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Abstract

We introduce a novel implicit field representation tailored for multi-person interac-
tion geometry in 3D spaces, capable of simultaneously reconstructing occupancy,
instance identification (ID) tags, and contact fields. Volumetric representation of
interacting human bodies presents significant challenges, including inaccurately
captured geometries, varying degrees of occlusion, and data scarcity. Existing
multi-view methods, which either reconstruct each subject in isolation or merge
nearby 3D surfaces into a single unified mesh, often fail to capture the intricate
geometry between interacting bodies and exploit on datasets with many views
and a small group of people for training. Our approach utilizes an implicit rep-
resentation for interaction geometry contextualized by a multi-view local-global
feature module. This module adeptly aggregates both local and global information
from individual views and interacting groups, enabling precise modeling of close
physical interactions through dense point retrieval in small areas, supported by the
implicit fields. Furthermore, we develop a synthetic dataset encompassing diverse
multi-person interaction scenarios to enhance the robustness of our geometry es-
timation. The experimental results demonstrate the superiority of our method to
accurately reconstruct human geometries and ID tags within three-dimensional
spaces, outperforming conventional multi-view techniques. Notably, our method
facilitates unsupervised estimation of contact points without the need for specific
training data on contact supervision.

1 Introduction

Accurate 3D representations of multi-person interactions have critical applications in virtual reality,
augmented reality, robotics, and surveillance, as human subjects are central to a variety of content
and tasks. In particular, modeling interactions involving multiple individuals in close proximity has
gathered attention as the modeling of individual humans and simple group activities has matured.
However, the precise estimation and reconstruction of 3D human body poses and shapes in close
interaction scenarios present significant challenges, mainly due to occlusion, which complicates
accurate reconstruction.

The Skinned Multi-Person Linear (SMPL) model [2], one of the most well-known explicit models,
has been extensively utilized not only for individual human models [37, 20, 6] but also in multi-
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person scenarios [8, 4, 39, 41, 40]. However, as an unclothed human model, it struggles to depict
local details such as clothing and hairstyles. Additionally, methods using the SMPL model need
separate parameter optimization for each person in a scene, which requires intricate coordination
when modeling close interactions between individuals. Implicit representations [28, 21, 22] have
been researched as alternatives to the SMPL model. Implicit models, with their higher degrees of
freedom, are better suited for clearly expressing local details. Successful modeling of various scenes
involving individual human avatars and their detailed local features in multi-person scenarios has
been achieved in [43, 3, 23]. Nevertheless, the high degrees of freedom inherent to implicit models
demand sophisticated neural architecture designs capable of handling multi-view image features and
require high-quality data for training.

To address these challenges, we introduce a novel approach that represents multi-person interaction
geometries by simultaneously dealing with geometry, identity, and contact fields in scenes without
the need for a prior explicit model such as SMPL. Our proposed implicit field is optimized to
estimate both the occupancy and identification (ID) fields, distinguishing each person in 3D space and
modeling the interaction geometry. This approach enables the consideration of complex interactions
between individuals while preserving the spatial information of each individual.

Furthermore, we utilize a multi-view feature transformer [5] and a global scene feature extraction
transformer [34, 35, 36] to construct a 3D scene representation, addressing one of the biggest
challenges in reconstructing close interactions: dealing with occlusions. By taking into account the
global scene features for each point and leveraging latent 3D scene representations and Transformer
architecture, we enhance the ability to infer information about occluded parts, which cannot be
achieved with standard multi-view images alone. The Transformer, utilizing context provided by
positional encoding and 3D scene representations, can infer the structure and position of occluded
parts by learning from visible parts and their spatial relations. This capability is crucial for accurately
reconstructing models of each person in the scene, even when direct visual information is lacking.

Additionally, we develop a synthetic dataset for multi-person interaction that includes interactions
among 2, 3, and 4 individuals, which helps to address more diversity of characters and complex group
dynamics in the scene.

Our experiments validate the superiority of our approach over existing methods, demonstrating its
capability to accurately reconstruct and assign tag values in 3D space. Our contributions can be
summarized as follows:

• We introduce a novel implicit field representation for multiple people in close interaction
scenarios that simultaneously estimates multi-person geometries as occupancy fields, ID
fields, and contact fields, thereby preserving their spatial relationships and capturing their
interactions.

• Our method employs a novel multi-view local-global feature module coupled with a global
scene features extraction technique, leveraging latent 3D scene representations to reconstruct
individual geometries and assign ID values and contacts in complex, occluded scenarios.

• We demonstrate that our method can reconstruct 3D multi-person figures more effectively
than existing methods. Also, we have created a synthetic dataset that models interac-
tions among 2 to 4 individuals to enhance the understanding of group dynamics in close
interactions.

The rest of the paper is organized as follows. We review the related works on 3D human representation
in Section 2. We explain our method in Section 3 and demonstrate the effectiveness of the method on
two datasets in Section 4. We conclude the paper in Section 5.

2 Related Work

Reconstructing 3D human models from RGB images or creating human avatars has been a longstand-
ing challenge. An explicit model, the Skinned Multi-Person Linear model (SMPL) [18], dominates
the human avatar research by serving as a canonical 3D human model [37, 15, 14, 30, 20, 6].
However, SMPL is an unclothed human model and is limited in its ability to capture local details
such as clothing and hairstyles. Hence, implicit representations, including signed distance fields
(SDF) [28] and occupancy fields [44], have gathered attention from the community. Pixel-aligned
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Figure 1: The overall framework of our method. We compute the local and global features from a set
of multi-view images and its camera parameters through the proposed multi-view feature local-global
transformer. We use local feature to estimate occupancy and global feature to estimate ID at a given
point x. From the occupancy and ID fields, we estimate the contact field, as detailed in Section 3.4

feature encoders [32, 33, 13, 1, 16] contextualize the implicit fields by projecting image features onto
3D coordinates using the camera parameters to enhance 3D human avatar reconstruction. Utilizing
multi-view RGB images effectively mitigates occluded parts of human in single-view RGB images.
DoubleField [38] integrates neural surface and multi-view based radiance fields to represent 3D
geometry and the appearance of humans.

Multi-person 3D reconstruction presents unique challenges not encountered in single-person scenarios,
such as occlusion, where subjects may obstruct each other’s visibility. This task requires not only
a detailed understanding of spatial relationships among individuals but also the preservation of
individuality while representing their interactions. This process needs precise reconstruction and a
deep interpretation of interactions. MPSD [23] employs an implicit approach for the 3D reconstruction
of each person, utilizing 6-DOF spatial position estimation within the global scene space. Their
method enables multi-person 3D reconstruction from a single image, effectively tracking the locations
of individuals. However, because this method primarily addresses data where individuals are spaced
widely apart, it does not adequately handle scenarios involving people in close interaction.

Close interaction scenarios [43, 42, 3] are a crucial challenge in multi-person representation. Deep-
MultiCap [43] incorporates an attention module and temporal fusion to produce high-fidelity 3D
models, relying on the SMPL model for prior segmentation, prediction, and location determination.
However, this approach faces challenges, as the accuracy of 3D reconstruction and spatial estimation
is bounded by the performance of an initial SMPL prediction, and it requires multiple optimization
steps for each individual instance. The work [3] leverages a single-view image and gDNA [7]
generative model to generate 3D geometry, refining the spatial positioning of each individual based
on contact information. Considering that both methods sequentially reconstruct 3D geometry for each
individual, accurately representing multiple subjects in close interaction remains a challenge. Also,
existing methods for 3D reconstruction of close human interactions often suffer from data scarcity.
The introduction of Hi4D [42] marks a leap forward, offering detailed 4D textures and essential data
for studying two-person interactions. However, Hi4D [42] includes only two people, while the dataset
described by MultiHuman [43] features up to three. In these two datasets, individuals are captured
either separately or together, often overlapping or passing through each other.

Our method innovatively addresses these complexities by employing a transformer-based architecture
that integrates multi-view feature fusion with global scene representation, allowing the simultaneous
and dynamic reconstruction of multiple interacting individuals. This approach not only captures the
detailed geometries of each person but also maintains their unique identities and spatial relationships,
even in scenarios with significant occlusions and close physical interactions. Additionally, we created
a synthetic dataset that models interactions among 2, 3, and 4 individuals to address even more
complex group dynamics.

3 Method

Our method introduces a novel representation of multi-person interaction geometry by combining
3D reconstruction with identification of multiple individuals in close interaction from multi-view
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images. We achieve this by estimating two key fields: occupancy and ID. The occupancy estimation
is crucial for reconstructing the geometry of each person, while the ID estimation facilitates the
identification of individuals within the 3D space. We leverage transformer architectures to tackle
the significant challenge of occlusions common in close interaction scenarios. Our architecture first
extracts local features and then computes global features by integrating these local features with 3D
scene representations. This approach ensures robust integration of local and global information across
multiple perspectives, enabling a comprehensive understanding and reconstruction of the complex
configurations of scenes. Figure 1 represents our process pipeline, encapsulating the essence of our
approach.

3.1 Implicit Fields for Multi-Person Interaction Geometry

Our method utilizes implicit functions to represent interaction geometry in 3D space. Implicit
functions uniquely define the surface of a 3D object by specifying a level set within a field [21]. This
representation allows for a continuous definition of the surface, enabling the precise reconstruction
of complex geometries. Alongside the geometric reconstruction, we introduce a novel approach to
model the ID and contact fields within the same 3D space, providing a method for distinguishing
individual entities in closely interacting scenarios.

Our model takes a query point x ∈ R3 to predict two key attributes: the occupancy s, and the
identification q for each query point. We extract multi-view local and global features, denoted as
Φx(·) =

[
ΦL

x,Φ
G
x

]
, given a set of multi-view images {Iv}Vv=1, their corresponding image normal

maps {Nv}Vv=1, and camera parameters {Kv}Vv=1, where V denotes the total number of views. The
proposing model g(·) can be formally defined by the following equation:

s, q = g(x; Φx({Iv,Nv,Kv}Vv=1). (1)

The occupancy value s ∈ {0, 1} is a binary indicator signifying whether a point resides inside or
outside the surface boundary of an individual, essentially distinguishing the geometric presence of
the subject in the 3D space. The identification (ID) value q ∈ R provides a unique identifier to each
point, allowing differentiation of individuals in close proximity by assigning distinct ID values.

3.2 Multi-View Local-Global Feature Module

The architecture of the Φx module, which extracts local and global features
[
ΦL

x,Φ
G
x

]
from multi-

view images, determines the quality of occupancy and ID fields. We introduce a local-global feature
scheme through a dedicated feature extraction architecture.

Given a set of images Iv , normal maps Nv generated by the method described in IntegratedPIFu [5],
and camera parameters Kv , our method begins by following PIFu [32] using an image encoder [25].
Each image and normal map extracted by [5] is processed individually within the multi-view inputs,
allowing distinctive features to be captured from different perspectives. For any given query point x
in 3D space, we project this point onto the 2D planes of the multi-view inputs to acquire pixel-aligned
features. Formally, the feature extraction process can be described as follows:

F v = f img(Iv ⊕ Nv), (2)
F v
x = Π(F v,Kv,x), ∀v ∈ {1, 2, . . . , V }, (3)

where F v denotes the set of features extracted from concatenated v-th image and v-th normal map
and ⊕ symbolizes channel-wise concatenate operation. f img represents the image encoder function,
designed to process each views.

F v
x represents the features at the image pixel corresponding to the projection of point x onto the v-th

image plane. The function Π(·) computes the location on the image plane where the 3D point x is
projected and extracts the relevant features from F v at that point. For the detailed implementation,
refer to PIFu [32].

This approach ensures that the features F v
x are aligned with the geometry of the scene as observed

from multiple viewpoints, facilitating an accurate reconstruction of the 3D space.

The pixel-aligned features extracted from each view are then aggregated through a local-global
process to create a comprehensive feature representation for each query point x. This aggregation is
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performed using a view-to-view transformer encoder [38], formulated as:

ΦL
x = f e(γ(x), F 1

x , F
2
x , · · · , FV

x ), (4)

where ΦL
x represents the local feature set obtained by fusing features across all views corresponding

to the query point x with positional encoding γ(x).

Inspired by the architectures of the Scene Representation Transformer (SRT) encoder [34] and
decoder mechanism [36], the global feature module complements these local features with global
scene context. The SRT encoder f se receives the extracted features from all views along with their
corresponding camera positions o and normalized ray direction d from each camera information
to encapsulate global scene information into a compact representation z. This scene representation
serves as an input to the global feature decoder f sd, which extracts global features ΦG:

z = f se({F v,ov,dv}Vv=1), (5)

ΦG
x = f sd(z,ΦL

x), (6)

where ΦG represents the global features for multi-view images.

Finally, we forward the features Φx(·) into two multi-layer perceptrons (MLPs), ϕs and ϕid to retrieve
occupancy values s and ID values q for each query point:

s = ϕs(ΦL
x), (7)

q = ϕid(ΦG
x). (8)

This method ensures a comprehensive feature set that enhances predictions by integrating both
localized and globalized scene insights.

Detailed architectures of f e, f se, and f sd are shown in section A.2 of the Appendix.

3.3 Training Objective

We train this model g with following objectives:

L = ωsLMSE + ωcontraLcontra + ωgroupLgroup, (9)

where LMSE is used to train occupancy field, while Lcontra and Lgroup focus on accurately identifying
individual entities captured as ID fields.

For occupancy predictions, mean Squared Error (MSE) loss is defined for N query points as:

LMSE =
1

N

N∑
i=1

(si − sgt
i )

2, (10)

where si is the predicted occupancy and sgt
i is the ground truth for the i-th point. LMSE reconstructs

3D geometries by minimizing the discrepancy between the predicted and actual occupancy values,
crucial for capturing the intricate details of the scene.

To ensure that points associated with the same object are assigned identical predicted ID values, we
tailor an associative embedding [24] consisting of contrastive loss [9, 12] and a grouping loss in the
training objective. The contrastive loss is computed based on pairwise Euclidean distances among ID
value, considering both positive pairs for the same instance label and negative pairs for a different
instance label. For all query points {xi}, we have a set of predicted ID values {qi} and associated
ground truth instance labels {l(xi)} given from datasets. Then, the contrastive loss is formulated as:

Lcontra =

∑
ij(m

pos
ij · dij)
P

+

∑
ij

(
mneg

ij ·max(0,−dij + δ)
)

P
, (11)

where dij = ||qi− qj || is a pairwise Euclidean distances between ID values of i and j-th query points.
mpos

ij = I[li = lj ] and mneg
ij = I[li ̸= lj ] are mask value for indicating positive or negative pairs. δ is

a predefined margin threshold, and P is the total number of pairs. I[·] denotes an indicator function
that returns 1 for true and returns 0 for false case. If δ = 1, then the negative loss component is
doubled. This function aims to minimize the distance between positive pairs while ensuring negative
pairs are separated by at least the margin.
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The grouping loss function is devised to refine the embeddings of predicted ID values by accomplish-
ing two primary objectives: minimizing the variance within groups of values that correspond to the
same ground truth label and maximizing the separation between groups linked to different labels.
This function is articulated as follows:

Lgroup =

K∑
k=1

1

|Gk|
∑

l(x)∈Gk

(x− µk)
2
+

K∑
k=1

K∑
l=1,l ̸=k

e−|µk−µl|. (12)

In this equation, K denotes the total number of unique ID values present in the ground truth labels,
signifying the distinct classifications for the predicted ID values. Each Gk represents the collection
of predicted ID values that match the k-th unique ground truth label, forming groups of predictions
intended to bear the same ID. The term |Gk| reflects the size of each group, indicating the count of
predictions it encompasses. The variable x refers to individually predicted ID value within the group
Gk, and µi is the average of values in Gk, acting as the group’s centroid. The notation | · | signifies
the absolute value, ensuring that distances in the computations remain non-negative.

The first component of the grouping loss concentrates on reducing the squared distances between
each predicted ID value x and its group’s mean µk, thereby decreasing the variance within each group.
Conversely, the second component introduces an exponential penalty on the closeness of centroids
µk and µl from distinct groups, fostering clear separation between these groups by penalizing closely
situated centroids. This bifocal approach of the loss function is crucial for steering the model
towards generating cohesive yet distinctly separated embeddings, which is fundamental for the
precise identification and differentiation of unique ID values.

3.4 Estimation of Interaction Geometry

To reconstruct the geometry of occupancy fields, we first retrieve the occupancy fields by querying
dense points from the implicit fields g. After estimating the occupancy field, the geometry is
reconstructed using the Marching Cubes algorithm [19]. Initially, we define the bounding box of the
voxel grid. The Marching Cubes algorithm is then applied to the grid, where a surface is generated
by interpolating the predicted occupancy values with s > τ within each voxel unit. Subsequently,
the algorithm retrieves the ID values from the same voxel units and applies a color map, which
facilitates the visual distinction of different individuals represented in the geometry. We use τ = 0.5
for thresholding occupancy values.

The final contact fields can be estimated by the variance of predicted ID values. Close interaction
among different instances typically leads to deficient information due to occluded images. Conse-
quently, the uncertainty in the predicted geometry is increased when the information from multiple
views is deficient. We choose the variance of predicted ID values among possible options as an
uncertainty metric because Euclidean distance is adopted within the training objective for predicted
ID values. For each voxel x = (x1, x2, x3) in the 3D grid V, we extract a local neighborhood N (x),
excluding background value (s < τ ). We then calculate the standard deviation of the neighborhood
values,

σx =

√√√√ 1

|N (x)|
∑

v∈N (x)

(v − µ)2, (13)

where µ is the mean of the neighborhood values and |N (x)| is the number of elements in the
neighborhood.

A voxel is marked as a contact point if the standard deviation exceeds a threshold of τc = 0.25. The
formulation is as follows:

c(x) =

{
σx if σx > τc
0 otherwise

. (14)

3.5 SynMPI: Synthetic Dataset for Multi-Person Interaction

Current multi-human benchmark datasets, such as Hi4D [42] and MultiHuman [43], are limited in
size and scope, particularly in terms of the number of interacting individuals and the diversity of
interaction scenarios. To address these limitations, we introduce a new synthetic dataset designed
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(a) Two-person (b) Three-person (c) Four-person

a couple dancing

a couple lying and talking

a grandmother watching two boys dance

an angry man with two women on their phones

women approach a scary situation
while two men run away

a man playing guitar surrounded by three people

Figure 2: Examples of multi-person interaction geometry in the SynMPI dataset. Each sample
contains interactions involving (a) 2, (b) 3, or (c) 4 people. In each sample, the left side shows
rendered RGB images and the right side shows rendered meshes. Italic sentences explain the multi-
people interaction types of samples adopted from Character Creator 4 [31].

to encompass a broader range of interaction scenarios involving groups of up to four individuals.
Figure 2 shows examples from our dataset.

Our dataset is multi-view and supports multi-person interactions, accommodating groups of two to
four individuals to effectively capture the spatial dynamics of group interactions. We include elderly
individuals and children, representing a wider range of identities for the enhanced diversity of dataset.
Additionally, the synthetic data features individuals with varying ages, heights, weights, and clothing
styles. We also incorporate multiple types of motions for each participant, enriching the dataset with a
diverse set of dynamic interactions. The dataset encompasses approximately 50 distinct motion types,
including dancing, running, and talking. The dataset includes 49 characters (26 female, 23 male) with
50 motion sequences across 43 scene configurations, totaling approximately 25,000 frames. For a
detailed breakdown of the dataset, please refer to Appendix B.1.

4 Experiments

4.1 Datasets

We conduct our experiments on Hi4D [42] and the proposed SynMPI dataset, which include various
multi-person interactive scenarios. Aggregated training splits of both Hi4D and SynMPI serve as the
training set for our experiments. The test splits of each dataset serve as the test set.

Hi4D [42] This dataset offers samples which two individuals engage in various interactions, encom-
passing 20 subject pairs with diverse body shapes and appearances with 8 view images. It includes
3D human scans, instance segmentation masks at the vertices of the 3D scans and image pixels,
SMPL [2] parameters, and contact information at the vertex level. We use a random split of 70% for
training and 30% for evaluation.

SynMPI Our synthetic multi-person interaction dataset captures a wide range of interaction scenar-
ios involving groups of more than two individuals, encompassing a diverse spectrum of dynamic
interactions. From the our synthetic datasets, we use images from 8 views and 3D geometry for our
experiments. We randomly split samples in SynMPI into 70% for training and 30% for evaluation.

4.2 Metrics

Following the evaluation protocols of existing studies [32, 43], we adopt four metrics to assess the
quality of the interaction geometry. Chamfer Distance (CD) calculates the bidirectional disparity
between points on the predicted and corresponding ground-truth mesh. Point to Surface (P2S)
computes the unidirectional distance from each point of the ground-truth mesh to the nearest surface
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Table 1: Evaluation results for multi-person interaction geometry. The values presented under the
CP row indicate the threshold value, denoted by ϵ, which was employed to construct the pseudo G.T.
contact map in 3D space for evaluation.

Model
Hi4D [42] SynMPI (Ours)

CD↓ P2S↓ NC↑ CP↑ CD↓ P2S↓ NC↑
0.025 0.05 0.075 0.1

DMC [43] 0.631 0.495 0.768 - - - - 0.804 0.800 0.688
Ours (w/o SRT) 0.468 0.402 0.888 0.317 0.424 0.458 0.492 0.630 0.492 0.827
Ours 0.406 0.329 0.892 0.447 0.629 0.670 0.703 0.511 0.374 0.836

Table 2: Ablation study on grouping loss function in Eq (12).

Ablation type Squared distance Exponential penalty CD↓ P2S↓ NC↑ CP↑
0.05 0.075

(a) not used not used 0.462 0.363 0.892 0.111 0.187
(b) used not used 0.400 0.314 0.892 0.345 0.528
(c) not used used 0.532 0.403 0.880 0.228 0.335
(d) used used 0.406 0.329 0.892 0.629 0.670

on the corresponding predicted mesh based on the closest-set euclidean distances. Normal Consistency
(NC) measures the difference of the normal vector between points on the predicted and corresponding
ground-truth mesh with the nearest-set euclidean distances. Contact Precision (CP) is defined by the
overlap between the estimated contact map and the pseudo ground truth contact map generated from
ground truth meshes. For a detailed definition of the metrics, please refer to the Appendix A.4.

4.3 Baseline Models

DeepMultiCap (DMC) [43]: We compare our framework with existing methods [43] reconstructing
3D human with multi-view images. DMC leverages a 3D feature of SMPL mesh to infer information
of occluded regions during the learning process of the pixel-aligned implicit function. For the
integration of features from multiple views, it utilizes a transformer-based approach. They use
8-view images for their reconstruction process, and we followed the same setup. We use the public
implementation of DMC 1 and apply LVD [10] on the SynMPI, as well as MVpose [11] on the Hi4D,
to obtain SMPL parameters. We refer to Appendix B.2 for additional details.

4.4 Results and Analysis

Quantitative Results Reconstruction results are evaluated against the baseline method, as shown in
Table 1. Our method demonstrated superior performance in terms of reconstruction quality metrics,
indicating the effectiveness of our approach in accurately capturing and reconstructing 3D models of
multiple people.

Qualitative Results Figure 3 illustrates the qualitative performance of our method in generating high-
quality reconstructions of multiple people in close interaction scenarios. Compared to DMC [43], our
method excels in handling dynamic interactions and heavy occlusion, which are common challenges
in multi-person reconstruction tasks. DMC struggles with these scenarios, leading to less accurate
SMPL estimations. For additional results, please refer to the appendix and supplementary video.

Ablation Study on Architecture We performed ablation studies to assess the impact of our proposed
modules. Table 1 presents the performance of the geometry module without the global features.
The results demonstrate that global features significantly enhance performance across all geometry-
related metrics. Table 1 highlights the impact of global features on contact precision performance,
demonstrating enhanced accuracy of contact predictions across a range of thresholds. Figure 5 visually
compares contact precision performance with and without global features, illustrating substantial

1https://github.com/DSaurus/DeepMultiCap.
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Table 3: Ablation on the number of views.

Model # views CD↓ P2S↓ NC↑

DMC [43] 4 1.304 0.922 0.705
8 0.631 0.495 0.768

Ours 4 0.761 0.472 0.870
8 0.406 0.329 0.892

Table 4: Method for contact map estimation

Method CP↑
0.05 0.075

output meshes 0.518 0.621
variance estimation (ours) 0.629 0.670

improvements. Additionally, Figure 4 depicts the geometry performance with ID and ID field volume
rendering, further demonstrating the positive impact of global features.

Ablation Study on Grouping Loss Grouping loss function defined in Eq (12) comprises two key
terms: the first is the squared distance, and the second is the exponential penalty. In Table 2, model
(a) is trained without the grouping loss, while model (d) is trained with the grouping loss. The
exponential function in the second term encourages soft assignment to a specific instance or cluster.
However, using only this term does not lead to improved grouping performance. We observe that
the combination of both terms within the grouping loss function results in overall performance
enhancement.

Contact Map Analysis Table 1 also presents the performance of our contact map using contact
precision metrics. Our approach leverages unsupervised learning to predict contact fields in 3D space,
eliminating the need for labeled training data, which is often difficult and costly to obtain. This
is particularly advantageous in complex scenarios involving multiple individuals and interactions.
The effectiveness of our method is significantly influenced by the resolution of the 3D data. High-
resolution data provide detailed and dense information, enabling precise contact prediction. In
contrast, low-resolution data can lead to less accurate results due to the sparse representation of the
interactions, as illustrated in Figure 5. A key advantage of our approach is the use of an implicit
contact field, which allows for flexible changes in resolution. This flexibility enables our method to
adapt to various data resolutions without compromising the integrity of the contact prediction. Thus,
our method excels in flexibility and reduces dependency on extensively labeled datasets. However,
ensuring adequate resolution of 3D data is crucial for achieving optimal accuracy and reliability in
contact field estimation. In this paper, we use a resolution of 2563 to estimate the contact field.

To further assess our contact predictions, we directly infer contacts from the output instance meshes
by examining geometric proximity and the surface identifiers used to generate the contact map
from the pseudo ground truth instance meshes.Table 4 presents the results for both contact map
estimation methods. Our variance-based estimation of the contact field in 3D space yields better
results than the mesh-based inference. This is because the variance estimation method benefits
from high-resolution 3D data and operates in continuous space, allowing for precise localization of
contact areas without intermediary steps that could introduce errors. In contrast, the mesh-based
inference relies on reconstructed meshes that may lack fine details due to resolution limitations or
reconstruction errors, leading to less accurate contact predictions. Additional details are provided in
Appendix B.3.

Ablation Study on the Number of Views Table 3 presents an ablation study on the number of
views. Our method consistently outperforms DMC across all metrics—Chamfer Distance (CD),
Point-to-Surface Distance (P2S), and Normal Consistency (NC)—in both the 4-view and 8-view
settings.

5 Conclusion

This paper addresses the intricate challenges associated with the 3D reconstruction of multiple
interacting human bodies in close proximity, an area critical for applications in virtual reality,
augmented reality, robotics, and surveillance. Our approach overcomes the limitations of traditional
methods that rely on models like the Skinned Multi-Person Linear (SMPL), which often struggle
in scenarios with dynamic interactions and occlusions. By employing advanced methodologies,
including a multi-view feature transformer and a global scene feature extraction transformer, our
approach not only preserves the unique identities and spatial information of each individual but also
enhances the accuracy of 3D reconstructions.
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: Back view

DMC (Geometry)Input Images
(Front view)

Ours (Geometry) GT (Geometry)Ours (ID)
: Front view

Figure 3: We compare our method to baseline DMC [43] on Hi4D (top) and SynMPI (bottom) test
set. From left to right columns, we show the input multi-view images, the generated geometry by
each method, and ground truth (GT) Geometry.

G.T Instance MeshesInteraction GeometryInput Images ID Field Volume Rendering
: Ours (w/o SRT) : Ours

Figure 4: Visualization of reconstructed multi-person interaction geometry and instance-wise volume
rendering with ID fields for visualizing occluded regions during interaction.

Input Images Input Images

: Ours (w/o SRT) : Ours : Ours (Low resolution 1283)

Figure 5: Comparison of the effect of global features and 3D resolution on estimated contact fields.
Ours (w/o global) excludes global features, Ours (low resolution 1283) uses low resolution.
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A Implementation Details

A.1 Training

We trained our model on the Hi4D [42] dataset and our dataset SynMPI. Following the PIFu [32]
process to extract pixel-aligned features, we sampled 6000 points used during training. The training
was conducted with a batch size of 4 and a learning rate of 1e−4. Our learning rate schedule involved
decaying the initial learning rate by a specified factor (gamma) at predetermined epochs, as defined
in our schedule. The model was optimized using the RMSprop optimizer. In our experiments, we
set ωs = 1, ωcontra = 0.1, and ωgroup = 0.1 for the weights of loss functions. Implemented using
PyTorch [29], the entire training process spanned approximately two days and covered 100 epochs
using two NVIDIA A100 GPUs. Inference of each instance requires around 60 seconds on the same
GPU.

A.2 Architecture

Multi-View Feature Fusion Module f e. Our objective with f e is to effectively aggregate features
from multiple view inputs. Utilizing a view-to-view transformer architecture inspired by Double-
Field [38], we process pixel-aligned features to facilitate this aggregation. The operation of our
transformer is mathematically represented as:

Qf
x,K

f
x , V

f
x = εfK,Q,V (F

1
x , F

2
x , ..., F

V,
x ),

ΦL
x = εf (Attention(Qf

x,K
f
x , V

f
x )), (15)

where Qf
x, Kf

x , and V f
x denote the query, key, and value matrices generated from the input features,

respectively. Following self-attention, the features are further refined through feed-forward networks
fF to obtain the local feature set ΦL

x .

SRT Encoder f se. SRT Encoder, denoted as fse, aims to encapsulate 3D scene information into a
comprehensive set-latent scene representation z. Following methodologies similar to those described
by Object Scene Representation Transformer (OSRT) [34], our encoder leverages the Transformer’s
self-attention mechanism to aggregate spatial and feature information from multiple views into a
single scene representation. This process is formalized as:

{Fv}Vv=1 = εf ({F v, εray(o
v,dv)}Vv=1), (16)

where εf and εray represents the conv block yielding a set of features {Fv}Vv=1. Subsequently, these
features are aggregated into a set of flatted patch embeddings {Ei}Ni=1, where N denotes the total
number of patches across all images. This aggregation can be mathematically represented as:

{Ei}Ni=1 = εpatch({Fv}Vv=1), (17)

The transformer encoder, T e, then processes this set of embeddings to generate the final set-latent
scene representation z:

z = T e({Ei}Ni=1), (18)

where z fully encapsulates the observed 3D scene, encoding comprehensive spatial and visual scene
information. It is imperative to note that set-latent scene representation z embodies the comprehensive
understanding of the specific 3D scene as observed through the corresponding set of images. This
representation, characterized by its ability to maintain the integrity and richness of scene’s spatial and
feature information, is pivotal for subsequent reconstruction and analysis tasks.

Global Feature Decoder f sd. We employ SRT decoder to extract global features from scene
representation z. There are some differences with original SRT decoder [36]. The main difference is
that local feature ΦL

x is used for query and value in multi-head attention mechanism. This modification
ensures that:

ΦG
x = fsd(z,ΦL

x), (19)

where ΦG
x represents the globally decoded feature. This enables the decoder to dynamically focus on

relevant scene information, thereby facilitating detailed and accurate 3D reconstructions and precise
occupancy and identification predictions.
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A.3 Dataset Construction

To create our dataset, we first acquired characters of various ages and interaction motion sequences
from Character Creator 4 [31]. We then composed scenes featuring multiple characters using
Omniverse USD Composer [27]. To facilitate the dataset generation process, we modified the Kaolin
rendering tool [26] to include tasks such as multi-person normalization, enabling us to achieve
the desired outputs. This process allows us to generate multi-view rendered images, mask images,
instance masks, and 3D geometry.

A.4 Evaluation Metrics

The definition of evaluation metrics are shown in below. P and Q refer to the set of 3D points.

Chamfer Distance (CD) This metric calculates the bidirectional disparity between points on the
predicted and corresponding ground-truth mesh. It computes the euclidean distance from each point to
nearest surface on other mesh. Lower value of CD metric indicates a higher fidelity of reconstruction.

CD(P,Q) =
1

|P|
∑
p∈P

min
q∈Q

∥p− q∥2 + 1

|Q|
∑
q∈Q

min
p∈P

∥q− p∥2 (20)

Point to Surface (P2S) This metric computes the unidirectional distance from each point of ground-
truth mesh to the nearest surface on the corresponding predicted mesh based on the closest-set
euclidean distances. Lower value of P2S metric means superior reconstruction accuracy.

P2S(P,Q) =
1

|P|
∑
p∈P

min
q∈Q

∥p− q∥2 (21)

Normal Consistency (NC) This metric computes the difference of normal vector between points
on the predicted and corresponding ground-truth mesh with the nearest-set euclidean distances. It
uses the bidirectional way for calculating the difference. Lower value of NC metric indicates a higher
fidelity of reconstruction.

NC(P,Q) =
1

2|P|
∑
p∈P

(
1− np · nnearest(p,Q)

)
+

1

2|Q|
∑
q∈Q

(
1− nq · nnearest(q,P)

)
(22)

Contact Precision (CP) We first identify sample points in the voxel grid using the ground truth mesh
Mgt,

Pinside = {p ∈ P | Mgt contains p}. (23)
For each point pi ∈ Pinside, we determine the nearest points on the mesh surface M and assign
surface identifiers si based on face indices fi. Using a KD-Tree, we find neighboring points within a
specified distance threshold ϵ,

Ni = {pj | ∥pi − pj∥ < ϵ and j ̸= i}. (24)

A contact is marked if any neighboring point has a different surface identifier,

contacti =
{
1 if ∃pj ∈ Ni such that sj ̸= si
0 otherwise

. (25)

This process results in contact labels that are contextually relevant to the mesh’s surface features,
enabling validation of our contact prediction algorithms using precision as the evaluation metric.

The contact precision is defined by the overlap between the estimated contact map E and the pseudo
ground truth contact map T generated from ground truth meshes. Then, the precision is given by

P (T,E) =
|T ∩E|
|E|

, (26)

where |T ∩E| is the number of true positives (correctly predicted contact points), and |E| is the total
number of predicted contact points. A higher precision value indicates that a greater proportion of
the contact points predicted by the model are correct, signifying fewer false positives. This metric is
crucial for assessing the accuracy of our contact prediction algorithms, ensuring that the predicted
contacts closely align with the contacts defined by the pseudo ground truth.
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Table A: Evaluation excluding SynMPI dataset on Hi4D test sets

Geometry Contact Precision ↑
CD↓ P2S↓ NC↑ 0.025 0.05 0.75 0.1

w/o synthetic data 0.499 0.418 0.885 0.351 0.482 0.514 0.542
w/ synthetic data 0.406 0.329 0.892 0.447 0.629 0.670 0.703

Table B: Ablation study on SPML initialization method for synthetic datasets in DMC

Model SMPL method CD↓ P2S↓ NC↑
DMC MVPose [11] 0.805 0.489 0.771
DMC LVD [10] 0.631 0.495 0.768

Figure A: Statistics of the SynMPI dataset.

B Analysis

B.1 Datasets

Table A presents the results of an ablation study using our SynMPI dataset. Training models with
SynMPI alongside Hi4D [42] led to improved performance on the Hi4D test set. This improvement
is mainly due to the large diversity within our dataset, which includes variations in age, gender, and
scene composition, as shown in Figure A.

B.2 Baseline Models

For the baseline models discussed in Section 4.3, we employed different SMPL [18] acquisition
methods tailored to each dataset. Specifically, for the HI4D dataset, we used MVPose [11], following
the experimental setup described in the HI4D paper, where DMC [43] was run using MVPose for
SMPL acquisition. We adopted this approach to ensure consistency and comparability.

Table B presents the ablation study on initial SMPL methods. However, we encountered challenges
when using MVPose for our synthetic dataset, as its modules were trained on real data, leading to less
accurate SMPL estimations on synthetic data. To address this, we utilized Learned Vertex Descent
(LVD)[10], which is designed to fit SMPL to a 3D human model (3D scan) and has proven to provide
more accurate results in this context. Although LVD is originally intended for single-person scenarios
and may be sensitive to occlusions, we selected it for the synthetic dataset to achieve accurate results
in our study.

B.3 Contact map

We also measure contact precision using the generated instance meshes as well as our proposed
variance estimation of contact fields. To provide further insights into our method, we explain how
different individuals are distinguished using predicted ID values during mesh generation.

To generate instance meshes from our implicit fields, our algorithm identifies and marks regions
of interest based on the occupancy field during inference, excluding the background. This process
generates both an ID field and a contact field. The normalized ID values within these regions
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Input Images Instance Meshes Hi4D Instance MeshesID FieldInput Images Instance Meshes Hi4D Instance MeshesID Field

Figure B: Example of Instance meshes.

G.T Instance MeshesInteraction GeometryInput Images ID Field Volume Rendering

: Ours (w/o SRT) : Ours

Figure C: Visualization of reconstructed multi-person interaction geometry and instance-wise volume
rendering with ID fields for visualizing occluded regions during interaction.

are processed using k-Means clustering [17], grouping the data into clusters, with each cluster
representing a different individual and including the associated contact regions.

After clustering, each cluster is isolated with a binary mask, which is smoothed using a Gaussian
filter to create a blending mask that ensures smooth transitions at boundaries. This blending mask is
applied to the occupancy field to enhance boundary details. Finally, the marching cubes algorithm
generates a 3D mesh for each cluster from the processed occupancy field. These steps allow us to
reconstruct instance meshes that support further evaluation of contact predictions.

Figure B illustrates the results of our instance meshes.

C Results

C.1 Visualization

We present additional visualization result samples in Figures D, E, G, and H. Additionally, Figure C
shows further visualization results from our ablation study on architecture. Figure F provides more
examples comparing contact maps based on 3D space resolution.
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DMC (Geometry)Input Images
(Front view)

Ours (Geometry) GT (Geometry)Ours (ID)

: Front view : Back view

Figure D: Extended visualization of our method compared to baseline DMC [43] on Hi4D test split.

DMC (Geometry)Input Images

(Front view)

Ours (Geometry) GT (Geometry)Ours (ID)

: Front view : Back view

Figure E: Extended visualization of our method compared to baseline DMC [43] on test split of our
synthetic dataset.
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Low resolution (1283) High resolution(5123)

Figure F: Example of low resolution contact maps.

Contact FieldID FieldInput Images G.T GeometryGeometry Field

Figure G: Contact Field results of ours in Figure. 3
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Contact FieldID FieldInput Images Geometry Field G.T Geometry

Figure H: Additional results of our method ContactField in Hi4D test split.
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(a) Input Images (b) Interaction Geometry (c) Input Images (d) Interaction Geometry

Figure I: Failure case.

D Discussion

D.1 Limitation

Despite its effectiveness, our approach introduces certain limitations, such as resolution constraints
when reconstructing all elements simultaneously, which can affect the finer details of the models.
Especially, we present failure cases in (d) of Figure I. Since we do not incorporate spatial prior such
as SMPL, predicting identity (ID) in extreme poses, such as hugging, becomes challenging. However,
as shown in (b) from a few frames earlier, the prediction is accurate. This suggests that incorporating
a temporal module could be a promising direction for future work. Still, experimental results affirm
the superiority of our approach over traditional methods, indicating significant potential for future
enhancements in complex interaction scenarios and larger group dynamics. Moving forward, we
aim to refine our techniques to address these resolution limitations and explore broader applications,
further advancing the realism and functionality of 3D human body reconstructions.

E Broader Impacts

This novel implicit field representation for multi-person interaction geometry in 3D spaces has the
potential to advance various applications in healthcare, sports, and security by enabling more accurate
and detailed reconstructions of human interactions. However, the enhanced ability to capture such
interactions also raises important concerns regarding privacy and ethical use. To mitigate these risks,
it is essential to implement robust data protection measures, establish clear ethical guidelines, and
ensure compliance with privacy laws.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. We explain our motivation and contribution of our work in the main
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explain the limitation of the proposed method in section D.1 of appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work is empirical work on interaction geometry for multi-person interac-
tion, which do not requires toehry and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explain training details in section A of the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We do not release the code or data because our work deals with human subject.
Although we can not release the code, we will provide the detailed description for our
implementation to reproduce all the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explain both training and architecture details in section A of the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We do not present any statistical significance in the table or figure due to
strong supervision in reconstruction task. We describe all the details about the experiment
for reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the computing resources we used for experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We explain broader impacts of the current work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release the code or data because our work deals with human subject.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We describe all the datasets and models we used in the manuscript.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We describe the details about new synthetic dataset we introduced in the
manuscript.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We use the publicly available dataset and synthetic dataset for human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We use the publicly available dataset and synthetic dataset for human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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