
Proceedings of Machine Learning Research – Under Review:1–36, 2026 Full Paper – MIDL 2026 submission

Evaluating the Impact of Medical Image Reconstruction on
Downstream AI Fairness and Performance

Matteo Wohlrapp1,2 matteo.wohlrapp@cdtm.de

Niklas Bubeck2,3 niklas.bubeck@tum.de

Daniel Rueckert2,3,4 daniel.rueckert@tum.de

William Lotter1,5 lotterb@ds.dfci.harvard.edu
1Dana-Farber Cancer Institute, Boston MA, USA
2AI in Medicine, Technical University of Munich, Munich, Germany
3Munich Center for Machine Learning (MCML), Munich, Germany
4Department of Computing, Imperial College London, London, UK
5Harvard Medical School, Boston MA, USA

Editors: Under Review for MIDL 2026

Abstract
AI-based image reconstruction models are increasingly deployed in clinical workflows to
improve image quality from noisy data, such as low-dose X-rays or accelerated MRI scans.
However, these models are typically evaluated using pixel-level metrics like PSNR, leaving
their impact on downstream diagnostic performance and fairness unclear. We introduce
a scalable evaluation framework that applies reconstruction and diagnostic AI models in
tandem, which we apply to two tasks (classification, segmentation), three reconstruction
approaches (U-Net, GAN, di!usion), and two data types (X-ray, MRI) to assess the poten-
tial downstream implications of reconstruction. We find that conventional reconstruction
metrics poorly track task performance, where diagnostic accuracy remains largely stable
even as reconstruction PSNR declines with increasing image noise. Fairness metrics exhibit
greater variability, with reconstruction sometimes amplifying demographic biases, partic-
ularly regarding patient sex. However, the overall magnitude of this additional bias is
modest compared to the inherent biases already present in diagnostic models. To explore
potential bias mitigation, we adapt three strategies from classification literature to the
reconstruction setting, but observe limited e”cacy. Overall, our findings emphasize the
importance of holistic performance and fairness assessments throughout the entire medical
imaging workflow, especially as generative reconstruction models are increasingly deployed.
Keywords: Fairness, Image Reconstruction, GANs, Di!usion Models

1. Introduction

AI-based image reconstruction is an increasingly integral component of clinical workflows.
These approaches are designed to enhance the quality of noisy medical images such as low-
dose X-rays or faster-sampled MRIs, ultimately generating new medical images by imputing
patterns learned from the training datasets (Ahishakiye et al., 2021). Notably, there are now
over 80 FDA-cleared devices based on this approach (Singh et al., 2025), whose generated
images are ultimately interpreted by clinicians.

Traditionally, reconstruction model performance has been evaluated using pixel-level
image metrics such as PSNR. However, these metrics provide an incomplete picture, as they
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Figure 1: Combined pipeline for downstream bias evaluation and mitigation in medical
image reconstruction. MRI and X-ray images undergo realistic simulated degra-
dation and are subsequently reconstructed with three approaches before serving
as input to downstream prediction models. Reconstruction quality, downstream
performance, and fairness are evaluated. Subsequently, three bias mitigation
strategies are applied exclusively during reconstruction fine-tuning.

do not reflect the impact of reconstructed images on subsequent clinical tasks. This gap
raises a key unresolved question: How does AI-based reconstruction influence downstream
clinical performance and, in particular, fairness? The latter is especially important to assess
given the risk of generative models in encoding biases (Saumure et al., 2025; Ruggeri and
Nozza, 2023; Luccioni et al., 2023; Mehrabi et al., 2021). While some smaller-scale studies
have involved clinician review of AI-reconstructed images (Feuerriegel et al., 2023; Lee et al.,
2024), this approach is not scalable, especially when investigating nuanced performance
di!erences across subgroups.

In this work, we assess the downstream implications of AI-based reconstruction through
an evaluation framework that leverages reconstruction and classification/segmentation AI
models applied in tandem. The framework provides a scalable approach to understand how
reconstruction errors propagate, while also simulating a realistic clinical scenario as both
reconstruction and diagnostic models are increasingly deployed in medical workflows. We
apply this framework across three reconstruction approaches (U-Net, GAN, di!usion), two
imaging domains (MRI, X-ray), and two tasks (classification and segmentation). We addi-
tionally propose and evaluate bias mitigation techniques tailored to reconstruction models.
Our findings highlight di!erences in trends between image metrics and diagnostic accuracy,
and the potential of reconstruction models to shift demographic biases.

2. Related Work

Reconstruction Models in Medical Imaging: Medical image reconstruction is a pop-
ular AI application due to its promise in increasing image quality while facilitating lower
radiation doses and faster scanning times (Ahishakiye et al., 2021). Given pairs of noisy
(i.e., undersampled/lower dose) and original images, these models are trained to reconstruct
the original from the noisy image. Variations of the U-Net (Ronneberger et al., 2015) are
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commonly used as the neural network architecture. In addition to standard losses like
mean-squared error (MSE), GAN and di!usion-based approaches are common in the field
(Bousse et al., 2024; Heckel et al., 2024).

Fairness Analysis in Medical Imaging: Research on bias in AI-driven healthcare spans
various medical domains, with medical imaging receiving considerable attention. In clas-
sification tasks, biases are typically revealed by comparing performance across subgroups.
Studies cover various imaging modalities, including brain MRI (Stanley et al., 2022; Ioan-
nou et al., 2022), chest X-rays (Seyyed-Kalantari et al., 2021; Glocker et al., 2023; Yang
et al., 2024; Lotter, 2024), dermatology images (Chiu et al., 2024; Groh et al., 2021), and
retinal images (Burlina et al., 2021). They address sensitive attributes such as sex (Stanley
et al., 2022), age (Seyyed-Kalantari et al., 2021), race (Seyyed-Kalantari et al., 2021), and
skin tone (Kinyanjui et al., 2020), evaluating disparities using performance metrics such as
Area Under the Curve (AUC) (Seyyed-Kalantari et al., 2021), or more dedicated fairness
criteria (Yuan et al., 2023). In segmentation, studies have assessed segmentation perfor-
mance under varying demographic distributions, such as by race and sex representation in
training datasets (Ioannou et al., 2022; Lee et al., 2022; Puyol-Antón et al., 2022).

Fairness Analysis of Reconstruction Models: Reconstruction model performance is
typically measured using image quality metrics such as Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM). Recent studies assessing subgroup biases
primarily rely on these metrics, examining how image quality varies across demographic
subgroups. For instance, Du et al. (2023b) investigated fairness biases in deep learning-based
brain MRI reconstruction, highlighting disparities in image reconstruction quality across
di!erent demographic groups using PSNR and SSIM. Similarly, Sheng et al. (2024) explored
fairness challenges and potential solutions in ultrasound computed tomography, identifying
significant disparities in reconstruction performance linked to subgroup attributes. With
limited available literature, bias evaluation in reconstruction models is an emerging area
of research for which there is a need to study the implications of image reconstruction on
downstream tasks.

Bias Mitigation: In classification, substantial e!orts have focused on developing bias
mitigation strategies. Data-centric approaches directly modify training datasets, employ-
ing methods such as data redistribution (Oguguo et al., 2023), di!erentiable resampling
techniques (Li and Vasconcelos, 2019), harmonization of datasets (Bissoto et al., 2019),
and synthetic generation of diverse samples (Wang et al., 2024). Additionally, methods like
Just Train Twice (JTT) target misclassified instances to implicitly mitigate subgroup biases
without explicit annotations (Liu et al., 2021).

Representation-level strategies aim to learn unbiased feature representations through ex-
plicit disentanglement. Techniques include variational autoencoders (Creager et al., 2019),
orthogonal disentanglement methods enforcing independence between sensitive attributes
and task-specific features (Sarhan et al., 2020; Deng et al., 2023; Chiu et al., 2024; Du
et al., 2023a), and group-adaptive architectures employing demographic-specific attention
mechanisms (Gong et al., 2020).

Optimization-level methods integrate fairness constraints into model training via adver-
sarial learning, fairness-specific loss functions, or specialized training regimens. Adversarial
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methods discourage encoding protected attributes (Zhang et al., 2018; Adeli et al., 2019;
Kim et al., 2019; Wang et al., 2020), distributionally robust optimization (Group DRO) tar-
gets worst-case subgroup performance (Sagawa et al., 2020), and fairness-specific constraints
can be incorporated directly into training (Marcinkevics et al., 2022). Post-processing
methods adjust model outputs after training, employing techniques such as calibration and
pruning (Wu et al., 2022).

While prior studies have focused mainly on bias mitigation in classification tasks, there
remains a critical need to assess analogous strategies for image reconstruction.

3. Methods

Our framework, visualized in Figure 1, encompasses image denoising, downstream task
evaluation, fairness assessment, and bias mitigation for medical image reconstruction. The
framework uses classification and segmentation models to estimate the e!ect of reconstruc-
tion on downstream task performance and fairness. Additionally, mitigation strategies are
applied exclusively at the reconstruction stage to determine their ability to reduce down-
stream biases without retraining diagnostic models.

3.1. Datasets

We apply our framework to public datasets from two distinct imaging domains:

MRI: UCSF-PDGM includes 501 pre-operative glioma FLAIR volumes from patients
with di!use glioma, along with tumor masks and labels for subtype and grade (Calabrese
et al., 2022).

X-Ray: CheXpert comprises 224,316 radiographs from 65,240 patients annotated for 14
thoracic findings (Irvin et al., 2019), of which we use 12 (excluding “Support Devices” and
“No Findings” to focus on disease pathologies).

We use a 70/10/20 train/validation/test split stratified by patient for both datasets. For
CheXpert, the training set is further divided into non-overlapping sets for reconstruction and
classification model training, with percentages of 70/30, respectively. For UCSF-PDGM,
the same training data is for both tasks given smaller sample size. Group-wise fairness is
assessed for age (dichotomized at the dataset median), sex, and self-reported race (unavail-
able for UCSF-PDGM). Detailed attribute distributions are reported in Tables 5 and 6 in
the Appendix.

3.2. Noising Process

We simulate realistic acquisition degradations as follows:

MRI: k-space data is masked with radial undersampling patterns (Feng, 2022) at accel-
eration factors 4, 8, and 16, where higher acceleration means greater undersampling.

X-Ray: Standard-dose images are Radon-projected to sinogram space, bow-tie filtered,
and corrupted with Poisson noise parameterized by photon count (100,000, 10,000, 3,000),
with lower photon count yielding more noise (Gibson et al., 2023).
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These ranges approximate realistic acquisition conditions, with examples in the Ap-
pendix (Figures 6, 7, 8, and 9).

3.3. Models

We employ three reconstruction models alongside task-specific diagnostic models. Addi-
tional information on the compute infrastructure and model hyperparameters can be found
in the Appendix.

Reconstruction: To cover deterministic, adversarial, and di!usion regimes, we train from
scratch a standard U-Net (Ronneberger et al., 2015) with MSE loss, a Pix2Pix GAN (Isola
et al., 2017), and a Stochastic Di!erential Equations (SDE)-based di!usion model (Luo
et al., 2023) for each dataset. We note that the GAN and di!usion models also use a U-Net
as the model architecture, but are based on a di!erent training paradigm.

Diagnostic: For classification on UCSF-PDGM, an ImageNet-initialized ResNet50 (He
et al., 2015) was trained separately to predict WHO grade and tumor type. The model is
trained at the slice-level, and at testing, volume-level predictions are performed individually
on each slice and then aggregated using the median. For CheXpert classification, a single
ImageNet-initialized DenseNet model (Huang et al., 2017) was trained to jointly predict the
12 findings following Cohen et al. (2021). For segmentation on UCSF-PDGM, we use an
ImageNet-initialized U-Net. Segmentation is not evaluated on CheXpert due to the absence
of masks. All downstream models are trained on the original, non-degraded images.

3.4. Performance and Fairness Evaluation

Reconstruction quality is measured by PSNR. Downstream performance uses AUROC for
classification and Dice for segmentation. For classification fairness, we report the worst case
Equalized-Odds (EODD) (Hardt et al., 2016) di!erence between groups:

maxi,j |P (Ŷ = 1 | Y = y,A = ai)

→ P (Ŷ = 1 | Y = y,A = aj)|, ↑y ↓ {0, 1},
↑ attribute A ↓ A, subgroups ai.

To compute this metric, model predictions are binarized using a balanced threshold selected
to achieve approximately equal sensitivity and specificity in the validation split. Equality
of Opportunity (EOP) results are also reported in the Appendix (Figures 16 and 17).

For segmentation fairness, we adapt the Skewed-Error Ratio (SER) (Siddiqui et al.,
2024) to Dice:

SERA =
maxi(1→Diceai)

minj(1→Diceaj )
, ai ↓ A, A ↓ A

Results using an unnormalized Dice di!erence are also provided in the Appendix (Figures
16 and 17).

Statistical comparisons of subgroup fairness di!erences were performed using boot-
strapped estimates with 1,000 iterations. Bootstrap-derived p-values determined statistical
significance using a two-sided p < 0.05.
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3.5. Bias Mitigation

We adapt three bias mitigation strategies that were originally developed for classification
models. Each approach involves fine-tuning only the reconstruction models after the original
training described above. Two of the strategies (di!erentiable equalized-odds and adversar-
ial loss) rely on using the reconstruction and classification models applied in tandem, but
the classification network is frozen to exclusively assess the potential for bias mitigation at
the reconstruction stage.

Sample Reweighting: A weighted sampler draws each example with inverse joint sub-
group frequency during fine-tuning, ensuring that each subgroup (and combination thereof
across attributes) is represented with the same frequency. The reconstruction model is
fine-tuned using the corresponding original reconstruction loss.

Di!erentiable Equalized-Odds: For reconstruction output x̂ = f(x) and classifier out-
put ŷ = g(x̂) we minimize: LEODD = ωrec(x̂) + εfair EMA

(
ωBCE(ŷ) + EODD2

)
, where ωrec

represents the original reconstruction loss for the model, ωBCE represents the binary cross-
entropy loss for the frozen classifier, EMA represents an exponential moving average, and
EODD represents a di!erentiable Equalized Odds constraint inspired by Marcinkevics et al.
(2022). Specifically, we use the maximum EODD di!erence of any subgroup as defined
above and compute it via soft predictions: ỹ = ϑ

(
(ŷ) → ϖ)/T

)
, where the threshold ϖ and

temperature T are set at 0.5 and 0.3, respectively. One loss is computed across all sensitive
attributes (i.e., the max EODD over age, sex, and race). In the Appendix, we show that
minimizing EODD2 between subgroups corresponds to minimizing their covariance.

Adversarial Loss: Using the features zi of the frozen classifier, we append an MLP
classifier head h to predict sensitive attributes (âxi , b̂xi , . . . ) = h(zi). We measure de-
pendence on the sensitive attributes (axi , bxi , . . . ) via squared Pearson correlation (Adeli
et al., 2019): ωfair = Corr2((âxi , b̂xi , . . . ), (axi , bxi , . . . )). The combined objective is: LADV =
ωrec + εfair EMA

(
ωBCE + ωfair

)
.. The weighting factor εfair is chosen by a one-dimensional

log-scale sweep on the CheXpert U-Net baseline measured on the validation split (Appendix
Figures 11–14).

4. Results

We first evaluate the impact of reconstruction on downstream task performance before
analyzing fairness and the e!ectiveness of mitigation techniques.

4.1. Impact of Reconstruction on Task Performance

Figure 2 summarizes downstream performance as a function of reconstruction noise. We
report segmentation Dice for UCSF-PDGM and the mean AUROC across the 12 CheXpert
pathologies. For clarity, the y-axes for PSNR and the task metrics are normalized to the
same percentage range. Across all experiments, diagnostic performance remains largely un-
changed, even though PSNR decreases substantially with increasing noise. Specifically, the
Dice score for UCSF-PDGM segmentation varies by no more than ↔3% across noise condi-
tions, and the mean CheXpert AUROC fluctuates by only 1%. In contrast, PSNR decreases
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Figure 2: Downstream performance and PSNR at varying noise levels. Axes for PSNR and
task performance are scaled to comparable percentage ranges. Although PSNR
declines as noise increases, task performance remains stable. Baseline indicates
performance on original images.

by over 10 dB (26%) for UCSF-PDGM and by ↔3 dB (9%) for CheXpert. Analogous re-
sults for UCSF-PDGM classification are presented in the Appendix (Figure 10), where the
same pattern—substantial PSNR loss but minimal impact on task performance—holds for
all three reconstruction models.

A closer look at CheXpert reveals a mild dependence on baseline task di”culty: patholo-
gies with lower initial AUROC show slightly larger declines. For example, consolidation re-
mains stable with U-Net reconstruction AUROC at 0.91, whereas lung lesion drops from 0.79
to 0.77 as noise increases (see Appendix Table 7 for more details).

4.2. Impact of Reconstruction on Fairness

Although aggregate task performance is largely una!ected, reconstruction could still alter
relative performance across demographic subgroups. To test this possibility, we evaluated
fairness on the downstream models using acceleration factor 8 for UCSF-PDGM and a
photon count of 10,000 for CheXpert, representing the middle noise levels.

Sex Age Race
Classification 0.05 0.17 0.19
Segmentation 1.13 1.24 –

Table 1: Average baseline fairness of the classifiers (EODD) and the segmentation model
(SER) for di!erent sensitive attributes. Sex exhibits the lowest baseline bias.

Fig. 3 displays the distribution of bias shifts when reconstructed images replace the
original inputs. To provide a global overview, the histogram represents the bias shifts
across all tasks, pathologies, and reconstruction models. As the diagnostic models exhibit
bias on the original inputs (Table 1), the bias shifts with reconstruction are plotted on a
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Figure 3: Distribution of bias changes (percent change compared to original images) across
all reconstruction models, datasets, and tasks, stratified by sensitive attribute.
The vertical lines mark the medians. Most shifts cluster near zero, but sex shows
a broader positive tail.

percentage scale compared to the original bias to highlight the relative e!ects. We find
that the mode of these shifts is centered around zero, indicating little bias change in most
instances. However, there is a noticeable tail towards positive bias changes, especially for
sex, which exhibits a median increase of 24%. This is partly attributable to sex having a
lower baseline bias than age and race (Table 1).

The bias changes for each pathology and model are provided in Figures 4 and 5 (rep-
resented by the “Reconstruction” value in each plot). Segmentation (Figure 5) shows no
significant fairness deviations when using the reconstructed images compared to the origi-
nal images. UCSF-PDGM classification also exhibits non-significant variations. CheXpert
shows more frequent significant shifts. Out of the 36 combinations (12 pathologies x 3 re-
construction models), there were 8 significant changes for sex (all in the positive direction)
and 12 significant changes for age (4 in the positive direction). Due to large error bars,
there were 0 significant changes for race, but alternative analysis which excluded subgroups
with small sample sizes did reveal some significant changes (Appendix A). Overall, the
pathology-level findings support the histogram trend with a slight bias increase for sex and
a slight decrease for age. The absolute magnitude of the e!ects were generally modest;
however, some are of the order of a 0.05 change in EODD, corresponding to a 5% di!erence
in sensitivity/specificity, which would be meaningful at the population level. Across recon-
struction methods, the GAN and SDE-based models revealed smaller bias shifts than the
U-Net (Table 2).
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Figure 4: Equalized odds bias change pre- and post-mitigation compared to predic-
tions on original images for CheXpert. Pre-mitigation (“Reconstruction”),
bias tends to increase slightly for sex; race exhibits high variance. Post-
mitigation—particularly with EODD and adversarial losses—bias declines
slightly. Error bars represent standard deviation.
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U-Net GAN SDE
Median 2.28 -0.21 1.59
Absolute Median 14.6 11.8 11.5

Table 2: Median of bias change (% change in EODD/SER) by reconstruction approach
across all datasets, tasks, and attributes by model. SDE and GAN show a smaller
bias shift than U-Net.

4.3. Bias Mitigation

While the impact of reconstruction on fairness was generally modest, applying mitigation
strategies at the reconstruction stage could still reduce these e!ects or even improve the fair-
ness of the underlying diagnostic models. We therefore tested three mitigation techniques,
all inspired by classification literature, but applied exclusively during reconstruction model
training: sample reweighting, an equalized odds (EODD) constraint, and a subgroup-based
adversarial loss.

Sex Age Race
Standard 24.1 -1.88 3.30
Reweighted 10.6 0.03 1.05
EODD 7.56 -2.01 0.52
Adversarial 28.12 -5.39 -1.00

Table 3: Median bias change (% change in EODD/SER) by mitigation strategy across all
datasets, tasks, and models. Standard corresponds to the original results without
mitigation applied. The EODD constraint shows the greatest reduction for sex,
while the Adversarial Loss shows the greatest reduction for age and race.

Table 3 summarizes the bias changes for the mitigated models compared to the standard
models. The summary is presented as an aggregation over pathologies and reconstruction
model types, with results for each combination presented in Figures 4 and 5. We observe
a trend in decreased bias for each mitigation strategy and sensitive attribute, except for
adversarial loss and patient sex, where the median bias change increases. EODD showed the
largest median fairness improvement for sex, whereas adversarial loss showed the greatest
improvement for age and race. Sex-related biases see the most substantial percentage im-
provements, notably for U-Net and SDE, and less for Pix2Pix (Figure 4). For UCSF-PDGM
segmentation, EODD and the adversarial loss reduce bias for most attributes and models,
most strongly for U-Net (Figure 5). Classification fairness on UCSF-PDGM exhibits no
consistent pattern, with fluctuations in both directions. Overall, while some fairness im-
provements are observed, the magnitudes are modest compared to the original bias (e.g., a
median e!ect of -8.67% for sex, -0.61% for age, and -2.78% for race across all results) and
can depend on the pathology and sensitive attribute.

Fairness gains can incur performance trade-o!s, but the trade-o!s observed here are
modest. Table 4 reports the mean change in PSNR and downstream task performance across
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Reweighted EODD Adversarial
Chex UCSF Chex UCSF Chex UCSF

PSNR 0.54 -0.75 -0.64 -7.28 -1.22 -12.27
Down. 0.07 -1.97 0.02 -2.94 -0.34 -0.97

Table 4: Mean change (%) in PSNR and downstream performance (AUROC/Dice) per
dataset after each mitigation averaged over reconstruction models and tasks. Per-
formance drops are modest, except for PSNR in UCSF-PDGM.

reconstruction models when the mitigation strategies are applied. CheXpert deviations are
below 2% for PSNR and downstream AUROC. Downstream performance in UCSF-PDGM
is also only moderately a!ected by the mitigation strategies, though PSNR shows larger
drops with EODD and adversarial mitigation (see Figure 15 in the Appendix). Reweighting
incurs the smallest penalties overall.

Additional results using EOP and #Dice fairness metrics before and after mitigation
are provided in the Appendix (Figures 16 and 17) and support the trends described above.

5. Discussion

We developed and applied an analysis framework that integrates reconstruction and pre-
diction models to evaluate the e!ects of image reconstruction on downstream clinical tasks,
quantify fairness implications, and investigate bias mitigation strategies at the reconstruc-
tion stage. Our analysis revealed several important insights, as summarized below.

Stability of Downstream Performance: Despite notable reductions in image quality,
indicated by decreased PSNR at higher noise levels, downstream segmentation and clas-
sification performances remained robust to image reconstruction. This stability suggests
that current diagnostic models are largely resilient to reconstruction-induced image degra-
dations, which implies that minor reconstruction noise might not adversely impact clinical
diagnostic accuracy. This finding may be surprising given that deep learning classification
models are often thought to lack robustness, such as showing changes if the data are hetero-
geneous or noisy (Chuah et al., 2024). This suggests a nuanced interpretation of robustness,
where models may be robust to certain transformations (e.g., reconstruction noise) but not
others.

Fairness Implications and Variability: The aggregate e!ect of reconstruction on fair-
ness was relatively modest, though certain pathologies and sensitive attributes showed sig-
nificant shifts. These shifts varied in magnitude and direction, with a tendency toward
increased bias, especially for patient sex. In most cases, the magnitude represented only
a small fraction of the bias already present in the diagnostic models, though some would
correspond to a ˜5% di!erence in sensitivity/specificity between subgroups. Thus, recon-
struction can contribute to bias in downstream tasks, but the overall bias appears to be
largely driven by the downstream models themselves.

E!ectiveness and Dataset-Dependence of Mitigation Techniques: Mitigation strate-
gies, particularly adversarial and Equalized Odds constraints, reduced age and sex biases
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Figure 5: EODD and SER bias change pre- and post-mitigation compared to predictions
on original images for UCSF-PDGM tasks. Segmentation shows a trend of a
slight decrease in bias when mitigation strategies are applied, particularly for
adversarial loss. No consistent trends emerge for the classification tasks. Error
bars represent standard deviation.

on CheXpert without measurable performance trade-o!s in AUROC or PSNR (Figure 15
in the Appendix). However, similar mitigation strategies yielded inconsistent results on
UCSF-PDGM, highlighting that their e!ectiveness is dataset-specific and dependent on the
underlying task complexity and dataset characteristics.

Sensitivity of Model Choice: The SDE and GAN-based reconstruction approaches
introduced lower additional bias overall compared to the standard U-Net, which may be
counterintuitive given the generative nature of the SDE and GAN models. The U-Net
also exhibited larger degradations in downstream performance when fine-tuned with the
fairness mitigation strategies(Figure 15 in the Appendix). This sensitivity likely arises from
its inherently lower capacity than other methods, limiting simultaneous optimization of
image fidelity and fairness constraints.

Summary of Clinical Implications: The robustness of downstream performance to AI-
based image reconstruction is encouraging, particularly as these technologies are increas-
ingly integrated into clinical practice. However, some performance drops were observed,
especially for more subtle pathologies (e.g., lung lesion), highlighting the importance of
rigorous evaluation and real-world monitoring. The potential for fairness shifts also necessi-
tates active monitoring and reporting. This is especially important because model behavior
can change as data distributions shift.

Summary of Model Development Implications: Developers of reconstruction mod-
els should prioritize downstream task and fairness evaluations alongside traditional pixel-
level metrics, recognizing that reconstruction-induced biases, though subtle, can propagate
through diagnostic workflows. This is especially the case for patient sex, where anatomi-
cal di!erences can be more prominent and may explain the larger e!ects observed for this
attribute in our results. Bias mitigation strategies applied at the reconstruction stage may
help improve fairness, but our results suggest that direct intervention at the classifier stage
should be prioritized. Future research should explore multi-stage bias mitigation, integrat-
ing reconstruction and classification levels to achieve balanced fairness and performance
outcomes.
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Limitations: For comprehensiveness, we assessed multiple reconstruction models, down-
stream tasks, pathologies, and mitigation strategies, but this breadth necessarily creates
challenges in data interpretation. As such, we have provided both summary level (e.g.,
Figure 3) and individual (e.g., Figure 4) results to enhance interpretability. Along with our
studied datasets and tasks, it will be important in future work to apply our framework to
additional datasets and clinical populations, further probing generalization. Additionally,
while the algorithms used to create noisy images in this study simulate realistic acquisition
degradations and are common approaches in the field(Feng, 2022; Gibson et al., 2023), they
may not fully capture real-world variations.

6. Conclusion

The increasing clinical prevalence of AI-based reconstruction models creates a critical need
for quantitative assessments of their potential downstream impact. We performed a scal-
able evaluation by using reconstruction and diagnostic AI models in tandem across multiple
datasets, tasks, pathologies, and model types. We view our results as largely positive for
the field – downstream performance was much more robust than image-level metrics to
reconstruction noise, and the biases introduced by reconstruction were generally modest.
However, some trends of increased bias were observed, especially for patient sex. Alto-
gether, supported by these findings, we argue for the importance of monitoring downstream
performance and fairness when using AI-based reconstruction models, and for continued
work to mitigate any emerging biases.
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Appendix A.

Original Pc: 100,000 Pc: 10,000 Pc: 3,000

Figure 6: X-Ray images with photon count 100,000, 10,000, 3,000.

Acc: 4Original Acc: 8 Acc: 16

Figure 7: MRI images with acceleration 4,8,16.

Diagnostic Hyperparameters. The segmentation network was optimized with Adam
(Kingma and Ba, 2014) using a learning rate of 0.001 and a batch size of 8 without data
augmentation for 20 training epochs. The training loss consisted of Dice and L1, equally
weighted at 0.5 each. The network used a sigmoid activation and a threshold of 0.5 was
used at inference to compute the Dice performance. The model was trained on a per-slice
level using all available MRI slices. At inference, Dice performance was computed using
slices 60-130, as this range is representative of the regions where the ground truth masks
appear and thus is more representative of performance. The Dice scores were computed
separately for each slice, then averaged across slices per patient, followed by averaging across
patients to compute final performance. For the UCSF-PDGM ResNet classifiers, we trained
for 20 epochs with a learning rate of 0.0001 and a batch size of 16 without augmentation.
Each task was treated as binary classification (subtype: glioblastoma vs not glioblastoma,
grade: (II, III) vs IV) using binary cross entropy loss. All MRI slices were again used
for training, followed by using slices 60-130 at inference. Prediction scores were generated
separately per each slice, followed by computing a patient-level score as the median across
slices to serve as input to patient-level AUROC calculations. The median across slices was
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Difference

Figure 8: Reconstruction example from photon count 10,000 for the di!erent models. Grad-
CAM (Selvaraju et al., 2017) and logit score correspond to the lung lesion pre-
diction of the pre-trained classifier, indicating similar predictions on the recon-
structed images.

used to improve robustness to outliers. All UCSF-PDGM diagnostic models were trained
using images pre-processed using min-max normalization to the 0-1 range and resized to
256x256. The CheXpert DenseNet classifier was trained using TorchXRayVision (Cohen
et al., 2021). The default image preprocessing was used, with an input size of 224x224
pixels and normalization to a range of -1024 to 1024. The model was trained without data
augmentation for 50 epochs using the Adam optimizer with a learning rate of 1e-3 and a
weight decay of 1e-5.

Reconstruction Hyperparameters. No data augmentation was applied to any of the
reconstruction pipelines. A U-Net was trained for 20 epochs on both UCSF-PDGM and
CheXpert, using Adam with MSE loss, a learning rate of 0.001, and a batch size of 16. The
GAN (Pix2Pix) was trained for 200 epochs on each dataset with Adam, a learning rate
0.0002, and a batch size of 32 to compensate for the smaller data volume. For the SDE
model, we employed Adam with a learning rate of 0.0001, a cosine learning-rate schedule,
and a batch size of 8; training ran for 40 epochs on CheXpert and 300 epochs on UCSF-
PDGM. We note that the number of epochs varied between models because the di!erent
approaches take longer to converge (e.g., GANs are inherently less stable than a standard
MSE loss), but in each case, the final weights were selected via validation loss monitoring,
consistent with standard practice. During mitigation with the EODD-constraint, we em-
ployed ϖ = 0.5 for the threshold, T = 0.3 for the temperature, and a momentum value of
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OriginalInput

Segmentation

Difference

U-Net Pix2Pix SDE

PSNR:  34.4 PSNR:  35.1 PSNR:  35.2

DSC: 0.77 DSC: 0.77 DSC: 0.77

Figure 9: Reconstruction with corresponding segmentation and Dice score of an MRI image
with acceleration 8 for the di!erent models.

0.1 for the EMA. The remaining hyperparameters and architectural details were adopted
unchanged from the original U-Net (Ronneberger et al., 2015), Pix2Pix (Isola et al., 2017),
and SDE (Luo et al., 2023) publications. Image pre-processing consisted of min-max nor-
malization to the 0-1 range and resizing to 256x256 for all reconstruction models.

The models were trained on a single NVIDIA A40 or A100 GPU. The SDE model was
computationally most expensive and needed a maximum of 48 hours to train from scratch.
For all models, the final weights were chosen based on performance on the validation split
during training.

Proof of Proportionality. When the protected attribute A takes more than two cate-
gories (e.g., multiple races, genders, or age groups), we compare all pairs ai, aj of subgroups.
Then, we take the maximum of the pairwise disparities in true positive and false positive
rates:

EODD = max
1→i<j→k

[ ∣∣P (Ŷ = 1 | Y = 1, A = ai)

→ P (Ŷ = 1 | Y = 1, A = aj)
∣∣

+
∣∣P (Ŷ = 1 | Y = 0, A = ai)

→ P (Ŷ = 1 | Y = 0, A = aj)
∣∣
]

Each pairwise comparison is handled exactly as in the binary case by treating ai, aj

as 0, 1. Therefore, all the steps below—derived under a binary setup—apply pairwise to
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any two subgroups. Taking the maximum over these pairwise disparities then yields the
multi-group measure.
This proof is based on the derivation by (Marcinkevics et al., 2022), and adjusted for EODD.
EODD measures the disparity between subgroups in true positive rate (TPR) and false
positive rate (FPR). In the binary case:

EODD = PX,Y,A(Ŷ = 1|Y = 1, A = 1)

→ PX,Y |A(Ŷ = 1|Y = 1, A = 0)

+ PX,Y,A(Ŷ = 1|Y = 0, A = 1)

→ PX,Y,A(Ŷ = 1|Y = 0, A = 0)

This can be expressed by the following proxy function.

EODD =

∑
n

i=1
fω(xi)aiyi∑
n

i=1
aiyi

(1)

→
∑

n

i=1
fω(xi)(1→ ai)yi∑
n

i=1
(1→ ai)yi

(1)

+

∑
n

i=1
fω(xi)ai(1→ yi)∑
n

i=1
ai(1→ yi)

(2)

→
∑

n

i=1
fω(xi)(1→ ai)(1→ yi)∑
n

i=1
(1→ ai)(1→ yi)

(2)

To start, let’s define the conditional covariance:

cov(A,X|Y = y) = (3)

E[(A→ E[A|Y = y])(X → E[X|Y = y])|Y = y]

= E[AX|Y = y]→ E[A|Y = y]E[X|Y = y] (3)

We can use the law of total covariance to prove the validity:

cov(A,X) = E
[
cov(A,X|Y )

]
(4)

+ cov
(
E[A|Y ],E[X|Y ]

)
(4)

Expanding the first expectation term with (3):

E[cov(A,X|Y )] = E
[
E[AX|Y ]→ E[A|Y ]E[X|Y ]

]

= E[AX]→ E[E[A|Y ]E[X|Y ]] (5)

Expanding the second covariance term:

cov(E[X|Z],E[Y |Z]) = E[E[X|Z]E[Y |Z]] (6)

→ E[X]E[Y ] (6)
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Substituting (5) and (6) into (4):

cov(X,Y ) = E[XY ]→ E[E[X|Z]E[Y |Z]]

+ E[E[X|Z]E[Y |Z]]→ E[X]E[Y ]

= E[XY ]→ E[X]E[Y ]

= cov(X,Y )

We want to show that #OOD ↗ Ĉov(A, fω(X)|Y = 1) + Ĉov(A, fω(X)|Y = 0)
Let

∑
i
aiyi = SAY ,

∑
i
ai = SA,

∑
i
yi = SY .

Expanding EODD:
Expanding (1):

∑
N

i=1
fω(xi)aiyi∑
N

i=1
aiyi

→
∑

N

i=1
fω(xi)(1→ ai)yi∑

N

i=1
yi(1→ ai)yi

=
1

SAY

N∑

i=1

fω(xi)aiyi →
1

SY → SA

N∑

i=1

fω(xi)

+
1

SY → SAY

N∑

i=1

fω(xi)aiyi

=
SY

SAY (SY → SAY )

N∑

i=1

fω(xi)yiai

→ 1

SY → SAY

N∑

i=1

fω(xi)yi

Note that:

Ĉov(A, fω(X)|Y = 1)

=

∑
n

i=1
fω(xi)aiyi∑
n

i=1
yi

→
∑

n

i=1
aiyi∑

n

i=1
yi

∑
n

i=1
fω(xi)yi∑
n

i=1
yi

=
1

SY

n∑

i=1

fω(xi)aiyi

→ SAY

S2

Y

n∑

i=1

fω(xi)yi.

Showing (5) ↗ Ĉov(A, fω(X)|Y = 1)

with factor
S
2
Y

SAY (SY ↑SAY )
, independent of fω.
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Expanding (2):

∑
n

i=1
fω(xi)ai(1→ yi)∑
n

i=1
ai(1→ yi)

→
∑

n

i=1
fω(xi)(1→ ai)(1→ yi)∑
n

i=1
(1→ ai)(1→ yi)

=
N → SY

(N → SY → SA + SAY )(SA → SAY )

N∑

i=1

fω(xi)ai

→ N → SY

(N → SY → SA + SAY )(SA → SAY )

N∑

i=1

fω(xi)aiyi

→ 1

N → SY → SA + SAY

N∑

i=1

fω(xi)yi

→ N

N → SY → SA + SAY

N∑

i=1

fω(xi)

Similarly:

Ĉov(A, f0(X)|Y = 0)

=

∑
N

i=1
f0(xi)ai(1→ yi)∑
N

i=1
(1→ yi)

→
∑

N

i=1
ai(1→ yi)∑

N

i=1
(1→ yi)

·
∑

N

i=1
f0(xi)(1→ yi)∑
N

i=1
(1→ yi)

=
1

N → SY

N∑

i=1

f0(xi)ai

→ N

N → SY

N∑

i=1

f0(xi)aiyi

→ SA → SAY

(N → SY )2

N∑

i=1

f0(xi)

→ SA · SAY

(N → SY )2

N∑

i=1

f0(xi)yi

Showing (6) ↗ Ĉov(A, fω(X)|Y = 0) with factor (SA↑SAY )(N↑SY ↑SA+SAY )

(N↑SY )2
, independent

of fω.

Therefore, EODD ↗ Ĉov(A, fω(X)|Y = 1) + Ĉov(A, fω(X)|Y = 0).
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AI/AN Asian Black NH/PI Other White
Female, > 62 54 1539 923 314 2518 6456 11804
Female, ↘ 62 39 1739 608 136 1710 9500 13732
Male, > 62 56 1734 1023 240 3553 8984 15590
Male, ↘ 62 27 1924 539 171 1853 11170 15684

176 6936 3093 861 9634 36110 56810

Table 5: Patient-wise groups used for analysis based on sex, age, and race for the CheXpert
dataset. Unequally distributed with very few samples for American Indian or
Alaska Native (AI/AN) and Native Hawaiian or Other Pacific Islander (NH/PI).

Male Female
↘ 58 155 92 147
> 58 144 110 254

299 202 501

Table 6: Patient distribution by sex and age for the UCSF-PDGM dataset. Patients under
58 and females represent minority groups.

Additional Fairness Results

In addition to Equalized Odds and Skewed Error Ratio in the main text, we investigate two
additional bias metrics:

Equality of Opportunity (EOP):

P (Ŷ = 1 | Y = 1, A = 0)

= P (Ŷ = 1 | Y = 1, A = 1).

We report the worst case Equality of Opportunity (Hardt et al., 2016) di!erence between
groups

maxi,j |P (Ŷ = 1 | Y = 1, A = i)

→ P (Ŷ = 1 | Y = 1, A = j)|,
↑ A ↓ A.

EOP is a relaxation of EODD, requiring fairness only concerning the positive class
(Y = 1).

#Dice: Given the limited availability of dedicated segmentation fairness metrics, we also
compute:

#Dice = max
i,j

∣∣DiceAi →DiceAj

∣∣ , A ↓ A

which represents the maximum di!erence in Dice across all protected subgroups A.
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Figure 10: Tumor Type and Tumor Grade and PSNR values for di!erent noise levels on
UCSF-PDGM. The image quality and diagnostic performance axes are on a
similar percentage scale. Task performance metrics show high stability across
models and noise conditions, while PSNR drops with increasing noise.

Plots containing the results of these additional evaluations can be found in Figure 16
and 17.

Additionally, Figures 18 and 19 contain results using di!erent race subgroups for CheX-
pert. Our original evaluations considered each of the original subgroups listed within the
dataset (Table 5) when computing the fairness metrics. Given the small counts for the
American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander sub-
groups, leading to large error bars, we also computed these metrics when including these
subgroups within the Other subgroup.
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Age Sex Race

Figure 11: Influence of fairness weighting parameter (εfair) on classifier AUROC perfor-
mance and fairness metrics for the Equalized Odds (EODD) mitigation con-
straint, evaluated with U-Net on the CheXpert dataset. There is minor sensi-
tivity of AUROC to lambda; fairness metrics show greater variance but minimal
substantial improvement with increased ε.

Age Sex Race

Figure 12: Influence of εfair on AUROC and fairness metrics for the adversarial fairness loss
with U-Net on CheXpert. Similar findings to the EODD loss include minimal
AUROC variation and moderate fairness variability without substantial gains.

Age Sex Race

Figure 13: Impact of εfair on reconstruction quality (PSNR) compared to fairness for the
EODD constraint mitigation. PSNR remains stable across lambda variations,
while fairness shows slight variation without substantial improvement.
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Photon Count Metrics Baseline U-Net GAN SDE

100,000
AUROC

Atalectasis 0.87 0.87 0.86 0.87
Cardiomegaly 0.91 0.91 0.91 0.91
Consolidation 0.91 0.91 0.91 0.91
Edema 0.90 0.90 0.90 0.90
EC 0.79 0.78 0.78 0.79
Fracture 0.76 0.75 0.75 0.76
Lung Lesion 0.80 0.79 0.79 0.79
Lung Opacity 0.88 0.88 0.88 0.88
Pleural E!usion 0.93 0.92 0.92 0.92
Pleural Other 0.83 0.82 0.81 0.82
Pneumonia 0.83 0.83 0.83 0.83
Pneumothorax 0.77 0.75 0.76 0.77
Average 0.85 0.84 0.84 0.85

PSNR 31.60 30.16 29.98
LPIPS 0.13 0.08 0.08

10,000
AUROC

Atalectasis 0.87 0.87 0.86 0.87
Cardiomegaly 0.91 0.90 0.90 0.91
Consolidation 0.91 0.91 0.90 0.91
Edema 0.90 0.89 0.89 0.90
EC 0.79 0.78 0.78 0.78
Fracture 0.76 0.75 0.74 0.75
Lung Lesion 0.80 0.78 0.78 0.79
Lung Opacity 0.88 0.88 0.87 0.88
Pleural E!usion 0.93 0.92 0.91 0.92
Pleural Other 0.83 0.81 0.80 0.82
Pneumonia 0.83 0.82 0.82 0.82
Pneumothorax 0.77 0.75 0.75 0.77
Average 0.85 0.84 0.83 0.84

PSNR 30.52 28.62 27.12
LPIPS 0.19 0.11 0.15

3000
AUROC

Atalectasis 0.87 0.86 0.85 0.86
Cardiomegaly 0.91 0.90 0.90 0.91
Consolidation 0.91 0.91 0.90 0.90
Edema 0.90 0.89 0.89 0.89
EC 0.79 0.78 0.78 0.78
Fracture 0.76 0.74 0.73 0.75
Lung Lesion 0.80 0.77 0.77 0.78
Lung Opacity 0.88 0.87 0.87 0.87
Pleural E!usion 0.93 0.91 0.91 0.92
Pleural Other 0.83 0.80 0.78 0.81
Pneumonia 0.83 0.82 0.80 0.82
Pneumothorax 0.77 0.74 0.74 0.77
Average 0.85 0.83 0.83 0.84

PSNR 28.89 27.36 26.83
LPIPS 0.22 0.14 0.15

Table 7: Performance metrics for CheXpert across reconstruction models and photon
counts. Includes PSNR, LPIPS, and AUROC scores for multi-label classification
tasks across varying noise levels. A subtle trend is observed where pathologies
with lower baseline AUROC (e.g., fracture, pneumothorax, lung lesion) experience
slightly greater performance degradation under noise. At the same time, more eas-
ily detectable conditions (e.g., e!usion, cardiomegaly) remain stable. Baseline is
the prediction on the ground truth images.
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Acceleration Metrics Baseline U-Net GAN SDE

4

AUROC
Tumor Type 0.79 0.79 0.77 0.78
Tumor Grade 0.73 0.76 0.71 0.72

Dice 0.72 0.72 0.71 0.72
PSNR 42.94 37.71 40.23
LPIPS 0.01 0.02 0.00

8

AUROC
Tumor Type 0.79 0.77 0.83 0.79
Tumor Grade 0.73 0.75 0.78 0.73

Dice 0.72 0.70 0.71 0.71
PSNR 35.77 35.20 34.65
LPIPS 0.03 0.02 0.02

16

AUROC
Tumor Type 0.79 0.76 0.81 0.80
Tumor Grade 0.73 0.70 0.74 0.69

Dice 0.72 0.67 0.70 0.71
PSNR 31.84 32.34 34.56
LPIPS 0.06 0.04 0.02

Table 8: Performance metrics for UCSF-PDGM across reconstruction models and noise lev-
els. Reports PSNR, LPIPS, Dice, and classification AUROC for tumor type and
grade tasks. While PSNR varies with noise and model, downstream segmentation
and classification metrics remain relatively stable, indicating robust task perfor-
mance across conditions.

Age Sex Race

Figure 14: Impact of εfair on PSNR and fairness for the adversarial fairness loss. Stable
PSNR across lambda values with minor fairness variations similar to the EODD
loss results.
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Reweighting

Equalized odds constraint

Adversarial loss

Figure 15: Change in prediction performance after applying bias mitigation techniques.
Each row compares two datasets for a given method: (a) Reweighted sampling,
(b) Equalized odds constraint, and (c) Adversarial training. UCSF-PDGM ex-
periences more performance degradation. However, all techniques show good
stability in task performance, with few outliers in the UCSF-PDGM dataset.
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Figure 16: Equality of opportunity (EOP) bias change pre- and post-mitigation com-
pared to predictions on original images for CheXpert classification. Pre-
mitigation, bias tends to increase slightly for sex; race exhibits high variance.
Post-mitigation—particularly with EODD and adversarial losses—bias declines
slightly.
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Figure 17: Equality of opportunity (EOP) and # Dice bias change compared to predictions
on original images pre- and post-mitigation for UCSF-PDGM classification and
segmentation.

Figure 18: Distribution of bias changes when using alternative race subgroups for CheXpert
calculations.
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Figure 19: Equalized odds bias change pre- and post-mitigation compared to predictions
on original images for CheXpert when using alternative race subgroups.
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