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Abstract
This paper proposes to learn self-shadowing on full-body, clothed human postures from monocular colour image input, by
supervising a deep neural model. The proposed approach implicitly learns the articulated body shape in order to generate
self-shadow maps without seeking to reconstruct explicitly or estimate parametric 3D body geometry. Furthermore, it is gen-
eralisable to different people without per-subject pre-training, and has fast inference timings. The proposed neural model is
trained on self-shadow maps rendered from 3D scans of real people for various light directions. Inference of shadow maps for
a given illumination is performed from only 2D image input. Quantitative and qualitative experiments demonstrate comparable
results to the state of the art whilst being monocular and achieving a considerably faster inference time. We provide ablations
of our methodology and further show how the inferred self-shadow maps can benefit monocular full-body human relighting.

CCS Concepts
• Computing methodologies → Image-based rendering; Visibility; Neural networks;

1. Introduction

Modelling and rendering self-shadowing, or equivalently self-
visibility, as well as cast shadows, are extensively studied in com-
puter graphics literature through shadow mapping [SWP11], real-
time soft shadows [HLHS03], shadow volumes [LWGM04], and
lighting-independent ambient occlusion shading effects [RBA09].
Ray-tracing methods trace (many) shadow rays from every surface
point to calculate lighting visibilities and contributions [PJH16].

However, all of these well-known techniques require the 3D
scene geometry, in some form of representation, to be able to ren-
der shadowing effects. Recently, there are some efforts to learn to
render these effects without the knowledge of geometry for var-
ious solid [SZP∗23] or articulated object categories such as hu-
mans [ZLWY23,CL22, SCHG23, EGH23]. This is of particular in-
terest for realistic lighting effects in mixed reality scenes containing
foreground actors or presenters, which are captured from monocu-
lar views in front of chroma key backgrounds in studios.

Recent methods that model clothed human self-shadowing in/for
the relighting process fall into two categories. The first class of ap-
proaches require first estimating the corresponding 3D body geom-
etry explicitly, in the form of triangle meshes [JYG∗22], or point
clouds [ZLWY23], or implicitly through parametric human mod-
els [CL22], from monocular or multiple views, which, in practice,
is a computationally expensive task. The second class of methods
are based on spherical harmonics (SH) bases, in image space, to
represent lighting, and light transport (visibilities, surface normals,
and potentially materials), which, although fast, suffer from mod-
elling high-frequency shadowing effects [JYG∗22, NRH03].
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Figure 1: Overview of our method to infer a self-shadow mask (vis-
ibility) given an input image cut-out, and the desired light direc-
tion. Surface normals are generated using an available, pre-trained
model and fed to the network as an auxiliary signal.

In this paper, to address both of the above issues, we propose to
learn self-shadow (or visibility) binary maps for a given (distant)
light direction on articulated human postures without explicit esti-
mation, or having the prior of 3D body geometry (see Figure 1).
More specifically, the self-shadow maps are defined as the binary
pixel values in the camera image space, corresponding to occlusion
of points on the object, here the subject’s body, from an incoming
light direction view point.
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We propose a deep convolutional encoder-decoder architecture
to learn the transformation from an input colour image cut-out,
and a light direction to the corresponding self-shadow map. Sur-
face normals are generated using a pre-trained network – extracted
from PIFuHD [SSSJ20] – and fed to the model as an auxiliary sig-
nal. We train the proposed model on ray-traced self-shadow maps
of 3D scanned models taken from 3D People [3DP] for various light
directions and with data augmentation. We use the remaining mod-
els from 3D People that have not been used for training to evaluate
the proposed method’s generalisation to unseen people. We provide
ablations of our approach with regard to the choice of model’s la-
tent space transformation, and the input image saturation levels. We
further evaluate our method on the subjects of the People Snapshot
Dataset [AMX∗18] using the pre-trained, person-specific models
provided by Relighting4D [CL22]. Compared to Relighting4D, we
demonstrate improvements in the inference speed (about 1 to 2 or-
ders of magnitude faster), and generalisation, whilst our approach
does not require per-person pre-training with many frames. Finally,
we show experimental evaluation how the generated self-shadow
maps as a pre-trained auxiliary signal can improve estimated dif-
fuse shadings in the context of monocular full-body human relight-
ing.

In summary, our main contributions are:

• A fast, generalisable, neural model to infer self-shadow maps
for clothed human bodies, from monocular input colour image
cut-outs, without the prior knowledge of or the requirement to
estimate explicit/implicit 3D human body geometry; and

• Demonstration of the use of estimated self-shadows for im-
proved relighting of people in monocular setup without a re-
quirement for 3D shape estimation.

2. Related Work

In this section, we focus on the work most related to learning vis-
ibility for human relighting. For the advances in neural methods
for rendering and (re)lighting, refer to the recent surveys by Tewari
et al. [TTM∗22], and Einabadi et al. [EGH21], respectively.

Explicit Geometry. Zheng et al. [ZLWY23] learn visibility
fields for a uniform, discrete set of 64 directions from multi-
ple RGB-D views, which are then used to render shading im-
ages with a physically-based process. However, multiple cali-
brated views including depth values are needed to build a prior
point cloud of the subject in the first stage. Similarly, Chen and
Liu [CL22] is geometrically conditioned on a parametric human
model, SMPL [LMR∗15] or its variants, estimated from input
video in an iterative, time-consuming manner. Here, estimated
vertex-dependent latent features are used to infer visibility maps
for a discrete light source direction, among 32× 16, i.e. 512 pos-
sibilities, via a fully-connected, multilayer submodule – which
is naturally slow due to per (chunk of) pixel(s) inference com-
pared to our proposed convolutional model. Both of these meth-
ods [ZLWY23, CL22] are person-specific and not generalisable
to new people after training. Ji et al. [JYG∗22] estimate explicit
3D meshes using PIFuHD [SSSJ20] from monocular input image,
which are then fed into a path tracer with a neural refinement mod-
ule to infer the final shading. Both the 3D mesh estimation and its
rendering via a path-tracer are computationally expensive.

Note that Iqbal et al. [ICN∗23] and Sun et al. [SCHG23] explic-
itly estimate 3D geometry (respectively through a SMPL model,
and 3D canonical volumes), but do not model visibility (or equiva-
lently occlusions), i.e. only the subsequently derived surface nor-
mals are employed in the renderer module to relight humans.
Therefore, relit images unavoidably do not demonstrate visibility-
related self-shadowing effects on the body. Also, the training of Sun
et al. [SCHG23] is person-specific.

In comparison, our proposed approach does not require estimat-
ing explicit parametric or non-parametric 3D geometry of the hu-
man body for modelling visibility – which are yet to be rendered
by neural or physically-based renderers – and is therefore faster in
inference. Also, the training procedure of our model is not person-
specific and generalises to different people and clothing.

Image-based Modelling of Light Transport. The seminal relight-
ing work of Kanamori and Endo [KE18] models clothed human
body visibility with surface normals inseparably included (baked-
in) represented by second-order spherical harmonics, from monoc-
ular input colour images. Relit images are rendered for image-
space by the dot product of the SH coefficients of light transport,
and target lighting. Tajima et al. [TKE21] build upon the previ-
ous work [KE18] by adding a second photo-domain adaptation
step for enhanced realism, and improvements to remove diffuse
albedo-light colour inference ambiguity. Lagunas et al. [LSY∗21]
enhance the work of Kanamori and Endo [KE18] by lifting the as-
sumption of Lambertian material, by training a similar model archi-
tecture on synthetically generated images of human models with
specular reflectance material properties. This category of meth-
ods [LSY∗21, TKE21, KE18] are generalisable to different people.

Our method, on the contrary, models visibility separately (not
baked-in), and further improves on the inference quality by not
being limited to spherical harmonic representation – this limita-
tion is specifically reported and evaluated by Ji et al. [JYG∗22]
as [LSY∗21, TKE21, KE18] are unable “to model high-frequency
shadows due to reliance on spherical harmonics representation of
lighting.” Also, it is noteworthy that a low order SH projection in-
herently cannot precisely model and localise a directional illumi-
nation signal (see Appendix A).

3. Methodology

In this section, first we briefly describe the proposed model. Then,
we present the training data generation process, and the training
and implementation details.

Model. The proposed encoder-decoder architecture with residual
blocks [HZRS16] in the latent space is based on U-Net [RFB15]
and is depicted in Figure 1 and Table 1. U-Net-like architec-
tures have successfully been used in image-to-image transforma-
tion tasks in general [IZZE17], and recently for estimating shad-
owing effects [SLZ∗22, LLZ∗20].

Note that skip connections exist between each 5 corresponding
down- (DS) and up-sampling (US) blocks. Each DS/US block con-
tains multiple sets of convolution and instance normalisation layers,
followed by a last bilinear upsampling layer in the US block, where
the last convolution layer in the DS block has stride 2. The model
has 45.8 million parameters.

© 2024 The Authors.
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Table 1: The convolutional model architecture

Module Layer Kernel Resample Output
Input - 512×512×9

Encoder DS×5 3×3 Stride 2 16×16×512
Latent T. ResB ×2 7×7 - 16×16×512
Decoder UL×5 3×3 Upsample ×2 512×512×1

tanh - - 512×512×1

The inputs to the model are a masked RGB image, auxiliary sur-
face normals estimated by the pre-trained PIFuHD [SSSJ20] frontal
surface normal generator, and the target light direction (in unit vec-
tor representation), and so in total 9 channels. The output is the in-
ferred 1-channel binary self-shadow map. In Section 4.2, we ablate
our model with regard to the choice of the latent space transforma-
tion.

Data Generation. We take 150 3D scanned models from the 3D
People dataset [3DP], 120 for training (of which 10% for valida-
tion), and 30 reserved for generalisation evaluations. Each model
is rendered from 9 viewpoints distributed around the subject, at a
distance of 175 cm and a height of 90 cm from the floor. The cam-
era’s field of view is 70 degrees and the principal axis is parallel
to the floor. All images are rendered by pbrt-v3 [PJH16] with the
resolution of 512× 512, and 32 samples per pixels. There are in
total about 62k training, 7k validation, and 17k generalisation self-
shadow maps in the dataset.

The choice of the camera parameters for generating training and
test images is to motivate normalised appearance of the subject in
the images with regard to scale and position. This, in principle, does
not affect the generalisation capability of the model regarding the
subject’s scale and position, but does so for different camera angles
due to various elevations. Our generated training data is, e.g. similar
to the training data used in the previous work PIFuHD [SSSJ20]
– with weak-perspective camera assumption – where the camera
moves around the subject at a fixed elevation.

Each dataset entry contains a binary mask, surface normals, and
diffuse albedo images, and a set of 64 self-shadow maps and path-
traced diffuse shadings, corresponding to 64 uniformly sampled,
discrete directions on the (frontal) hemisphere facing the camera.
The input colour images for the training and inference are randomly
lit, i.e. they are random mixture of the images rendered in image
space based on the dot product of surface normals, and a light di-
rection, then multiplied by a self-shadow map, and the albedo –
this is equivalent to path-traced images with a path length of 1, i.e.
only direct lighting. Furthermore, a random overall light intensity
is also applied to the colour images. The ground truth binary self-
shadow maps are rendered by tracing shadow rays from the camera
ray-body intersection points in the direction of incoming light to
detect self-intersection (self-occlusion). Refer to Figures 1 and 3
for samples.

Training and Implementation Details. The model is implemented
in PyTorch and trained using Adam optimiser with L1 reconstruc-
tion loss (1/n∑

n
i=1 |I

pred
i − Igt

i |), mini-batch size of 1, and the learn-
ing rate of 5e−6 for 31 epochs on a GeForce RTX 2080 for about
25 hours. The inference time is about 14 ms for one sample for our
model, and about 8 ms for the surface normals generator extracted
from PIFuHD [SSSJ20]. In our setup, for burst evaluations, these
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Figure 2: Self-shadow map inference error heatmaps, average
(standard deviations) for the 64 frontal discrete light directions

timings converge to 27 ms and 70 ms, respectively. For comparison,
it is noteworthy that 3D geometry estimation from a monocular in-
put image by PIFuHD [SSSJ20] takes about 12 seconds in the same
setup, which still needs to be rendered by, e.g. a path tracer.

4. Experiments

In this section, we first evaluate the proposed model on the ren-
dered self-shadow map generalisation set of Section 3 and further
provide the corresponding methodology ablations. Then we com-
pare our method to Relighting4D [CL22], which requires explicit
3D human shape reconstruction from (monocular) multiple frames,
for a number of pre-trained real subjects of the People Snapshot
Dataset [AMX∗18]. Finally, we demonstrate in an experiment how
self-shadow maps can help improve monocular estimation of dif-
fuse shadings regarding self-shadowing effects.

4.1. Evaluation on the Generalisation Set of Section 3

Metrics. We report Root Mean Square Error (RMSE), Peak Signal-
to-Noise Ratio (PSNR), and Dice (F1 Score) metrics measured
on binary self-shadow map images. All metrics are calculated in
the mask region. Since the maximum pixel value is 1 for bi-
nary self-shadow maps, PSNR (in dB) is related to RMSE by
−20log10(RMSE).

Baseline. As some visibility information exists in surface normals,
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Figure 3: Inferred self-shadows maps for representative samples of
the rendered generalisation set. The distant light directions in row
2 correspond to the centres of the blobs, the area of blobs are for
visualisation purposes only.

Table 2: Quantitative comparison to the baseline. Average (stan-
dard deviation) calculated on the rendered generalisation set

Variant RMSE ↓ PSNR ↑ Dice ↑
Baseline 0.432 (0.056) 7.290 0.834 (0.049)
Ours 0.313 (0.051) 10.089 0.881 (0.041)

a fast, naive baseline is considered for the evaluations where the
output binary self-shadow maps are generated based on the sign of
the dot product of the surface normal of a point and the incoming
light direction.

Results and Discussion. Figures 2 and 3 respectively show quan-
titative and qualitative results and demonstrate that our method is
able to generalise to unseen images of people. The inference er-
ror is lower for light directions almost parallel to the camera view,
where self-shadowing is minimal, and gradually increases towards
the periphery, as depicted by both heatmaps.

Figure 3 demonstrates that the baseline (row 4) has visibly no
notion of self-shadowing effects resulting in large errors in the self-
shadow masks. Table 2 provides the quantitative results compared
to the baseline.

Furthermore, using the additional pre-trained surface normals es-
timator as an auxiliary signal (Figure 3 row 6) helps improve some
depth ambiguity and clothing details artefacts compared to without
(Figure 3 row 5, some artefacts highlighted).

4.2. Ablations

Surface Normals. Table 3 shows the calculated metrics for three
variants of employed surface normals in the training and inference

Table 3: Ablations with regard to surface normals. Average (stan-
dard deviation) calculated on the rendered generalisation set

Variant Training Inference RMSE ↓ Dice ↑
w/o Nor. – – 0.334 (0.054) 0.867 (0.045)
Mixed GT PIFuHD 0.352 (0.053) 0.862 (0.044)
Ours PIFuHD PIFuHD 0.313 (0.051) 0.881 (0.041)

Table 4: Ablation of latent space transformation. Average (stan-
dard deviation) calculated on the rendered generalisation set

Variant
Infer.
(ms) ↓

Params.
(mil.) ↓ RMSE ↓ Dice ↑

ResB 3 11.9 24.8 0.318 (0.053) 0.879 (0.042)
ResB 7 14.2 45.8 0.313 (0.051) 0.881 (0.041)
ResB 11 15.7 83.5 0.315 (0.052) 0.879 (0.041)
Self-Att. 15.9 39.0 0.322 (0.053) 0.876 (0.042)

phases. The results demonstrate that using the extracted surface
normals generator of PIFuHD [SSSJ20] as an auxiliary signal to
the model for both training and inference phases (row 3) improves
the performance compared to not using them at all (row 1). Also,
the performance of the mixed usage of ground truth and PIFuHD
surface normals (row 2) is lower than the without case.

Latent Space Transformation. We further evaluated the perfor-
mance of the model with regard to the latent space transformation
(depicted in Figure 1). Table 4 shows the effects of increasing the
convolution kernel sizes of the latent residual blocks [HZRS16]
from 3 to 11 (inspired from related neural shadowing works in
the literature [EGH23, ZLW19]), compared to employing a self-
attention (Self-Att.) module. This ablation is to take into considera-
tion the global nature of shadow transformation in the image space.
The results show residual blocks of various kernel sizes are per-
forming comparably to the self-attention module in terms of com-
putational costs and performance.

The self-attention module employed here is a stack of 4 identi-
cal multi-headed attention (MHA) layers [VSP∗17] with the cor-
responding normalisation and linear projections, having the same
query, key and values as input.

Input Image Saturation. We ablate the performance of the model
versus the input intensity levels. Figure 4 presents Dice metric val-
ues for various input intensities, ranging from very dark, i.e. a black

0.77
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0.81
0.83
0.85
0.87
0.89
0.91
0.93

0.01 0.1 1 10 100

D
ice

Relative Input Intensity Level (log scale)

Figure 4: Input saturation level ablation. Average (standard devi-
ations) for the 64 frontal discrete light directions
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Figure 5: Qualitative comparisons to Relighting4D [CL22]

image (intensity levels 0.01 and below), to very bright, i.e. a mask
image (intensity levels 10 and above). We observe that the perfor-
mance on the extreme sides of the spectrum, i.e., lack of a meaning-
ful input colour images, is comparable to the surface normals-based
baseline mentioned in Section 4.1. Black input images cause failure
in PIFuHD surface normal estimator, whereas PIFuHD is still able
to estimate smooth surface normals, with depth ambiguity artefacts,
for bright input images, i.e. almost binary masks. In other cases, the
model is however resistant to input saturation levels and maintains
its performance.

4.3. Comparison to Relighting4D [CL22]

Figure 5 and Table 5 compare our method to the state-of-
the-art neural inverse rendering of human appearance from
videos, Relighting4D [CL22], on pre-trained, person-specific neu-
ral representations of 4 real subjects in the People Snapshot
Dataset [AMX∗18], 1 male and 3 females, on the above 64 frontal
light directions, and 11 distinctive frames per subject.

The inferred self-shadow maps of Relighting4D [CL22] are not
binary. In our comparisons, we hence first threshold them using
Otsu’s method [Ots79] which maximises between-class variance
in the corresponding grey-level histograms. Results show that our
monocular method has comparable metric values to Relighting4D,
without having seen the images beforehand nor the need for prior
person-specific training of each subject.

In terms of inference speed, Relighting4D is conditioned on the
SMPL [LMR∗15] geometry model, which requires an iterative pro-
cess to estimate the corresponding parameters, which might take
up to 1 or 2 seconds. Furthermore, latent features of a position on
a neural field are fed into separate, fully-connected layers for each
desired element, e.g., occlusion map, albedo, etc., which operate
per (chunk of) pixel(s) and are slower compared to their convolu-
tional counterparts. In our setup, estimating the 512× 512 occlu-
sion maps for a set of fixed light directions took on average 8.5 s
for f3c in Table 5, or similar for the other models.

Comparison to Other Methods. Lagunas et al. [LSY∗21], Tajima
et al. [TKE21], Kanamori and Endo [KE18] do not explicitly
model self-shadowing, but rather implicitly baked in light trans-
port. In addition, the methods [LSY∗21,TKE21,KE18] use low or-

Table 5: Quantitative comparisons to Relighting4D [CL22]. Aver-
age (standard deviation) on 11 distinctive frames per subject

RMSE ↓ Dice ↑
Subject Relighting4D Ours Relighting4D Ours
f1c 0.404 (0.086) 0.423 (0.088) 0.849 (0.095) 0.815 (0.114)
f3c 0.401 (0.093) 0.434 (0.096) 0.854 (0.095) 0.812 (0.120)
f4c 0.403 (0.087) 0.425 (0.094) 0.848 (0.096) 0.812 (0.124)
m5s 0.429 (0.102) 0.466 (0.096) 0.824 (0.119) 0.777 (0.136)

der spherical harmonics representation of the lighting, which can-
not precisely reconstruct directional lights for our one-light-at-a-
time (OLAT) relighting (Appendix A). Iqbal et al. [ICN∗23] and
Sun et al. [SCHG23] do not model self-shadowing at this stage.
Zheng et al. [ZLWY23] is not monocular and requires depth values.
Ji et al. [JYG∗22] estimate proxy 3D mesh geometry to ray-trace
self-shadowing, which we are avoiding.

4.4. Self-shadow maps for monocular OLAT relighting
(diffuse shading)

In this section, we employ the ResB 7 variant of the model de-
scribed in Section 3 (with the final linear activation) to learn the
diffuse shading with high-frequency self-shadowing effects in the
context of fast, monocular, OLAT-based, full-body human relight-
ing. The training is performed in linear space (without tone map-
ping), and the output of the network is normalised, without loss of
generality, to have maximum shading value of 1. As such, given
intensity of the light source, it can be multiplied to the network’s
output for relighting purposes. It is also noteworthy that the model
learns the difference to a base shading image rendered using the es-
timated surface normals, and the estimated visibility maps, if either
or both available as auxiliary signal(s) in the ablations.

For the quantitative results, RMSE (masked) and Structural Sim-
ilarity Index Measure (SSIM) are reported in Table 6 compared to
ground truth path-traced diffuse shadings. SSIM is calculated for
the bounding box region of the mask. Figure 6 demonstrates the
corresponding qualitative results for our model and its ablations.
This experiment shows the benefits of using self-shadow maps as
an additional input signal (from our pre-trained module) for the
aforementioned relighting problem formulation, whilst the absolute
error heatmaps of rows 7 and 8 show visibility-related artefacts re-
spectively for the variant which uses the baseline visibility of Sec-
tion 4.1, and the without visibility variant. Also, the without vis-
ibility variant sometimes suffers from checkered artifacts, e.g., in
the second and eighth columns, also reported by Ji et al. [JYG∗22]
to be “due to the limitations of the PIFuHD network’s generation
capacity and memory space.”

Moving Light Source. Additional material contains videos of sub-
jects lit with a moving light source – rotating in the frontal hemi-
sphere from right to left with various elevations – and the corre-
sponding ground truth and our self-shadow maps, as well as its
application in monocular diffuse shading. The results suggests our
approach does not suffer from artefacts related to temporal changes
in the light source direction.

© 2024 The Authors.
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Figure 6: Inferred diffuse shadings for representative samples of
the rendered generalisation set

4.5. Limitations

Our approach is dependent on the precision of the pre-trained
surface normals estimator module (here extracted from PI-
FuHD [SSSJ20]) and can have lower visual fidelity of details com-
pared to the ground truth, for both self-shadow maps and the dif-
fuse shadings. Similar to the previous work PIFuHD [SSSJ20], our
dataset is generated with the camera rotating around the subjects at
a fixed height, which might therefore limit the generalisation capa-
bility of our model for test images captured with substantially dif-
ferent camera elevations. Furthermore, although we have compara-
ble results to the methods using explicit 3D geometry, our approach
can suffer from depth ambiguities due to the 2D monocular input.
Figure 7 shows examples of this phenomenon for hand shadows.

5. Conclusion

We presented a fast, generalisable method for estimating self-
shadow maps on clothed human bodies and evaluated its perfor-
mance qualitatively and quantitatively against unseen full-body im-
ages. Compared to the state of the art, we demonstrated compara-

Table 6: Ablation of inferred diffuse shadings with regard to auxil-
iary visibility and surface normal signals. Average (standard devi-
ation) calculated on the rendered generalisation set

Variant Visibility
Surface
Normals RMSE ↓ SSIM ↑

Baseline
Vis.

Baseline
of Sec. 3

PIFuHD 0.153 (0.024) 0.702 (0.062)

w/o – – 0.140 (0.025) 0.746 (0.057)
w/o Vis. – PIFuHD 0.139 (0.023) 0.734 (0.058)
w/o Nor. Ours – 0.137 (0.023) 0.749 (0.056)
Ours Ours PIFuHD 0.135 (0.024) 0.751 (0.056)

Light Input Visibility Diffuse Shading
Dir. Image GT Ours GT Ours Diff.

Figure 7: Error in estimating the self-shadow maps and its im-
pact on diffuse shadings. Missing hand shadows visible in the error
heatmaps.

ble self-shadow map generation accuracy, whilst being monocular,
and reducing inference times by about 1 to 2 orders of magnitude.
We further show how self-shadowing as pre-trained auxiliary signal
can improve monocular, OLAT-based, full-body human relighting,
demonstrating high-frequency self-shadowing effects. Avenues for
further research are, for example, modelling temporal coherence in
videos, evaluation of other potential training losses, as well as eval-
uating other shadow image representations such as that of Griffiths
et al. [GRP22] to potentially further facilitate the learning phase.
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Appendices

Appendix A: Low order Spherical Harmonics Reconstruction

Figure 8 shows the low order SH reconstruction of a directional
illumination signal (represented in latitude-longitude 2:1 illumina-
tion map) cannot precisely localise the light source for two differ-
ent solid angles. The original light source edges are blurred out and
reconstruction artefacts are present with lower intensity in both re-
constructions.

SH Reconstruction
Original 2nd order 3rd order 4th order
Signal 9 params. 16 params. 25 params.

Figure 8: Low order SH reconstruction of a directional illumina-
tion signal. Reconstructions in the first row are magnified by factor
of 3 for visualisation purposes.
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