 483

The videos range from 3 minutes to 2 hours and in- 484

clude nine distinct evaluation tasks. Here, we eval- 485

uate seven multi-choice tasks, including Topic Rea- 486

soning, Anomaly Recognition, Needle QA, Ego 487

Reasoning, Plot QA, Action Order, and Action 488

Count. The detailed comparisons are given in Table 489

4. The IXC2.5-OL exhibits state-of-the-art (SOTA) 490

performance among closed-source APIs, and open- 491

source models with parameters less than 10 billion, 492

surpassing the previous SOTA by 1.3% for Video- 493

XL, 1.6% for GPT-4o. 494

Video-MME Video-MME is a high-quality 495

video benchmark. The videos are collected from 496

6 primary visual domains with 30 subfields to en- 497

sure broad scenario generalizability, encompassing 498

both short-, medium-, and long-term videos, rang- 499

ing from 11 seconds to 1 hour. As demonstrated in 500

Table 5, the IXC2.5-OL exhibits competitive perfor- 501

mance on this benchmark, comparable to previous 502

SOTA MiniCPM-V 2.6. 503

StreamingBench StreamingBench is a stream- 504

ing video benchmark designed for real-time video 505

evaluation. It comprises 18 tasks, showcasing 900 506

videos and 4,500 human-curated QA pairs. In 507

this context, we focus on assessing visual under- 508

standing in real-time. Table 6 illustrates the com- 509

parative analysis, demonstrating that IXC2.5-OL 510
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Table 6: Results on StreamingBench for Real-Time Visual Understanding. IXC2.5-OL excels among all open-
source models, and falling just short of the Gemini 1.5 Pro.

Method Params Real-Time Visual Understanding

OP CR CS ATP EU TR PR SU ACP CT Overall

Human - 89.47 92.00 93.60 91.47 95.65 92.52 88.00 88.75 89.74 91.30 91.46

Closed-source APIs.

Claude 3.5 Sonnet - 80.49 77.34 82.02 81.73 72.33 75.39 61.11 61.79 69.32 43.09 72.44
GPT-4o - 77.11 80.47 83.91 76.47 70.19 83.80 66.67 62.19 69.12 49.22 73.28
Gemini 1.5 Pro - 79.02 80.47 83.54 79.67 80.00 84.74 77.78 64.23 71.95 48.70 75.69

Open-source models.

VideoLLM-online (Chen et al., 2024a) 8B 39.07 40.06 34.49 31.05 45.96 32.40 31.48 34.16 42.49 27.89 35.99
VideoLLaMA2 (Cheng et al., 2024) 7B 55.86 55.47 57.41 58.17 52.80 43.61 39.21 42.68 45.61 35.23 49.52
VILA-1.5 (Lin et al., 2024a) 8B 53.68 49.22 70.98 56.86 53.42 53.89 54.63 48.78 50.14 17.62 52.32
LongVA (Zhang et al., 2024e) 7B 70.03 63.28 61.20 70.92 62.73 59.50 61.11 53.66 54.67 34.72 59.96
InternVL2 (Chen et al., 2024e) 8B 68.12 60.94 69.40 77.12 67.70 62.93 59.26 53.25 54.96 56.48 63.72
Kangaroo (Liu et al., 2024b) 7B 71.12 84.38 70.66 73.20 67.08 61.68 56.48 55.69 62.04 38.86 64.60
MiniCPM-V 2.6 (Yao et al., 2024) 8B 71.93 71.09 77.92 75.82 64.60 65.73 70.37 56.10 62.32 53.37 67.44
Qwen2-VL (Wang et al., 2024a) 7B 75.20 82.81 73.19 77.45 68.32 71.03 72.22 61.19 69.04 46.11 69.04
LLaVA-OneVision (Li et al., 2024a) 7B 80.38 74.22 76.03 80.72 72.67 71.65 67.59 65.45 65.72 45.08 71.12

IXC2.5-OL 7B 82.83 73.77 78.66 82.95 72.50 76.01 61.11 60.67 71.59 58.85 73.79

Table 7: Results on MVBench. IXC2.5-OL shows SOTA results across open-source and closed-source models.
Method Params AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg

Closed-source APIs.

GPT-4V - 55.5 63.5 72.0 46.5 73.5 18.5 59.0 29.5 12.0 40.5 83.5 39.0 12.0 22.5 45.0 47.5 52.0 31.0 59.0 11.0 43.5
GPT-4o - 61.5 56.5 72.0 54.0 82.0 62.5 66.5 44.0 36.5 33.5 93.0 54.5 33.5 54.5 53.5 74.5 71.5 32.5 71.0 42.5 57.5

Open-source models.

VideoLLaMA (Zhang et al., 2023c) 7B 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0 34.1
VideoChat (Li et al., 2023a) 7B 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0 35.5
MiniCPM-V 2.6 (Yao et al., 2024) 7B 38.0 43.0 63.0 35.5 67.5 55.5 46.0 35.5 25.5 33.0 77.5 48.0 37.0 54.0 42.5 40.0 31.0 38.0 43.0 40.5 44.7
VideoChat2 (Li et al., 2024d) 7B 66.0 47.5 83.5 49.5 60.0 58.0 71.5 42.5 23.0 23.0 88.5 39.0 42.0 58.5 44.0 49.0 36.5 35.0 40.5 65.5 51.1
Qwen2-VL (Wang et al., 2024a) 7B 51.0 58.0 77.5 47.0 64.0 63.0 65.5 40.0 25.5 35.5 77.0 43.5 47.0 62.0 42.0 61.5 49.5 41.5 47.5 41.5 52.0
PLLaVA (Xu et al., 2024) 34B 65.0 53.0 83.5 45.0 77.5 70.0 64.5 38.5 37.5 49.0 89.5 41.5 43.5 70.0 53.0 52.5 65.0 39.5 60.5 58.0 57.8
LLaVA-OneVision (Li et al., 2024a) 72B 63.0 58.0 84.5 46.5 85.5 64.0 73.5 41.5 37.0 69.0 95.0 47.5 47.5 75.5 53.5 52.0 70.5 34.0 64.0 54.5 60.8
InternVL2 (Chen et al., 2024e) 8B 75.0 62.0 83.5 40.5 69.5 96.0 72.0 29.5 58.0 53.0 88.5 39.5 83.0 97.0 51.0 78.5 65.0 33.0 48.0 67.0 64.5

IXC2.5-OL 7B 84.5 81.0 75.0 46.0 81.0 92.0 79.5 36.5 83.0 47.0 90.0 60.5 75.0, 93.0 58.0 60.5 74.0 42.0 53.0 62.0 68.7

Table 8: Results on MMBench-Video. IXC2.5-OL
shows performance close to the open-source SOTA.

Method Params Perception Mean Reasoning Mean Overall

Closed-source APIs.

Claude 3.5 Sonnet - 1.38 1.35 1.38
Gemini 1.0 Pro - 1.50 1.39 1.48
Gemini 1.5 Pro - 1.98 1.86 1.94
GPT-4V - 1.66 1.45 1.69
1.68
GPT-4o - 2.19 2.08 2.15

Open-source models.

MovieLLM (Song et al., 2024b) 7B 0.81 0.97 0.87
LLaVA-OneVision (Li et al., 2024a) 72B 1.03 0.70 0.94
PLLaVA (Xu et al., 2024) 7B 1.02 1.03 1.03
ShareGPT4Video (Chen et al., 2024b) 7B 1.04 1.03 1.05
VideoStreaming (Qian et al., 2024) 7B 1.13 1.09 1.12
LLaVA-NeXT-Video (Zhang et al., 2024g) 7B 1.14 1.13 1.14
VILA1.5 (Lin et al., 2024a) 13B 1.39 1.28 1.36
InternVL2 (Chen et al., 2024e) 8B 1.30 1.16 1.26
Qwen2-VL (Wang et al., 2024a) 7B 1.46 1.35 1.44

IXC2.5-OL 7B 1.49 1.25 1.42

excels among all open-source models, achieving511

a 2.67% improvement over the previous state-of-512

the-art model, LLaVA-OneVision, and falling just513

short of the closed-source API, Gemini 1.5 Pro.514

This performance solidifies IXC2.5-OL’s remark-515

able prowess in real-time video interaction.516

MMBench-Video MMBench-Video is a free-517

form QA video benchmark consisting of 600 videos518

and 2000 QA pairs. The duration of each video519

varies from 30 seconds to 6 minutes. Given the520

open-ended nature of the answers, the benchmark521

utilizes GPT-4-based evaluation to enhance quality522

in terms of accuracy, consistency, and alignment523

with human judgment. The results are presented in 524

Table 8. IXC2.5-OL demonstrates state-of-the-art 525

performance on perception tasks and comparable 526

performance on overall evaluations. 527

MVBench MVBench is a video benchmark that 528

emphasizes temporal understanding. It encom- 529

passes 20 challenging video tasks that cannot be ef- 530

fectively addressed using a single frame. As shown 531

in Table 7, IXC2.5-OL, despite having a smaller 532

7B parameter size, has outperformed both the GPT- 533

4 series and the 72B open-source model LLaVA- 534

OneVision, demonstrating its strong capability in 535

understanding video temporal dynamics. 536

5 Conclusion 537

We have presented IXC2.5-OL, a real-time stream- 538

ing model that advances multi-modal text, audio, 539

and visual capabilities with long-term memory. 540

IXC2.5-OL empowers users to engage in dynamic 541

and interactive experiences. Our model’s real-time 542

processing enables fluid and responsive interac- 543

tions, allowing users to engage with ever-changing 544

environments of multimodal data seamlessly, pro- 545

viding a more intuitive and efficient user experi- 546

ence. Our future work will focus on reducing sys- 547

tem latency to provide a seamless user experience. 548
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6 Limitations549

The limitations of our work stem from the system-550

level architecture we adopted, which integrates au-551

tomatic speech recognition, memory extraction and552

retrieval, large language models, and text-to-speech553

in a serial interconnected workflow. This sequential554

processing, where the output of one module serves555

as the input for the next, inevitably introduces556

system-level latency. This multi-stage approach557

may compromise the real-time responsiveness and558

overall efficiency of the system. Future research559

should explore the development of end-to-end so-560

lutions to mitigate these limitations, thereby en-561

hancing the system’s speed and performance while562

maintaining or improving its functionality.563
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