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ABSTRACT

Masked image modeling (MIM) has become a popular strategy for self-supervised
learning (SSL) of visual representations with Vision Transformers. A representa-
tive MIM model, the masked auto-encoder (MAE), randomly masks a subset of
image patches and reconstructs the masked patches given the unmasked patches.
Concurrently, many recent works in self-supervised learning utilize the studen-
t/teacher paradigm which provides the student with an additional target based on
the output of a teacher composed of an exponential moving average (EMA) of pre-
vious students. Although common, relatively little is known about the dynamics
of the interaction between the student and teacher. Through analysis on a sim-
ple linear model, we find that the teacher conditionally removes previous gradient
directions based on feature similarities which effectively acts as a conditional mo-
mentum regularizer. From this analysis, we present a simple SSL method, the
Reconstruction-Consistent Masked Auto-Encoder (RC-MAE) by adding an EMA
teacher to MAE. We find that RC-MAE converges faster and requires less mem-
ory usage than state-of-the-art self-distillation methods during pre-training, which
may provide a way to enhance the practicality of prohibitively expensive self-
supervised learning of Vision Transformer models. Additionally, we show that
RC-MAE achieves more robustness and better performance compared to MAE
on downstream tasks such as ImageNet-1K classification, object detection, and
instance segmentation.

1 INTRODUCTION

The Transformer (Vaswani et al., 2017) is the de facto standard architecture in natural language
processing (NLP), and has also surpassed state-of-the-art Convolutional Neural Network (He et al.,
2016; Tan & Le, 2019) (CNN) feature extractors in vision tasks through models such as the Vision
Transformer (Dosovitskiy et al., 2021) (ViT). Prior to the advent of ViTs, self-supervised learn-
ing (SSL) algorithms in the vision community (He et al., 2020; Chen et al., 2020c; Grill et al., 2020;
Chen et al., 2021) utilized CNNs (e.g., ResNet (He et al., 2016)) as a backbone, performing instance
discrimination pretext tasks through contrastive learning (He et al., 2020; Chen et al., 2020c). Inter-
estingly, self-distillation schemes (Grill et al., 2020; Caron et al., 2021) using a teacher consisting of
an exponential moving average (EMA) of the previous students, (i.e., a “mean” teacher) (Tarvainen
& Valpola, 2017), have been shown to exhibit strong performance.

Inspired by the success of masked language modeling (MLM) pre-training in NLP, recent SSL ap-
proaches (Bao et al., 2022; Zhou et al., 2022; Xie et al., 2022; He et al., 2022; Assran et al., 2022) in
the vision community have proposed forms of masked image modeling (MIM) pretext tasks, using
ViT-based backbones. MIM is a simple pretext task which first randomly masks patches of an im-
age, and then predicts the contents of the masked patches (i.e., tokens) using various reconstruction
targets, e.g., visual tokens (Bao et al., 2022; Dong et al., 2021), semantic features (Zhou et al., 2022;
Assran et al., 2022) and raw pixels (He et al., 2022; Xie et al., 2022). In particular, iBOT (Zhou et al.,
2022) and MSN (Assran et al., 2022) use a self-distillation scheme for MIM by having the teacher
network provide an encoded target (i.e., feature representation) to match the encoded features from
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Figure 1: Overview. (a): When the inputs which led to the previous gradients and current gra-
dients are similar, the consistency gradient provides a conditional correction, allowing the stu-
dent to learn from newer knowledge. (b): In RC-MAE, the reconstructed patches from the student
are compared with the original input (reconstruction loss Lr), and with the predicted patches from
the teacher (consistency loss Lc). (c): ImageNet-1K Fine-tuning top-1 accuracy curve: RC-MAE
achieves comparable accuracy (83.4%) at 800 epochs compared to MAE trained for 1600 epochs.

the original image at a semantic feature level (i.e., global abstraction). Methods using semantic-level
target representations exhibit strong performance on image-level classification tasks. On the con-
trary, SimMIM (Xie et al., 2022) and MAE (He et al., 2022) provide pixel-level reconstructions of
masked patches, and lead to superior performance on dense prediction tasks such as object detection
and segmentation. However, self-distillation for pixel-level MIM has been under-explored as of yet.

A recent SSL approach, BYOL (Grill et al., 2020), has shown that a slight architectural asymmetry
between a student and EMA teacher can create a stable model which outperforms previous con-
trastive learning methods. The success of BYOL (Grill et al., 2020) inspired empirical (Chen & He,
2021) and theoretical (Tian et al., 2021) analyses into what enables BYOL to effectively learn and
avoid collapse with the EMA Teacher during pre-training. Still, despite the popularity of the EMA
Teacher in SSL, relatively little is known about how the teacher interacts with the student throughout
the training process.

In this work, we explore the dynamics of self-distillation in pixel-level MIM, e.g., MAE. Through
analyzing a simple linear model, we investigate the dynamics between the gradients of an image re-
construction loss and a teacher consistency loss, learning that the gradients provided by the teacher’s
consistency loss conditionally adjust the current reconstruction gradient by a weighted mixture of
previous gradients. The weights of the mixture are derived from similarities between current and
previous features. Thus, the teacher acts like a conditional momentum regularizer. For example,
Fig. 1(a) shows the case where the inputs which created the previous gradient momentum are sim-
ilar to the ones which created the current gradients. In this case, the teacher makes a conditional
correction to remove the previous direction from the momentum, allowing the student to learn from
the newer knowledge in the current batch. If however, the inputs which created both gradients are
nearly orthogonal, the teacher would instead respond with minimal to no correction. We derive this
conditional gradient effect in Proposition 4.1, and show evidence in both a simple linear model as
well as in a deep ViT-based (Dosovitskiy et al., 2021) MAE model (Fig. 2).

To empirically validate our analysis of the contributions of EMA Teachers, we present a simple
yet effective SSL approach, the Reconstruction-Consistent Masked Auto-Encoder (RC-MAE), by
equipping MAE with an EMA Teacher, and providing a consistency target. Additionally, we study
the effects of using different image masking strategies between the student and teacher models on the
consistency objective, finding that using the same mask generally leads to better performance in both
pre-training and downstream tasks. The same mask tends to form an orthogonal objective (Fig. 3(b))
to the reconstruction loss, which has been shown (Suteu & Guo, 2019; Ajemian et al., 2013) to be
beneficial for multi-task models as there is limited interference between tasks. This observation may
be of interest to any future SSL works which leverage multiple pre-training objectives.
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Our experiments follow the same architecture, settings, and pre-training recipe as MAE (He et al.,
2022), and we find that the simple addition of a teacher (RC-MAE) consistently outperforms MAE
in all model sizes (e.g., ViT-S, ViT-B, and ViT-L) when fine-tuned for ImageNet classification. Ad-
ditionally, we find that the teacher’s conditional gradient correction we identified allows RC-MAE
to converge faster compared to MAE (Fig. 1(c)), and RC-MAE outperforms recent self-distillation
methods, MSN and iBOT, on dense prediction tasks such as object detection and instance segmenta-
tion. Furthermore, compared to recent self-distillation methods utilizing a mean teacher, RC-MAE
realizes more efficiency in computation and memory due to the fact that both networks receive only
a subset of patches instead of the whole image. Our main contributions are as follows:

1. We analyze the contribution of EMA Teachers in self-supervised learning, finding that the
gradient provided by the teacher conditionally adjusts the current reconstruction gradient
direction and magnitude conditioned on the similarity of current and previous features.

2. Using this knowledge, we propose a simple, yet effective approach for self-supervised
pre-training of Vision Transformers, the Reconstruction-Consistent Masked Auto-
Encoder (RC-MAE), which improves over vanilla MAE in terms of speed of convergence,
adversarial robustness, and performance on classification, object detection, and instance
segmentation tasks.

3. Thanks to its simplicity, RC-MAE achieves greater savings in both memory and computa-
tion compared to other state-of-the-art self-distillation-based MIM methods.

2 RELATED WORKS

In NLP, masked language modeling (MLM) is common for large-scale pre-training (Devlin et al.,
2019; Radford et al., 2018) by predicting masked words. Similarly, ViT (Dosovitskiy et al., 2021;
Liu et al., 2021; Lee et al., 2022) based masked image modeling (MIM) approaches (Zhou et al.,
2022; Bao et al., 2022; He et al., 2022; Xie et al., 2022; Assran et al., 2022) for computer vision
tasks have been proposed. These MIM approaches first apply a mask to patches of an image, and
then the masked patches are predicted given the visible patches either at the token-level (Zhou et al.,
2022; Bao et al., 2022; Assran et al., 2022) or pixel-level (Chen et al., 2020b; Xie et al., 2022; He
et al., 2022). Token-level masked patch prediction (Zhou et al., 2022; Assran et al., 2022; Bao et al.,
2022) predicts tokens or clusters of masked patches similar to MLM. Pixel-level prediction (Chen
et al., 2020b; Xie et al., 2022; He et al., 2022) learns visual representations by reconstructing masked
input patches at the RGB pixel-level.

Additionally, self-distillation (Grill et al., 2020; Caron et al., 2021; Chen et al., 2021) has been
deployed in MIM methods by utilizing a teacher constructed from an exponential moving aver-
age (EMA-Teacher) of student weights, providing an additional target for the student. iBOT (Zhou
et al., 2022) gives a full view of an image (i.e., all patches) to the teacher network as an online
tokenizer, offering a token-level target of the masked patches. Also giving a masked view to the
student and a full view to the teacher, MSN (Assran et al., 2022) makes the output embeddings
from an EMA-Teacher serve as a semantic feature representation target to the student. Likewise,
BootMAE (Dong et al., 2022) also adopts an EMA-Teacher, providing a feature-level target to the
student on top of the pixel-level MIM approach. A key difference from these self-distillation MIM
approaches is that RC-MAE provides only unmasked patches to the teacher and student, instead of
the full image. As a result, RC-MAE shows better scalability compared with recent methods (see.
Table 6).

3 PRELIMINARIES

The Masked Autoencoder. (MAE) (He et al., 2022) is a self-supervised approach with a ViT en-
coder f and decoder h, which randomly masks a portion of input patches, and then reconstructs the
masked patches given the visible patches. Given an image X ∈ RC×H×W , MAE patchifies X into
N non-overlapping patches X̃ ∈ RN×(P 2⋅C) with a patch size of P and randomly masks a subset of
patches M (i.e., mask tokens). The subset of visible patches V is input to the encoder to achieve
latent representations: z = f(V). Then, the decoder h attempts to reconstructM given the latent
representations, Ŷ = h(z;M), where Ŷ ∈ RN×(P 2⋅C) denotes the reconstructed patches. MAE
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utilizes the mean-squared error reconstruction loss Lr which is only computed on masked patches:

Lr =
1

∣M∣
∑
i∈M
∥X̃i − Ŷi∥

2

2
(1)

The EMA Teacher. The mean teacher model (Tarvainen & Valpola, 2017) is a temporal ensemble
of previous student weights which provides an additional target to the student. Doing so has been
shown to reduce the number of labels needed to achieve the same level of accuracy, and has become
a core part of recent state-of-the-art SSL approaches as reviewed in Section 2. Predictions from the
student and teacher are compared via a function such as mean squared error (Tarvainen & Valpola,
2017) or cross-entropy (Caron et al., 2021). Generally, the teacher T is updated after every gradient
step on the student S, using an exponential moving average of the student weights,

T (t) = αT (t−1) + (1 − α)S(t) =
t

∑
i=0

αi
(1 − α)S(t−i), (2)

with a parameter α ∈ (0,1). The additional target forms a consistency loss Lc between the teacher
and the student predictions. Considering the mean squared error loss, and Ŷ ′ being the prediction
from the teacher model,

Lc =
1

∣M∣
∑
i∈M
∥Ŷi − Ŷ

′
i ∥

2

2
(3)

4 THE ROLE OF THE TEACHER

Although EMA teachers are common in recent SSL approaches, relatively little is known about
the interaction between the student and teacher. Through analysis of a linear model that mirrors a
MAE+Teacher objective, we will show how the gradients of both models interact. Considering a
linear model for the student S and teacher T consisting of a single weight matrix, like an MAE,
the objective is to reconstruct the original input x from a masked input x̃ = x ⊙m, where ⊙ is an
elementwise multiplication and m is a random binary mask with a predefined masking ratio.
Proposition 4.1. With the reconstruction and consistency objective (Eqs. (1) and (3)), the gradient
contribution of the teacher (∇SLc) adjusts the direction and magnitude of the reconstruction gradi-
ents (∇SLr). The magnitude and direction of the adjustment from the teacher are conditional based
on the similarity between the current and previous features. With x̂ representing an independent
input from a previous timestep,

∇SLr +∇SLc = ∇S
1

2
∥Sx̃ − x∥22 +∇S

1

2
∥Sx̃ − StopGrad(T x̃)∥22

= Sx̃x̃⊺ − xx̃⊺ + Sx̃x̃⊺ − T x̃x̃⊺

= Sx̃x̃⊺ − xx̃⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∇SLr

−

⎡⎢⎢⎢⎢⎢⎢⎣

t

∑
i=1

αiλ

⎡⎢⎢⎢⎢⎢⎣
Sx̂x̂⊺ − xx̂⊺ + Sx̂x̂⊺ − T x̂x̂⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∇SLr+∇SLc from x̂

⎤⎥⎥⎥⎥⎥⎦

(t−i)⎤⎥⎥⎥⎥⎥⎥⎦

x̃x̃⊺

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∇SLc

(4)

Proof. Please see Appendices B and B.1.1

The gradient of the consistency loss ∇SLc is wholly represented by the last term on the RHS. Inter-
estingly, there is a dot product x̂⊺x̃ which gets distributed into every term of the sum. If we consider
the dot product as cosine similarity cos(x̂, x̃) = x̂⊺x̃/∥x̂∥∥x̃∥, the possible cases for cos(x̂, x̃) for x̂
at a single arbitrary timestep t are as follows cos(x̂, x̃) ∈ {−1,0,1, (0,1), (−1,0)}.

Case 1: cos(x̂, x̃) ∈ {−1,1}. In this case, the resulting gradient from the last term on the RHS of
Eq. (4) removes some amount of residual memory of the direction of a previous gradient. A cosine
similarity of ∣1∣ also means the inputs are collinear, and the gradient is invariant to the sign of x̂⊺x̃.

Case 2: cos(x̂, x̃) = 0. In this case, There is zero contribution from the teacher for this term in the
sum.

Case 3: ∣cos(x̂, x̃)∣ ∈ (0,1). In this case, the component which contains the previous gradient will
be weighted by the coefficient x̂⊺x̃.
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In all cases, due to the sign of the last term on the RHS of Eq. (4), the gradient of consistency
loss conditionally removes residual memory of previous gradients. The magnitude of the removal
is likewise conditional, which can be seen by using the triangle inequality to upper bound the final
term of Proposition 4.1 to see that,

∥∇SLc∥ = ∥
t

∑
i=1

αiλ∇S(t−i)L
(t−i)x̃x̃⊺∥ ≤

t

∑
i=1

αiλ ∥∇S(t−i)[. . . x̂
⊺
]x̃x̃⊺∥ (5)

leading to the conclusion that the magnitude and direction of the consistency gradient directly result
from the similarities to features in the recent learning history, as αi ∈ (0,1) decays exponentially
for distant timesteps in the past. The gradient of the student model can be bounded in a similar
fashion, but without the decaying α coefficients which makes the bound much looser in general (see
Appendix B.1).

Table 1: Input sequences used in Fig. 2
Name Input Description

Case 1 (x̃, x̃) same input twice (same)
Case 2 (x̃, x̂) different inputs (different)
Case 3 (x̃, x̃′) same input with a different mask (similar)

Empirical Test. To test for this effect in a
linear model, we conducted an experiment by
training a linear model on data consisting of
random samples x ∈ R32 from random multi-
variate normal distributions (see Appendix E.1
for further details). After each training iteration, we sampled an extra batch of data, and for each
single point in the batch we constructed sequences consisting of two inputs described in Table 1. We
then took a single gradient step and teacher update for the first input and calculated the gradient of
the reconstruction and consistency loss on the second input.

Expected Outcome. Based on the similarity of the inputs, we would expect the consistency loss
to produce a larger gradient for the same or similar inputs and a smaller gradient for different in-
puts. Additionally, the direction of the reconstruction and consistency gradient should be closer to
opposite for case 1, and closer to orthogonal for case 2, with case 3 falling somewhere in-between.
In Fig. 2 (top row), we in fact observe this trend, noting that the reconstruction loss produces a
significantly larger gradient when the second gradient step is on different inputs due to the looser
bound in Eq. (16).

Interpretation. This finding implies that the teacher plays a role of something akin to a gradient
memory, where the teacher acts as a memory bank which retrieves the memory of recent gradients
based on matching a query x̃ to a key x̂ in the memory bank. For novel inputs which do not match
anything in recent memory, the teacher responds with a minimal correction, letting the student learn
more from the reconstruction signal. If the query and key match, however, the teachers gradient will
conditionally remove some directional information contained in the previous gradient. This allows
the student to move in a direction which favors new knowledge gained from the current input, and
cancels out some previous momentum. This process is illustrated in Fig. 1(a). In Appendix D, we
show that the same terms appear in the context of a deep model, with the dot product appearing at
each semantic feature level. However, in a complex model with nonlinearities, the resulting gradient
direction becomes harder to interpret. Even so, in Fig. 2 (bottom row), we empirically find the
same underlying trend in the gradient norms and directions when analyzing RC-MAE (a ViT based
model).

5 RECONSTRUCTION-CONSISTENT MASKED AUTO-ENCODER

In this section, we utilize the analysis from Section 4, and present a simple self-supervised ap-
proach, Reconstruction-Consistent Masked Auto-Encoder (RC-MAE). The overview of RC-MAE is
illustrated in Fig. 1(b). RC-MAE is a ViT-based version of the simple linear model outlined in Sec-
tion 4 where the total objective consists of a reconstruction and consistency loss from the original
image and a mean teacher, respectively. The teacher network shares the same architecture as the
student, consisting of an encoder fθt (e.g., ViT (Dosovitskiy et al., 2021)) and a decoder hθt .

At timestep t, the model parameters of the teacher θt are updated to be the exponential moving
average (EMA) of the student model parameters θs (Eq. (2)). While BYOL (Grill et al., 2020),
DINO (Caron et al., 2021), and MSN (Assran et al., 2022) make the student network mimic the
teachers semantic-level representation, for RC-MAE, the consistency and reconstruction targets are
both pixel-level representations. We would expect that the two pixel-level objectives would lead
to better performance on dense prediction tasks. Additionally, we would expect the conditional
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Figure 2: Top Row: Linear model. Bottom Row: RC-MAE (a ViT). Both models show the same
trends. For three input sequences in Table 1, we performed one gradient step/teacher update and then
calculated ∇SLr, and ∇SLc at the next step. Figs. 2(a) and 2(d): ∥∇SLc∥F is larger when cos(x̂, x̃)
is large (Eq. (5)). Figs. 2(b) and 2(e): The same and different lines do not follow the same order for
the reconstruction loss. Figs. 2(c) and 2(f): The direction of ∇SLc is conditioned on cos(x̂, x̃). All
together: For ∇SLc, when cos(x̂, x̃) = 1 there tends to be larger move in a negative direction while
cos(x̂, x̃) ≈ 0 there tends to be a smaller move in an approximately orthogonal direction.

momentum corrections from the consistency gradient to allow for quicker and more stable rate of
convergence, due to our interpretation in Section 4 of the momentum corrections supplied by the
teacher.

To investigate masking strategies for the teacher, we define two types of RC-MAE, RC-MAE-S
and RC-MAE-D. RC-MAE-S uses the same mask tokens for both student and teacher networks.
Conversely, RC-MAE-D, uses different mask tokens for each network. For both variants, given
an image, we randomly sample respective mask tokensM with a mask ratio (e.g., 75% like MAE).
The visible patches are then given to the student and teacher networks, which reconstruct all patches.
With the consistency loss Eq. (3), the RC-MAE objective is:

1

∣M∣
∑
i∈M
(∥X̃i − Ŷi∥

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reconstruction

+∥Ŷi − Ŷ
′
i ∥

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
consistency

), (6)

where i is the token index and Ŷ , Ŷ ′ denote the reconstructed patches from the decoders of the
student and teacher networks, respectively. For the reconstruction target, we use standard normalized
patch pixels as done with MAE (He et al., 2022). For RC-MAE-D the student and teacher process
different visible patches, and the total loss is only calculated on the student’s mask token locations
Ms. Unless otherwise specified, RC-MAE means RC-MAE-S in the rest of this paper.

6 EXPERIMENTS

To validate the effectiveness of the EMA Teacher in RC-MAE, we compare RC-MAE to an oth-
erwise identical MAE (He et al., 2022) baseline. For the EMA Teacher, We use ViT (Dosovitskiy
et al., 2021) as an encoder and transformer decoder with the same depth and dimension as MAE.
For a fair comparison with MAE, we follow the same implementation as MAE’s official code. For
experiments, we pre-train on ImageNet-1K and evaluate linear probing (LN) and end-to-end fine-
tuning (FT) for classification and COCO object detection & instance segmentation for which we
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Figure 3: (a): Lr is high for RC-MAE-D compared with MAE, even though RC-MAE-D outper-
forms MAE in downstream tasks (see Table 2). (b): RC-MAE-D likely causes a conflict between
Lr and Lc (described in Appendix C), and the resulting cos(∇Lr,∇Lc) shows a positive bias. Inter-
estingly, RC-MAE-S shows a similar distribution as the special cases studied in Fig. 2(f) indicating
that the same situations arise in an i.i.d. training setting.

Table 2: Different mask types for the teacher
network in RC-MAE. The ‘Same’ means that
the teacher network uses the same mask tokens
as the student and ‘Diff.’ is the opposite. FT
and LN denote end-to-end fine-tuning and linear
probing on ImageNet-1K, respectively.

Method Mask FT LN APbox APmask

MAE - 83.4 67.3 50.3 44.9
RC-MAE-D Diff. 83.6 68.7 50.7 45.2
RC-MAE-S Same 83.6 68.4 51.0 45.4

Table 3: Different masking ratio. GPU time
means pre-training time (hours) on 8 V100-
32GB GPUs environment.

Method Epoch Mask Ratio FT GPU Time

MAE 800 75% 83.2 125.5h
RC-MAE 800 75% 83.4 166.6h
RC-MAE 800 80% 83.4 142.6h
RC-MAE 800 85% 83.2 136.4h
MAE 1600 75% 83.4 256.5h
RC-MAE 1600 75% 83.6 331.1h
RC-MAE 1600 80% 83.5 283.3h

use the Mask R-CNN benchmark (Li et al., 2021) for dense prediction. Further details regarding
implementation and training settings can be found in Appendix E.

6.1 ABLATION STUDY

Mask token for Teacher: Same vs. Different. To investigate the effect of masking strategies
between teacher and student, we evaluate RC-MAE variants against a plain MAE. Results are shown
in Table 2. Both RC-MAE-S and RC-MAE-D outperform MAE, achieving a higher accuracy gap
in linear probing (1.4% / 1.1%) compared to fine-tuning (0.2%). Notably, RC-MAE-S shows higher
performance than RC-MAE-D on object detection and instance segmentation while the performance
gap for classification slightly favors RC-MAE-D. To analyze the differences between RC-MAE-
D and RC-MAE-S, we recorded the cosine similarity between the reconstruction and consistency
gradients throughout training Fig. 3(b). We found that RC-MAE-D resulted in a cosine similarity
with a positive bias, while RC-MAE-S appears to be centered near zero. We hypothesize that a
conflict between the pixel-level reconstruction and consistency objectives causes the biased cosine
similarity in RC-MAE-D, leading to lower pre-training and subsequent fine-tuning performance on
these tasks. The base conflict likely stems from the fact that MAE models tend to give lower-
quality reconstructions on visible patches. Therefore, when a patch is masked in the student but not
the teacher, the teacher provides a low-quality consistency target, interfering with the high-quality
original input reconstruction target.

Masking ratio & Training epoch. We compare to MAE using different masking ratios, measur-
ing pre-training time on the same 8-GPU machine. Per-iteration, RC-MAE is slower due to the
added teacher network. However, compared to MAE with 75% mask & 1600 epochs (default),
RC-MAE with 80% mask & 800 epochs achieves the same level of performance while using 55%
less time. Fig. 1(c) illustrates fine-tuning accuracy curves of RC-MAE (75% mask & 800 epochs)
and MAE (75% mask & 1600 epochs). It is easy to observe that RC-MAE reaches higher accuracy
quicker than MAE. As the teacher is the only difference between the models, the increased rate of
convergence is a direct result from the conditional teacher gradients.
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Table 4: End-to-end fine-tuning on ImageNet-1K. All results (top-1 acc.) are trained with 224 ×
224 input. MAE (our impl.) were trained using the official code with the training configuration on
the same 8 V100-32GB GPUs environment by ourselves. Note that there are reproducing issues.

Method Pre-Train Data Pre-Train Epochs ViT-S ViT-B ViT-L

Supervised. (Touvron et al., 2021) IN1K w/ labels 300 79.9 81.8 82.6
DINO (Caron et al., 2021) IN1K 800 81.5 82.8 -
MoCo v3 (Chen et al., 2021) IN1K 300 81.4 83.2 84.1
BEiT (Bao et al., 2022) IN1K+DALLE 800 81.7 83.2 85.2
MSN (Assran et al., 2022) IN1K 600 - 83.4 -
iBOT (Zhou et al., 2022) IN1k 800 82.3 84.0 84.8
BootMAE (Dong et al., 2022) IN1k 800 - 84.2 85.9
MAE (He et al., 2022) IN1K 1600 - 83.6 85.9

MAE (our impl.) IN1K 1600 81.8 83.4 85.5
RC-MAE IN1K 1600 82.0 83.6 86.2

Table 5: COCO object detection and segmentation using
Mask R-CNN with ViT-Base backbone. For fair compar-
ison, we follow the benchmarking transfer learning proto-
col (Li et al., 2021).

Method Pre-Train Data APbox APmask

Superivsed (He et al., 2022) IN1K w/ labels 47.9 42.9
MoCo v3 (Chen et al., 2021) IN1K 47.9 42.7
BEiT (Bao et al., 2022) IN1K+DALLE 49.8 44.4
MSN (Assran et al., 2022) IN1K 46.6 41.5
iBOT (Zhou et al., 2022) IN1K 47.3 42.2
MAE (He et al., 2022) IN1K 50.3 44.9
RC-MAE IN1K 51.0 45.4

Table 6: Resource Comparison with
Self-distillation based MIM methods:
GPU Memory and runtime mea-
sured using 8 V100-32GB GPUs with
a batch size of 128 for ViT-L.

Method Memory Throughput

MAE 84G 533 imgs/s
MSN 183G 78 imgs/s
iBOT 227G 123 imgs/s
BootMAE 98G 376 imgs/s
RC-MAE 95G 441 imgs/s

6.2 END-TO-END FINE-TUNING ON IMAGENET-1K

Table 4 shows ImageNet fine-tuning results. Note that our reproduced MAE (e.g., ViT-B and ViT-
L) on the same 8 GPUs machine shows slightly lower accuracy than the original MAE due to a
known reproduction issue. We assume that the slight difference in accuracy stems from the different
GPU environments. For all ViT backbone sizes, RC-MAE consistently outperforms the reproduced
MAE. While ViT-S and ViT-B achieve lower accuracy than iBOT or BootMAE, RC-MAE with ViT-
L surpasses the state-of-the-art methods. These results suggest that the reconstruction-consistent
scheme could have stronger benefits for large-scale models.

6.3 OBJECT DETECTION AND SEGMENTATION ON COCO
To validate the pixel-level representation quality of RC-MAE, we analyze performance on object
detection and instance segmentation on COCO (Lin et al., 2014). Following the same training
protocol (Li et al., 2021) and implementation details as MAE (He et al., 2022), we fine-tune Mask
R-CNN (He et al., 2017) with a ViT-Base backbone pre-trained by RC-MAE for 100 epochs. The
training details are described in Appendix E.4. Table 5 summarizes the detection and segmentation
results. RC-MAE improves over the MAE baseline by 0.7% box AP and 0.5% mask AP. We note
that both RC-MAE and MAE outperform iBOT by large margins, even though iBOT shows higher
ImageNet classification accuracy. These results suggest that the pure pixel-level objectives allow
models to learn richer representations at the region or pixel-level. Moreover, as illustrated in Fig. 4,
while iBOT and MSN attend to uncorrelated regions given the query patches, RC-MAE and MAE
can focus more sharply on the pertinent regions near the query patches. These results indicate that
pixel-level MIM is more advantageous than semantic-level MIM for dense prediction tasks.

6.4 RESOURCE COMPARISON: MEMORY AND COMPUTATION TIME

In terms of memory consumption and computation cost, we conduct a resource comparison with the
self-distillation-based MIM methods, e.g., MSN, iBOT, and BootMAE as shown in Table 6. More
details about how to measure are described in Appendix F.2. Since adding the EMA Teacher to
MAE, RC-MAE shows more memory usage and runtime. However, compared with state-of-the-art
self-distillation methods, RC-MAE requires less memory usage and computation cost. This result
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RC-MAE MAE MSN iBOT MoCo v3Query

Figure 4: Attention maps obtained by thresholding 10% mass of the query patch (8). RC-
MAE & MAE attend regions more precisely with respect to the query patch while MSN, iBOT, and
MoCo v3 are likely to attend the unrelated region with the query patch.

Table 7: Robustness Evaluation on ImageNet-variants:ImageNet-C (Hendrycks & Dietterich,
2019), ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a), and
ImageNet-Sketch (Wang et al., 2019). Except for ImageNet-C which is measured in terms of mean
Corruption Error (mCE), top-1 accuracy is used as the metric for IN-A,-R, and -Sketch.

Method IN-C (mCE ↓) IN-A (top-1 ↑) IN-R (top-1 ↑) IN-Sketch (top-1 ↑)

MAE 51.7 35.9 48.3 34.5
RC-MAE 49.9 36.5 49.5 35.8

can be attributed to the fact that other methods feed the full image to the teacher network, whereas
RC-MAE only delivers visible patches (no mask patches) to the teacher same as the student.

6.5 ROBUSTNESS EVALUATION ON IMAGENET

We evaluate the robustness of models on four ImageNet variants: ImageNet-C (Hendrycks & Diet-
terich, 2019),-A (Hendrycks et al., 2021b),-R (Hendrycks et al., 2021a), and -Sketch (Wang et al.,
2019), which are common benchmarks for evaluating robustness to perturbations. Table 7 shows the
robustness comparison with MAE using the ViT-B backbone. RC-MAE outperforms MAE consis-
tently on all robustness datasets, indicating that the conditional gradient corrections from the teacher
result in a more robust solution.

7 CONCLUSION

In this work, we have provided an analysis and empirical verification of the nature of contributions
from EMA teachers in self-supervised learning. We have found that teachers provide a conditional
momentum correction, where the direction and magnitude is conditioned on current and previous
feature similarities. Equipped with our analysis, we proposed a simple and effective self-supervised
learning approach, RC-MAE, combining a masked auto-encoder (MAE) with an EMA teacher. In
our experiments, we observed that the teacher enables quicker convergence of RC-MAE which
achieves a gain in ImageNet classification with increased robustness. Furthermore, RC-MAE out-
performs recent self-supervised models on dense prediction tasks. Since our aim is to analyze the
dynamics of the EMA teacher, we design a simple approach to validate our findings, which results
in better computation and memory efficiency compared to other self-distillation methods. For future
work, we look forward to seeing further applications of our analysis. For example, could the condi-
tional corrections from the teacher be adequately incorporated into an Adam-like optimizer? If so
this would remove the need to have a full model copy as a teacher and lead to cost savings and faster
convergence in a wide variety of settings outside of self-supervised learning.
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9 REPRODUCIBILITY STATEMENT

In this section, we guide where the sections are for reproducibility.

• Linear model experiments outlined in Section 4 → Appendix E.1

• ImageNet experiments such as pre-training, fine-tuning, linear probing, and robustness
evaluation → Appendix E.3

• COCO object detection and instance segmentation → Appendix E.4
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. In NeurIPS, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In ICLR, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. In ICCV,
2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In CVPR, 2021b.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In ECCV, 2016.

Youngwan Lee, Jonghee Kim, Jeffrey Willette, and Sung Ju Hwang. Mpvit: Multi-path vision
transformer for dense prediction. In CVPR, 2022.

Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaiming He, and Ross Girshick. Benchmarking
detection transfer learning with vision transformers. arXiv preprint arXiv:2111.11429, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In CVPR, 2017.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR,
2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing with unsupervised learning. Technical report, OpenAI, 2018.

Mihai Suteu and Yike Guo. Regularizing deep multi-task networks using orthogonal gradients.
arXiv preprint arXiv:1912.06844, 2019.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In ICML, 2019.

11



Published as a conference paper at ICLR 2023

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results. In NeurIPS, 2017.

Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning dynamics
without contrastive pairs. In ICML, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
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A APPENDIX

We will briefly describe the contents of each section of this appendix below:

• Appendix B: Detailed Derivations of Proposition 4.1 the Main Text.

• Appendix C: An Intuitive Explanation of Differences Between RC-MAE-D and RC-MAE-
S.

• Appendix D Does the Linear Model Extend to Deep Models?

• Appendix E: Extra Experimental Details.

• Appendix F: Additional Experiments Not Covered in the Main Text.

B LINEAR MODEL DERIVATION

With the weights S and T signifying the student and teacher weights (if no explicit timestep su-
perscript (t) is given, then the current timestep is assumed), x̃ and x representing the masked and
unmasked inputs, and StopGrad(.) signifying an operation which stops the propagation of the gra-
dients, λ as the learning rate, and considering the following assumptions,

Assumption B.1. Both the masked input x̃ and x have zero mean.

Assumption B.2. For all geometric sums, we assume the sequence N is long enough so that
∑

N
i=0 α

i(1 − α) ≈ 1.

The gradient of loss w.r.t the full linear MAE+Teacher model is,

∇SL(S,T, x̃,x) = ∇SLr(S, x̃,x) +∇SLc(S,T, x̃,x) (7a)

= ∇S
1

2
∥Sx̃ − x∥

2
2 +∇S

1

2
∥Sx̃ − StopGrad(T x̃)∥22 (7b)

= Sx̃x̃⊺ − xx̃⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∇SLr

+ (S − T )x̃x̃⊺

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∇SLc

(7c)

Remark B.1. In essence, the MAE objective learns the transformation from square diagonal blocks
to off-diagonal blocks of a feature covariance matrix.

Setting the gradient of the reconstruction loss (which is the plain MAE objective) equal to zero,
re-arranging and taking the expectation w.r.t the joint data and masking distribution p(x, x̃) we can
see,

0 = Sx̃x̃⊺ − xx̃⊺ (8a)

xx̃⊺ = Sx̃x̃⊺ (8b)

Ep(x,x̃)[xx̃
⊺
] = Ep(x,x̃)[Sx̃x̃

⊺
] (8c)

Ep(x,x̃)[xx̃
⊺
] = S∬

x,x̃
p(x, x̃)x̃x̃⊺dxdx̃ (8d)

Ep(x,x̃)[xx̃
⊺
] = SEp(x̃)[x̃x̃

⊺
] (8e)

Σx,x̃ = SΣx̃,x̃ (8f)
(8g)

This means that the optimal S represents the transformation which takes the square positive semi-
definite covariance matrix Σx̃,x̃ and transforms it into another off diagonal block of the covariance
matrix Σx,x̃, which is a part of some larger block covariance matrix,

[
Σx,x Σx,x̃

Σx̃,x Σx̃,x̃
]
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B.1 WHAT IS THE ROLE OF THE TEACHER?

Although the student-teacher paradigm with an EMA teacher is common Tarvainen & Valpola
(2017); Grill et al. (2020); Assran et al. (2022); Zhou et al. (2022); Caron et al. (2021); Bao et al.
(2022), it is still not well understood how the teacher objective directly interacts with and helps the
student. In addition to the explanations in Section 4, here we will provide a complete derivation
of Proposition 4.1.

B.1.1 PROOF OF PROPOSITION 4.1

The gradient contribution from the teacher and the consistency loss conditionally remove previous
gradient directions based on similarities of current and previous features. Using the linear model
derivation, the full gradient of an MAE+Teacher is given by,

Proof.

∇SL = ∇SLr +∇SLc (9a)

= ∇S
1

2
∥Sx̃ − x∥

2
2 +∇S

1

2
∥Sx̃ − StopGrad(T x̃)∥22 (9b)

= Sx̃x̃⊺ − xx̃⊺ + Sx̃x̃⊺ − T x̃x̃⊺ (9c)

= 2Sx̃x̃⊺ − xx̃⊺ − [(1 − α)S + α(1 − α)S(t−1) + ⋅ ⋅ ⋅ + αt
(1 − α)S(t−t)] x̃x̃⊺ (9d)

= 2Sx̃x̃⊺ − xx̃⊺ − [(1 − α)S +
t

∑
i=1

αi
(1 − α)S(t−i)] x̃x̃⊺ (9e)

= 2Sx̃x̃⊺ − xx̃⊺ −
⎡
⎢
⎢
⎢
⎣
(1 − α)S +

t

∑
i=1

αi
(1 − α)

⎡
⎢
⎢
⎢
⎣
S +
⎡
⎢
⎢
⎢
⎣
λ

t−1
∑

j=t−i
∇S(j)L

(j)
⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦
x̃x̃⊺ (9f)

= 2Sx̃x̃⊺ − xx̃⊺ −
⎡
⎢
⎢
⎢
⎣
S +

t

∑
i=1

αi
(1 − α)

⎡
⎢
⎢
⎢
⎣
λ

t−1
∑

j=t−i
∇S(j)L

(j)
⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦
x̃x̃⊺ (9g)

= 2Sx̃x̃⊺ − xx̃⊺ − Sx̃x̃⊺ −
⎡
⎢
⎢
⎢
⎣

t

∑
i=1

αi
(1 − α)

⎡
⎢
⎢
⎢
⎣
λ

t−1
∑

j=t−i
∇S(j)L

(j)
⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦
x̃x̃⊺ (9h)

= Sx̃x̃⊺ − xx̃⊺
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∇SLr

−
⎡
⎢
⎢
⎢
⎣

t

∑
i=1

αi
(1 − α)

⎡
⎢
⎢
⎢
⎣
λ

t−1
∑

j=t−i
∇S(j)L

(j)
⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦
x̃x̃⊺
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∇SLc

(9i)

where Eq. (9f) is a result of the fact that S(t−1) can be stated in relation to S by re-arranging S(t−1)−
λ∇S(t−1)L

(t−1) = S, and further decomposition of S(t−1) in the same way can yield any desired term
in the sequence until reaching S(0). For a more concise expression, the indices of the sums can be
re-arranged like so,
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∇SL = ∇SLr +∇SLc (10a)
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= Sx̃x̃⊺ − xx̃⊺ − λ
⎡
⎢
⎢
⎢
⎣

t

∑
i=1

t−1
∑

j=t−i
αi
(1 − α)∇S(j)L

(j)
⎤
⎥
⎥
⎥
⎦
x̃x̃⊺ (10c)

= Sx̃x̃⊺ − xx̃⊺ − λ
⎡
⎢
⎢
⎢
⎣

t−1
∑
j=0

j

∑
i=0

αt−i
(1 − α)∇S(j)L

(j)
⎤
⎥
⎥
⎥
⎦
x̃x̃⊺ (10d)

= Sx̃x̃⊺ − xx̃⊺ − λ
⎡
⎢
⎢
⎢
⎣

t−1
∑
j=0
∇S(j)L

(j)
j

∑
i=0

αt−i
(1 − α)

⎤
⎥
⎥
⎥
⎦
x̃x̃⊺ (10e)
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where Eq. (10g) uses the fact that the full geometric sum converges to 1 and therefore α(t+1) ≈ 0.
We can then expand the gradient term to include the full gradient at the previous timesteps,

∇SLr +∇SLc = Sx̃x̃
⊺
− xx̃⊺ − λ [

t

∑
i=1

αi
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(t−i)
] x̃x̃⊺ (11a)
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(11b)

With x̂ signifying a different i.i.d. sample from the dataset which was present in the previous batch.
Therefore, by the last term on the RHS, the gradient of the consistency loss is composed of resid-
ual effects from the previous gradient steps on different inputs which will have different overall
effects based on the result of x̂x̂⊺x̃x̃⊺ and xx̂⊺x̃x̃⊺. Consider the cosine similarity cos(x̂, x̃) =
x̂⊺x̃/ ∥x̂∥ ∥x̃∥, the possible cases for cos(x̂, x̃) are as follows cos(x̂, x̃) ∈ {−1,0,1, (0,1), (−1,0)}.

Case 1: cos(x̂, x̃) ∈ {−1,1}. For this case, a cosine similarity of ∣1∣means the points are collinear,
existing in the same line, which makes the gradient invariant to the sign of x̂⊺x̃. The removal of the
previous gradient direction will have the largest impact in this case.

Case 2: cos(x̂, x̃) = 0. For this case, x̂⊺x̃ = 0, which zeros out the whole term. There is no
removal of the previous gradient direction for this term in the recursion.

Case 3: ∣cos(x̂, x̃)∣ ∈ (0,1). In this case, the component which contains the previous gradient will
be weighted by the coefficient ζ = x̂⊺x̃.

∇SLr +∇SLc = Sx̃x̃
⊺
− xx̃⊺ − [

t

∑
i=1

αiζiλ [Sx̂ − x + (S − T )x̂]
(t−i)
] x̃⊺ (12a)

A generic linear model with a generic weight parameter Θ which has a gradient in the form of
∂L
∂Θ
= (Θx̃ − x)x̃⊺, can be interpreted as a gradient direction and magnitude for every component in
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the vector (Θx̃−x) with a further conditional direction and magnitude projected to the components
of Θ by the final x̃⊺ term. Both the reconstruction and consistency losses in Eq. (7) follow this form.
Therefore, in each case above, the correction provided to S by the consistency loss is weighted
conditionally based on the dot product x̂⊺x̃, and the final projection of the current feature x̃⊺.

Remark B.2. 1 The upper bound on the gradient of the consistency loss can be bounded with the
triangle inequality.

We can examine the following term which uses the previous result from Eq. (10),

∇SLc = − [
t

∑
i=1

αiλ∇S(t−i)L
(t−i)
] x̃x̃⊺ (13a)

distributing the the outer terms and using the triangle inequality, we can see that,

∥∇SLc∥ = ∥[
t

∑
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αiλ∇S(t−i)L
(t−i)
] x̃x̃⊺∥ ≤

t

∑
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αiλ ∥∇S(t−i)L
(t−i)x̃x̃⊺∥ (14a)

The most significant (judged by α coefficients) term in the upper bound of the norm of the consis-
tency loss is when i = 1. Therefore the norm of the consistency loss from the teacher is likely to
decrease if the current input is not similar to the previous input. Likewise, the most significant term
in the upper bound increases when the current input has a high similarity to the input x̂(t−1). One
should also note that the upper bound of the reconstruction loss can be decomposed via a similar
line of reasoning,

G(Lr) = Sx̃x̃
⊺
− xx̃⊺ (15a)

= (S(t−1) − λ∇S(t−1)L
(t−1)
)x̃x̃⊺ − xx̃⊺ (15b)

= (S(0) − λ
t

∑
i=1
∇S(t−i)L

(t−i)
)x̃x̃⊺ − xx̃⊺ (15c)

Focusing only on the non constant terms, we can see that,

∥
t

∑
i=1
(λ∇S(t−i)L

(t−i)
)x̃x̃⊺∥ ≤

t

∑
i=1

λ ∥∇S(t−i)L
(t−i)
)x̃x̃⊺∥ (16)

It is easy to see there are no exponentially decreasing coefficients on the terms for the previous time
steps, making the upper bound for the reconstruction loss larger than that of the consistency loss.
This should lead to the reconstruction loss having a larger gradient contribution for novel inputs
when compared to the consistency loss, as empirically shown in Fig. 2.

C WHY DOES RC-MAE-S OUTPERFORM RC-MAE-D

RC-MAE-S uses the same mask between the teacher and the student, while RC-MAE-D uses a
different mask between the teacher and the student. Empirically, we observed a difference in cosine
similarity between the gradients of Lr and Lc for the different masking strategies in the consistency
loss as depicted in (Fig. 3). In general, a different masking strategy x̃ and x̂ forces Sx̃ towards the
prediction of T x̂ but there is no reason to expect that this objective aligns well with the original
reconstruction target in practice.

For example, MAE models are known to give poor reconstructions on masked patches, because
the masked patches do not receive any gradient signal during the pre-training phase. Therefore,
on patches which are unmasked in the student and masked in the teacher, RC-MAE-D provides a
consistency objective which interferes with the reconstruction objective by giving a noisy target of
lower quality, which is the likely cause which leads to worse pre-training performance as shown in
Fig. 3 and also lower finetuning performance as shown in Table 2.

D DO THE FINDINGS FROM THE LINEAR MODEL EXTEND TO DEEP
MODELS?

Although we have analyzed a simple linear model, a more complex deep model with non-linearities
can be broken down in a similar way. To see this with a simple network consisting of a sin-
gle hidden layer Bσ(Ax̃) with an elementwise non-linearity σ, and a quadratic consistency loss
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Lc =
1
2
∥Bσ(Ax̃) −Dσ(Cx̃)∥

2
2, where the teacher weights are {C,D}, and the student weights are

{A,B}. The teacher at a single layer can be expanded according to,
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where the fourth step is a result of rearranging the sums following the same steps as Eq. (10). The
term [. . . x̂⊺] results from the fact that we know the previous gradient ends with the term x̂⊺, where
x̂ is another i.i.d. sample from a previous batch, due to the chain rule applied as follows,
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This shows that although intermediate representations are more complicated, they contain similar
terms, and the dot product term is present at every intermediate representation. Having this term in
each semantic feature space is useful, as the dot product in the high dimensional pixel space may
carry less meaning. Empirically, in Fig. 2 we observed the same overall effects in the deep ViT
based RC-MAE (bottom row) as we did in the simple linear model (top row).

E EXPERIMENT DETAILS

E.1 LINEAR MODEL

To perform the linear model experiment outlined in Section 4, we first generated a dataset consisting
of 10 random Gaussian clusters. Each cluster has a randomly sampled mean vector µi ∼ U(−3,3),
and each µi ∈ R32. With each mean vector, we also sample a corresponding covariance matrix
Σi ∼ Wishart(Vi) with 54 degrees of freedom (1.5 × dimensionality). Vi is a diagonal matrix with
the diagonal being sampled from U(.25, .35). We then sample 200 datapoints from each of the
10 Gaussians, resulting in a dataset with 1000 total instances. Further experimental settings can
be found in Table 8. An example of the dataset in two dimensions with four clusters can be seen
in Fig. 5.

The student and teacher S, T ∈ R32×32 consist of a single weight matrix with a bias parameter. We
randomly mask the components of the input vector according to the masking ratio. The goal of the
linear model is then to reconstruct the full input given the masked input with a reconstruction Lr and
consistency Lc loss according to the linear objectives in Eq. (7).
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Figure 5: Example of a dataset sampled with the procedure outlined in Appendix E.1. The only
difference from the dataset in the experiment is the dimensionality and number of clusters which
was minimized for visualization purposes.

Setting Value

Runs 5
Iterations 500
Batch Size 32
Optimizer SGD+Momentum(0.97)
Learning Rate 0.001
Teacher Momentum (α) 0.9
Masking Ratio 0.5

Table 8: Linear Model Experiment Settings

E.2 IMPLEMENTATION DETAILS

We implement RC-MAE based on our baseline MAE (He et al., 2022) by adding EMA Teacher
which has the same architecture as student (i.e., MAE). To be specific, the EMA teacher consists of
an encoder (e.g., ViT-B) and a decoder (Transformer blocks), following the same number of blocks
and dimension size as MAE. RC-MAE with ViT-S has 12 blocks of Transformer blocks with a
dimension size of 384 for an encoder and 4 blocks of Transformer blocks with a dimension size of
256 for a decoder. RC-MAE with ViT-B has 12 blocks of Transformer blocks with a dimension
size of 768 for an encoder and 8 blocks of Transformer blocks with a dimension size of 512 for a
decoder. RC-MAE with ViT-L has 24 blocks of Transformer blocks with a dimension size of 1024
for an encoder and 8 blocks of Transformer blocks with a dimension size of 512 for a decoder.
For pre-training, we optimize only the student network including an encoder and a decoder by the
gradients while updating the teacher network (encoder & decoder) by EMA of the student weights
as shown in Fig. 1(b). For downstream tasks, we only use the pre-trained encoder part from the
teacher network as other self-distillation methods ((Caron et al., 2021; Assran et al., 2022; Zhou
et al., 2022; Dong et al., 2022)). We also test which one is better between student and teacher for
transfer learning in Appendix F.1.

E.3 IMAGENET EXPERIMENTS

We follow the implementation details of the official MAE (He et al., 2022) code1 for all pre-training,
fine-tuning and linear probing. While He et al. (2022) used 128 TPU-v3 cores, we have tried to re-
produce the baseline MAE and train our RC-MAE on the same local GPU environment, which has
8 NVIDIA V100 GPUs (32GB) for more accessibility in the community. Although the authors pro-
vide the guideline using 8 nodes with 8-GPUs (64-GPUs) in their official code written in Pytorch,
we train RC-MAE and MAE on the same 8-GPUs environment. To do this, we use accum iter

1https://github.com/facebookresearch/mae
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Table 9: Pre-training setting.
Config Value

optimizer AdamW (Loshchilov & Hutter, 2019)
optimizer momentum β1, β2 = 0.9,0.95 (Chen et al., 2020a)
weight decay 0.05
base learning rate 1.5e-4
batch size 4096
learning rate schedule cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 40
augmentation RandomResizedCrop
mask ratio 75%

Table 10: End-to-end fine-tuning setting.
Config Value

optimizer AdamW
optimizer momentum β1, β2 = 0.9,0.999
weight decay 0.05
layer-wise lr decay 0.75 (S), 0.65 (B,L)
base learning rate 5e-4
drop path 0.1 (S,B), 0.2 (L)
batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 300 (S), 100 (B,L)
augmentation RandAug(9, 0.5)
label smoothing 0.1
mixup 0.8
cutmix 1.0

Table 11: Linear probing setting.
Config Value

optimizer LARS
base learning rate 0.1
weight decay 0
batch size 16,384
learning rate schedule cosine decay
warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

which the authors provide for accumulating gradients. However, when using accum iter, a re-
producing issue2 3 occurs in that the re-produced result (MAE-ViT-B) achieves slightly lower per-
formance e.g., for ViT-B, 84.4% vs. 84.6% in end-to-end fine-tuning as shown in Table 4.

Pre-training. Thanks to accum iter, we can set the same effective batch size of 4096 as MAE,
e.g., 256 (batch size per gpu) × 8 (GPUs) × 2 (accum iter) for both ViT-B and ViT-S. For ViT-S,
we set 512 (batch size per gpu) × 8 (GPUs) × 1 (accum iter). we follow the linear learning rate
scaling rule (Goyal et al., 2017): lr = base lr × batch size/256. The detail settings are shown in
Table 9.

End-to-End fine-tuning. Since MAE (He et al., 2022) does not have a ViT-S result, we train MAE
and RC-MAE using ViT-S following the training protocol in BEiT (Bao et al., 2022). For ViT-
S, we use a layer-wise lr decay of 0.75, a stochastic drop path of 0.1, and a fine-tuning epoch of
300. We can expect that a more suitable hyper-parameter search boosts performance. For ViT-
L, we can set the effective batch size to 1024 by using accum iter, e.g., 64 (batch size per
gpu) × 8 (GPUs) × 2 (accum iter). The detail settings are shown in Table 10.

Linear probing. We use LARS (You et al., 2017) optimizer. The detail settings are shown in
Table 11.

Robustness Evaluation on ImageNet-variants We use the same model weights (RC-MAE w/ViT-
B for 1600epoch) fine-tuned on the original ImageNet-1K as shown in Table 4 and only test without
any specialized fine-tuning on the different validation sets, such as ImageNet-C (Hendrycks & Di-

2https://github.com/facebookresearch/mae/issues/30
3https://github.com/facebookresearch/mae/issues/91
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Table 12: Comparison between Student vs. Teacher networks on ImageNet-1K evaluation. FT
and LN denote fine-tuning and linear probing top-1 accuracies, respectively.

Checkpoint
FT LN

top-1 top-5 top-1 top-5

Student 83.48 96.59 68.38 87.88
Teacher 83.58 96.64 68.41 87.94

Table 13: Total GPU memory usage and throughput using ViT-L backbone. OOM represents that
it was not able to run on 8 V100-32GB GPUs due to “Out of memory”.

GPU Memory Usage (GB) Throughput (imgs/sec.)

Batch size 128 256 512 1024 128 256 512 1024

MAE (He et al., 2022) 84 103 140 213 533 853 1191 1442
MSN (Assran et al., 2022) 183 OOM OOM OOM 78 OOM OOM OOM
iBOT (Zhou et al., 2022) 227 OOM OOM OOM 123 OOM OOM OOM
BootMAE (Dong et al., 2022) 98 116 154 225 376 557 701 813
RC-MAE 95 114 152 226 441 674 914 1101

etterich, 2019),-A (Hendrycks et al., 2021b),-R (Hendrycks et al., 2021a), and -Sketch (Wang et al.,
2019).

E.4 OBJECT DETECTION AND SEGMENTATION ON COCO

Following the training protocol (Li et al., 2021) and implementation details as MAE (He et al., 2022),
we fine-tune Mask R-CNN (He et al., 2017) with a ViT-Base backbone COCO dataset. To adapt the
vanilla ViT with the isotropic structure (i.e., single-scale) for FPN (Lin et al., 2017) in the backbone
of Mask R-CNN, we equally divide the ViT into four blocks and apply convolutions to downsample
or upsample the intermediate features for building the multi-scale feature pyramid. For a fair com-
parison with MAE, we train both MAE and the proposed RC-MAE for 100 epochs with the same
training protocol on the same 8 GPU environment: large-scale jitter (LSJ), AdamW (Loshchilov &
Hutter, 2019) with half-periodic cosine learning rate decay, linear warmup, and drop path regulariza-
tion (Huang et al., 2016) (e.g., 0.1 for ViT-Base). We use a batch size of 16 (2 per GPU), a learning
rate of 4e-5, and a weight decay of 0.1. We implement models based on the reproduced Pytorch
code4,5.

F ADDITIONAL EXPERIMENTS

F.1 STUDENT VS. TEACHER NETWORKS.

To determine which is better between student and teacher networks for transfer learning, we conduct
fine-tuning and linear probing on ImageNet-1K by using each pre-trained weight. Table 12 shows
the comparison between student and teacher networks. We find that the results of the teacher network
are slightly higher than those of the student, which is similar to DINO (Caron et al., 2021). Thus, if
unspecified, we use teacher network weight for downstream tasks.

F.2 RESOURCE COMPARISON: MEMORY & COMPUTATION COST

In terms of memory consumption and computation cost, we conduct resource comparison with
the baseline method MAE 6 (He et al., 2022) and the self-distillation-based MIM methods, e.g.,

4https://github.com/hustvl/MIMDet
5At the time of submission of this paper, the official code of benchmarking ViT detection (Li et al., 2021)

was not released.
6https://github.com/facebookresearch/mae
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MSN 7 (Assran et al., 2022), iBOT 8 (Zhou et al., 2022), and BootMAE9 (Dong et al., 2022). We
compare GPU memory usage and throughput while pre-training with ViT-L/16 on 8 V100-32GB
GPUs as shown in Table 13. Memory usage is directly measured by using nvidia-smi command.
Throughput is an average speed (images/second) for an epoch. We follow the original configura-
tion for each method except batch size for a fair comparison. Batch sizes from 128 to 1,024 were
employed to observe the scalability of the methods. We note that iBOT (Zhou et al., 2022) and
MSN (Assran et al., 2022) could not run with batch sizes from 256, while other methods could deal
even with a batch size of 1,024. iBOT feeds both masked and unmasked patches into the student
encoder by following the masked image modeling employed in BeiT (Bao et al., 2022). Therefore,
it requires 4× memory usage of MAE-based methods for the student encoder. In addition, for fur-
ther performance gain, iBOT exploits multiple local crops. Although we removed the local crops,
memory usage was still 164GB which is much higher than MSE-based methods. MSN takes a lower
masking ratio than other methods (0.5 vs. 0.75), resulting in 2×memory consumption for the student
encoder.

7https://github.com/facebookresearch/msn
8https://github.com/bytedance/ibot
9https://github.com/LightDXY/BootMAE
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