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Abstract

Maximization of mutual information between the model’s input and output is1

formally related to “decisiveness” and “fairness” of the softmax predictions Bridle2

et al. (1991), motivating such unsupervised entropy-based losses for discriminative3

models. Recent self-labeling methods based on such losses represent the state of4

the art in deep clustering. First, we discuss a number of general properties of such5

entropy clustering methods, including their relation to K-means and unsupervised6

SVM-based techniques. Disproving some earlier published claims, we point out7

fundamental differences with K-means. On the other hand, we show similarity8

with SVM-based clustering allowing us to link explicit margin maximization to9

entropy clustering. Finally, we observe that the common form of cross-entropy is10

not robust to pseudo-label errors. Our new loss addresses the problem and leads to11

a new EM algorithm improving the state of the art on many standard benchmarks.12

1 Introduction13

Discriminative entropy-based loss functions, e.g. decisiveness and fairness, were proposed for14

network training Bridle et al. (1991); Krause et al. (2010) and regularization Grandvalet & Bengio15

(2004) and are commonly used for unsupervised and weakly-supervised classification problems16

Ghasedi Dizaji et al. (2017); Hu et al. (2017); Ji et al. (2019); Asano et al. (2020); Jabi et al. (2021).17

In particular, the state-of-the-art in unsupervised classification Asano et al. (2020); Jabi et al. (2021)18

is achieved by self-labeling methods using extensions of decisiveness and fairness.19

Section 1.1 reviews the entropy-based clustering with soft-max models and introduces the necessary20

notation. Then, Section 1.2 reviews the corresponding self-labeling formulations. Section 1.321

summarizes our main contributions and outlines the structure of the main parts of the paper.22

1.1 Discriminative entropy clustering: background and notation23

Consider neural networks using probability-type outputs, e.g. softmax σ : RK → ∆K mapping24

K logits lk ∈ R to K-class probabilities σk = exp lk∑
c exp lc forming a categorical distribution σ =25

(σ1, . . . , σK) ∈ ∆K often interpreted as a posterior. We reserve superscripts to indicate classes or26

categories. For shortness, this paper uses the same symbol for functions or mappings and examples of27

their output, e.g. specific predictions σ. If necessary, subscript i can indicate values, e.g. prediction28

σi or logit lki , corresponding to any specific input example Xi in the training dataset {Xi}Ni=1.29

The mutual information (MI) loss, proposed by Bridle et al. (1991) for unsupervised discriminative30

training of softmax models, trains the model output to keep as much information about the input31

as possible. They derived MI estimate as the difference between the average entropy of the output32

H(σ) = 1
N

∑
i H(σi) and the entropy of the average output σ = 1

N

∑
i σi, which is a distribution of33

class predictions over the whole dataset34

Lmi := −MI(C,X) ≈ H(σ) − H(σ) (1)
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where C is a random variable representing the class prediction for input X . Besides the motivating35

information-theoretic interpretation of the loss, the right-hand side in (1) has a clear discriminative36

interpretation that stands on its own: H(σ) encourages “fair” predictions with a balanced support37

of all categories across the whole training dataset, while H(σ) encourages confident or “decisive”38

prediction at each data point suggesting that decision boundaries are away from the training examples39

Grandvalet & Bengio (2004). Our paper refers to unsupervised training of discriminative soft-max40

models using predictions’ entropies, e.g. see (1), as discriminative entropy clustering. This should41

not be confused with generative entropy clustering methods where the entropy is used as a measure42

of compactness for clusters’ density functions1.43

Discriminative clustering loss (1) can be applied to deep or shallow models. For clarity, this44

paper distinguishes parameters w of the representation layers of the network computing features45

fw(X) ∈ RM for any input X . We separate the linear classifier parameters v in the output layer46

computing K-logit vector l = v⊤f for any feature f ∈ RM . As mentioned earlier, this paper uses47

the same notation for mapping f(·) and its values or (deep) features f produced by the representation48

layers. For shortness, we assume a “homogeneous” representation of the linear classifier so that v⊤f49

includes the bias. The overall network model is defined as50

σ(v⊤fw(X)). (2)

A special “shallow” case of the model in (2) is a basic linear discriminator51

σ(v⊤X) (3)

directly operating on given input features f(X) = X . In this case, M represents the input dimensions.52

Optimization of the loss (1) for the shallow model (3) is done only over linear classifier parameters v,53

but the deeper network model (2) is optimized over all network parameters [v,w]. Typically, this is54

done via gradient descent or backpropagation Rumelhart et al. (1986); Bridle et al. (1991).55

In the context of deep models (2), the decision boundaries between the clusters of data points {Xi}56

can be arbitrarily complex since the network learns high-dimensional non-linear representation map57

or embedding fw(X). In this case, loss (1) is optimized with respect to both representation w and58

classification v parameters. To avoid overly complex clustering of the training data and to improve59

generality, it is common to use self-augmentation techniques Hu et al. (2017). For example, Ji et al.60

(2019) maximize the mutual information between class predictions for input X and its augmentation61

counterpart X ′ encouraging deep features invariant to augmentation.62

To reduce the model’s complexity, Krause et al. (2010) combine entropy-based loss (1) with regular-63

ization of all network parameters interpreted as their isotropic Gaussian prior64

Lmi+decay = H(σ) − H(σ) + ∥[v,w]∥2
c
= H(σ) + KL(σ ∥u) + ∥[v,w]∥2 (4)

where c
= represents equality up to an additive constant and u is a uniform distribution over K classes.65

The second loss formulation in (4) uses KL divergence motivated in Krause et al. (2010) by the66

possibility to generalize the fairness to any target balancing distribution different from the uniform.67

1.2 Self-labeling methods for entropy clustering68

Optimization of losses (1) or (4) during network training is mostly done with standard gradient descent69

or backpropagation Bridle et al. (1991); Krause et al. (2010); Hu et al. (2017). However, the difference70

between the two entropy terms implies non-convexity, which makes such losses challenging for71

gradient descent. This motivates alternative formulations and optimization approaches. For example,72

it is common to extend the loss by incorporating auxiliary or hidden variables y representing pseudo-73

labels for unlabeled data points X , which are to be estimated jointly with optimization of the network74

parameters Ghasedi Dizaji et al. (2017); Asano et al. (2020); Jabi et al. (2021). Typically, such75

self-labeling approaches to unsupervised network training iterate optimization of the loss over pseudo-76

labels and network parameters, similarly to Lloyd’s algorithm for K-means or EM algorithm for77

Gaussian mixtures Bishop (2006). While the network parameters are still optimized via gradient78

descent, the pseudo-labels can be optimized via more powerful algorithms.79

1E.g., K-means minimizes cluster variances, whose logs are cluster’s density entropies, assuming Gaussianity.
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For example, Asano et al. (2020) formulate self-labeling using the following constrained optimization80

problem with discrete pseudo-labels y tied to predictions by cross entropy function H(y, σ)81

Lce = H(y, σ) s.t. y ∈ ∆K
0,1 and ȳ = u (5)

where ∆K
0,1 are one-hot distributions, i.e. corners of the probability simplex ∆K . Training of the82

network is done by minimizing cross entropy H(y, σ), which is convex w.r.t. σ, assuming fixed83

pseudo-labels y. Then, model predictions get fixed and cross-entropy is minimized w.r.t variables84

y. Note that cross-entropy H(y, σ) is linear with respect to y, and its minimum over simplex ∆K85

is achieved by one-hot distribution for a class label corresponding to argmax(σ) at each training86

example. However, the balancing constraint ȳ = u converts minimization of cross-entropy over all87

data points into a non-trivial integer programming problem that can be approximately solved via88

optimal transport Cuturi (2013). The cross-entropy in (5) encourages the network predictions σ to89

approximate the estimated one-hot target distributions y, which implies the decisiveness.90

Self-labeling methods for unsupervised clustering can also use soft pseudo-labels y ∈ ∆K as91

target distributions inside H(y, σ). In general, soft targets y are commonly used with cross-entropy92

functions H(y, σ), e.g. in the context of noisy labels Tanaka et al. (2018); Song et al. (2022). Softened93

targets y can also assist network calibration Guo et al. (2017); Müller et al. (2019) and improve94

generalization by reducing over-confidence Pereyra et al. (2017). In the context of unsupervised95

clustering, cross entropy H(y, σ) with soft pseudo-labels y approximates the decisiveness since it96

encourages σ ≈ y implying H(y, σ) ≈ H(y) ≈ H(σ) where the latter is the decisiveness term in (1).97

Inspired by (4), instead of the hard constraint ȳ = u used in (5), self-labeling losses can represent98

the fairness using KL divergence KL(ȳ ∥u), as in Ghasedi Dizaji et al. (2017); Jabi et al. (2021). In99

particular, Jabi et al. (2021) formulates the following entropy-based self-labeling loss100

Lce+kl = H(y, σ) + KL(ȳ ∥u) (6)

encouraging decisiveness and fairness, as discussed. Similarly to (5), the network parameters in loss101

(6) are trained by the standard cross-entropy term. Optimization over relaxed pseudo-labels y ∈ ∆K102

is relatively easy since KL divergence is convex and cross-entropy is linear w.r.t. y. While there103

is no closed-form solution, the authors offer an efficient approximate solver for y. Iterating steps104

that estimate pseudo-labels y and optimize the model parameters resemble the Lloyd’s algorithm for105

K-means. Jabi et al. (2021) also establish a formal relation with K-means objective.106

1.3 Summary of our contributions107

Our work is closely related to self-labeling loss (6) and the corresponding ADM algorithm proposed108

in Jabi et al. (2021). Their inspiring approach is a good reference point for our self-labeling loss109

formulation (13). It also helps to illuminate the limits in a general understanding of entropy clustering.110

Our paper provides conceptual and algorithmic contributions. First of all, we examine the relations of111

discriminative entropy clustering to K-means and SVM. In particular, we disprove the main theoretical112

claim (in the title) of a recent TPAMI paper Jabi et al. (2021) wrongly stating the equivalence between113

the standard K-means objective and the entropy-based clustering losses. Our Figure 1 provides a114

simple counterexample to the claim, but we also show specific technical errors in their proof. We115

highlight fundamental differences with a broader generative group of clustering methods, which116

includes K-means, GMM, etc. On the other hand, we find stronger similarities between entropy117

clustering and discriminative SVM-based clustering. In particular, this helps to formally show the118

soft margin maximization effect when decisiveness is combined with a norm regularization term.119

This paper also proposes a new self-labeling algorithm for entropy-based clustering. In the context120

of relaxed pseudo-labels y, we observe that the standard formulation of decisiveness H(y, σ) is121

sensitive to pseudo-label uncertainty/errors. We motivate the reverse cross-entropy formulation,122

which we demonstrate is significantly more robust to label noise. We also propose a zero-avoiding123

form of KL-divergence as a strong fairness term. Unlike standard fairness, it does not tolerate highly124

unbalanced clusters. Our new self-labeling loss allows an efficient EM algorithm for estimating125

pseudo-labels. We derive closed-form E and M steps. Our new algorithm improves the state-of-the-art126

on many standard benchmarks for deep clustering, which empirically validates our technical insights.127

Our paper is organized as follows. Section 2 discusses the relation of entropy clustering to K-means128

and SVM. Section 3 motivates our self-labeling loss and derives an EM algorithm for estimating129

pseudo-labels. The experimental results for our entropy clustering algorithm are in Section 4.130
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TWO LINEAR DECISION FUNCTIONS OVER 2D FEATURES X ∈ R2

kµ(X) = argmink ∥X − µk∥ σv(X) = soft-max(v⊤X)

(a) variance clustering (b) entropy clustering

Figure 1: K-means vs entropy clustering - binary example (K = 2) for 2D data {Xi} ⊂ RM (M = 2)
comparing linear methods of similar parametric complexity: (a) K-means [µk ∈ RM ] and (b) entropy
clustering based on a linear classifier using K-columns linear discriminator matrix v = [vk ∈ RM ]
and soft-max predictions. Red and green colors in (a) and (b) illustrate optimal linear decision
regions over X ∈ R2 produced by the decision functions kµ(X), σv(X) for parameters µ and v
minimizing two losses: (a) compactness/variance of clusters

∑
i ∥Xi − µki

∥2 where ki = kµ(Xi)

and (b) decisiveness and fairness of predictions H(σ)−H(σ̄) where H(·) is entropy function and
H(σ) = avg{H(σi)}, σ̄ = avg{σi} for σi = σv(Xi). The decision function kµ(X) is hard (a) and
σv(X) is soft, particularly near the linear decision boundary (b). The optimal results in (a,b) are
analyzed in Sec.2.1. The result in (b) may require a margin maximization term ∥v∥2, see Sec.2.2.

2 Relation to discriminative and generative clustering methods131

2.1 Entropy-based clustering versus K-means132

Discriminative entropy clustering (1) is not as widely known as K-means, but for no good reason.133

With linear models (3), entropy clustering (1) is as simple as K-means, e.g. it produces linear cluster134

boundaries. Both approaches have good approximate optimization algorithms for their non-convex135

(1) or NP-hard Mahajan et al. (2012) objectives. Two methods also generalize to non-linear clustering136

using more complex representations, e.g. learned fw(X) or implicit (kernel K-means).137

There is a limited general understanding of how entropy clustering relates to more popular methods,138

such as K-means. The prior work, including Bridle et al. (1991), mainly discusses entropy clustering139

in the context of neural networks. K-means is also commonly used with deep features, but it is140

hard to understand the differences in such complex settings. An illustrative 2D example of entropy141

clustering in Krause et al. (2010) (Fig.1) is helpful, but it looks like a typical textbook example for142

K-means where it would work perfectly. Interestingly, Jabi et al. (2021) make a theoretical claim143

about algebraic equivalence between K-means objective and a regularized entropy clustering loss.144

Here we show significant differences between K-means and entropy clustering. First, we disprove145

the claim by Jabi et al. (2021). We provide a simple counterexample in Figure 1 where the optimal146

solutions are different in a basic linear setting. Moreover, we point out a critical technical error in their147

Proposition 2 - its proof ignores normalization inside softmax. Symbol ∝ hides it in their equation (5),148

which is later treated as equality in the proof of Proposition 2. Equations in their proof do not work149

with normalization, which is critical for softmax models. The extra regularization term ∥v∥2 in their150

entropy loss is also important. Without softmax normalization, lnσ inside cross-entropy H(y, σ)151

turns into a linear term w.r.t. logits v⊤x and adding ∥v∥2 creates a quadratic form resembling squared152

errors (x− v)2 in K-means. In contrast, Section 2.2 shows that regularization ∥v∥2 corresponds to153

the margin maximization controlling the width of the soft gap between the clusters, see our Fig.1(b).154

In general, Figure 1 highlights fundamental differences between generative and discriminative155

approaches to clustering using two basic linear methods of similar parametric complexity (about156

K ×M parameters). K-means (a) seeks balanced compact clusters of the least variance (squared157

errors). This can be interpreted “generatively” Kearns et al. (1997) as MLE fitting of two (isotropic)158

Gaussian densities, which also explains why K-means fails on highly anisotropic clusters (a). To fix159

this “generatively”, one should use non-isotropic Gaussian densities. In particular, 2-mode GMM160
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would produce soft clusters as in (b). But, this increases parametric complexity (two extra covariance161

matrices) and leads to quadratic decision boundaries. In contrast, discriminative entropy clustering162

in (b) simply looks for the best linear decision boundary giving balanced (“fair”) clusters with data163

points away from the boundary (“decisiveness”), regardless of the data density model complexity.164

2.2 Entropy-based clustering and SVM: margin maximization165

This section discusses similarities between entropy clustering with soft-max models and unsupervised166

SVM methods Ben-Hur et al. (2001); Xu et al. (2004). First, consider the fully supervised setting,167

where the relationship between SVMs Vapnik (1995) and logistic regression is known. Assuming168

binary classification with target labels t = ±1, one standard soft-margin SVM loss formulation169

combines a margin-maximization term with the hinge loss penalizing margin violations, e.g. see170

Bishop (2006)171

Lsvm = γ∥v∥2 + max{0, 1− tv⊤f} (7)
where the linear classifier norm ∥v∥ (excluding bias!) is the reciprocal of the decision margin and172

γ is the relative weight of the margin maximization term. For shortness and consistently with the173

notation introduced in Sec.1.1, logits v⊤f include the bias using “homogeneous” representations of174

v and features f , and the “bar” operator represents averaging over all training data points.175

Instead of the hinge loss, soft-margin maximization (7) can use the logistic regression as an alternative176

soft penalty for margin violations, see Section 7.1.2 and Figure 7.5 in Bishop (2006),177

Llog = γ∥v∥2 + ln
(
1 + exp−tv⊤f

)
≡ γ∥v∥2 + H(y, σ) (8)

where the second binary cross-entropy formulation in (8) replaces integer targets t ∈ {±1} with178

one-hot target distributions y ∈ {(1, 0), (0, 1)} consistent with our general terminology in Sec.1.2.179

Our second formulation in (8) uses soft-max σ = { exp l1
exp l1+exp l2

, exp l2
exp l1+exp l2

} with logits l1 = 1
2v

⊤f180

and l2 = − 1
2v

⊤f ; its one advantage is a trivial multi-class generalization. The difference between181

the soft-margin maximization losses (7) and (8) is that the flat region of the hinge loss leads to a182

sparse set of support vectors for the maximum margin solution, see Section 7.1.2 in Bishop (2006).183

Now, consider the standard SVM-based self-labeling formulation of maximum margin clustering by184

Xu et al. (2004). They combine loss (7) with a linear fairness constraint −ϵ ≤ t̄ ≤ ϵ185

Lmm = γ∥v∥2 + max{0, 1− tv⊤f}, s.t. − ϵ ≤ t̄ ≤ ϵ (9)
and treat labels t as optimization variables in addition to model parameters. Note that the hinge loss186

encourages consistency between the pseudo labels t ∈ {±1} and the sign of the logits v⊤f . Besides,187

loss (9) still encourages maximum margin between the clusters. Keeping data points away from the188

decision boundary is similar to the motivation for the decisiveness in entropy-based clustering.189

It is easy to connect (9) to self-labeling entropy clustering. Similarly to (7) and (8), one can replace190

the hinge loss by cross-entropy as an alternative margin-violation penalty. As before, the main191

difference is that the margin may not be defined by a sparse subset of support vectors. We can also192

replace the linear balancing constraint in (9) by an entropy-based fairness term. Then, we get193

Lsemm = γ∥v∥2 + H(y, σ) − H(ȳ) (10)
which is a self-labeling surrogate for the entropy-based maximum-margin clustering loss194

Lemm = γ∥v∥2 + H(σ) − H(σ̄). (11)
Losses (11) and (10) are examples of general clustering losses for K ≥ 2 combining decisiveness and195

fairness as in Sections 1.1, 1.2. The first term can be seen as a special case of the norm regularization196

in (4). However, instead of a generic model simplicity argument used to justify (4), the specific197

combination of cross-entropy with regularizer ∥v∥2 (excluding bias) in (11) and (10) is explicitly198

linked to margin maximization where 1
∥v∥ corresponds to the margin’s width2.199

It was known that “for a poorly regularized classifier” the combination of decisiveness and fairness200

“alone will not necessarily lead to good solutions to unsupervised classification” (Bridle et al. (1991))201

and that decision boundary can tightly pass between the data points (Fig.1 in Krause et al. (2010)). The202

formal relation to margin maximization above complements such prior knowledge. Our supplementary203

material (A) shows the empirical effect of parameter γ in (11) on the inter-cluster gaps.204

2The entropy clustering loss (6) is also appended with regularization ∥v∥2 in Jabi et al. (2021), where it is
incorrectly used for proving K-means connection, see Sec.2.1. They do not discuss margin maximization.
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(a) strong fairness KL(u∥σ̄) (b) reverse cross-entropy H(σ, y)

Figure 2: “Forward” vs “reverse”: (a) KL-divergence and (b) cross-entropy. Assuming binary
classification K = 2, probability distributions σ or σ̄ are represented as points on [0,1]. The solid
curves in (a) illustrate the forward KL-divergence KL(u∥σ̄) for average predictions σ̄. We show
two examples of volumetric prior u1 = (0.9, 0.1) (blue) and u2 = (0.5, 0.5) (red). The reverse
KL-divergence KL(σ̄∥u) (dashed curves), commonly representing fairness in prior work, tolerates
extremely unbalanced clustering, i.e. the end points of the interval [0,1]. The solid curves in (b) are
the reverse cross-entropy H(σ, y) for predictions σ. The dashed curves are the forward cross-entropy
H(y, σ). The plots in (b) show examples for two fixed pseudo-labels y1 = (0.9, 0.1) (blue) and
y2 = (0.5, 0.5) (red). Our loss H(σ, y) weakens the training (reduces gradients) on data points with
higher label uncertainty (compare blue and red curves). In contrast, the standard loss H(y, σ) trains
the network to copy this uncertainty, see the optimum σ on the dashed curves. The boundedness of
H(σ, y) also represents robustness to errors in y.

3 Our self-labeling entropy clustering method205

The conceptual properties discussed in the previous section may improve the general understanding206

of entropy clustering, but their new practical benefits are limited. For example, margin maximization207

implicitly happens in prior entropy methods since norm regularization (weight-decay) is omnipresent.208

This section addresses some specific limitations of prior entropy clustering formulations that do209

affect the practical performance. We focus on self-labeling (Sec.1.2) and observe that the standard210

cross-entropy formulation of decisiveness is sensitive to pseudo-label errors. Section 3.1 introduces211

our new self-labeling loss using the reverse cross-entropy, which we show is more robust to label212

noise. We also propose strong fairness. Section 3.2 derives an efficient EM algorithm for minimizing213

our loss w.r.t. pseudo-labels, which is a critical step of our self-labeling algorithm.214

3.1 Our self-labeling loss formulation215

We start from the maximum-margin entropy clustering (10) where the entropy fairness can be replaced216

by an equivalent KL-divergence term explicitly expressing the target balance distribution u. This217

gives a self-labeling variant of the loss (4) in Krause et al. (2010) similar to (6) in Jabi et al. (2021)218

Lsemm
c
= H(y, σ) + KL(y ∥u) + γ ∥v∥2. (12)

We propose two changes to this loss based on several numerical insights leading to a significant219

performance improvement over Krause et al. (2010) and Jabi et al. (2021). First, we reverse the order220

of the cross-entropy arguments, see Fig.2(b). This improves the robustness of network predictions σ221

to errors in estimated pseudo-labels y, as confirmed by our experiment in Figure 3. This reversal also222

works for estimating pseudo-labels y as the second argument in cross-entropy is a standard position223

for an “estimated” distribution. Second, we also observe that the standard fairness term in (12,4,6)224

is the reverse KL divergence w.r.t. cluster volumes, i.e. the average predictions σ̄. It can tolerate225

highly unbalanced solutions where σ̄k = 0 for some cluster k, see the dashed curves in Fig.2(a). We226

propose the forward, a.k.a. zero-avoiding, KL divergence KL(u ∥σ), see the solid curves Fig.2(a),227

which assigns infinite penalties to highly unbalanced clusters. We refer to this as strong fairness.228

The two changes above modify the clustering loss (12) into our formulation of self-labeling loss229

Lour := H(σ, y) + λKL(u ∥ y) + γ ∥v∥2. (13)
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3.2 Our EM algorithm for pseudo-labels230
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forward CE: H(y, )
forward CE: H(y, )
reverse CE: H( , y)

Figure 3: Robustness to noisy labels: reverse
H(σ, y) vs standard cross-entropy H(y, σ).
We train ResNet-18 on fully-supervised Nat-
ural Scene dataset [NSD] where we corrupted
some labels. The horizontal axis shows the
corruption level, i.e. percentage η of training
images where correct ground truth labels were
replaced by a random label. We use soft target
distributions ỹ = η∗u+(1−η)∗y that is a mix-
ture of one-hot distribution y for the observed
corrupt label and the uniform distribution u, as
in Müller et al. (2019). The vertical axis shows
the test accuracy. Reverse cross-entropy im-
proves robustness to high labeling errors.

Minimization of a self-supervised loss w.r.t pseudo-231

labels y for given predictions σ is a critical opera-232

tion in iterative self-labeling techniques Asano et al.233

(2020); Jabi et al. (2021), see Sec.1.2. Besides well-234

motivated numerical properties of our new loss (13),235

in practice it also matters that it has an efficient236

solver for pseudo-labels. While (13) is convex w.r.t.237

y, optimization is done over a probability simplex238

and a good practical solver is not a given. Note239

that H(σ, y) works as a log barrier for the con-240

straint y ∈ ∆K . This could be problematic for the241

first-order methods, but a basic Newton’s method242

is a good match, e.g. Kelley (1995). The overall243

convergence rate of such second-order methods is244

fast, but computing the Hessian’s inverse is costly,245

see Table 1. Instead, we derive a more efficient246

expectation-maximization (EM) algorithm.247

Assume that model parameters and predictions in248

(13) are fixed, i.e. v and σ. Following variational249

inference Bishop (2006), we introduce K auxiliary250

latent variables, distributions Sk ∈ ∆N represent-251

ing normalized support of each cluster k over N252

data points. In contrast, N distributions yi ∈ ∆K253

show support for each class at every point Xi. We254

refer to each vector Sk as a normalized cluster k. Note that here we focus on individual data points255

and explicitly index them by i ∈ {1, . . . , N}. Thus, we use yi ∈ ∆K and σi ∈ ∆K . Individual256

components of distribution Sk ∈ ∆N corresponding to data point Xi is denoted by scalar Sk
i .257

First, we expand our loss (13) using our new latent variables Sk ∈ ∆N258

Lour
c
= H(σ, y) + λH(u, ȳ) + γ ∥v∥2 (14)

= H(σ, y)− λ
∑
k

uk ln
∑
i

Sk
i

yki
Sk
i N

+ γ ∥v∥2

≤ H(σ, y)− λ
∑
k

∑
i

ukSk
i ln

yki
Sk
i N

+ γ ∥v∥2 (15)

Due to the convexity of negative log, we apply Jensen’s inequality to derive an upper bound, i.e. (15),259

to Lour. Such a bound becomes tight when:260

E-step : Sk
i =

yki∑
j y

k
j

(16)

Then, we fix Sk
i as (16) and solve the Lagrangian of (15) with simplex constraint to update y as:261

M-step : yki =
σk
i + λNukSk

i

1 + λN
∑

c u
cSc

i

(17)

We run these two steps until convergence with respect to some predefined tolerance. Note262

that the minimum y is guaranteed to be globally optimal since (14) is convex w.r.t. y.263

number of iterations running time in sec.
(to convergence) (to convergence)

K 2 20 200 2 20 200

Newton 3 3 4 2.8e−2 3.3e−2 1.7e−1

EM 2 2 2 9.9e−4 2.0e−3 4.0e−3

Table 1: Our EM algorithm vs Newton’s
methods Kelley (1995).

The empirical convergence rate is within 15 steps on264

MNIST. The comparison of computation speed on syn-265

thetic data is shown in Table 1. While the number of266

iterations to convergence is roughly the same as Newton’s267

methods, our EM algorithm is much faster in terms of268

running time and is extremely easy to implement using269

the highly optimized built-in functions from the standard270

PyTorch library that supports GPU.271
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Inspired by Springenberg (2015); Hu et al. (2017), we also adapted our EM algorithm to allow272

for updating y within each batch. In fact, the mini-batch approximation of (14) is an upper bound.273

Considering the first two terms of (14), we can use Jensen’s inequality to get:274

H(σ, y) + λH(u, ȳ) ≤ EB [HB(σ, y) + λH(u, ȳB)] (18)

where B is the batch randomly sampled from the whole dataset. Now, we can apply our EM algorithm275

to update y in each batch, which is even more efficient. Compared to other methods Ghasedi Dizaji276

et al. (2017); Asano et al. (2020); Jabi et al. (2021) which also use the auxiliary variable y, we can277

efficiently update y on the fly while they only update once or just a few times per epoch due to the278

inefficiency to update y for the whole dataset per iteration. Interestingly, we found that it is actually279

important to update y on the fly, which makes convergence faster and improves the performance280

significantly (see supplementary material). We use this “batch version” EM throughout all the281

experiments. Our full algorithm for the loss (13) is summarized in supplementary material.282

4 Experimental results283

Our experiments start from clustering on fixed features to joint training with feature learning. We test284

our approach on standard benchmark datasets with different network architectures. We also provide285

the comparison of different losses under weakly-supervised settings (see supplementary material).286

Dataset For the clustering problem, we use four standard benchmark datasets: MNIST Lecun et al.287

(1998), CIFAR10/100 Torralba et al. (2008) and STL10 Coates et al. (2011). We follow Ji et al.288

(2019) to use the whole dataset for training and testing unless otherwise specified.289

Evaluation As for the evaluation on clustering, we set the number of clusters to the number290

of ground-truth category labels and adopt the standard method Kuhn (1955) by finding the best291

one-to-one mapping between clusters and labels.292

4.1 Clustering with fixed features293

We compare our method against the state-of-the-art methods using fixed deep features generated by294

pre-trained (ImageNet) ResNet-50 He et al. (2016). We use a one-layer linear classifier for all losses295

except for K-means. We set λ in our loss to 100. We use stochastic gradient descent with learning rate296

0.1 to optimize the loss for 10 epochs. The batch size was set to 250. The coefficients for the margin297

maximization terms are set to 0.001, 0.02, 0.009, and 0.02 for MNIST, CIFAR10, CIFAR100 and298

STL10 respectively. As stated in Section 2.2, such coefficient is important for the optimal decision299

boundary, especially when features are fixed. If we simultaneously learn the representation/feature300

and cluster the data, we observed that the results are less sensitive to such coefficient.301

STL10 CIFAR10 CIFAR100 (20) MNIST

K-means 85.20%(5.9) 67.78%(4.6) 42.99%(1.3) 47.62%(2.1)
MI-GD Bridle et al. (1991); Krause et al. (2010) 89.56%(6.4) 72.32%(5.8) 43.59%(1.1) 52.92%(3.0)

SeLa Asano et al. (2020) 90.33%(4.8) 63.31%(3.7) 40.74%(1.1) 52.38%(5.2)
MI-ADM Jabi et al. (2021) 81.28%(7.2) 56.07%(5.5) 36.70%(1.1) 47.15%(3.7)

MI-ADM⋆ Jabi et al. (2021) 88.64%(7.1) 60.57%(3.3) 41.2%(1.4) 50.61%(1.3)

Our 92.2%(6.2) 73.48%(6.2) 43.8%(1.1) 58.2%(3.1)

Table 2: Comparison of different methods using fixed features. The numbers are the average accuracy
and the standard deviation over 6 trials. ⋆: our “batch version" implementation of their method.

4.2 Joint clustering and feature learning302

In this section, we train a deep network to jointly learn the features and cluster the data. We test our303

method on both a small architecture (VGG4) and a large one (ResNet-18). The only extra standard304

technique we add here is the self-augmentation, following Hu et al. (2017); Ji et al. (2019); Asano305

et al. (2020). The experimental settings and more details are given in the supplementary material.306

To train the VGG4, we use random initialization for network parameters. From Table 3, it can307

be seen that our approach consistently achieves the most competitive results in terms of accuracy308
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(ACC). Most of the methods we compared in our work (including our method) are general concepts309

applicable to single-stage end-to-end training. To be fair, we tested all of them on the same simple310

architecture. But, these general methods can be easily integrated into other more complex systems.311

STL10 CIFAR10 CIFAR100 (20) MNIST

MI-D⋆ Hu et al. (2017) 25.28%(0.5) 21.4%(0.5) 14.39%(0.7) 92.90%(6.3)
IIC⋆ Ji et al. (2019) 24.12%(1.7) 21.3%(1.4) 12.58%(0.6) 82.51%(2.3)

SeLa§ Asano et al. (2020) 23.99%(0.9) 24.16%(1.5) 15.34%(0.3) 52.86%(1.9)

MI-ADM§ Jabi et al. (2021) 17.37%(0.9) 17.27%(0.6) 11.02%(0.5) 17.75%(1.3)

MI-ADM⋆,§ Jabi et al. (2021) 23.37%(0.9) 23.26%(0.6) 14.02%(0.5) 78.88%(3.3)

Our⋆,§ 25.33%(1.4) 24.16%(0.8) 15.09%(0.5) 93.58%(4.8)

Table 3: Quantitative results of accuracy for unsupervised clustering methods with VGG4. We
only use the 20 coarse categories for CIFAR100. We reuse the code published by Ji et al. (2019);
Asano et al. (2020); Hu et al. (2017) and implemented the optimization for loss of Jabi et al. (2021)
according to the paper. ⋆: all variables are updated for each batch. §: loss formula has pseudo-label.

As for the training of ResNet-18, we found that random initialization does not work well when we only312

use self-augmentation. We may need more training tricks such as auxiliary over-clustering, multiple313

heads, and more augmentations Ji et al. (2019). In the mean time, the authors from Van Gansbeke314

et al. (2020) proposed a three-stage approach for the unsupervised classification and we found that315

the pre-trained weight from their first stage is beneficial to us. For a fair comparison, we followed316

their experimental settings and compared ours to their second-stage results. Note that they split the317

data into training and testing. We also report two additional evaluation metrics, i.e. NMI and ARI.318

In Table 4, we show the results using their pretext-trained network (stage one) as initialization for319

our entropy clustering. We use only our clustering loss together with the self-augmentation (one320

augmentation per image this time) to reach higher numbers than SCAN, as shown in the table below.321

CIFAR10 CIFAR100 (20) STL10

ACC NMI ARI ACC NMI ARI ACC NMI ARI

SCAN Van Gansbeke et al. (2020) 81.8
(0.3)

71.2
(0.4)

66.5
(0.4)

42.2
(3.0)

44.1
(1.0)

26.7
(1.3)

75.5
(2.0)

65.4
(1.2)

59.0
(1.6)

Our 83.09
(0.2)

71.65
(0.1)

68.05
(0.1)

46.79
(0.3)

43.27
(0.1)

28.51
(0.1)

77.67
(0.1)

67.66
(0.3)

61.26
(0.4)

Table 4: Quantitative comparison using network ResNet-18.

5 Conclusions322

Our paper proposed a new self-labeling algorithm for discriminative entropy clustering, but we323

also clarify several important conceptual properties of this general methodology. For example, we324

disproved a theoretical claim in a recent TPAMI paper stating the equivalence between variance325

clustering (K-means) and discriminative entropy-based clustering. We also demonstrate that standard326

formulations of entropy clustering losses may lead to narrow decision margins. Unlike prior work on327

discriminative entropy clustering, we show that classifier norm regularization is important for margin328

maximization.329

We also discussed several limitations of the existing self-labeling formulations of entropy clustering330

and propose a new loss addressing such limitations. In particular, we replace the standard (forward)331

cross-entropy by the reverse cross-entropy that we show is significantly more robust to errors in esti-332

mated soft pseudo-labels. Our loss also uses a strong formulation of the fairness constraint motivated333

by a zero-avoiding version of KL divergence. Moreover, we designed an efficient EM algorithm334

minimizing our loss w.r.t. pseudo-labels; it is significantly faster than standard alternatives, e.g335

Newton’s method. Our empirical results improved the state-of-the-art on many standard benchmarks336

for deep clustering.337
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