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Abstract

Weakly supervised learning generally faces chal-
lenges in applicability to various scenarios with
diverse weak supervision and in scalability due
to the complexity of existing algorithms, thereby
hindering the practical deployment. This paper
introduces a general framework for learning from
weak §upervigion (GLWS) with a novel algorithm.
Central to GLWS is an Expectation-Maximization
(EM) formulation, adeptly accommodating vari-
ous weak supervision sources, including instance
partial labels, aggregate statistics, pairwise
observations, and unlabeled data. We further
present an advanced algorithm that significantly
simplifies the EM computational demands
using a Non-deterministic Finite Automaton
(NFA) along with a forward-backward algorithm,
which effectively reduces time complexity from
quadratic or factorial often required in existing
solutions to linear scale. The problem of learning
from arbitrary weak supervision is therefore
converted to the NFA modeling of them. GLWS
not only enhances the scalability of machine
learning models but also demonstrates superior
performance and versatility across 11 weak
supervision scenarios. We hope our work paves
the way for further advancements and practical
deployment in this field. Code is available
at: https://github.com/Hhhhhhao/
General-Framework-Weak—-Supervision.

1. Introduction

Over the past few years, machine learning models have
shown promising performance in virtually every aspect of
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Figure 1. Average performance overview of the proposed method
on 11 common weak supervision settings, compared to previous
best methods (margins shown on the top of bars). GLWS is capable
of learning from any weak supervision universally and effectively.

our lives (Radford et al., 2021; Rombach et al., 2022; De-
hghani et al., 2023; OpenAl, 2023). This success is typically
attributed to large-scale and high-quality training data with
complete and accurate supervision. However, obtaining
such precise labels in realistic applications is often pro-
hibitive due to various factors, such as the cost of annotation
(Settles et al., 2008; Gadre et al., 2023), the biases and sub-
jectivity of annotators (Tommasi et al., 2017; Pagano et al.,
2023), and privacy concerns (Mireshghallah et al., 2020;
Strobel & Shokri, 2022). The resulting incomplete, inexact,
and inaccurate forms of supervision are typically referred
to as weak supervision (Zhou, 2018; Sugiyama et al., 2022).

Previous literature has explored numerous configurations of
weak supervision problems, including learning from sets of
instance label candidates (Luo & Orabona, 2010; Cour et al.,
2011; Ishida et al., 2019; Feng et al., 2020a;c; Wang et al.,
2022a; Wu et al., 2022), aggregate group statistics (Maron
& Lozano-Pérez, 1997; Zhou, 2004; Kiick & de Freitas,
2005; Quadrianto et al., 2008; Ilse et al., 2018; Zhang et al.,
2020; Scott & Zhang, 2020; Zhang et al., 2022), pairwise
observations (Bao et al., 2018; 2020; Feng et al., 2021;
Cao et al., 2021b; Wang et al., 2023a), and unlabeled data
(Lu et al., 2018; Sohn et al., 2020; Shimada et al., 2021;
Wang et al., 2022b; Tang et al., 2023). More recently, some
efforts have been made to design versatile techniques that
can handle multiple settings simultaneously (Van Rooyen &
Williamson, 2018; Zhang et al., 2020; Chiang & Sugiyama,
2023; Shukla et al., 2023; Wei et al., 2023).

Despite the prosperous developments in various settings, we
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Figure 2. Overview of GLWS for learning from arbitrary weak
supervision. We model weak supervision as a Non-deterministic
Finite Automaton (NFA). By taking the product of the prediction
sequence and NFA, we can utilize the forward-backward algorithm
to solve the proposed complete EM formulation in linear time.

identify two challenges that impede the practical applica-
tion of these weakly supervised methods. First, designing a
method capable of universally handling all configurations re-
mains difficult. The variation in forms of weak supervision
often necessitates specialized and tailored solutions (Ilse
et al., 2018; Yan et al., 2018; Yang et al., 2022; Zhang et al.,
2022; Scott & Zhang, 2020). Even recent versatile solutions
are limited in their applicability to certain contexts (Shukla
et al., 2023; Wei et al., 2023). Second, prior works typically
exhibit limited scalability in realistic problems due to over-
simplifications and unfavorable modeling complexity. Some
methods assume conditional independence of instances for
aggregate observations (Van Rooyen & Williamson, 2018;
Cui et al., 2020; Zhang et al., 2020; Wei et al., 2023), making
them unsuitable for handling long sequence data prevalent
in practical scenarios. Moreover, despite such simplifica-
tions, they still require infeasible computational complexity,
either quadratic (Shukla et al., 2023) or factorial (Wei et al.,
2023)!, to address specific weak supervision configurations.

To overcome these challenges and effectively apply weakly
supervised learning in real-world scenarios, we propose a
general framework and a novel algorithm that allows ef-
ficient learning from arbitrary weak supervision, termed
as GLWS, as in the results demonstrated in Fig. 1. At
the core of GLWS is an Expectation-Maximization (EM)
(Dempster et al., 1977) learning objective formulation for
weak supervision, and a forward-backward algorithm (Ra-
biner, 1989; Graves et al., 2006) designed to solve the EM
in linear time by representing arbitrary form of weak su-
pervision as a Non-deterministic Finite Automaton (NFA)
(Rabin & Scott, 1959). More specifically, to train a clas-
sification model with learnable parameters 6 on weak su-

'We compare the complexity in terms of the naive implementa-
tion. There might be practical implementation techniques which
can reduce the complexity effectively while being applicable to all
the dynamic programming methods, including GLWS.

pervision, denoted abstractly as W, we treat the ground
truth label Y as a missing latent variable and maximize the
log-likelihood of joint input X and W: log P(X, W;0) =
log> >y P(X,W;0)P(Y|X,W;6). As P(Y|X,W;0) is
unknown before determining 6, solving the problem usu-
ally requires iterative hill-climbing solutions. Therefore,
we employ the widely used EM algorithm, which iter-
atively maximizes the expectation of the log-likelihood
Ey | x,w;0t[log P(X, W,Y;0)] at time step . It leads to
two training objectives: an unsupervised instance consis-
tency term Ey| x y;9: [log P(Y|X; 0)] that encourages the
prediction to be consistent with the labeling distribution im-
posed by W, and a supervised objective log P(WY, X; 0)
that fosters the group predictions fulfilling W. We further
propose a novel perspective to perform the EM formula-
tion. Without loss of generality, we treat both the inputs
and the precise labels as sequence®. Thus, the problem of
identifying all possible labelings is converted into assign-
ing labels/symbols to the input sequence in a manner that
adheres to W. This process can be effectively modeled us-
ing an NFA (Rabin & Scott, 1959), where the finite set of
states and transition is dictated by ¥/, and the finite set of
symbols corresponds to Y. The EM learning objectives can
then be computed efficiently in linear time using a forward-
backward algorithm on the trellis expanded from the NFA
and model’s predictions. An overview is shown in Fig. 2.

While this is not the first EM perspective of weak supervi-
sion (Denceux, 2011; Quost & Denoeux, 2016; Wang et al.,
2022a; Chen et al., 2023a; Wei et al., 2023), GLWS distin-
guishes from prior arts in solving the complete EM efficiently
and practically. Compared to the recent efforts towards the
unification of weak supervision, our method neither relies
on the aforementioned conditional independence assump-
tion as in Wei et al. (2023) nor involves approximation of
EM as in Wang et al. (2022a); Shukla et al. (2023) that
solves the supervised term of the proposed EM only.

Our contributions can be summarized as:

* We propose GLWS, a unified EM framework that accom-
modates weak supervision of arbitrary forms, leading to
two learning objectives, as a generalization of the prior
arts on weak supervision.

* We design a forward-backward algorithm that performs
the EM by treating weak supervision as an NFA. The
EM can thus be computed via iterative forward-backward
pass on the trellis expanded from the NFA in linear time.

* On 11 weak supervision settings, the proposed method
consistently achieves the state-of-the-art performance,

?For aggregated and pairwise observations, the inputs are
naturally sequences of instances. The inputs can be viewed as
permutation-invariant sequences at the batch (dataset) level for
weak supervision of partial labels and unlabeled data. The same
applies to the precise labels and predictions from the model.
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demonstrating its universality and effectiveness. Our
codebase covering all these settings is released.

2. Related Work

2.1. Learning from Weak Supervision

Various problems for learning from weak supervision have
been extensively studied in the past, and we categorize them
into four broad categories: instance label candidates, aggre-
gate observations, pairwise observations, and unlabeled data.
Learning from instance label candidates, also known as par-
tial label (PartialL) or complementary label (CompL) learn-
ing (Cour et al., 2011; Luo & Orabona, 2010; Feng et al.,
2020b; Wang et al., 2019; Wen et al., 2021; Wu et al., 2022;
Wang et al., 2022a; Ishida et al., 2019; Feng et al., 2020a),
involves weak supervision as a set of label candidates, either
containing or complementary to the ground truth label for
each instance. Aggregate observation assumes supervision
over a group of instances (Zhang et al., 2020), with multi-
ple instances (Multilns) learning (Maron & Lozano-Pérez,
1997; Ilse et al., 2018) and label proportion (LProp) learning
(Quadrianto et al., 2008; Scott & Zhang, 2020; Zhang et al.,
2022) as common examples. The weak supervision here
usually denotes statistics over a group of instances. Pair-
wise observation, a special case of aggregate observation,
deals with pairs of instances. Pairwise comparison (Pcomp)
(Feng et al., 2021) and pairwise similarity (PSim) (Bao
et al., 2018; Zhang et al., 2020), along with more recent
developments such as similarity confidence (SimConf) (Cao
et al., 2021b) and confidence difference (ConfDiff) (Wang
et al., 2023a), fall into this category. Similarity, comparison,
confidence scores, and relationships from the pre-trained
models are usually adopted as weak supervision for pair-
wise observations. The fourth category, unlabeled data, is
often supplemented by the labeled dataset as the weak su-
pervision in this setting, which is sometimes complemented
by the class’s prior information. Semi-supervised learn-
ing (SemiSL) (Sohn et al., 2020; Xie et al., 2020; Zhang
etal., 2021; Wang et al., 2023b; Chen et al., 2023b), positive
unlabeled (PosUlb) learning (du Plessis et al., 2015; Ham-
moudeh & Lowd, 2020; Chen et al., 2020; Garg et al., 2021;
Kiryo et al., 2017; Zhao et al., 2022), similarity dissimi-
larity unlabeled (SDUIb) learning (Shimada et al., 2021),
and Unlabeled unlabeled (UlbUlb) learning (Lu et al., 2018;
Tang et al., 2023) fall into this category. Our framework is
capable of addressing and unifying these diverse categories.

2.2. Towards the Unification of Weak Supervision

Although researchers have invested significant efforts in
finding solutions to different forms of weak supervision,
the practical unification of these problems still remains a
distant goal. PosUlb, SDUIb, and UlbUlIb learning can be
connected to each other by substituting parameters (Lu et al.,

2018; Feng et al., 2021). Zhang et al. (2020) have developed
a probabilistic framework for pairwise (Hsu et al., 2019) and
triplet comparison (Cui et al., 2020). Shukla et al. (2023)
proposed a unified solution for weak supervision involving
count statistics. They used a dynamic programming method
over the aggregate observation to compute and maximize
the count loss of P(W|Y, X;0), corresponding to the su-
pervised term in our EM formulation. The computational
complexity is thus quadratic to the group length since the
proposed dynamic programming algorithm iterates through
the entire group. Wei et al. (2023) introduced the universal
unbiased method (UUM) for aggregate observation, which
is also interpretable from the EM perspective. Based on
the assumptions of conditional independence of instances
within a group and weak supervision given true labels, Wei
et al. (2023) derived closed-form objectives for Multilns,
LProp, and PSim settings. However, the oversimplification
of conditional independence limits UUM’s scalability, par-
ticularly for LProp learning with long sequences. Chiang &
Sugiyama (2023) provided a comprehensive risk analysis for
various types of weak supervision from the perspective of
the contamination matrix. Our framework offers a versatile
and scalable solution, capable of efficiently handling a wider
range of weak supervision without the limitations imposed
by oversimplifications or computational complexity.

3. Method

In this section, we introduce our proposed framework and
algorithm for learning from arbitrary weak supervision
(GLWS). GLWS is based on the EM formulation (Dempster
et al., 1977), where we consider the precise labels as the
latent variable. We introduce an NFA (Rabin & Scott, 1959)
modeling of weak supervision, which allows us to compute
EM using the forward-backward algorithm in linear time.

3.1. Preliminaries

Let x € X be a training instance and y € ) the correspond-
ing precise supervision, where the input space X C RP”
has D dimensions, and the label space Y = [K — 1] :=
{0,1,..., K —1} encompasses a total of K classes. In fully
supervised learning, the training dataset with complete and
precise annotations is defined as D = {(x;, ;) }sc[n] and
consists of NV samples. Assume that each training example
(x,y) is identically and independently sampled from the
joint distribution p(x, y). The classifier f(#) : X — RE
predicts p(y|x; 0) with learnable parameters 6, and is trained
to maximize the log-likelihood log P(X,Y’;0):

0* = argmaxlog P(X,Y;0). (1)
0
This process results in the cross-entropy (CE) loss function:

N K
Lear =Y > —1ly; = Klogp(yilxi;0). ()

i=1 k=0
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3.2. General Framework for Weak Supervision

In practice, we may not have fully accessible precise su-
pervision, i.e., Y is unknown. Instead, we may encounter
various types of weak supervision for training instances,
e.g., instance-wise label candidates, aggregated count statis-
tics, pairwise similarity, unlabeled data, etc. We define weak
supervision abstractly as W, representing an arbitrary form
of information given to the training instances. For example,
in PartialL (Feng et al., 2020c; Wang et al., 2022a; Wu et al.,
2022), W is given as a set of label candidates for each in-
stance S C ). In Multilns (Maron & Lozano-Pérez, 1997,
Zhou, 2004) and LProp learning (Yu et al., 2014) that deals
with aggregate observations, W is given as the count statis-
tics for each label {Zle 1y = k] > 1| Vk € Y} and
{Zle 1[y/ = k] | Vk € Y} over a group of L instances
{x7},ep1)’, respectively. When W represents the precise
labels, it recovers fully supervised learning. With W, we
must estimate the model to maximize the likelihood of the
data X and the information W we have been provided:

0* = arg maxlog P(X, W;0)
0

(€)]
= arg;nax ZY log P(X,W,Y;0).

As'Y is unknown and the marginalization over Y requires 6,
it is infeasible to solve Eq. (3) in a closed form, and instead
typically needs the iterative hill-climbing solutions like EM
algorithm. Thus, the maximum log-likelihood estimation in
Eq. (3) can be solved by iteratively maximizing the varia-
tional lower bound of the log-likelihood log P(X, W, Y’; 6):

0" = argmax Ey | x,w g [log P(X,W,Y;0)], (4)
(4

where 0! denotes the ¢-th estimation of 6. P(Y|X, W;0")
represents a distribution on all possible labelings imposed
by W with §¢. The log-likelihood is then maximized on the
expectation over the distribution of all possible labelings.
The derivation of Eq. (4) is provided in Appendix A.1.

To derive the loss function for arbitrary weak supervision
that includes instance-level and group-level W from Eq. (4),
without loss of generality, we treat the realization of training
instances X and the corresponding true precise labels Y
all as sequence: x''% = {x7},c(1) and y*L = {y7},cp
of size L and L could be 1. We also treat different types
of weak supervision w € W as the information given for
the input sequence. The sequence can be naturally formed
from a batch of training samples, an aggregate observation,
or a pairwise observation. Each instance in the dataset is
thus generalized to x; — x}:L with L > 1. We make the
following assumption, which almost always holds in reality:

SWe use x; (y;) to denote an instance/group in dataset of size
N, and x? (y?) to denote an instance in the group {x?} ¢ of
size L. Each x; (y;) in the dataset can denote a group with L > 1.

Assumption 3.1. The sequence of predictions on precise
labels y':% is conditionally independent given the whole se-
quence of inputs x'L, i.e., p(ytL|xtil) = HJL p(y? [x1L).

Note that this assumption is accurate if computed by any
model where the predictions made for any instance are not
fed back to the model as input when computing other pre-
dictions. This notation allows us to deal with different weak
supervision for both instance and group data more flexibly.

Proposition 3.2. For weakly supervised learning problems,
the training objectives can be derived from Eq. (4) as:

ACWcak = EU + £S7
N L

Ly =YY —plyllxi™, wi; 0") log p(y!|x]; 0),
i=1 j=1 Q)
N

Ls =" —logp(wilx;",yi*:0).

i

The detailed derivation of Eq. (5) is shown in Appendix A.2.
Eq. (5) consists of two parts: an unsupervised loss Ly that
encourages the instance-wise predictions from the classifier
to align with the probability of this prediction given all
possible labelings imposed by W, and a supervised loss Lg
that encourages the sequence predictions to fulfill W.

3.3. Weak Supervision as NFA

Although the proposed EM formulation can deal with vari-
ous types of weak supervision flexibly, it is still computa-
tional intensive to calculate the probability p(y’ [x*%, w; 0)
and p(w|y*¥, xE; §) for all possible labelings imposed by
the given weak supervision. For example, in LProp learning
where W is the label count over a group of L instances,
the complexity of finding all possible labelings is of facto-
rial O(L!). In most cases, the complexity is of exponential
O(K*%) where K is the total number of classes. Moreover,
while some recent methods towards unification can also
be related to the proposed EM formulation (Shukla et al.,
2023; Wei et al., 2023), they both involve a certain degree of
simplification to approximate the complete EM formulation,
which limits their scalability, as discussed in Section 2.2.
Our method notably distinguishes from the prior arts in that
we tackle weak supervision with the complete EM.

Here, we present a novel perspective to overcome the infea-
sibility of computing the complete EM. Under the sequential
view, we treat the problem of assigning labels {3} ¢z to
inputs {x’} je[r] s generating a sequence of symbols Yl

to xF fulfilling WW. For simplicity, we only consider bi-
nary classification problems here. In Section 3.5, we will
show the generalization to multi-class classification prob-
lems. This process naturally fits the mechanism of the NFA
(Rabin & Scott, 1959). We can thus model weak supervision
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(e) Pairwise sim. (w/ conf. ¢)

(f) Pairwise dissim. (w/ conf. ¢) (g) Positive conf. (w/ conf. ¢)

oYl

(c) Label proportion (d) Pairwise comp.
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Figure 3. NFA for common weak supervision types for a sequence input of size L. (a) Partial labels, where the NFA has L transitions for
each input with partial labels as symbols; (b) Multiple instances, whose NFA has 2 states, and can only transit to the accepting state via 1
to ensure at least one positive instance in the sequence; (c) Label proportion, whose NFA has m + 1 states for m positive samples in the
sequence; (d) Pairwise comparison, whose NFA has 3 states and covers {(1,1), (1,0), (0,0)}; (e) Pairwise similarity with confidence
score ¢. The NFA also has 3 states and covers {(1, 1), (0,0)}. If c is given as in similarity confidence and confidence difference, each
edge is weighted by ¢; (f) Pairwise dissimilarity with confidence ¢ for {(1, 0), (0, 1)}; (g) Positive confidence, whose NFA also has L
transitions weighted by confidence c; (h) Unlabeled data with class prior p. The NFA is equivalent to expectation of label count as pn.

W as an NFA that defines a set of finite states and transition
rules, summarizing all possible labelings imposed by W.

Definition 3.3. (Rabin & Scott, 1959) A Non-deterministic
Finite Automaton (NFA) is defined as a tuple (Q, X, 9, qo,
F), where @) is a finite set of states, X is a finite set of
symbols, ¢ is a transition function @ x > — P(Q), ¢ € Q
is the initial state, and F' C () is a set of accepting states.

We define the NFA of weak supervision W similarly, with
states (), initial state gy, and accepting states F' determined
by W, symbols ¥ = Y = {0, 1}, and a transition function
0 defining the possible transitions between states. We can
now represent all possible labelings imposed by W as the
language accepted by the NFA: {y%¥|5(qo,y" %) € F}.
The problem of finding all possible labelings is thereby
converted to modeling the NFA of different types of weak
supervision. We present the modeling of NFA for common
forms of W in Fig. 3. For example, in Multilns learning
(Fig. 3(b)) with W denoting at least one positive sample
within a group instance, its NFA contains 2 states Q) =
{40, ¢1}- The initial state go can only transit to the accepting
state g1 via symbol 1 to ensure W is satisfied. Once reaching
q1, transit via 0 and 1 are both allowed. For LProp with m
positive labels (Fig. 3(c)), its NFA must transit via 1 for m
times from qq to g,, to satisfy W, resulting in m + 1 states.

3.4. The Forward-Backward Algorithm

We are now set to compute the EM formulation with NFA.

Proposition 3.4. Given the inputs x'*, we treat the out-

puts sequence from the classifier p(y* ¥ |x¥*; 0) as a linear
chain graph. By taking the product on the linear chain graph
of p(yL|x1L; 0) and the NFA graph of W, we obtain the
trellis in the resulting graph as possible labelings.

We have p(y? |x5L w; 0%) o< p(y?, w]xE; 6*) from Bayes’
theorem, where the latter denotes the total probability of all
valid labelings that go through »7, and p(w|y*'¥, x'%; 0) in
Eq. (5) denotes the total probability from accepting states
of the resulting graph. Fortunately, both the probability of
p(y?, w|xtL; 0%) and p(wlytE, x1E; 0) can be computed
in linear time to the sequence length with dynamic program-
ming on the trellis of the resulting graph, specifically the
forward-backward algorithm (Rabiner, 1989; Graves et al.,
2006). The core idea of the forward-backward algorithm is
that the sum over paths corresponding to a labeling can be
broken down into iterative sum over paths corresponding
to the prefixes and the postfixes of that labeling. Thus, the
probabilities can be obtained iteratively in linear time.

We illustrate the trellis expanded from the NFA of W in
Multilns learning with L = 4, with the help of Fig. 2 (more
illustrations on other settings are shown in Appendix B.1),
and the process of the forward-backward algorithm as shown
in Fig. 4. The resulting graph has 4 states at each step of the
sequence, where the first two correspond to qg, the others to
q1, and the trellis to the transition rules in NFA. Each path
from x! to x” denotes an available labeling. To compute
the probabilities, we define the forward score o/ (¢ = y)*
and backward score 37 (q = y) for each state q at step j:

o' Hg =y )p(y’ x5 0Y),
y' €{y"=6(qo,y" L)EF}
Flg=y) = >
y'€{yi*t18(qo.yL)EF}
_ Bla=y
p(yd x5 0t)’

B (g =y )p(y’|x"E; 0",

(6)

“Here, g = y is a shorthanded notation for x7 transiting to the
next state via y.
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Figure 4. Illustration of the forward pass and backward pass in
forward-backward algorithm to compute p(y? , w|x"%; 6*).

where Bj(q = y) is used as a proxy for easier com-
putation of 37(q¢ = y) (Graves et al., 2006). The for-
ward score o’ (¢ = ) indicates the total probability of
all preceding labeling that fulfills W at j-th inputs with
p(y'|xtL; 0t), and correspondingly, the backward score
B9(q = vy) indicates the total probability of all succeed-
ing labeling that fulfills W at j-th inputs given the preced-
ing p(y/ T xRyt 00), vy € {y?|0(qo,y" ") € F}.
Both /(¢ = y) and 37(¢ = y) can be calculated recur-
sively through the forward and backward pass on the graph,
with linear complexity of O(|Q|L), where |Q| is the number
of states on the NFA of 1. The joint probability at each
position of the sequence thus can be calculated as:

j 1:L. _ ol (g=y")B? (q=y7)
P WX 0Y) = e s ISP ) o (7)

Moreover, the probability for supervised objective can also
be easily computed as the summation of the probabilities at
the accepting nodes on the graph with linear complexity:

plwly",x"0) =" " afg=y). @B

qgeF y' €Y

Now, we can bring these quantities back to Eq. (5) to
perform training. In practice, we implement the forward-
backward algorithm in log space and adopt the re-scaling
strategy (McAuley & Leskovec, 2013) for numerical sta-
bility. We present the pseudo-algorithm of the forward-
backward process of the common settings in Appendix B.2.

3.5. Extension to Multi-Class or Multi-Label Scenarios

In the analysis above, we model the NFA of W only for
binary classification problems. Here, we demonstrate how
to extend the modeling to multi-class (multi-label) classifi-
cation problems. While it is natural to extend to multiple
classes, for example, for partial labels as shown in Fig. 3(a),
it is not straightforward to directly model the NFA of W
with more than two values in its symbols ¥ for aggregate

Table 1. Accuracy on partial label (PartialL) learning for instance-
wise weak supervision. All results are averaged over three runs.

Dataset | CIFAR-10 | CIFAR-100 | STL-10 | ImageNet-100
Ratio | 050 070 | 0.0 020 | 0.0 030 | 001 0.05
cc 92514004 89014020 | 77.44x03  74.60+017 | 77.02+060 732603 | 73144004 64674074

LWS 85.66+032  80.71+0.10 | 50.67+033 43.51+032 | 67.65£033 58.18+1.65 | 72.04+£077  62.13+095
PRODEN | 93.32+023  90.26+020 | 77.50+015  74.89+0.13 | 77.44+026 73.19+105 | 78.61+063 77.59:+060
PiCO 93.85+060 91.11x070 | 77.80+031 74.99+057 | 77.74+052 74.18+041 | 80.93+081 78.74x134
RCR 94.04+£002  91.45+010 | 78.03+007 75.40+012 | 78.02+040 74.67+056 | 81.52+094 79.67+1.22
GLWS 9431009 92.06:+014 | 78.35:0.1  75.82+025 | 78.56+027 74.79+021 82.66+0.54  81.09+0.50

observations. Considering the example with Multilns learn-
ing, where the group of instances has two multi-class labels:
at least one cat and at least one dog, the complexity of |Q)|
in the NFA modeling will increase exponentially, thus also
increasing the complexity in computing the loss functions.
Instead, to deal with it, we treat each class as a separate posi-
tive class and other classes as a negative class, build an NFA
on this class, and train each class as a binary classification
problem with binary cross-entropy (BCE) loss. This is the
common technique widely adopted in pre-training (Wight-
man et al.; Touvron et al., 2022) and we demonstrate its
effectiveness in Section 4.2 for weakly supervised learning.

4. Experiments

In this section, we demonstrate the universality and effective-
ness of the proposed method comprehensively on various
weakly supervised learning settings. We conduct the evalua-
tion mainly on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), STL-10 (Coates et al., 2011),
and ImageNet-100 (Russakovsky et al., 2015). Results on
MNIST (Deng, 2012) and F-MNIST (Xiao et al., 2017) are
included in the Appendix, where most of the baseline meth-
ods were evaluated. We compare our method (GLWS) on 11
weak supervision settings of partial labels in Section 4.1, ag-
gregate observations in Section 4.2, pairwise observations in
Section 4.3, and unlabeled data in Section 4.4. Additionally,
we provide more analysis and discussion in Section 4.5. We
develop a codebase for implementations and experiments
of all baselines and the proposed method, which will be
open-sourced. Experiments are conducted three times with
the average performance and standard deviation reported.

4.1. Partial Labels

Setup. Here, we evaluate the proposed method of PartiallL
learning for multi-class classification, where W is a set of
label candidates for each training instance. Following Wu
et al. (2022) and Lv et al. (2020), we generate synthetic
uniform partial labels for each dataset. We uniformly select
labels other than the ground truth label with a specified
partial ratio. For baselines, we adopt CC (Feng et al., 2020b),
LWS (Wen et al., 2021), PRODEN (Lv et al., 2020), PiCO
(Wang et al., 2022a), and RCR (Wu et al., 2022). We follow
the hyper-parameters from Wu et al. (2022) for training all
methods, with more details provided in Appendix C.2.1.
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Table 2. Accuracy on multi-class multi-label aggregate observa-
tions of multiple instance (Multilns) learning and label proportion

Table 3. Accuracy on binary classification of pairwise comparison
(PComp) and pairwise similarity (PSim) averaged over three runs.

(LProp) learning. All results are averaged over three runs. Dataset [ CIFAR-10 | CIFAR-100 | STL-10
Dataset | CIFAR-10 | CIFAR-100 | STL-10 | ImageNet-100 - -
Pairwise Comparison
Dist N(10,2)  N(20,5) | N(5,1)  N(10,2) | N(5,1)  N(10,2) | N(3,1)  N(5.1) -
#Bags 5,000 2,500 10,000 5,000 2,000 1,000 20,000 20,000 #Pairs 20,000 20.000 5,000
- - Prior 0.5 0.8 0.5 0.8 0.5 0.8
Multiple Instance Learning
Count Loss | 8684034  65.97+004 | 52.04+149 3066068 | 73794151 63.80+166 | 71481161  70.58+114 PComp ABS 9178010 87.37x189 | 81.67+024  66.06x115 | 79.07040 56.45186
UUM 13864131 13215052 | 1274029 1012020 | 18251258 15454166 | 1334017 1252018 PComp ReLU 92.18+022  90.57=021 | 81.77+059  66.57+127 | 79.68+075  67.01+171
GLWS 87.15+032 71.88:055 | 56.28+1.16 52.29+293 | 74.66+164 64.35+052 | 73.92+138 73.08:176 PComp Teacher 93.33+038 91.35+027 | 78.59+060 67.43+3.00 | 77.33+0.14 72.88+0.15

Label Proportion Learning

LLP-VAT 85.33+044  79.70x04s | 51.95+£274 52.26x046 | 74.76x008 70.76x078 | 59.97+345 68.45+152
Count Loss | 89.46+024 84.54039 | 54.13+143  36.212049 | 76.60+0.13  73.36+033 | 72.17+047  72.21x091
UUM - - 53.25+1.96 - 77.26+061 - T1.51x094 71142131
GLWS 89.77+045  86.41+0.11 | 58.25+061 57.14+171 | 78.27+077  73.70+019 | 73.93+033 73.09:084

Results. The main results are shown in Table 1. Due to
space limitations, more results are presented in Table 8 of
Appendix C.2.2. Our method generally outperforms the
baselines across different partial ratios, especially on the
more practical ImageNet-100 with an improvement margin
over RCR of 1.28%. The complete EM formulation serves
as a generalized method of the prior arts. Moreover, our
method is simple and straightforward to implement, requir-
ing no additional loss functions like the contrastive loss in
PiCO or training tricks like multiple augmentations in RCR.

4.2. Aggregate Observations

Setup. For aggregate observations, we evaluate two com-
mon settings: Multilns learning and LProp learning. Mul-
tilns learning considers W as the indicator of at least one
positive sample for a class in a bag of instances, while LProp
learning views W as the exact count or proportion of pos-
itive samples for a class within the bag. We form training
bags with instances sampled randomly, where the bag size
is Gaussian-distributed with specified parameters. Previous
methods typically focus on binary classification in these
settings. However, in our main paper, we extend this to
multi-class classification (additional binary classification
results are in Appendix C.3.2), with W being multi-labeled.
For instance, in Multilns learning, the weak supervision
could indicate that at least one positive instance for both
dog and cat classes are present in a group. Baselines for
our evaluation include Count Loss (Shukla et al., 2023)
and UUM (Wei et al., 2023). In LProp learning, we also
compare against LLP-VAT (Tsai & Lin, 2020). Details of
training hyper-parameters are shown in Appendix C.3.1.

Results. The results are presented in Table 2. Our method
demonstrates a significant performance gain compared to
baselines across various setups. In Multilns learning, our
method surpasses Count Loss by 1.46% on CIFAR-10,
12.93% on CIFAR-100, 0.71% on STL-10, and 2.47% on
ImageNet-100, showcasing its effectiveness in more com-
plex datasets with a larger number of classes and training
group sizes. For LProp learning, it notably outperforms pre-
vious methods, with improvements of 4.50% on CIFAR-100
and 2.19% on ImageNet-100. The oversimplified modeling

PComp Unbiased | 91.71+048 88.22+058 | 67.80+007 60.86+2.19 | 77.46+019 71.60+0.95

Rank Pruning 93.98+040 91.97+027 | 78.90+048 71.51+073 | 77.89+042 73.62+138
GLWS 94.15+010  93.28+038 | 83.15+016 80.50+020 81.26:+054 79.24+0.87
Pairwise Similarity

#Pairs 25,000 25.000 5,000

Prior 0.4 0.6 0.4 0.6 0.4 0.6
RiskSD 85.78+170  85.61+134 | 70.41x021  64.26+381 | 74.15+327  69.35+032
UUM 97.24+023  97.16+024 | 87.13x040 85.19+245 | 83.55+080 83.64+025
GLWS 97.44+007 97.18+022 | 87.25+016 86.96+033 84.81+060 85.19+0.26

of UUM, while adequate for smaller bags and datasets (e.g.,
sizes 3 and 5, MNIST and Fashion-MNIST as shown in
Table 10), makes it struggle with larger datasets and bag
sizes as shown in Table 2. Furthermore, for bags with an
average size greater than 5, LProp learning becomes compu-
tationally infeasible in UUM due to the factorial complexity.
Compared to UUM’s factorial complexity and Count Loss’s
quadratic complexity, our proposed method efficiently ad-
dresses various settings with linear complexity.

4.3. Pairwise Observations

Setup. We conduct evaluation on four common settings
of pairwise observations (x*, x?) for binary classification:
PComp (Feng et al., 2021), PSim (Wei et al., 2023), Sim-
Conf (Cao et al., 2021b), and ConfDiff learning (Wang et al.,
2023a). We treat a subset of classes of each dataset as the
positive class, and others as the negative class. Details on
the class split are shown in Appendix C.1. We first set a
class prior, and then sample data to form the training pairs
accordingly for each setting, following the baselines (Feng
et al., 2021; Wei et al., 2023; Cao et al., 2021b; Wang et al.,
2023a). For PComp, W indicates the unlabeled pairs that x!
can only be more positive than x2. We adopt PComp (and
its variants) (Feng et al., 2021) and Rank Pruning (Northcutt
et al., 2017) as baselines. For PSim, W indicates whether
the instances in the pair have similar labels or dissimilar
labels. We use RiskSD (Shimada et al., 2021) and UUM
(Wei et al., 2023) as baselines for this setting. For SimConf
and ConfDiff, W is the confidence score of similarity and
difference between x! and x2, respectively. The confidence
score is given by a pre-trained model, and we follow the
previous method (Cao et al., 2021b; Wang et al., 2023a) to
train a model on excluded data first to compute the confi-
dence score. We additionally adopt CLIP (Radford et al.,
2021; Cherti et al., 2023) with its zero-shot confidence score.
Since only a non-identifiable classifiers can be learned from
pairwise observations, we use clustering algorithms of Hun-
garian matching (Crouse, 2016) similar to Wei et al. (2023)



A General Framework for Learning from Weak Supervision

Table 4. Accuracy on binary classification of similarity confidence
(SimConf) and confidence difference (ConfDiff) over three runs.

Dataset | CIFAR-10 | CIFAR-100 | STL-10

#Pairs 25,000 25.000 5,000

Prior 0.4 0.4 0.4 0.4 04 04

Conf Model WRN-28-2  CLIP ViT-B-16 | ResNet-18 CLIP ViT-B-16 | ResNet-18  CLIP ViT-B-16
Similarity Confidence

Sconf Abs 87.36+122 90.16+132 75.79+027 69.51+0.44 76.84+075 74.44+078

Sconf ReLU 88.56+057 90.50+0.44 74.95+055 69.67+151 77.40+031 75.26+0.66

Sconf NN Abs 89.04+0388 89.05+2.11 74.55+023 68.93+2.00 77.55+031 75.66+051

Sconf Unbiased 88.72+052 88.71+059 72.87+130 69.55+031 77.76+0.40 74.36+0.60

GLWS 95.97+0.11 97.88:0.11 85.58-08 87.94:1034 78.640.16 79.06::0.05
Confidence Difference

ConfDiff Abs 90.12+4.19 88.61+750 82.89+032 81.45+026 7317206 77.33+074

ConfDiff ReLU 90.36:+4.07 88.78+7.91 83.13+027 81.68+0.46 72.39+3.06 77.59+0.17

ConfDiff Unbiased | 90.05+523 87.91+9.03 83.65+0.11 81941043 72.13+2.70 77.98+0.08

GLWS 95.36:£0.19 96.14£0.67 86.12:£076 83424112 77.99+075 78.49-£031

Table 5. Accuracy on positive unlabeled (PosUIb) learning for bi-
nary classification. All results are averaged over three runs.

Count Loss
UUM
GLWS

Count Loss
UUM
GLWS

'
S

3

Accuracy
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=
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(a) CIFAR-10, (20, 5) (b) CIFAR-100, A/(10, 2)

Figure 5. Convergence of accuracy with error bar on multiple in-
stance learning with long input sequence. (a) CIFAR-10 with bag
length distribution of A/(20,5); (b) CIFAR-100 with A/(10, 2).
Our method shows superior convergence with more stable training.

| CIFAR-10 | CIFAR-100 | STL-10

# Pos 500 1000 1000 2000 \ 500 1000

Count Loss | 87.76+059 88.61+068 | 70.57+1.50 78.13+0.19 | 77.11+060 78.79+0.96
CVIR 88.65+259 93.37+024 | 78.56+022 82.94+037 | 77.67+111  81.84x110
Dist PU 83.61+450 82.60+248 | 69.12+139 69.83+1.43 | 71.07+1.12  70.89+0.63
NN PU 8745066 90.32:+050 | 75.49+088 77.26+047 | 74.57+054 77.32+095
UPU 81.38+217  87.51+024 | 68.70+079 70.08+098 | 73.37+057 75.31+074
Var PU 77.00+282 84.45+258 | 61.02+022 66.02+029 | 60.98+078 62.37+1.44
GLWS 91.67+019 93.69+028 80.30:t0.12 83.32+023 | 79.60+095 82.87-r0.83

on the predictions to evaluate. We present more training
details of these settings in Appendix C.4.1.

Results. We present the main results for PComp and Psim in
Table 3, and for SimConf and ConfDiff in Table 4. The pro-
posed method presents consistent and superior performance,
where the improvement margin is significant especially on
larger datasets. On CIFAR-100, our method improves the
previous best by 10.23% on pairwise comparison and by
14.03% on similarity confidence. All the baseline methods
here require the class prior in the proposed loss functions,
which must be given or estimated. Ours does not require
class prior and still achieves the best performance. More
results of pairwise observations are in Appendix C.4.2.

4.4. Unlabeled Data

Setup. For unlabeled data, we consider the settings of bi-
nary classification where only the class prior is given to
the unlabeled data as weak supervision: PosUIb (du Plessis
et al., 2015), UlbUlb (Lu et al., 2018), and SDUIb learn-
ing (Shimada et al., 2021). We present only the results of
PosUlb learning in the main paper, and other settings are
shown in Appendix C.5.2. We similarly split the classes into
either the positive subset or the negative subset as pairwise
observations. For PosUIb learning, we first randomly select
a specified number of positive samples as a labeled set, and
treat the remaining data as an unlabeled set. For STL-10, we
additionally add its split of extra data to the unlabeled set.
We consider Count Loss (Shukla et al., 2023), CVIR (Garg
et al., 2021), DistPU (Zhao et al., 2022), NNPU (Kiryo et al.,
2017), UPU (Kiryo et al., 2017), and VarPU (Chen et al.,
2020) as baselines. More details are in Appendix C.5.1.

175 CIFAR-10 . CIFAR-10
CIFAR-100 s CIFAR-100

— 150 F-MNIST —15.0 F-MNIST
S 5 STL-10 g STL-10
= * GLWS =125 # GIWS
=100 O Count-Loss — O Count Loss
g . o UUM g 100 o UUM
£ 7 £ 75
& 50 £ 50

2.5 25

0.0 00

5 10 15 20 ) 10 15 20

Average Length Average Length

(a) Multiple instance (b) Label proportion
Figure 6. Runtime (s/iter.) vs. average input length for aggregate
observations on evaluated datasets. (a) Multiple instance; (b) Label
proportion. Our method shows a reasonable runtime trade-off.

Results. On weak supervision with unlabeled data, our
method also presents superior performance, as shown in
Table 5. Notably, our method outperforms the previous best
by 3.02% on CIFAR-10 with 500 positive labeled data and
4.81% on CIFAR-100 with 1000 positive labeled data. Com-
pared to Count Loss, which computes only the supervised
objective in the proposed EM formulation with quadratic
complexity, its performance often falls short of other base-
lines such as CVIR. Our method only requires linear time.

4.5. Analysis and Discussion

Convergence. EM algorithm might be notoriously known
for difficulty in convergence and converging to local minima.
We present the convergence plots, especially for aggregate
observations with long sequence lengths, to show that this
is not a limitation for GLWS in weakly supervised learning.
As shown in Fig. 5, our method converges faster to a better
solution with a more stable training process (narrower error
bars), compared to Count Loss (Shukla et al., 2023).

Runtime. We compare the running time explicitly in Fig. 6
for aggregate observations. It is obvious that Count Loss
(Shukla et al., 2023) presents (approximately) a quadratic
trend in runtime as input length increases. UUM (Wei et al.,
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2023) shows consistent runtime for Multilns learning with
its oversimplification, leading to a practical performance
gap as shown in Table 2 and Table 10. On label proportion, it
is only applicable to input length of 5 because of its factorial
complexity. Ours achieves the most reasonable performance
and runtime trade-off with the proposed efficient algorithm.

Extension. Our framework is flexibly extensible to other
settings (as shown in Appendix C.6) and also adaptable to
noisy weak supervision W with an inherent learnable noise
model P(W|W;6) in the EM, which is left for future work.
NFA minimization and determination techniques can also
be applied to further reduce the complexity of the proposed
algorithm, by decreasing the number of states |()| of NFAs.

5. Conclusion

In this paper, we demonstrated a general framework for
learning from arbitrary weak supervision that unifies vari-
ous forms of weak supervision and can be extended to more
settings flexibly, including instance partial labels, aggregate
observations, pairwise observations, and unlabeled data,
which addresses a significant gap in the practical applicabil-
ity and scalability of weakly supervised learning methods.
Experiments across various settings and practical datasets
validated the superiority of the proposed method. We hope
our work can inspire more research on weak supervision.

Impact Statement

This paper presents a unified framework for learning with
arbitrary weak supervision. It has the potential to be broadly
applied to many weakly-supervised learning settings in prac-
tice, advancing their deployment in industry and academia.
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A. Proofs
A.1. Derivation of Eq. (4)

Evidence lower bound (ELBO), or equivalently variational lower bound (Dempster et al., 1977), is the core quantity in EM.
We provide the detailed derivation for Eq. (4) here. To model log P(X, W; 6):

log P(X,W;0) = logz P(X,W,Y;6)
Y

P(X,W,Y;0)
QYY)
P(X,W,Y;0)

““Z§(§75“‘*] 9
P(X,W,Y;0)
QYY)
=Eq) [log P(X,W,Y;0)] — Eqv) [log Q(Y)]

= ELBO(6,Q(Y)),

=logQ(Y)
= logEQ(y)[

| Jensen’s inequality

Z EQ(y) [log

where the first term in ELBO is the lower bound and the second term is the entropy over (Y") that is independent of 6.
Given the ELBO, we also have:

P(X,W,Y;G)]
Q)
P(X, w,Y; 9)P(Y|X, W 9)
QUPYIX,W:0)
P(Y|X,W;0)P(X,W;0)P(Y|X, W:0)
QU P(YIX, W:6) ] (10)
POYIX, W30),

QYY)
= Eq(v)[log P(X, W;0)] — EQ(Y)[P(Y%E—%]

— log P(X, W;6) — KL(Q(Y)|[P(Y]X, W:6)).

ELBO(9,Q(Y)) = Eg(y)[log

= EQ(y) [log

= EQ(y) [log

= Eqv) [log P(X,W;0)

Thus we can see that maximizing the ELBO is equivalent to maximizing log P(X, W;6) when P(Y|X, W;8) is close
to Q(Y), i.e., the Kullback-Leibier divergence KL(Q(Y)||P(Y|X,W;0)) is approaching to 0. Thus we take Q(Y) =
P(Y|X,W;6") with current estimation 6 from the model, and obtain Eq. (4).

A.2. Proof of Proposition 3.2

Proof. Applying the maximum log-likelihood estimation to the weak supervision dataset D = {(x}'L, w;) }ie[n]» Where
w € W is the weak supervision for each sequence input x** with L > 1. When L = 1, x represents an individual training
instance, otherwise it represents a group of sequence as discussed in the main paper. For simplicity, we consider L as a fixed
value for £ here, but in practice it can denote variable length. We have Assumption 3.1 that the predictions and precise
labels in the sequence are conditionally independent given whole input sequence.

arg max Ey| x y 9t [log P(X, W, Y; 0)]
0

Y

(
=argmax Ey | x g [log P(W|Y, X;0)P(Y|X;0)P(X;0)]
o
=argmaxEy | x wg[log P(Y|X;0)] + Ey|x,w,e [log PW|Y, X;6)] P(X) is independent of 6
0
(

=argmax Ey | x y,g [log P(Y|X;0)] +log P(W|Y, X;0) P(W[Y,X;0) s fixed for any P(Y'|X, W;6")
6
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The derived objective Lyyeax on the dataset D from the EM formulation thus have two terms, where the first unsupervised
term Ly corresponds to:

‘CU = E LE x50t [logp( L‘Xl i 9)]

vt

|
.MZ

o
Il
o

p(yFE B w;; 0Y) log H p(yl|x?;0) TInstance-level model (12)
j=1

L
Z p(y; J1xFE w;; 0Y) log p(yl|x];0) Conditional independence in Assumption 3.1,

Il
i Mz

and the supervised term Lg as:

N
Ls = logp(wilyi*,x}";0) (13)

i=1

B. Method

B.1. Illustration of Possible Labelings as Trellis of Common Weak Supervision Settings

Here, we present more illustration of the expanded trellis from the NFA in Fig. 3. The demonstration of weak supervision is
over a group of 4 instances for LProp and 2 instances for pairwise observations.

The trellis of LProp with exact two positive samples is shown in Fig. 7. Note that for LProp, the number of states in its NFA
depends on the exact count from the weak supervision as discussed in the main paper. The unlabeled data with class prior
information can also be represented as expected label count and uses the trellis representation of LProp.

Trellis from NFA
x2 3

x4
qGo=0:
NFA p(y = 0|x"*; 6)
Go=1:
p(y = 1|x"*;0)
P(y = 0Ix“ 0) O O

g =1
p(y = 1|x"*;6)

p(y— 0Ix14 ) O O

Figure 7. Illustration of trellis expanded from the NFA of label proportion on 4 instances whose weak supervision is exact two positive
samples. We omit the last state of g2 = 1 for simplicity because no path goes through it.

We also present the illustration of PComp, PSim, and PDsim in Fig. 8, Fig. 9(a), and Fig. 9(b) respectively. Although we
use 3 states in their NFA, we instead directly use 4 states in the expanded trellis to represent all the labelings for pairwise
observations, i.e., {(0,0), (1,1), (0,1), (1,0)}. Despite the notation difference, they represent the same weak supervision.
SimConf and ConfDiff can also be represented similarly by weighting the path with confidence score and similarity score.

For totally unlabeled data, every symbol in ) can be allowed for transition, thus its trellis degenerate to the prediction
probability of each instance.
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Trellis from NFA

x! x?2
NFA p(y = 0|x™*;0) O—'O

‘@ ):

D)

Figure 8. Illustration of trellis expanded from the NFA of pairwise comparison on 2 instances whose weak supervision is the first instance
is more position than the second. We directly use 4 states to fully represent the cases {(0,0), (1, 1), (0,1), (1,0)}, which might looks
different from its NFA who has only 3 states, but they indicate the same weak supervision.

Py = 0|x*;6)

@)

P = 1|x*;6)

O

Trellis from NFA Trellis from NFA

xl xZ xl x2
. c .
NFA p(y = 0|x"*;6) O—O p(y = 0]x*;6) O O

NFA
(® | ‘ (® |
1~ p(y = 1|x1*;0) Q—'O R p(y = 1|x¥*;6) Q Q
p(y = 0|x"*;6) O O p(y = 0]x"*;6)
®)- ®)-
p(y = 1]x1*;6) Q Q p(y = 1]x¥*;6)

(a) Pairwise similarity (b) Pairwise dissimilarity

Figure 9. Illustration of trellis expanded from the NFA of (a) pairwise similarity and (b) pairwise dissimilarity on 2 instances whose
weak supervision is the whether the pair has similar or dissimilar supervision. We directly use 4 states to fully represent the cases
{(0,0), (1,1),(0,1), (1,0)}, which might looks different from its NFA who has only 3 states, but they indicate the same weak supervision.
Similarity confidence and confidence different can also be represented using the trellis here by weighting each path according to the
similarity or confidence score.

B.2. Pseudo-algorithm of the Forward-Backward Algorithm of Common Weak Supervision Settings

We present the pseudo-algorithm of performing the forward-backward algorithms on common weak supervision settings we
evaluated. The pseudo-algorithm also corresponds to description of the trellis expanded from the NFA. Note that the only
difference for each weak supervision setting is the NFA modeling. Once having the NFA modeling of weak supervision, the
finite states and the transition between states are determined, and thus the forward-backward algorithm can be performed
accordingly. We perform the forward-backward algorithm in log-space for numerical stability. Moreover, we use the
log-sum-exp trick for computing the addition in log-space. For illustration simplicity, we present the pseudo-algorithm on
single instance/group inputs and binary predictions, but in practice we implement the forward-backward pass at batch of
instances/groups inputs and multi-class predictions. Here we illustrate the pseudo-algorithm for Multilns in Algorithm 1,
LProp in Algorithm 2, PComp in Algorithm 3, respectively. Other settings should either be similar or simple to solve.
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Algorithm 1 Forward-Backward Algorithm for multiple instance (Multilns) Learning
L

Require: Predicted probability in log-space as log_probs from x*
bag length as L.

, w with 0 for no positive and 1 for at least one positive in the bag,

1: Number of states as () < 4.

2: Initialize o € R2@* % with —1e12 for forward pass.

3: «a[0,0], @[1,0] + log_probs|0, 0], log_probs[0, 1].

4: fori =1to L do

5: ifi < L —1then

6: Update a0, 7] = [0, — 1] + log_probs]i, 0].

7. else

8: Update «[0, 7] = —1el2.

9: endif

10:  if 7 > 2 then

11: Update «[2,7] = a[l,7 — 1] + a[2,7 — 1] + «[3, 7 — 1] 4 log_probs]i, 0].
12: Update «[3,4] = a[1,i — 1] + a[2,¢ — 1] + «[3, 7 — 1] + log_probs]i, 1].
13:  else

14: Update a2, 4] = a1, — 1] + log_probs]i, 0].

15: Update «[3,7] = a[l,% — 1] 4+ log_probs]i, 1].

16:  endif
17: end for

18: Compute forward probability p(w|x"¥, y**; 0) from exp(a) as sup_preds.
19: if w = 0 then

20:  em_targets = ones_like(log_probs)

21:  Return sup_preds, em_targets

22: end if

23: Initialize 8 € R?*?*% with —1e12 for backward pass.

24: B[1,L —1],8[2,L — 1], B8[3, L — 1] + log_probs[L — 1,1],log_probs[L — 1,0],log_probs[L — 1,1].
25: fori = L — 2 down to 0 do

26:  B[0,4] = B[0,i 4 1] + B[1,4 + 1] + log_probs]i, 0].

27:  B[1,4 = B[2,i+ 1] + B[3,7 + 1] + log_probs|i, 1].

28: if 7 > 0 then

29: B12,1] = B[2,i+ 1] + B[3,i + 1] + log_probs]i, 0].
30: B[3,1] = B[2,i+ 1]+ B[3, 1 + 1] + log_probs][i, 1].
31:  endif

32: end for

33: Adjust 8 based on log_probs.

4: y=a+ 0.

35: v = exp(y.transpose(0, 1)).
36: Compute joint probability p(y? |x"*%, w; ) as em_targets
37: Return sup_preds, em_targets
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Algorithm 2 Forward-Backward Algorithm for label proportion (LProp) Learning

Require: Predicted probability in log-space as log_probs of x**, w indicates the count of positive instance.

1: Number of states QQ + 2 x w + 1.
2: Initialize o« € R2*L with —1e12 for forward pass.
3: «af0,0] + log_probs[0,0].
4: if count > 0 then
5:  «[1,0] < log_probs|0, 1].
6: end if
7: fori =1to L do
8:  Update «[0,:] = «[0,4 — 1] 4 log_probs]i, 0].
9: if count > 0 then
10: Update a1, 4] = [0, — 1] + log_probs]i, 1].
11:  endif
12:  forj =2toQdo
13: ifi <w—(Q—75)//2then
14: Continue to next iteration of j.
15: end if
16: if j % 2 = 0 then
17: Update aj, 3] = a[j,i — 1] + afj — 1,i — 1] + log-probs]i, 0]
18: else
19: Update a[j,i] = a[j — 1,7 — 1]+ a[j — 2, — 1] + log-probs][i, 1]
20: end if
21:  end for
22: end for

23: Compute forward probability sup_preds from exp(a).
24: Adjust o based on w and @ to avoid underflow.

25: Initialize 8 € R?*L with —1e12 for backward pass.

26: Set initial values of 3[—1, —1] and 8[—2, —1] based on w.
27: for i = b — 2 down to 0 do

28: ifi > w then

29: Bl—1,i] = B[—1,i+ 1] + log_probs]i, 0]

30:  endif

31:  ifi > w&w > 0 then

32: Bl—2,4] = B[-1,i + 1] + log_probs]i, 0]

33:  endif

34: forj=0tok—2do

35: if i < count — (k — j)//2 then

36: Continue to next iteration of j.

37: end if

38: if j % 2 = 0 then

39: Update §[j,4] = B[j,i + 1] + 85 + 1,4 + 1] + log_probs]i, 0]
40: else

41: Update 8[j,4] = 85 + 1,¢ + 1] + B[j + 2,7 + 1] + log_probs|i, 1]
42: end if

43:  end for

44: end for

45: Adjust 8 based on log_probs.

46: 8 = exp(B)

47 v =a+ S.

48: v = exp(v.transpose(0, 1)).
49: Compute joint probability p(y? |x** w; 0) as em_targets
50: Return sup_preds, em_targets
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Algorithm 3 Forward-Backward Algorithm for pairwise Comparison (PComp) Learning

Require: Predicted probability in log-space as log_probs of x!
1: Number of states Q) + 4.

2: Initialize log _alpha € R**? with —1¢e12 for the forward pass.
3: a0, 0] = log_probs|0, 0]
4: «of1,0] = log_probs|0, 1]
5: «[3,0] = log_probs|0, 1]
6: a0, 1] = «[0,0] + log_probs|1, 0]
7: a[l,1] = «[1,0] + log_probs|1, 1]
8: «f2,1] = «[3,0] + log_probs[1, 0]
9: Compute forward probability from exp(«).
10: Initialize log _beta € R**? with —1e12 for the backward pass.
11: 5[0,1] = log_probs|1, 0]
12: B[1,1] = log_probs|1,1]
13: B[2,1] = log_probs|1, 0]
14: 3[0,0] = 5[0, 1] 4 log_probs|0, 0]
15: B[1,0] = B[1, 1] + log_probs[0, 1]
16: 3[3,0] = B[1,2] + log_probs|0, 1]
17: Adjust 3 based on repeated log_probs.
18: vy =a+ 0.
19: v = exp(y.transpose(0, 1)).
20: Compute the EM targets em_targets from ~.
21: Return em_targets, sup_preds
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C. Experiments

In this section, we provide more details on the training setup and hyper-parameters for our evaluations. We also present
the details on datasets and class split of the datasets. More results of other weak supervision settings can be found in
Appendix C.6.

C.1. Datasets and Classes Splits

Table 6. Dataset details
Dataset # Classes  # Training # Validation # Unlabeled

MNIST 10 60,000 10,000 -
F-MNIST 10 60,000 10,000 -
CIFAR-10 10 50,000 10,000 -
CIFAR-100 100 50,000 10,000 -

STL-10 10 5,000 8,000 100,000

ImageNet-100 100 130,000 5,000 -

The datasets details are shown in Table 6.

For some weak supervision settings, such as pairwise observations, positive unlabeled, and unlabeled unlabeled learning, we
split the classes of each dataset into binary as follows.

MNIST. For multiple instance learning and label proportion learning, we set digit 9 as positive class, and others as negative
class for binary classification. For other settings, we set digits 0-4 as positive class, and others as negative class.

F-MNIST. Similarly, for multiple instance learning and label proportion learning, we set the 9-th class as positive class. For
other settings, we set the classes related to tops as positive class, i.e., {5,7,9}.

CIFAR-10 and STL-10. For multiple instance learning and label proportion learning, we set bird, i.e., class 3, as positive
class. For other settings, we set transportation related classes as positive class, i.e., airplane, automobile, ship, truck.

CIFAR-100. Binary classification on CIFAR-100 is not conduced on multiple instance learning and label proportion
learning. For other settings, we select the 40 animal related classes from 100 total classes as positive class.

C.2. Partial Labels

Here we provide more training details and results of partial label learning.

C.2.1. SETUP

We follow RCR (Wu et al., 2022) for experiments of partial label learning. More specifically, we generate synthetic uniform
partial label datasets, where we uniformly select each incorrect label for each instance into a candidate label set with partial
ratio as probability. We adopt same training hyper-parameters for the baseline methods and GLWS for fair comparison. A
summarize of training parameters is shown in Table 7.

Table 7. Hyper-parameters for partial label (PartialL) learning used in experiments.
Hyper-parameter ‘ MNIST & F-MNIST  CIFAR-10 CIFAR-100 STL-10 ImageNet-100

Image Size 28 32 32 96 224
Model LeNet-5 WRN-34-10 WRN-34-10 ResNet-18 ResNet-34

Batch Size 64 64 64 64 32

Optimizer SGD SGD SGD AdamW AdamW
Learning Rate 0.1 0.1 0.1 0.001 0.001
Weight Decay le-4 le-4 le-4 le-4 le-4
LR Scheduler MultiStep MultiStep MultiStep Cosine Cosine

Training Epochs 200 200 200 200 200

For MNIST and F-MNIST, we use LeNet-5 (LeCun et al., 1998). We adopt WideResNet-34-10 variant (Zagoruyko &
Komodakis, 2016) for CIFAR-10 and CIFAR-100, ResNet-18 (He et al., 2016) for STL-10, and ResNet-34 for ImageNet-100.
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Table 8. Accuracy on partial label (PartialL) learning. All results are averaged over three runs. This table is complementary to Table 1.

Dataset | MNIST | E-MNIST | CIFAR-10 | CIFAR-100 | STL-10 | ImageNet-100
Partial Ratio | 0.10 0.30 0.50 070 | 010 0.300 0.50 070 | 010 0.30 0.50 070 | o001 0.05 0.10 020 | 010 030 | ool 0.05
cc 99250002 99182005 99084005 9893:00s | 914dzos 9110:007 9045:009 89.55i02s | 9525005 94132009 9251004 8901020 | 79.68401s 787302 7T744on  7T460:017 | 7702506 7326103 | 73142094 6467207
LWS 98.23+002  98.04x0.12  97.95+011  96.96x0.10 | 88.17+011  88.10+005s 87.59:01s  86.60+013 | 91.42+003 88.76+045 85.66+032 80.71x010 | 69.46+028 55491067 50.67+033 4351032 | 67.65£033 58.18+165 | 72.04£077  62.132095
PRODEN 99.12+052  98.89:052  98.27+068  97.77:x082 | 90.95:063 91961070 90.40:058 89.20+045 | 95.25+045 95.68+040 93.85+0e0 9l.1lx070 | 79.06+02¢4  79.17+036 77.80+031  74.99+057 | 77.74x052  T4.18x041 | 78.61+063 77.59+060
PiCO 99224001 99.20001  99.10+002  98.96+009 | 90.30+144 9l.4l+00s 90.42:014  89.73x021 | 95.37+012  95.14x016 93324023 90.26:020 | 79.49+013  78.71x01s  77.50+015s  74.89+013 | 77442026 T73.19+105 | 80.93+081 T8.74x134
RCR 99.254004 99212004 99.11003  99.01x005 | 91.2620.17  91.26+008 90.82x0.12  90.06+003 | 95.57+019 94.65+005 94.04+002 91.45x010 | 79.89+023 78.93+030 78.03+007 75404012 | 78.02+040 74.67+056 | 81.52+094 79.67+122
GLWS 9925100 99282005 99.12:0m 99.04:ems 9142102 91281009 90.85:0m0 90.35kwis | 9561y 95.23t0m  9431toes 92.06:014 80.06017 7947:oes 7T8.35tom  75.82:025 | T856:0m  7479+0x | 8266105 81091050

For optimizer, we use SGD (Loshchilov & Hutter, 2016) for MNIST, F-MNIST, CIFAR-10, CIFAR-100, and AdamW
(Kingma & Ba, 2014) for STL-10 and ImageNet-100.

C.2.2. RESULTS

We present more results on partial label learning in Table 8, where our method in general achieves the best performance.

C.3. Aggregate Observations

More details about experiments of aggregate observations are shown here.

C.3.1. SETUP

For aggregate observation, the largest dataset previously experimented is MNIST, which is unpractical. Here we present the
training hyper-parameters we used for Multilns and LProp in Table 9.

Table 9. Hyper-parameters for multiple instance (Multilns) and label proportion (LProp) learning used in experiments.
Hyper-parameter ‘ MNIST & F-MNIST  CIFAR-10 CIFAR-100 STL-10 ImageNet-100

Image Size 28 32 32 96 224
Model LeNet-5 WRN-28-2  ResNet-18  ResNet-18 ResNet-34

Batch Size 4 4 4 4 8

Optimizer AdamW AdamW AdamW AdamW AdamW
Learning Rate Se-4 le-3 le-3 le-3 le-3
Weight Decay le-4 Se-4 Se-4 Se-4 le-4
LR Scheduler Cosine Cosine Cosine Cosine Cosine

Training Epochs 100 100 100 100 100

We train all methods in both settings for 100 epochs and AdamW optimizer. We set the learning rate to 1e-4 for MNIST and
F-MNIST, and 1e-3 for others. WideResNet-28-2 is utlized for CIFAR-10, while ResNet-18 is used for CIFAR-100 and
STL-10. Since each training instance for aggregate observations is a group of examples of variable length, we set batch size
to 4 universally or 8 for ImageNet-100.

To create aggregate observations, we sample instances from the dataset to form groups/bags according to the specified
Gaussian distribution. Then we summarize the weak supervision as counts of the labels in the group. which eventually
convert to flags of existence of positive samples for multiple instance learning. For binary classification, we ensure that the
number of negative bags and positive bags are balanced.

C.3.2. RESULTS

We present more results of the binary classification of aggregate observations on MNIST, F-MNIST, CIFAR-10 and STL-10
in Table 10. The multi-class classification results of MNIST and F-MNIST are also shown here. One can observe that,
for both settings, our method is on par with Count Loss on MNIST and F-MNIST, and in general performs the best on
multi-class classification settings of these two datasets. Moreover, on binary classification of CIFAR-10 and STL-10, our
method also outperforms the baselines.

C.4. Pairwise Observations

We provide more training details and results of pairwise observations here.
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Table 10. Accuracy on both binary and multi-class multi-label aggregate observations of multiple instance (MI) learning and label
proportion (LP) learning. All results are averaged over three runs. This table is complementary to Table 2.

Dataset | MNIST | F-MNIST | CIFAR-10 | STL-10
# Classes | 2 10 | 2 10 | 2 | 2
Dist N(10,2)  N(50,10) N(10,2)  N(20,5) | N(10,2) WN(50,10) AN(10,2)  N(20,5) | N(10,2)  N(20,5) N(5,1) N(10,2)
# Bags 1,000 250 1,000 500 1,000 250 1,000 500 5,000 2,500 2,000 1,000
Multiple Instance Learning
Count Loss | 97.05+045 91.21+046 97.61+020 94.90+024 | 97.64+010 91.62+196 86.24+033 82.02+006 | 63.07+1.63 56.71+223 | 57.90+6.11 51.50+1.65
uuM 81.08x0.11  74.00+053  63.96+539 23.43+401 | 91.40+1.00 87.38+132 64.24+228 28.57+590 | 58.25+159 57.67+061 | 57.05+494 57.60+0.64
GLWS 97.04+038 91.54+054 97.57+006 94.80+027 | 97.59+0.16 93.21+174 86.22+0.18 82.05+020 | 62.63+1.73 57.94+211 58.40+311 58.03+0.73
Label Proportion Learning
LLP-VAT | 98.18+0.19 92.37+215 98.21+007 98.41+010 | 98.13+010 96.83+0.11 86.99+045 83.65+094 | 85.33+044 54.20+272 | 50.51+036 50.15+021
Count Loss | 98.89+021  96.46+0.19 97.95+002 98.29+0.11 | 98.27+012 97.44=016 87.50+005 85.70+054 | 89.46+024 67.58+203 | 65.93+091 56.23x1.15
UUM - - - - - - - - - - 61.54+2.16 -
GLWS 98.62+0.18  97.05+0.13 98.42+0.11 98.39+008 | 98.18+002 97.40+012 88.02+023 86.20+o0.66 | 89.77+045 68.03+241 66.04+0.64 58.20+1.03

Table 11. Hyper-parameters for pairwise comparison (PComp), pairwise similarity (PSim), similarity confidence (SimConf), and confi-
dence difference (ConfDiff) learning used in experiments.

Table 12. Accuracy on pairwise comparison (PComp) learning for binary classification. All results are averaged over three runs.

Hyper-parameter ‘ MNIST & F-MNIST  CIFAR-10 CIFAR-100 STL-10

Image Size 28 32 32 96
Model LeNet-5 WRN-28-2  ResNet-18  ResNet-18

Batch Size 64 64 64 32

Optimizer AdamW AdamW AdamW AdamW
Learning Rate Se-4 le-3 le-3 le-3
Weight Decay le-4 le-3 le-3 le-3

LR Scheduler Cosine Cosine Cosine Cosine
Training Epochs 100 100 100 100

Dataset | F-MNIST | MNIST | CIFAR-10 | CIFAR-100 | STL-10

#Pairs | 25,000 | 25,000 | 20,000 | 20.000 | 5.000

Prior |02 0.5 08 | 02 0.5 08 | 02 0.5 08 | 02 0.5 08 | 02 0.5 0.8
PComp ABS 92.82+089  99.73+004  90.96+074 | 91.54+086 96.86+030 91.09+1.08 | 88.75+060 91.78+0.10 87.37+1.89 | 73.10+015 81.67+024 66.06+1.19 | 78.38+050 79.07+040 56.45+1386
PComp ReLU 99.65+007  99.73+008 98.41+041 | 90.30+028 96.71+010 92.87+022 | 90.47+094 92.18+022 90.57+021 | 73.10+077 81.77+059 66.57+127 | 79.30+085 79.68+075 67.01+171
PComp Teacher 92.41+038  93.92+081  92.54+0.5 | 92.79+045 93.03+093 91.46+131 | 92.29+019 93.33+038 91.35+027 | 72.72+033 78.59+060 67.43+3.09 | 78.09+068 77.33+0.4 72.88+0.15
PComp Unbiased | 87.64+028 89.30+035 81.16+120 | 76.23+1.56 84.35+074 78.81+232 | 88.13+0290 91.71+048 88.22+058 | 66.02+097 67.80+007 60.86+2.19 | 76.85+057 77.46+019 71.60+095
Rank Pruning 90.32+1.10  91.93+041  89.99+098 | 90.56+027 91.59+131  90.44+069 | 92.98+030 93.98+040 91.97x027 | 73.81x121 78.90+048 71.51x073 | 78.39+033 77.89+042 73.62x138
GLWS 99.59£001  99.85+0.02 99.82+0.03 | 9595015 97.70x0.11  96.03:039 | 93.46+032 94.15:010 93.28+038 80.33:10.07 83.15:016 80.50:020 | 79.15+£078 81.26+0.54 79.24:087
C.4.1. SETUP

For pairwise observations (x!), x?), we adopt the same training parameters for the four settings we evaluated, as shown in
Table 11.

For PComp, PSim, and SimConf of class prior p, we form the pair observations by sampling from all positive pairs following
p?, all negative pairs following (1 — p)?, and positive and negative pairs following 2p(1 — p), as in Feng et al. (2021); Wei
et al. (2023); Cao et al. (2021b). For ConfDiff, we sample each instance in the pair independently according to the class
prior p, as in Wang et al. (2023a). For PComp, the weak supervision is that x* is more positive than x2. For PSim, the weak
supervision is that the pairs are either similar or dissimilar. For SimConf and ConfDiff, we need pre-trained models to
compute the similarity score as in (Cao et al., 2021b) and Wang et al. (2023a) respectively. We set two pre-trained models.
The first one is the same architecture shown in Table 11, trained on a separate set of instances in each dataset and used to
compute the score for the sampled pairs. The second one is CLIP models (Radford et al., 2021), where we compute the
scores in a zero-shot manner.

C.4.2. RESULTS

We present more results of PComp in Table 12, PSim in Table 13, SimConf in Table 14, and ConfDiff in Table 15. Our
method consistently and universally achieves the best performance on these settings in general.
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Table 13. Accuracy on pairwise similarity (PSim) learning for binary classification. All results are averaged over three runs.

Dataset | F-MNIST | MNIST | CIFAR-10 | CIFAR-100 | STL-10

#Pairs | 30,000 | 30,000 | 25,000 | 25.000 | 5,000

Prior | 02 0.4 06 | 02 0.4 06 | 02 04 06 | 02 04 06 | 02 04 0.6
RiskSD | 99.34+017  98.11+011  98.44+045 | 94.00+061 89.31+065 89.41+058 | 89.68+067 85.78+170 85.61+134 | 69.564300 70.41+021 64264381 | 77.42+094 T4.15+327  69.35+032
UUM 99.94x001  99.93x001  99.93:001 | 99.04x008 99.12+005  99.04x0.13 | 96.96+£020 97.241023  97.16+024 | 86.95+008 87.13x040 85.19+245 | 85.23+106 83.55x0s80 83.64:+025
GLWS  99.94:001  99.93+001  99.93+001  98.96+001 99.07+001  99.05+0.10 | 97.09+004 97.44+007 97.18+022 | 86.89+042 87.25+0.16 86.96+033 | 86.36+1.60 84.81+060 85.19+026
Table 14. Accuracy on similarity confidence (SimConf) learning for binary classification. All results are averaged over three runs.

Dataset | F-MNIST | MNIST | CIFAR-10 | CIFAR-100 | STL-10

#Pairs 30,000 30,000 25,000 25.000 5,000

Conf Model LeNet-5 CLIP ViT-B-16 LeNet-5 CLIP ViT-B-16 WRN-28-2 CLIP ViT-B-16 ResNet-18 CLIP ViT-B-16 ResNet-18 CLIP ViT-B-16
Prior 05 07 05 07 05 07 0.5 07 04 06 04 06 04 06 04 06 04 0.6 04 06
Sconf Abs 99.032001 99.632009 98.16:011 99112020 | 98.392021 96472011 75281091 7691x104 | 8736212 89.36r0% 90.16:1% 88972012 | 75794021 7679021 695l:04s 63394030 | 76844075 76,5006 TAddsor  66.3341m
SconfReLU | 9945004  99.65<005 98.022009 99.11 9823015 9640+016 76.14x011 7691=105 | 8856051 89.66+036 90.50+04 88.79:041 | T4.95+0s5 T6.83r06 6967151 6377205 | 77404031 T6.51k07  75.26=066 67.124208
Sconf NN Abs | 99.63:010 99485010 98.51200  99.19. 98415006 96324010 76421045 77.57=07 | 89.04%0ss  88.974029 89.05:211 8776108 | 74554023 T5.82:044 6893200 63794143 | 77554031 7597066 75.66:051 65804045
Sconf Unbiased | 99.15:007 99.64=00 9844003 9916203 | 98.05005 95984045 76382013 77.37=09 | 88.72:05 87.90+047 887105 88.86+025 | 72.87+130 7323:123 6955031 64.51sass | 77765040 T6.T4r0ss  T436z060 67424206
GLWS 9990000 99.89:001 98.67:030 98.55:00s | 9858003 98484003 7678021 7T8.47-01s | 95.97-011 95.93:002 97881011 97.60-013 | 85.58:0ss  87.85i040 879403 86.56:094 78.64:016 78331007 7906005 78.69+008
Table 15. Accuracy on confidence difference (ConfDiff) learning for binary classification. All results are averaged over three runs.

Dataset | F-MNIST | MNIST | CIFAR-10 | CIFAR-100 | STL-10

#Pairs | 30,000 | 30,000 | 25,000 | 25.000 | 5,000

Conf Model LeNet-5 CLIP ViT-B-16 LeNet-5 CLIP ViT-B-16 WRN-28-2 CLIP ViT-B-16 ResNet-18 CLIP ViT-B-16 ResNet-18 CLIP ViT-B-16
Prior 05 07 0.5 07 05 07 05 0.7 04 06 04 06 04 0.6 04 06 04 06 04 06
ConfDiff Abs 99.82:005 9936014 98.90+03 93.80+i16 | 973100 92115331 91675051 89194226 | 90.12+419 93182042 8861750 94l | 8289205 8180+19s 8145002 80.64513 | 7317206 73535310 7733201 7672405
ConfDiff ReLU | 99.83:005 99313015 9929011 95544107 | 9742z0m 93282235 90.26:07 88.97+143 | 90.36+307 93.05:031 8878201 93.86:045 | 83135027 82.64x105 8168046 80.75x105 | 72395306 77595017 76115154
ConfDiff Unbiased | 9983001 99312021 99432010 97594027 | 97.342009 9446218 8922413 88.05k065 | 90054523 9323503 87914005 93872038 | 83.652011 82694108 81945043 80.89:08 | 72135270 77982008 77814040
GLWS 99.88:001 9843033 99.86r001 99.42:009 9830005 97742007 9341:012 9L88+00s | 95361010 9481iens 96.14=0e7 96.23:z0mt | 86.12:076 8495:120 8342412 82.53:021 7799:07s 7849:031 785702
C.5. Unlabeled Data

C.5.1. SETUP

Table 16. Hyper-parameters for positive unlabeled (PosUlb), unlabeled unlabeled (UlbUlb), and similarity dsimilarity unlabeled (SimD-
simUlb) learning used in experiments.

Hyper-parameter ‘ MNIST & F-MNIST  CIFAR-10 CIFAR-100  STL-10

Image Size 28 32 32 96
Model LeNet-5 WRN-28-2  ResNet-18  ResNet-18

Batch Size 64 64 64 32

Optimizer AdamW AdamW AdamW AdamW
Learning Rate Se-4 le-3 le-3 le-3
‘Weight Decay le-4 le-3 le-3 le-3

LR Scheduler Cosine Cosine Cosine Cosine
Training Epochs 50 50 50 50

For unlabeled data, we evaluate on PosUlb, UlbUlb, and SDUIb settings with class priors. The hyper-parameters are shown
in Table 16. For PosUlb, we sample labeled set from only positive samples, and form the unlabeled set with both positive
and negative samples whose distribution follows the class prior. For UlbUlb, we form both unlabeled set similarly as in
PosUlb. For SDUIDb, the labeled pairwise observation is formed similarly as in PSim.

C.5.2. RESULTS

We present more results of PosUIb in Table 17, and evaluation on UlbUlb and SDUIb in Table 18 and ?? respectively. Our
approach achieves the best results across different settings except on F-MNIST of UlbUIb evaluation.

C.6. Other Settings

Here we present the evaluation of other weak supervision settings.

C.6.1. POSITIVE CONFIDENCE LEARNING

We evaluation on positive confidence (PosConf) learning (Ishida et al., 2018), where the weak supervision is given as the
confidence score of a sample being positive, from the pre-trained models. The NFA of PosConf consists of L states for
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Table 17. Accuracy on positive unlabeled (PU) learning for binary classification. All results are averaged over three runs.

| FMNIST | MNIST | CIFAR-10 | CIFAR-100 | STL-10
Prior \ 0.3 \ 0.5 \ 0.4 \ 0.4 \ 0.4
#Pos | 100 500 1000 | 100 500 1000 | 500 1000 2000 | 1000 2000 4000 | 500 1000 2000
Count Loss | 99.48+025 99.72+001  99.77+0.02 | 85.25+053 93.27+065 95.14x049 | 87.76+059 88.61+068 87.96x042 | 70.57+150 78.13x0.19 78.17x249 | 77.11x060 78.79+096 79.77+1.40
CVIR 97.77+098  99.24+022  99.31+037 | 74.67+183 93.61+108 95951026 | 88.65+259 93.37+024 94.69+024 | 78.56+022 82.94+037 85.22+107 | 77.67+1.11  81.84+110 85.38+0s3
Dist PU 96.87+024  97.23+031  97.44x0.15 | 85.60+160 90.94+187 95.36+038 | 83.61+452 82.60+248 85.38+1.13 | 69.124139 69.83+143  70.82+112 | 71.07+112 70.89+063 69.86+1.07
NN PU 95.27+140  98.63x054 99.18x0.10 | 67.99+080 77.84x035 7877150 | 87.45£066 90.32+050 86.60+126 | 75.49+088 77.26+047 78.53+095 | 74.57+054 77.32+095 77.68+2.07
UPU 85.09+053 84.90+026 84.85+043 | 74.56+079 79.58+127 79.41x016 | 81.38+217 87.51x024 90.54x0.11 | 68.70+079 70.08+098 74.07x151 | 73.37+057  75.31x074  79.08+076
Var PU 95.02+002  97.52+148 99.22+026 | 48.61+064 48.61x001 51.22+288 | 77.00+282 84.45+258 87.34x180 | 61.02+022  66.02+029 70.57x194 | 60.98+078 62.37+144 62.18x1.02
GLWS 99.55:021  99.84:003 99.87:001 87.57+021 95.04:+074  96.85:017 91.67+0.19 93.69:+028 94.80+012 | 80.30+012 83.32+023 85.98+029 | 79.60-+095 82.87+0s3 87.51:0.60
Table 18. Accuracy on unlabeled unlabeled (UU) learning for binary classification. All results are averaged over three runs.

| FMNIST | MNIST | CIFAR-10 | CIFAR-100 | STL-10

#Ulb 10,000 30,000 30,000 10,000 30,000 30,000 10,000 25,000 25,000 10,000 25,000 25,000 2,500 5,000 5,000
(Priorl, Prior2) | (0.4,0.6) (0.4,0.6) (0.8,0.2) | (0.4,0.6) (0.4,0.6) (0.8,0.2) | (0.4,0.6) (0.4,0.6) (0.8,0.2) | (04,0.6) (0.4,0.6) (0.8,0.2) | (0.4,0.6) (0.4,0.6) (0.8,0.2)
UU Learn ‘ 99.08+021  99.54:005  99.89:002 | 89.75+041 93.24x102 98.19+0.10 | 88.32+164 89.42:011 94464005 | 66.23+159 66.37+305  71.23+054 | 78.59+197 72.55+127 81.42+131
GLWS 97.65+075  96.10£075  99.87x001 | 97.27+024 96.87+080 98.91+0.04 | 9445045 95.01:t044 98.07+007 | 74.66+129 76.75+305 89.83+044 | 82.09+233 84.78+119 88.27+0.96

Table 19. Accuracy on similarity dissimilarity unlabeled (SDUIb) learning for binary classification. All results are averaged over three
runs.

| FMNIST | MNIST | CIFAR-10 | CIFAR-100 | STL-10
# Sim Pair 0 5,000 10,000 0 5,000 10,000 0 5,000 10,000 0 5,000 10,000 0 1,000 2,000
# Dsim Pair 10,000 5,000 0 10,000 5,000 0 10,000 5,000 0 10,000 5,000 0 2,000 1,000 0
#Ulb 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 4,000 4,000 4,000
RiskSD \ 87.61+048  89.32+015  87.06:£097 \ 87.18+0.10 89.09+180 83.02+124 | 78.69+356 84.61+050 79.09+236 | 65.36+028 65.87+123 63.43+145 | 66.94x142  66.92+286 65.02+159
GLWS 92.81t0.08  92.57+024 92.24+120 97.27+0a1  96.54+036 96.41+0.95 | 93.12+028 92.76+082 84.24+120 | 78.59+132 73.02:t154 70.24x116 | 79.28+098 75.93:1.69 75.67+1.26

each instances in the training batch, and allows transition via both 0 and 1. Each positive transition path is weighted by
the positive confidence score ¢, and each negative transition path is weighted by 1 — c. This modeling can also be easily
extended to subset confidence learning (Cao et al., 2021a) and soft label learning (Ishida et al., 2022).

The training parameters follow Table 11 and the results are shown in Table 20. Our method outperforms the baseline PConf
(Ishida et al., 2018) except on MNIST.

Table 20. Accuracy on positive confidence (PosConf) learning for binary classification. All results are averaged over three runs.

Dataset \ MNIST \ F-MNIST \ CIFAR-10 \ CIFAR-100

# Data \ 15,000 30,000 30,000 \ 15,000 30,000 30,000 \ 10,000 25,000 25,000 \ 10,000 25,000 25,000
Conf Model \ LeNet-5 LeNet-5  CLIP ViT-B-16 \ LeNet-5 LeNet-5  CLIP ViT-B-16 \ WRN-28-2  WRN-28-2  CLIP ViT-B-16 \ ResNet-18  ResNet-18  CLIP ViT-B-16

PConf 79.61+065 80.55-+0.84 80.23-£0.84 ‘ 91.25+023  90.67+0.13 91.10+0.13 90.71+186  92.74+026 92.70+0.22 ‘ 74.09+1.61  79.39+0.50 79.49+0.62

GLWS 79.52+056  80.09+036 79.89-+056 92.22+006  91.95:0.16 92.05-£0.09 95314013 96.84+0.12 96.93-+0.14 83.70+013  86.62:0.18 87.24+013
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