Under review as a conference paper at ICLR 2024

PLAUSIBLY DENIABLE ENCRYPTION
WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel approach for achieving plausible deniability in cryptography
by harnessing the power of large language models (LLMs) in conjunction with
conventional encryption algorithms. Leveraging the inherent statistical properties
of LLMs, we design an encryption scheme that allows the same ciphertext to be
decrypted with any key, while still yielding a plausible message. Unlike estab-
lished methods, our approach neither relies on a fixed set of decoy keys or mes-
sages nor introduces redundancy. Our method is founded on the observation that
language models can be used as encoders to compress a low-entropy signal (such
as natural language) into a stream indistinguishable from noise, and similarly, that
sampling from the model is equivalent to decoding a stream of noise. When such
a stream is encrypted and subsequently decrypted with an incorrect key, it will
lead to a sampling behavior and will thus generate a plausible message. Through
a series of experiments, we substantiate the resilience of our approach against
various statistical detection techniques. Finally, although we mainly focus on lan-
guage models, we establish the applicability of our approach to a broader set of
generative models and domains, including images and audio.

1 INTRODUCTION

In the realm of cryptography, the notion of plausible deniability refers to encryption techniques
where an adversary cannot definitively establish the mere existence of an encrypted file or commu-
nication, as they are unable to prove the presence of the original, unencrypted data (Canetti et al.,
1997; Klonowski et al., 2008). This means that, even when forced to reveal the decrypted message,
one can still convincingly claim ignorance about its contents, as illustrated in Figure 1.

2=

Alice H

Insecure chann

L s
2
Bob

Figure 1: Imagine a scenario where Alice is determined to share a confidential message with Bob,
through a possibly insecure channel. She then sends the encrypted file to Bob, who extracts the
hidden message using the secret key. Even if someone intercepts the transmitted encrypted message
and coerces Bob into providing the key that leads to its decryption, Bob can provide a (randomly
chosen) key as the supposed correct one. The new key leads to a distinct yet entirely believable
decryption of the message — one that appears as plausible and realistic.

Today the weather is
going to he great.

Eve Mallory

The majority of real-world applications of plausible deniability in cryptography focus on situations
where the existence of encrypted material is entirely refuted, such as rejecting the existence of an
encrypted partition on a hard drive — a widely recognized function in encryption suites like True-
Crypt (Broz & Matyas, 2014) — or steganography, where the encrypted content is concealed within
another message (e.g. an image), potentially introducing redundancy. A more intriguing challenge
lies in designing an algorithm that allows a single ciphertext — or encrypted communication — to

Under review as a conference paper at ICLR 2024

be decrypted into multiple possible plaintexts depending on the selected key. Several schemes have
been proposed to address this problem (Trachtenberg; Kog, 2009; Ferguson et al., 2011; LibreCrypt),
but they often introduce redundancy and rely on a fixed number of decoy keys, each associated with
a decoy message. An important question arises: Given a white-box knowledge of the algorithm,
what if the attacker coerces the defendant into revealing all possible keys?

In this work, instead, we focus on a more general formulation of the problem, where the ciphertext
can be decoded to a valid plausible message using any key. We do so by leveraging the powerful
statistical properties of large language models coupled with conventional encryption algorithms such
as Advanced Encryption Standard (AES) (Daemen & Rijmen, 2002; Nechvatal et al., 2001).

Our idea is inspired by the following principles, which we explore in-depth in subsequent sections:
* A language model, being an explicit probabilistic model, allows for two operations:

— Encoding (or compression): based on the observation that different symbols (tokens) appear
with varying probabilities, this operation compresses a low-entropy message (such as natural
language) into a compact signal that appears indistinguishable from white noise.

— Decoding (or sampling): this operation converts a stream of white noise into a low-entropy
message, which represents the typical strategy for generating text in LLMs.

* In encryption algorithms, when a ciphertext is decrypted using the wrong key, the resulting plain-
text is white noise!.

* When the plaintext is encoded using an LLM and subsequently encrypted, it can be decrypted with
any key and still produce a plausible message when decoded with the LLM (sampling behavior).

» Regardless of the key used for encryption/decryption, when a strong model is used, the encoded
plaintext is indistinguishable from white noise, rendering statistical detection tests ineffective.

2 BACKGROUND AND RELATED WORK

Compression Compression and model-driven prediction demonstrate a fundamental correspon-
dence, sharing the common objective of reducing information redundancy. Compressors aim to effi-
ciently encode data by capturing key patterns (Rahman & Hamada, 2021; Valmeekam et al., 2023),
while predictors seek to anticipate future observations by leveraging past information (Kolmogo-
roff, 1933). The source coding theorem (Shannon, 1948) states that an optimal encoder compresses
a message to an expected length in bits equal to the log,-likelihood of the statistical model (Delétang
et al., 2023), essentially reducing the message to a shorter stream that appears sampled from a uni-
form distribution (white noise). Recently, LLMs have proven to be highly successful statistical
models (Brown et al., 2020; Touvron et al., 2023) that effectively capture the intricate nuances of the
underlying distribution. These models, tokenize the text into bytes/subwords (Yu et al., 2023; Edman
et al., 2022; Sennrich et al., 2015), and are trained towards maximizing the conditional probability
of the next token, given the preceding context. This makes them an ideal choice for compressing
text and its associated distribution.

Entropy coding At the heart of lossless compression lies the task of transforming a sequence
of symbols into a succinct bit sequence, all while preserving the ability to fully reconstruct the
original symbol sequence. A variety of different techniques achieve this, including Huffman cod-
ing (Huffman, 1952), arithmetic coding (Pasco, 1976; Rissanen, 1976), and asymmetric numeral sys-
tems (Duda, 2009), to name a few. Huffman coding capitalizes on the uneven probabilities governing
symbol occurrences, assigning bitstreams of varying lengths to symbols based on their frequency in
the data. Shannon’s source coding theorem establishes the limit L on possible data compression as
L > H(p), where H(p) := E,~,[—log, p(x)] and p is the distribution of the tokens.

ML and Cryptography As a fundamental pillar of information security, cryptography (Stamp,
2011; Feistel, 1973) plays a crucial role in safeguarding sensitive data and communications. Re-
cent advancements have been significantly influenced by machine learning. These innovations span
a wide spectrum of applications, ranging from general cryptographic techniques to more special-
ized areas such as differential cryptanalysis and distinguishing attacks. One major area of interest
is differential cryptanalysis, studying how input perturbations are propagated to the produced out-
put. Emerging research explores the synergy between machine learning and cryptography, e.g. in

"This is also the basis for many cryptographically-secure random number generators.

Under review as a conference paper at ICLR 2024

devising attacks to distinguish cryptographic text, leveraging potential distribution shifts in various
proposed encryption algorithms (Gohr, 2019; Wenger et al., 2022). This highlights the evolving
landscape of security paradigms, reflecting an exciting avenue for the future of data protection.

Plausible deniability Cryptography attempts to make information unintelligible (Walton, 1996).
Techniques for concealing information (Petitcolas et al., 1999) include steganography (Channalli &
Jadhav, 2009), watermarking, and the practice of embedding messages within other network traf-
fic (Rivest et al., 1998). Plausible deniability does not preclude the interception of a message by
an adversary; rather, it provides the means to disavow its true meaning, adding another layer of de-
fence against privacy breaches involving sensitive data. It offers resilience against coercion attempts,
wherein adversaries demand access to the plaintext data concealed within ciphertext (see Canetti
et al. (1997); Diirmuth & Freeman (2011) for a formal definition). Conventional encryption schemes
do not inherently provide deniability. Although a few approaches proposed how to introduce deni-
ability, they are limited in their capabilities, e.g., LibreCrypt, or require substantial computational
resources and lead to considerably lengthier messages to be transmitted (Stevens & Su, 2023).

Sampling In the context of autoregressive language modeling, the selection of an appropriate
sampling algorithm plays a crucial role in generating text that is both coherent and diverse (Holtz-
man et al., 2019; Meister et al., 2023; Hewitt et al., 2022). Among other proposed techniques, are
temperature scaling, top-k sampling, and top-p sampling (also known as Nucleus sampling (Holtz-
man et al., 2019)). Current trends also underscore the use of techniques such as prompting (Wei
et al., 2022) and fine-tuning (Ouyang et al., 2022) to influence the generative process of LLMs, all
of which attempt to manipulate the probability distribution predicted by the model.

3 METHOD

We provide an overview of our methodology in Figure 2. Initially, the involved parties in the com-
munication establish a consensus on a model and exchange a shared encryption key (shared-key
scheme). Our detailed security scheme is outlined in Appendix A.1, and its correctness is assessed
in Appendix A.2. The core of our approach begins with the tokenization of a given text string,
transforming it into a sequence of discrete tokens. The selected model operates in an autoregres-
sive manner, predicting the probability distribution of every token based on the preceding ones in
the sequence. From the extracted cumulative distribution, the input text is transformed into a series
of codes. In the decoding phase, we apply a reverse procedure, where, instead of sampling during
generation, we use the transmitted codes to guide the selection of the tokens.

3.1 BASE METHOD

Before explaining our final method, we introduce a simplified — yet more interpretable — variant that
illustrates some important concepts related to sampling from LLMs.

Quantization Since common encryption algorithms work with discrete numbers, we work with
quantized probability distributions. This also guarantees that all operations are deterministic and
are not affected by rounding or accumulation errors of floating-point numbers while simplifying
the implementation of the algorithm. More specifically, we quantize each probability distribution
(model output) to N = 2 bins, such that the cumulative probability sums to V. Possible choices of
k are those that are concurrently byte-aligned and divisors of the block size of the adopted encryption
algorithm (128 bits for AES), e.g. k = 8, 16, 32. The choice of k has important implications, which
we discuss in one of the next paragraphs.

Sampling/decoding For simplicity, we first explain how decoding is performed, and establish its
connection with sampling in LLMs. During generation, for each token fed through the language
model, the model explicitly predicts the probability distribution of the next token conditioned on
all previous tokens. Generating text involves sampling from this probability distribution and re-
peating the process in a feedback fashion. From a more technical perspective, sampling is imple-
mented using the inverse transform sampling algorithm, which involves (i) computing the c.d.f. of
the probability distribution, (ii) sampling a random number ¢ from ¢/ (0, 1) (or, in our discrete case,
u{o, 2k — 1} inclusive), and (iii) finding the bin in which ¢ falls through binary search. We call this
process decoding when it is carried out deterministically using a stream of numbers ¢; (which appear
as random, but may or may not be the result of a random process) provided externally.

Under review as a conference paper at ICLR 2024

2k 0 Quantize & Senallze
(k= 8) 45 ; |735Cba4540 | "foo" |
. sample I Encoded Plaintext passphrase
06,0.85) : (~Random) "bar" Decrypted
H esm . = A Encoded Plaintext
. Encrypt (AES) assphrase N
L oo “ ; (Wrong) (:g':‘ 6c1a073580
e [l - [| : (~Random)
seieg E 57a2c6723c Transmit 57a2c6723c
e 285 % :
H Clphenext Ciphertext
(~Random) Decrypt g1 735¢had540
(AES)
! |<bos> weather cloudy | |<eos> : Decrypte.d
' ! Encoded Plaintext
Tokemze ' EnCOdmg Passphrase
""""""""""""""""""""""""""""" (Correct)
Plaintext "The weather is cloudy" |
__ v
735cba4540 I6c1=‘:1073580
x 2k 0x73 l 0x5¢ Oxba l 0x45 ¢0x40 : x 2k 0x6c loua 0x07 ¢ 0x35 ¢0x80
(k=89) ; Encoded (k=8) : Encoded
0.36 0.27 | | 0.25 | : Plaintext 0.42 0.10 O 03 0.21 | | 0. 50 Plaintext
o ‘Seargh : ’ Sea_rch :
: Decoding : Decoding
i Correct Wrong
key key

Plaintext Plaintext

"The weather is cloudy" |

"This is the message" |

Figure 2: The pipeline for the base method. Using the probability distributions predicted by the
model, the plaintext is encoded into a stream indistinguishable from noise, and subsequently en-
crypted. In this fictitious example, we use & = 8, i.e. each token is encoded using one byte. When
the ciphertext is decrypted with the correct key and decoded, the original message is recovered.
Conversely, decrypting the ciphertext with the wrong key results in a random stream that will still
lead to a plausible message when decoded. For simplicity, implementation details such as headers,
padding, and initialization vectors (IV) are omitted. The depicted pipeline is also applicable to the
compressed encoder, in which the sampling/search mechanism is replaced with an entropy coder.

Encoding The encoding process creates a stream of numbers ¢; that decode into the original mes-
sage, and which, under optimality assumptions, is indistinguishable from white noise. For each to-
ken ¢ in the plaintext and its corresponding probability distribution obtained by querying the model,

we (i) compute its c.d.f., (ii) find the lower bound t[I as well as its upper bound tEu] (i.e. the lower
[u]

Z7Z

bound of the next token in the vocabulary), and (iii) sample ¢; from U {t — 1} (inclusive).
Encryption/decryption The encoded plaintext (stream of t;) is then trivially encrypted using a
standard algorithm such as AES (with some caveats described in subsection 3.5). When decrypted
with the correct key, the message is decoded into the original plaintext without loss. When decrypted
with the wrong key, the resulting stream of ¢; will be random, exhibiting a sampling behavior when
decoded using the language model (and thus generating a random but plausible message).

Limitations and choice of ¥ The scheme presented is statistically simple to analyse but sub-
optimal from an information-theoretic standpoint. The algorithm’s behavior is influenced by the
quantization granularity k, where larger values of k£ provide an accurate probability distribution
representation but increase the encoded message redundancy, leading to longer messages. Smaller
values of k result in more compact messages but may introduce quantization errors or cause unlikely
tokens to vanish entirely from the probability mass, rendering their encoding unsatisfiable (this case
can however be detected and an error returned). In our experiments, a sensible choice is k = 32,
encoding each token as a 4-byte integer.

Under review as a conference paper at ICLR 2024

3.2 COMPRESSED ENCODING

In this section, we propose a more principled encoding/decoding scheme that is based on compres-
sion and is optimal in the sense that it does not introduce redundancy nor does it depend on the
choice of a quantization granularity k. To this end, we make use of variable-length coding, and
more specifically Huffman trees (Huffman, 1952), which represents the established way of perform-
ing compression in standard compression algorithms, e.g. DEFLATE (Oswal et al., 2016). Guiding
this scheme using the probability distributions obtained from the language model allows us to de-
sign an encoder that can be used as a drop-in replacement to the base algorithm. Furthermore, an
interesting by-product of this formulation is that the message is compressed in a lossless fashion in
addition to being encrypted?.

Language models as compressors Consider a vocabulary of 4 tokens A, B, C, D, oc-
curring with probabilities 0.5,0.25,0.125,0.125 respectively (which may as well be the
output of a fictitious model). Each of these symbols can
naively be encoded using 2 bits per token, e.g. 00, 01, 10,
11 respectively. However, an optimal variable-length code-
book (i.e. a Huffman code) would encode these as 0, 10, 110,
111, achieving an optimal compression rate of 1.75 bits per to-
ken (i.e. the entropy of the original probability distribution).
By obtaining these probabilities using a language model se-
quentially, it is possible to design an encoder that compresses
natural language into a stream of bits which, under optimality
assumptions, is (again) indistinguishable from noise. Modern
language models are trained with the goal of predicting the
next token distribution, and as a result, they are explicitly de-
signed to compress the text they have been trained upon. It
has also been shown that this task scales well to larger mod-
els, which are able to achieve increasingly higher compression O(nlogn), \yhere 71 represents the
rates as measured by perplexity metrics (Kaplan et al., 2020; numb@r of unique symbols, i.e. to-
Hoffmann et al., 2022; Touvron et al., 2023). kens, in the text vocabulary.

Figure 3: The Huffman tree cor-
responding to the example. A
Huffman tree can be generated in

Encoding Under this scheme, for each token position i, we construct a Huffiman tree using the
probability distribution predicted by the previous token, and we append the code corresponding to
the token ¢ to the stream. If padding is needed (e.g. to align the stream to a byte or a predefined block
size), we append random bits (see also implementation details, subsection 3.5, for the reasoning).

Decoding Decoding is trivially achieved by running the process in reverse. If a wrong key is used
to decrypt the ciphertext, the resulting bit stream will be random, but it is guaranteed that it can
be decoded successfully, as Huffman trees are full binary trees (each node is either a leaf or has
2 children). As in the baseline algorithm, this will result in a sampling behavior (i.e. random text
generation). However, in case the wrong key is used, the stream might terminate early (leaving the
last symbol partially decoded), which provides a trivial detection mechanism. Therefore, random
padding is crucial to elude such detection attempts. Due to its importance (including in the base
formulation), we discuss this aspect in the implementation details, subsection 3.5.

Limitations Although Huffman codes are optimal among schemes that encode each symbol sepa-
rately, they achieve the optimal entropy only if the input probability distribution is dyadic, i.e. it can
be expressed as p(i) = 2% (where z; is a positive integer). If the distribution diverges too much
from these “dyadic points”, detection will be facilitated as the resulting encoded stream will not be
indistinguishable from noise. However, this is typically a concern only for small vocabularies, which
is not the case for language models (which often comprise tens of thousands of tokens). Although
there exist more optimal coding schemes, such as arithmetic coding, these are very slow, complex
to implement, and are therefore beyond the scope of our work.

2Modern LLMs achieve compression rates in the order of 4 bits per token (depending on the tokenizer).
This can also be computed as log, (PPL), where PPL denotes the normalized perplexity of the message. It is
therefore clear that the choice of k& = 32 bits per token proposed earlier is highly redundant.

Under review as a conference paper at ICLR 2024

3.3 TRIVIAL EXTENSIONS

Sampling schemes Our approach can be trivially extended to various sampling strategies designed
for language models, such as top-k sampling, top-p sampling (a.k.a. Nucleus sampling (Holtzman
et al., 2019)), and temperature scaling. The only caveat is that these settings must be transmitted as
part of the language model or the ciphertext, or simply agreed to before transmitting the message. It
is also worth noting that these sampling strategies, if set to excessive strength, may render statistical
detection easier or cause some tokens to be unsatisfiable if they are excluded from the probability
mass (this however only affects the base algorithm), as we show in section 5.

Prompting If a wrong key is used, random sampling from an unconditional distribution might
return messages that, although grammatically valid, are too unrelated to the context expected by
the adversary. For instance, if the adversary expects the location or time of a meeting, most likely
a randomly generated news article will not represent a good fit for a decoy message. Fortunately,
our algorithm can be trivially extended with a prompting mechanism that provides a context to the
model, such as “Location of the meeting. City: New York. Address: 7,
which needs to be transmitted in unencrypted form as part of the ciphertext. This context-setting
mechanism plays a pivotal role in guiding the model’s output towards producing responses that
align with possible expected responses. In our example, the prompt instructs the model to generate
content that pertains to the location and address of the meeting in New York, making it significantly
less likely to generate irrelevant or generic text (Wei et al., 2022).

Chat variant Similarly, employing a chat version of a language model, it is possible to encrypt
entire conversations between two or more parties and ensure that these decrypt into plausible con-
versations if the wrong key is used. Prompting can again be used to guide the context.

3.4 CONNECTION TO OTHER DOMAINS

The proposed idea can be applied to any explicit generative model, including autoregressive models
for audio — e.g. WaveNet (Oord et al., 2016)) — and images — e.g. PixelCNN (Van den Oord et al.,
2016), PixeIRNN (Van Den Oord et al., 2016), ImageGPT (Chen et al., 2020) — as well as variational
autoencoders (VAEs) (Kingma & Welling, 2013). The idea can also be generalized (with some
variations) to other classes of generative models, including GANs (Goodfellow et al., 2014) and
diffusion models (Ho et al., 2020). As an example for the latter, the uniform noise produced by the
decryption algorithm can be converted to Gaussian noise through a Box-Muller transform (Box &
Muller, 1958), and then used as a seed for the denoising process in conjunction with a deterministic
sampler such as DDIM (Song et al., 2020). As part of our work, to provide a further validation of
the algorithm, we apply our approach to ImageGPT and show some qualitative examples on images
in section 5.

3.5 IMPLEMENTATION DETAILS

Encryption and padding For encryption, we use AES-256 in CBC mode. The algorithm is
primed with a random initialization vector (IV) which is included in the ciphertext in unencrypted
form. In block cipher algorithms, it is common to pad the plaintext message to a predefined block
size (128 bits for AES), both for technical reasons and to avoid leaking information about the length
of the message. In our case, the latter aspect is even more important as the original message may
include an explicit sentence terminator (<eos> token), which also needs to appear when the mes-
sage is decrypted with the wrong key (otherwise, detection would be trivial). Therefore, the message
needs to be padded sufficiently to ensure that the sentence terminator is sampled even if a wrong key
is used. We discuss potential padding strategies in the Appendix A.3. In all formulations, we pad the
message with random bits, which results in a sampling behavior and eludes detection mechanisms.
For our experiments on ImageGPT, padding is not needed as we always generate images of fixed
size.

Deterministic model evaluation To ensure that the algorithm is correct, the entire pipeline (espe-
cially the model evaluation) needs to be deterministic. This is not the case for floating-point tensor
operators in GPUs, which are subject to non-deterministic accumulation. For this reason, we rec-
ommend using quantized models (either as integers or fixed-point precision), or running the model
through a device that is guaranteed to exhibit per-sample determinism regardless of batch size.

Under review as a conference paper at ICLR 2024

IMDb Twitter
Correct key Wrong key Correct key Wrong key

Encoder ‘ Sampling | Model Freq Corr Ppl Freq Corr Ppl Freq Corr Ppl Freq Corr Ppl
Dummy distribution 1.000 0.983 1.000 [0.0I1 0.009 0.01T] 0.934 0.535 1.000 [0.007 0.007 0.007
top-p GPT2-xI 0.255 0.182 1.000 | 0.009 0.009 0.000 || 0.0IT 0.04T 0.991 | 0.009 0.002 0.006
LLaMa2-7B || 0.020 0.083 1.000 | 0.009 0.011 0.006 || 0.023 0.023 1.000 | 0.017 0.013 0.009
Base top-k GPT2-xI 0.045 0.009 0.891 [0.000 0.009 0.018 || 0.006 0.01T 0.789 | 0.013 0.004 0.021
LLaMa2-7B || 0.006 0.006 0.772 | 0.011 0.017 0.009 || 0.018 0.007 0.816 | 0.016 0.020 0.005
Unbiased GPT2-xI 0.009 0.009 0.037 [0.000 0.0I8 0.018 || 0.019 0.017 0.110 | 0.006 0.002 0.006
i LLaMa2-7B || 0.011 0.017 0.028 | 0.003 0.023 0.017 || 0.009 0.011 0.232 | 0.020 0.005 0.007
Dummy distribution 0.018 0.011 1.000 | 0.011 0.005 0.010 || 0.011 0.004 1.000 | 0.015 0.002 0.011
top-p GPT2-xI 0.050 0.030 1.000 | 0.035 0.020 0.015 || 0.019 0.002 0.973 | 0.01T 0.017 0.004
LLaMa2-7B || 0.101 0.028 0.987 | 0.018 0.006 0.009 || 0.007 0.005 0.984 | 0.011 0.005 0.000
Compressed ton-k GPT2-xI 0.052 0.022 0.599 | 0.004 0.004 0.000 || 0.013 0.006 0.666 | 0.017 0.0IT 0.008
p-v LLaMa2-7B || 0.160 0.044 0.114 | 0.006 0.006 0.010 || 0.013 0.009 0.637 | 0.022 0.015 0.020
Unbiased GPT2-xI 0.053 0.019 0.148 [0.004 0.0IT 0.000 || 0.019 0.008 0.063 | 0.017 0.006 0.006

LLaMa2-7B || 0.183 0.050 0.403 | 0.014 0.009 0.024 || 0.013 0.009 0.113 | 0.018 0.004 0.005

Table 1: Main experiments on the IMDb dataset and tweets, under multiple variations of sampling
mechanisms and models. We report the fraction of samples whose corresponding null hypothesis
is rejected (p < 0.01, meaning that each experiment should exhibit an expected false-positive rate
of 0.01), under the three proposed statistical tests (frequency, correlation, and perplexity). A value
close to the expected false-positive rate of 0.01 signifies that the statistical test fails to detect that
the true key has been used. As a sanity check, we run the same experiments on messages decoded
using the wrong key, and observe results in line with expectations. We highlight in bold experiments
where more than half of samples are detected as being encrypted with the given key. To satisfy the
assumptions of the tests, we select only samples consisting of at least 20 tokens.

4 DETECTION

Under both formulations, the following properties need to be satisfied to elude detection: (/) the
encoded plaintext (i.e. after encoding but before encryption) must be indistinguishable from white
noise (i.e. a stream sampled from a uniform distribution); (2) the plaintext message must appear as if
it was sampled from the model. These properties are satisfied if the language model is representative
of natural language, or likewise, if the message falls within the domain on which the language
model was trained. Otherwise, the resulting bias can in principle be detected using statistical tests.
While these are not meant to prove the adherence of our method to the security model proposed in
Appendix A.1, they represent a useful tool for assessing the goodness of fit of the model, as well as
a sanity check. We refer the reader to Appendix A.2 for a more detailed discussion of correctness.

The first property can be empirically tested using standard techniques to assess the quality of random
number generators (Marsaglia, 2008). We employ two tests, a frequency test to evaluate whether all
symbols occur with the same probability, and a correlation test to verify whether symbols are se-
quentially uncorrelated. For the frequency test, we perform a X2 (chi-squared) test on a sliding
window of 8 bits over the encoded plaintext, testing the null hypothesis that the observed frequen-
cies have been sampled from a uniform distribution. For the correlation test, we employ a runs
test (Bradley, 1960) over individual bits, which tests the null hypothesis that samples are uncorre-
lated. These tests are efficient as they do not require querying the model, but detecting a bias with a
sufficient significance level might only be feasible with a particularly weak model.

Evaluating the second property is less trivial, as the task is equivalent to detecting whether a given
text was (or was not) generated using a language model. There have been a plethora of works in this
area (Guo et al., 2023; Clark et al., 2021; Mitchell et al., 2023; Kirchenbauer et al., 2023; Sadasivan
et al., 2023; Tang et al., 2023). In this work, we adopt a statistical approach. Each message has
an associated information content expressed in bits, i.e. the theoretical length of the message if it
was compressed optimally. For a large number of tokens (e.g. N > 20), the distribution of this
measure converges to a Gaussian distribution with a mean and variance determinable analytically
from the model outputs. After determining these parameters, we apply a two-tailed test to infer
whether the message falls outside the mass of the distribution, meaning that it is unlikely to have
been generated by the model. We informally name this test perplexity test since the term is more
familiar in the literature, although it is not directly based on the common perplexity measure used to
evaluate LLMs. We provide more details and assumptions in the Appendix A.4.

5 EXPERIMENTS

Experimental setting To validate our proposed statistical tests on real-world data, we conduct
a series of experiments using two publicly available LLMs: GPT2-xl (1.5B parameters) (Radford

Under review as a conference paper at ICLR 2024

etal.,2019) and LLaMA2-7B (7B parameters) (Touvron et al., 2023). We also evaluate the impact of
various sampling techniques used in the literature: in addition to unbiased sampling, we assess top-k
sampling (k = 50) as well as a popular setting whether both temperature scaling and top-p sampling
are used (7 = 0.8, p = 0.9). To avoid setting probabilities to exactly zero (thus making some
tokens unsatisfiable), we smooth the biased distribution by mixing it with the original distribution
(P = (1—1) Pbiasea+1 Poriginal» t = 0.4). Furthermore, to assess the reactivity of the tests, we include
a very simple baseline consisting of a randomly generated distribution (dummy distribution). Each
experiment is carried out using both our proposed encoders: the base encoder, which encodes each
token as a fixed-length symbol, and the compressed encoder, which encodes tokens using variable-
length symbols. We conducted our experiments using two datasets that contain colloquial text:
IMDDb reviews and Twitter messages (see A.S5). This selection was made to mirror the authentic
distribution of textual content and different communication styles. Finally, we also present some
qualitative results on images encoded using the publicly available version of ImageGPT-large (Chen
et al., 2020), which operates at 32 x 32 resolution with pixel-level tokenization.

Top-p sampling & temperature Unbiased sampling

Dummy . A e o N
Distribution GPT2-xI LLaMa2-7B GPT2-xI LLaMa2-7B

0.5 e

0.05
0.01

Base
Encoder

-001 —— Wrong key |
.0001 Correct key

0.5 A=]

0.05
0.01

.001
.0001

Compressed
Encoder

©

5 10 50 100 50 100 100 300 500 100 300 500
Message length (tokens)

Figure 4: Distribution of the p-values of the perplexity test, as a function of the message length
(IMDb dataset). Each line depicts the median p-value across different texts in the dataset, whereas
the shaded area describes the 25th and 75th percentiles. As a sanity check, we also show the p-
values corresponding to messages decoded using the wrong key, which are expected to float around
p = 0.5 regardless of length.

Results We show our main quantitative results in Table 1, where we run all three statistical tests
for each model and sampling setting. Under the considered datasets, we observe that the model-free
tests (frequency test and runs test) are effective only on severely mismatched distributions such as
the dummy one, but fail to detect when the correct key is used in LLM experiments. The perplexity
test, which uses the model outputs, appears to be more sensitive in our experiments: it successfully
detects that the correct key has been used in the biased settings (top-p and top-k sampling), but
it is still unreliable in the unbiased setting. This suggests that modern LLMs learn an accurate
statistical representation of natural language, whose bias is intricate to pick up even by the most
sensitive statistical tests. We also observe that the portion of successful detections increases when
the compressed encoder is used, as the tests pick up on the slight bias introduced by the Huffman
encoding. This is however expected to play a significant role only on lengthy messages, which
brings us to our next experiment: analysing the dependency of the perplexity test on the length of the
message. We show our findings in Figure 4, where we plot the distribution of p-values as a function
of message length. We observe that using a dummy distribution leads to a successful detection in as
few as 5—-10 tokens, and that biased sampling techniques can also be detected fairly quickly (20-50
tokens). This is due to the fact that top-p and top-k sampling set some probabilities to zero (or
close to zero in our smoothed variant), providing an easy cue for the test when these tokens appear
in a message. In the unbiased sampling scenario, we observe that the base encoder appears to be
undetectable even for long sequences (500+ tokens), whereas the statistical bias of the compressed
encoder is detected with a sufficient significance level after 300400 tokens. Surprisingly, the bias
is detected faster on LLaMA?2, despite this model being larger and more recent than GPT2. We
attribute this effect to the smaller size of the vocabulary of LLaMA (32k tokens vs 50k tokens of
GPT-2), which makes the Huffman encoding less effective.

Under review as a conference paper at ICLR 2024

Qualitative examples We present qualitative results when decrypting text using wrong keys in Ta-
ble 2 and Table 3 in the Appendix. Finally, we show a set of qualitative examples on ImageGPT in
Figure 5, where we can also directly visualize the encoded and encrypted representations, further
validating our assumptions.

‘ PROMPT CORRECT MESSAGE ‘ DECODING 1 DECODING 2 DECODING 3 ‘
LOCATION OF THE 48 STREET 44 WALL STREET, 15 W 41ST ST, 100 BROADWAY, NEW
MEETING. CITY: NEW AND, PARK AVE NEW YORK, NY 10005 NEW YORK, NY 1 YORK, NY 10005

YORK. ADDRESS:

ARE ALL GATHERING APPRECIATION NIGHT”

HEY, DID YOU HEAR WE APRIL’S SUPRISE PARTY!
TONIGHT FOR:

THE KARAOKE CONTEST! A LIVE WEBINAR ”CRAZY CAT LADY

Table 2: Qualitative examples of decoding messages that were decrypted with the wrong keys.
Statistical properties of the language model that we are using — LLaMa2-7B in this case — ensure
that decoded messages result in coherent and plausible texts.

Input Encoded Encrypted Decrypted Decrypted using wrong key(s)

Figure 5: Example of applying our method to ImageGPT on RGB images of size 32 x 32 from
CIFAR-10. We use the base encoder with k& = 24 bits/pixel, which allows for easy visualization of
the encoded plaintext (second column) and the ciphertext (third column) by mapping each encoded
symbol to a 24-bit RGB value. As expected, the encoded image (prior to encryption) is perceptually
indistinguishable from noise, providing a further visual validation of the algorithm. While the origi-
nal image is reconstructed correctly when decrypted with the proper key, decrypting it with a wrong
key leads to a random plausible image.

6 CONCLUSION

We proposed a framework for achieving plausibly deniable encryption using LLMs. Our approach
combines the statistical properties of these models with a layer of standard encryption, providing
a way to generate plausible messages when the ciphertext is decrypted using any wrong key. We
proposed a minimally redundant scheme based on Huffman coding which achieves compression in
addition to encryption, and devised a framework to assess the robustness of these representations
against statistical tests. Finally, we demonstrated a set of qualitative examples on both text and
images. In future work, we would like to extend our approach to other domains such as audio, and
design a broader suite of statistical tests to find potential attack vectors.

Limitations As mentioned, the model weights constitute part of the algorithm and need to be
agreed upon and stored by all parties. Furthermore, since the language model must be evaluated
sequentially, the decoding process can be slow. Encoding on the other hand can still be parallelized.
This limitation is however expected to play a lesser role in the future, thanks to more efficient
implementations as well as quantized variants of these models that can also be run on embedded
devices. This is also corroborated by recent advances in specialized hardware for deep learning
models (Shahid & Mushtaq, 2020; Dhilleswararao et al., 2022).

Under review as a conference paper at ICLR 2024

REFERENCES

George EP Box and Mervin E Muller. A note on the generation of random normal deviates. The
annals of mathematical statistics, 29(2):610-611, 1958.

James Vandiver Bradley. Distribution-free statistical tests, volume 60. United States Air Force,
1960.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Milan Broz and Vashek Matyas. The truecrypt on-disk format—an independent view. IEEE security
& privacy, 12(03):74-77, 2014.

Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In Advances
in Cryptology—CRYPTO’97: 17th Annual International Cryptology Conference Santa Barbara,
California, USA August 17-21, 1997 Proceedings 17, pp. 90-104. Springer, 1997.

Shashikala Channalli and Ajay Jadhav. Steganography an art of hiding data. arXiv preprint
arXiv:0912.2319, 2009.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International conference on machine learning, pp. 1691—

1703. PMLR, 2020.

Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan, and Noah A
Smith. All that’s” human’is not gold: Evaluating human evaluation of generated text. arXiv
preprint arXiv:2107.00061, 2021.

Joan Daemen and Vincent Rijmen. The design of Rijndael, volume 2. Springer, 2002.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Marcus
Hutter, and Joel Veness. Language modeling is compression, 2023.

Pudi Dhilleswararao, Srinivas Boppu, M Sabarimalai Manikandan, and Linga Reddy Cenkeramaddi.
Efficient hardware architectures for accelerating deep neural networks: Survey. IEEE Access,
2022.

Jarek Duda. Asymmetric numeral systems. arXiv preprint arXiv:0902.0271, 2009.

Markus Diirmuth and David Mandell Freeman. Deniable encryption with negligible detection prob-
ability: An interactive construction. In Advances in Cryptology—EUROCRYPT 2011: 30th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn,
Estonia, May 15-19, 2011. Proceedings 30, pp. 610-626. Springer, 2011.

Lukas Edman, Antonio Toral, and Gertjan van Noord. Subword-delimited downsampling for better
character-level translation. arXiv preprint arXiv:2212.01304, 2022.

Horst Feistel. Cryptography and computer privacy. Scientific american, 228(5):15-23, 1973.

Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography engineering: design princi-
ples and practical applications. John Wiley & Sons, 2011.

Aron Gohr. Improving attacks on round-reduced speck32/64 using deep learning. In Advances in
Cryptology—CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part II 39, pp. 150-179. Springer, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

10

Under review as a conference paper at ICLR 2024

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yu-
peng Wu. How close is chatgpt to human experts? comparison corpus, evaluation, and detection.
arXiv preprint arXiv:2301.07597, 2023.

John Hewitt, Christopher D Manning, and Percy Liang. Truncation sampling as language model
desmoothing. arXiv preprint arXiv:2210.15191, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

David A Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098-1101, 1952.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

Marek Klonowski, Przemystaw Kubiak, and Mirostaw Kutytowski. Practical deniable encryption. In
SOFSEM 2008: Theory and Practice of Computer Science: 34th Conference on Current Trends
in Theory and Practice of Computer Science, Novy Smokovec, Slovakia, January 19-25, 2008.
Proceedings 34, pp. 599-609. Springer, 2008.

Cetin Kaya Kog¢. About cryptographic engineering. Springer, 2009.
Andrey Kolmogoroff. Grundbegriffe der wahrscheinlichkeitsrechnung. 1933.

LibreCrypt. Open-source disk encryption for windows. URL https://github.com/t-d-k/
LibreCrypt.

George Marsaglia. The marsaglia random number cdrom including the diehard battery of tests of
randomness. http://www. stat. fsu. edu/pub/diehard/, 2008.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Locally typical sampling. Transac-
tions of the Association for Computational Linguistics, 11:102—121, 2023.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. De-
tectgpt: Zero-shot machine-generated text detection using probability curvature. arXiv preprint
arXiv:2301.11305, 2023.

James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris Dworkin, James Foti,
and Edward Roback. Report on the development of the advanced encryption standard (aes).
Journal of research of the National Institute of Standards and Technology, 106(3):511, 2001.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Savan Oswal, Anjali Singh, and Kirthi Kumari. Deflate compression algorithm. International Jour-
nal of Engineering Research and General Science, 4(1):430-436, 2016.

11

https://github.com/t-d-k/LibreCrypt
https://github.com/t-d-k/LibreCrypt

Under review as a conference paper at ICLR 2024

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

Richard Clark Pasco. Source coding algorithms for fast data compression. PhD thesis, Citeseer,
1976.

Fabien AP Petitcolas, Ross J Anderson, and Markus G Kuhn. Information hiding-a survey. Pro-
ceedings of the IEEE, 87(7):1062—-1078, 1999.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Md Atiqur Rahman and Mohamed Hamada. Lossless text compression using gpt-2 language model
and huffman coding. In SHS Web of Conferences, volume 102, pp. 04013. EDP Sciences, 2021.

Jorma J Rissanen. Generalized kraft inequality and arithmetic coding. IBM Journal of research and
development, 20(3):198-203, 1976.

Ronald L Rivest et al. Chaffing and winnowing: Confidentiality without encryption. CryptoBytes
(RSA laboratories), 4(1):12—17, 1998.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

Amna Shahid and Malaika Mushtaq. A survey comparing specialized hardware and evolution in
tpus for neural networks. In 2020 IEEE 23rd International Multitopic Conference (INMIC), pp.
1-6. IEEE, 2020.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
Journal, 27(3):379-423, 1948.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Mark Stamp. Information security: principles and practice. John Wiley & Sons, 2011.

Samuel Stevens and Yu Su. Memorization for good: Encryption with autoregressive language mod-
els. arXiv preprint arXiv:2305.10445, 2023.

Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. The science of detecting llm-generated texts. arXiv
preprint arXiv:2303.07205, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ari Trachtenberg. Say it ain’t so-an implementation of deniable encryption.

Chandra Shekhara Kaushik Valmeekam, Krishna Narayanan, Dileep Kalathil, Jean-Francois Cham-
berland, and Srinivas Shakkottai. LImzip: Lossless text compression using large language models.
arXiv preprint arXiv:2306.04050, 2023.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
ditional image generation with pixelcnn decoders. Advances in neural information processing
systems, 29, 2016.

Adron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, pp. 1747-1756. PMLR, 2016.

Jan Van Leeuwen. On the construction of huffman trees. In ICALP, pp. 382410, 1976.

12

Under review as a conference paper at ICLR 2024

Douglas Walton. Plausible deniability and evasion of burden of proof. Argumentation, 10(1):47-58,
1996.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824-24837, 2022.

Emily Wenger, Mingjie Chen, Francois Charton, and Kristin E Lauter. Salsa: Attacking lattice
cryptography with transformers. Advances in Neural Information Processing Systems, 35:34981—
34994, 2022.

Lili Yu, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.

Megabyte: Predicting million-byte sequences with multiscale transformers. arXiv preprint
arXiv:2305.07185, 2023.

13

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 SECURITY MODEL

We describe our set of assumptions and our adopted security model. Our scheme is closest to the
shared-key deniable encryption scheme proposed in Definition 4 of Canetti et al. (1997), in which the
sender and receiver agree upon a shared secret key s prior to exchanging information, but presents
some important differences w.r.t. the deniability formulation. We also assume a white-box threat
model, in which a potential attacker has access to the algorithm and the encoder weights. Denoting
our communication protocol as 7, our security model needs to satisfy the following properties:

Correctness: when the correct key is used, the receiver must decrypt the original message without
loss. Although the definition in Canetti et al. (1997) allows for a negligible error tolerance,
here we assume a lossless scenario (after accounting for tokenization or quantization).

Security: the protocol must be secure against eavesdropping. More formally, denoting the com-
munication between parties as COM,; (i.e. the transmitted ciphertext), for any two random
messages mq, mo and random key s, it must follow that COM, (m1, s) and COM, (a2,)
are indistinguishable in the distributional sense.

Distributional Deniability: when an alternative key is used, the decryption on the receiver’s end
must result in a plausible message. Specifically, for any message m; (the original message)
and keys s1, so chosen at random, let ¢ = COM, (m1, s1) be the communication of 17,
encrypted with the correct key s1, and let mo be the decryption of ¢ with the alternative key
so. It must follow that the distributions of m; and my are indistinguishable.

Throughout this work, we rely on the definition of computational indistinguishability provided in
Definition 1 of Canetti et al. (1997), according to which two ensembles of distributions should be
indistinguishable by a polynomial-time adversary.

As opposed to the deniability property assumed by Canetti et al. (1997), in which my can be chosen
arbitrarily (and the corresponding decoy key s- is derived through a “faking” function), our formu-
lation allows for less control over mo and simply assumes that it is plausible (i.e. it is drawn from
the distribution of real messages). This somewhat weaker assumption is however counterbalanced
by a greater flexibility regarding the scenarios in which our method can be applied. For example, our
scheme can be implemented in a way that does not introduce redundancy, nor does it require a key
as long as the message (a well-known limitation of one-time pads). Furthermore, our formulation
allows the receiver to choose any decoy key so, and as late as at the time of attack. Finally, control
over my can also be improved by prompting, which we study in subsection 3.3.

Another important consideration is that, although our scheme applies to any distribution of messages
m (e.g. a known multinomial distribution), in practice the true distribution of m may be unknown,
such as in the case of natural language or images. Therefore, we assume the availability of a model
that is representative of the true distribution of messages. If this were not the case, the encoding
scheme would be weaker and the bias would be detectable by statistical tests. We show empirically
in section 5 that publicly available language models are indeed a good fit of the true distribution of
natural language.

A.2 CORRECTNESS

We now assess the adherence of our proposed method to the security model introduced in subsec-
tion A.l. Firstly, our method assumes the existence of an underlying symmetric encryption algo-
rithm that is correct, secure, and whose decryption of a ciphertext ¢ with a key s chosen at random is
uniform (DRBG property). We adopt the well-known AES as our cryptographic primitive of choice,
but our method can use any symmetric-key algorithm as long as it satisfies the above properties. As
for the end-to-end protocol, we can finally observe that:

Correctness follows from the correctness of the underlying encryption algorithm, and from the
invertible nature of the encoding/decoding scheme (the process is fully deterministic).

Security also follows from the security of the underlying encryption algorithm.

14

Under review as a conference paper at ICLR 2024

Distributional Deniability under the assumption that the probability distribution of messages is
known explicitly or is represented by a perfect model (as stated in Appendix A.l), this
property is satisfied if the distribution of the encoded plaintext e corresponding to a random
message m is uniform. For a message m, encoded into e, this is guaranteed by the ideal
model assumption (the model maps the message distribution to the uniform distribution).
For a ciphertext decrypted into e; using a random key so, the uniformity of e is guaranteed
by the DRBG property of the underlying encryption algorithm. Finally, if es is uniform,
decoding ey into my is by definition equivalent to sampling from the probability distribution
of m using es as a source of entropy. We can thus conclude that the distribution of m; is
indistinguishable from that of ma.

A.3 PADDING STRATEGIES

Optimal length As mentioned, padding is a crucial aspect in ensuring detection is unlikely when
a wrong key is used. If a message terminator is expected, it is important to pad the message to
a sufficient length such that the terminator always appears in the decrypted message. A simple
strategy involves agreeing on a message terminator (e.g. special <end-of—-text> token, newline,
period, comma) — which can be part of the algorithm or even transmitted as part of the ciphertext
— and empirically finding the minimum length in which the terminator appears in a given portion
(e.g. 99%) of randomly sampled messages, essentially trading off computation/memory for a desired
false-positive rate. For reference, we show the empirical distribution for a set of potential terminators
in Figure 6 (in the unconditional case). We observe that the <end-of-text> token is often not
a suitable choice, as it appears sparingly and sometimes exceeds the maximum length supported by
the model (at least on GPT2). Other terminators (period, newline) are however more suitable.

B <end-of-text> B Period (.) mm Newline (\n)
— — ale o
0 256 512 768 Max 0 256 512 768 Max 0 256 512 768 Max
Message length (tokens) Message length (tokens) Message length (tokens)

Figure 6: Distribution of message lengths on GPT2 according to different sentence terminators
(special end-of-text token, period, and newline), when sampling from the model in an unbiased
fashion and without prompt.

Prompting Another solution, which can be combined with the aforementioned one, involves
prompting. For instance, it is possible to specify a target length as part of the prompt (e.g. a max-
imum number of characters or words), or even specify the terminator that must be used. Other
techniques in a similar spirit, albeit more hardcoded, involve promoting certain tokens during the
sampling mechanism to bias the generation process toward shorter sentences, although such a bias
may facilitate detection using statistical tests.

A.4 STATISTICAL TESTS

In this section, we provide more information about our proposed perplexity test. For a message
consisting of N tokens (where each token is indexed sequentially by a position ¢, and across the
vocabulary by an index j), we obtain a sequence of discrete probability distributions pl”! by au-
toregressively feeding each token through the model. Each token j in a given position ¢ has an
associated information content Il = — log, p[?] , which describes the number of bits (or more for-
mally, Shannons) needed for optimally encoding the token given its relative probability. It follows
that the total information content of the message can be computed by summing along the length
dimension: iy = va I = — Ziv log, pgl]. While it is clear that each individual distribution

p!? is a discrete distribution that depends on the output of the model, for a sequence of N tokens

15

Under review as a conference paper at ICLR 2024

N=1 N=2 N=5 N =10 N =20 N =50 N =100

—— Predicted
B Measured

f

10 20 20 40 25 50 75 50 100 100 150 200 300 400 700 800 900
Information content (bits or Shannons)

Figure 7: Distribution of the total information content for messages of varying length sampled during
a simulation. We show both the empirical distribution (histograms) and our prediction obtained by
estimating the parameters of the associated Gaussian distribution.

and a white-box knowledge of each probability distribution predicted by the model, can we learn
more about the distribution of o7 As an example, consider Figure 7, where the distribution of
the information content as a function of the message length is depicted. In this example, we sample
a large number of messages from a sequence of simulated distributions with entropies similar to
those encountered in natural language. Although the individual distributions are non-Gaussian, as
N increases we observe that the distribution of the sum converges to a Gaussian, which is in line
with the central limit theorem. We can analytically estimate its parameters as follows:

i M i M
plil = Z Zpgch] log, pLh] o2l — Z Zpgch] <_ log, pLh] _ M[h])2
h k h k

Afterwards, we can run a two-tailed test to test the null hypothesis that the information content [io
of the sequence under consideration was sampled from A (,LL[N I, o2V]) with a significance level p.

We would also like to highlight that the above formulation assumes that the distribution is stationary
across positions 7, which is not the case for language models. For a better estimate, a possibility is to
sample a large number of trajectories and average their statistics, which however makes the test less
effective in real-world scenarios. For instance, for a multilingual model, it is expected that different
languages (e.g. English and Chinese) have varying perplexities, and averaging them would render
the test less specific. Our formulation can be regarded as a contextualized variant of the test where
each distribution is conditioned on previous tokens.

A.5 EXPERIMENTAL SETUP

The datasets used for our experiments (IMDb reviews and Twitter messages), are avail-
able at https://huggingface.co/datasets/imdb and https://huggingface.
co/datasets/carblacac/twitter-sentiment-analysis. For our analysis, we con-
sider 1000 samples from the training data. We also observe that the Twitter dataset is predominantly
characterized by samples with short sequences, leading to a small number of tokens after tokeniza-
tion, whereas IMDD reviews tend to be longer.

To efficiently compute Huffman codes, we provide a C++ implementation based on the efficient
algorithm proposed in Van Leeuwen (1976). The algorithm’s improved efficiency not only expedites
the encoding and decoding processes but also contributes to resource optimization.

A.6 ADDITIONAL QUALITATIVE EXAMPLES

We provide, supplementary to Table 2, more qualitative results when decrypting messages using the
wrong key in Table 3.

16

https://huggingface.co/datasets/imdb
https://huggingface.co/datasets/carblacac/twitter-sentiment-analysis
https://huggingface.co/datasets/carblacac/twitter-sentiment-analysis

Under review as a conference paper at ICLR 2024

PROMPT

CORRECT MESSAGE

DECODING 1

DECODING 2

DECODING 3

WE CAN MEET
AS ALWAYS AT
AMSTERDAM
SQUARE. LETS TRY
TO MAKE IT AT:

11 AM.

2:30PM ON THE DOT.

SUNDAY, 15.00H

12:00PM SHARP

HERE IS THE
PASSWORD FOR
MY ACCOUNT:

LEONARDIDAVINCI

123456

123456789

1C-666-573

I HAVE SOME INSIDER
INFORMATION
OF WHICH
STOCK TO BUY:

APPLE

AMC.

AAPL AND AMD.

SUNE.

I FINALLY GOT A

HOW TO PERFORM

18TH CENTURY

500px.coMm. IT’s

3D PRINTING

AT WORK 1

SIDE PROJECT 1
TOLD YOU ABOUT

VOLCANO IN ICELAND
HAD ERUPTED.

READING A BOOK

GREAT IDEA FOR PLAUSIBLE FRENCH CUISINE. A WEBSITE FOR AND DECIDED TO

MY RESEARCH ON DENIABILITY PHOTOGRAPHERS. START A BLOG.
USING LLMS.

TODAY MORNING WAS WORKING MY 1ST HEARD THAT THE FINISHED MANAGED TO FIGURE

OUT HOW TO USE
MY COMPUTER

THE LAUNCH OF
THE NEW IPHONE 16
WILL BE MADE ON

FRIDAY THE 28TH
OF OCTOBER.

8TH MARCH 2023.

SEPTEMBER 7TH.

THE SAME DAY AS
THE APPLE EVENT.

Table 3: Additional qualitative examples of decoding messages that were decrypted with the wrong

keys.

17

	Introduction
	Background and Related Work
	Method
	Base Method
	Compressed Encoding
	Trivial extensions
	Connection to other domains
	Implementation details

	Detection
	Experiments
	Conclusion
	Appendix
	Security Model
	Correctness
	Padding strategies
	Statistical tests
	Experimental Setup
	Additional qualitative examples

