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ABSTRACT

Streaming speech translation (StreamST) requires determining appropriate tim-
ing, known as policy, to generate translations while continuously receiving source
speech inputs, balancing low latency with high translation quality. However, ex-
isting StreamST methods typically operate on sentence-level speech segments,
referred to as simultaneous speech translation (SimulST). In practice, they re-
quire collaboration with upstream segmentation models to accomplish StreamST,
where the truncated speech segments constrain SimulST models to make policy
decisions and generate translations based on pre-defined contextual information
preset by the upstream models. Moreover, SimulST models struggle to learn
effective policies due to the complexity of speech inputs and cross-lingual gen-
eration. To address these challenges, we propose StreamUni, which achieves
StreamST through a unified Large Speech-Language Model (LSLM). Specifically,
StreamUni incorporates speech Chain-of-Thought (CoT) in guiding the LSLM to
generate multi-stage outputs. Leveraging these multi-stage outputs, StreamUni
simultaneously accomplishes speech segmentation, policy decision, and transla-
tion generation, completing StreamST without requiring massive policy-specific
training. Additionally, we propose a streaming CoT training method that enhances
low-latency policy decisions and generation capabilities using limited CoT data.
Experiments demonstrate that our approach achieves state-of-the-art performance
on both SimulST and StreamST tasks.

1 INTRODUCTION

Streaming speech translation (StreamST) (Ma et al., 2019; 2020b; Dong et al., 2022), known as
simultaneous interpretation, generates corresponding translations while continuously receiving in-
coming source speech inputs. Given its real-time nature, StreamST is commonly employed in vari-
ous cross-lingual communication scenarios such as international conferences and real-time subtitles.

Compared to traditional offline speech translation (Gangi et al., 2019; Alinejad & Sarkar, 2020;
Lee et al., 2022), StreamST must not only ensure translation quality but also minimize the latency
between receiving speech inputs and generating translations (Zhang et al., 2024a). To this end,
StreamST requires a generation policy to determine the appropriate timing for outputting each trans-
lated word. Additionally, considering that StreamST is often deployed in scenarios lasting tens of
minutes to several hours (Ma et al., 2019), and that the relevant content attended to by StreamST is
primarily concentrated around real-time inputs (Papi et al., 2024), it becomes necessary to imple-
ment a truncation policy that can truncate historical speech inputs and translations. This enables the
model to focus on recent speech inputs while preventing information overload that could compro-
mise efficiency. Therefore, an ideal StreamST model requires both an effective generation policy
and truncation policy to achieve low latency and high translation quality.

Existing methods primarily belong to simultaneous speech translation (SimulST) rather than
StreamST, as they cannot be directly applied to speech streams lasting tens of minutes, but are
instead limited to speech clips of less than 20 seconds (Tang et al., 2023), which are segmented by
upstream modules such as Voice Activity Detection (VAD) (Team, 2024). Due to the short duration
of speech clips, current SimulST methods focus on the generation policy, which can be broadly cate-
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gorized into fixed policy and adaptive policy. Fixed policy (Ma et al., 2019; 2020b) guides the model
to alternately read fixed-duration speech chunks and output a predetermined number of words. This
approach, which disregards the actual textual content within the speech, typically leads to redundant
latency or poor translation quality. Moreover, adaptive policy employs integrate-and-fire (Dong
et al., 2022), CTC (Zhang et al., 2024a), and Transducer (Tang et al., 2023) to determine generation
policy based on the text density of the input speech, achieving better performance. However, these
methods still deliver suboptimal translation quality due to small-scale Transformer (Vaswani et al.,
2017) architectures.

More recent work attempts to leverage the powerful generation capabilities of Large Speech-
Language Models (LSLMs) for SimulST, delivering superior performance. These methods either
adopt fixed policy (Agostinelli et al., 2024) or adaptive policy achieved by fine-tuning LSLMs with
extensively constructed policy-specific data to enable autoregressive policy prediction (Wang et al.,
2024; Cheng et al., 2024; Labiausse et al., 2025). However, such fine-tuning methods not only
compromise the inherent generation capabilities of LSLMs but also present difficulties in efficiently
transferring to newly advanced LSLMs. Therefore, existing SimulST methods face substantial chal-
lenges in enabling LSLMs to conduct effective generation policy learning. Furthermore, current
research has inadequately explored truncation policies, with attempts to timely truncate historical
translations through constructing complex translation trajectory training data and sliding window
schemes (Ouyang et al., 2025). This approach not only incurs substantial data construction costs
but also hinders seamless transfer to cutting-edge LSLMs. Consequently, investigating the use of a
unified LSLM to efficiently implement StreamST has emerged as a highly promising paradigm.

Despite its advantages, implementing StreamST using a unified LSLM remains challenging, as it re-
quires LSLM to simultaneously handle truncation and generation policies while achieving real-time
translation. To determine generation policy, LSLMs need to detect valid content in real-time speech
stream and decide on the optimal generation timing and output translations (Dong et al., 2022). As
the speech stream grows, LSLMs require the truncation policy to discard historical speech segments
and translations, ensuring the model focuses on recent inputs while avoiding excessive computa-
tional overhead (Papi et al., 2024). Truncation policy must ensure that discarded speech segment is
fully translated and that discarded translations accurately correspond to the discarded speech seg-
ments, thereby maintaining truncation integrity. Beyond policy decisions, StreamST also needs to
accomplish high-quality translation for continuously incoming speech input streams. However, con-
ventional approaches that separately optimize these three subtasks require constructing substantial
amounts of corresponding training data (Wang et al., 2024), which is not only resource-intensive but
also present significant difficulties in transferring to newly advanced LSLMs. Therefore, investigat-
ing how to enable LSLMs to efficiently accomplish all subtasks in a unified manner for effective
StreamST is of paramount importance.

To address these challenges, we propose StreamUni, a framework that efficiently enables a uni-
fied LSLM to accomplish all subtasks of StreamST in a cohesive manner. StreamUni introduces
the speech Chain-of-Thought (CoT) (Huang et al., 2023; Nguyen et al., 2024) that guides LSLMs
to progressively generate transcriptions and translations based on the speech inputs. Leveraging
multi-stage outputs, the model handles generation policy, truncation policy, and streaming transla-
tion generation subtasks. For the generation policy, StreamUni detects effective speech chunks in
real-time through intermediate transcriptions to determine optimal generation timing, and decides
the current output translation based on the coherence between real-time transcription and previously
output translations. For truncation policy, StreamUni maintains transcription queues across differ-
ent timestamps and determines speech truncation timing by comparing current and historical tran-
scriptions. Once the source truncation point is identified, StreamUni prompts the LSLM to output
complete translations for speech segments preceding the truncation point, subsequently discarding
the corresponding translations and speech segments to maintain truncation integrity. The real-time
translation generation is obtained by selecting appropriate output translation from the speech CoT
based on the generation policy. Through this design, StreamUni achieves StreamST via multi-task
results across multiple stages of the speech CoT.

To further enhance streaming performance, we propose a Streaming CoT training scheme that opti-
mizes multi-stage CoT outputs by encouraging LSLMs to predict corresponding transcriptions and
complete translations based on partial speech inputs. Therefore, StreamUni unifies all subtasks
through the speech CoT and achieves holistic optimization via a unified training strategy. Experi-
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Figure 1: The framework of StreamUni and illustration of truncation policy and generation policy.
The model will generate real-time transcription based on the existing speech inputs and compare it
with historical transcriptions to determine the truncation policy. If truncation is decided, the model
will bypass the generation policy and continue generating the full translation of the current speech.
Otherwise, the model will determine the number of translation words to continue generating based
on the lag relationship between the real-time transcription and the output translation, and generate
the translation using CoT.

ments demonstrate that our method efficiently achieves state-of-the-art performance on StreamST
tasks across multiple directions.

2 BACKGROUND

Streaming Speech Translation Let the complete speech stream be represented as s =
(s1, ..., sN ), where si denotes a speech chunk of predefined size, typically around 320ms or 640ms.
Given the continuously arriving input speech chunks, the StreamST model progressively generates
translation y = (y1, ..., yI) under a generation policy g = (g1, ..., gI) where gi represents the num-
ber of speech chunks received when generating yi. Thus, StreamST can be formulated as:

p(y | s,g) =
I∏

i=1

p(yi | s≤gi ,y<i). (1)

However, when the incoming speech stream becomes excessively long, StreamST models need to
truncate historical speech and translations in real-time, thereby focusing on recent inputs while
avoiding excessive inference latency (Iranzo-Sánchez et al., 2024). Consequently, truncation policy
is employed to determine truncation timing. Let the truncation policy for the overall speech input
and target translation be a = (a1, ..., aM ) and b = (b1, ..., bM ) respectively, where M denotes the
desired number of truncated segments, and am and bm represent the ending positions of the m-th
segment within the complete input stream and translation. Under the guidance of the segmentation
policy, StreamST is reformulated as:

p(y | s,g,a,b) =
b1∏
i=1

p(yi | s1:gi ,y1:i−1)×
M∏

m=2

bm∏
i=bm−1+1

p(yi | sam−1+1:gi ,ybm−1+1:i−1),

(2)
where the streaming translation generation will be based solely on the input speech segment and
output translation segment that remain after truncation. Therefore, StreamST requires determining
both truncation and generation policies to guide the model in accomplishing translation generation.

Chain-of-Thought Instruction Chain-of-Thought (CoT) is originally developed for text-based
tasks and has been proven to enhance performance on complex tasks by prompting large language
models (LLMs) to think step by step before providing final results (Wei et al., 2022; DeepSeek-
AI et al., 2025a). For speech inputs, CoT techniques have been widely adopted in speech-to-text
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cross-modal tasks, where LSLMs first generate transcription and subsequently produce the final
outputs (Zhang et al., 2023; Huang et al., 2023). In the context of speech translation, the model first
generates transcription x = (x1, ..., xJ), followed by the translation:

p(y | s) = p(y | x, s)p(x | s). (3)

3 METHOD

In this section, we propose StreamUni, a framework that leverages speech CoT to consolidate all
subtasks in StreamST. We begin by introducing the architecture of StreamUni and detailing its op-
erational process for achieving StreamST. Subsequently, we present the truncation and generation
policies within the StreamUni framework, which governs the management of historical speech and
translation and the real-time translation generation. To further enhance the generation capabilities
of LSLMs across multiple CoT stages under low-latency conditions, we propose a novel streaming
CoT training scheme. The following subsections detail our methodology.

3.1 MODEL FRAMEWORK

The model framework of our approach is illustrated in Figure 1. StreamUni first transcribes the
incoming speech input and compares the real-time transcription with the historical transcriptions to
determine the truncation policy. If the truncation policy is triggered, StreamUni directly generates
the translation bypassing the generation policy; otherwise, the number of words to be generated is
determined by the generation policy. A more formalized operational process is presented as follows.

Given that the previous truncation timing of the input speech stream is am, and the current timing
is n (n > am), the currently received speech segment fed into the model can be represented as
sam+1:n. For segment sam+1:n, the LSLM first utilizes an audio encoder to encode it into speech
embeddings. Following the speech CoT instruction, LSLM subsequently generates real-time tran-
scription x(n) of sam+1:n. StreamUni then determines the truncation policy by comparing x(n) with
maintained historical transcription queue, specifically deciding whether the current timing n should
trigger truncation. If it is determined that the current timing n should trigger truncation, StreamUni
disregards the generation policy, and continues generating and outputting all subsequent translation
based on the input segment sam+1:n and real-time transcription x(n), building upon the already out-
put translation segment ybm+1:i−1, where bm is the translation truncation index corresponding to
am. Otherwise, StreamUni determines the generation policy based on the real-time transcript x(n)

and uses it to determine the number of output words at current timing. We then elaborate on the
truncation policy and generation policy in detail.

Truncation Policy StreamST employs a truncation policy to remove historical speech and trans-
lation segments no longer required for subsequent generation. To ensure truncation integrity, each
truncated speech segment must maintain semantic alignment with its corresponding translation seg-
ment (Iranzo-Sánchez et al., 2024). The above truncation constraints serve dual purposes: (1) pre-
venting the eliminated speech segment containing untranslated content, which would compromise
generation quality, and (2) avoiding removal of already-translated content of remaining speech seg-
ment, which will result in repetitive translation of remaining speech segment. According to these,
we propose the following truncation policy.

For speech stream s = (s1, ..., sN ), StreamUni obtains real-time transcription after receiving each
chunk and maintains a historical transcription queue q. Assuming the end position of the previous
truncated input segment is am and the chunk to be processed is n (n > am), q can be represented
as = [x(am+1), ...,x(n−1)]. StreamUni first obtains the transcription x(n) based on sam+1:n:

x(n) = argmax
x

p(x | sam+1:n). (4)

Subsequently, we compare x(n) with items in q to determine the truncation policy. Speech segment
truncation occurs if either condition is satisfied:

• If x(n) remains identical to real-time transcriptions from the previous two chunks (x(n−1)

and x(n−2)), then am+1 = n becomes the speech truncation timing and sam+1:am+1 is
discarded. The historical transcription queue is cleared (q = [ ]).

4
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• If x(l)(l = n−1, n−2) forms a complete sentence terminated by punctuation (.?!;), and x(n)

begins a new sentence following the complete sentence, then truncation timing is am+1 = l
and sam+1:am+1

is discarded. The historical transcription queue is cleared, and the newly
generated x(l)(l = am+1+1, .., n) are sequentially added.

After determining the truncation timing, StreamUni generates and outputs the complete translation
corresponding to sam+1,am+1

based on previously output translation:

yi:bm+1 = argmax
y

p(y | sam+1:am+1 ,x
(am+1), ybm+1:i−1), (5)

where bm+1 is the index of the last word in the output translation. The translation segment
ybm+1:bm+1 is discarded.

In conclusion, we select truncation timing when users maintain prolonged silence or finish a full
sentence, as content prior to this timing is relatively complete and subsequent translations are un-
likely to reference earlier inputs. After determining input truncation timing, target truncation timing
is decided by outputting complete translation for the truncated input segment, thereby maintaining
semantic integrity of the truncation. More explanation is in Appendix A.

Generation Policy After establishing the truncation policy, we then determine the generation pol-
icy, which controls model output at all timing except truncation moments. The generation policy
follows two key principles. First, the model should continue generating translation upon detecting
the text within input speech; otherwise, no generation is required (Dong et al., 2022). Second, trans-
lation generation should lag behind the input source text to provide sufficient context for translation
(Liu et al., 2021). Leveraging speech CoT, we implement the generation policy in Figure 1.

Assume the previous truncated segment is the m-th segment, and the speech chunk to be processed
is sn. We can obtain the transcription x(n) using Eq.(4). Let C denote the number of words in x(n)

and i−1 represent the position of the last word in the already output translation. The number of
translation words allowed to be output is:

O = C − k − (i− 1− bm), (6)
where the second term k is the delay hyperparameter, and the third term represents the number of
retained output translation words. This setting ensures that translation generation consistently lags
behind the input text by k words, providing sufficient context for generation. The current translation
generation can be represented as:

yi:i−1+O = argmax
y

p(y | sam+1:n,x
(n), ybm+1:i−1). (7)

Then the generated translation yi:i−1+O will be output.

3.2 STREAMING COT TRAINING

After introducing the overall model framework, StreamUni can now perform StreamST using exist-
ing LSLMs (Microsoft et al., 2025; Xu et al., 2025). However, existing LSLMs are trained on multi-
task datasets containing complete speech inputs paired with corresponding responses. In streaming
scenarios with continuously growing speech stream, LSLMs must handle speech inputs of different
lengths, which we refer to as streaming generation capability. Furthermore, our approach unifies
policy decisions and streaming translation generation through speech CoT, which requires enhanced
streaming generation capability across multiple stages of speech CoT. Therefore, we propose the
Streaming CoT training scheme, which improves the capabilities of policy decision and streaming
translation generation by augmenting streaming speech CoT data.

Our method constructs streaming CoT data using existing non-streaming CoT triplets of speech,
transcription, and translation. Given the input speech stream s = (s1, ..., sN ), our approach ran-
domly truncates the stream through uniform sampling to obtain s≤i. We then employ timestamp
alignment tools to extract the corresponding transcription x(i) for s≤i from the complete transcrip-
tion x. Our Streaming CoT training encourages the LSLM to predict full translation based on partial
speech and transcription:

L = −
∑

s≤i∼U(S)

log p(y | x(i), s≤i) p(x
(i) | s≤i), (8)
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Figure 2: Performance of different methods on SimulST task.

where S is {s≤1, ..., s≤N} and s≤i ∼ U(S) represents uniform sampling from set S. This formula-
tion trains accurate transcription prediction for policy decisions while requiring complete translation
prediction to enhance generation capability and prevent premature termination. For efficiency, we
employ sampling rather than training on all possible speech inputs for an instance. Through this
training approach, our method efficiently enhance streaming CoT generation capability, thereby im-
proving the capabilities of policy decision and streaming translation generation in low latency. In
experiments, our training method requires integration with traditional non-streaming training ap-
proaches to achieve greater performance gains.

4 EXPERIMENTS

4.1 DATASETS

We mainly conduct experiments on streaming speech translation (StreamST) and simultaneous ma-
chine translation (SimulST) tasks.

MuST-C English⇒German (En⇒De) This dataset (Di Gangi et al., 2019) is collected from TED
talks. The dataset contains both document-level and human-annotated sentence-level speech trans-
lation data, enabling evaluation of both SimulST and StreamST tasks.

MuST-C English⇒Spanish (En⇒Es) The dataset is constructed following the same approach as
MuST-C En-De and serves as an evaluation benchmark for both StreamST and SimulST tasks.

CoVoST2 English⇒Chinese (En⇒Zh) This dataset only contains sentence-level speech transla-
tion data and is used to evaluate SimulST tasks (Wang et al., 2020).

CoVoST2 French⇒English (Fr⇒En) This dataset is also used to evaluate SimulST tasks.

4.2 SYSTEM SETTINGS

In this subsection, we delineate the settings of our StreamUni method and then present the compar-
ative methods for each task separately.

For our approach, we adopt Phi-4-Multimodal (Microsoft et al., 2025) as the primary backbone
LSLM and fine-tune it using the speech CoT data across four language directions. Specifically, the
En⇒Zh direction contains 50 hours of streaming CoT data and 50 hours of non-streaming CoT
data, while the other three directions each comprise 100 hours of non-streaming CoT data. The
CoT instruction used for LSLM inference is: ‘Transcribe the audio to text, and then translate the
audio to {target lang}. Use <sep> as a separator between the original transcript and the transla-
tion”. During inference, the chunk size is set to 320ms for the En-Zh direction and 640ms for the
other directions. To control inference latency, we configure k as {1, 3, 5, 7, 9}. When applied to
the SimulST task, StreamUni executes only the generation policy. Additional training hyperpa-
rameters are provided in the Appendix B. Beyond Phi-4-Multimodal, we also experiment with
Qwen2.5-Omni (Xu et al., 2025) as the base LSLM to validate the generalizability of our method,
leveraging its thinker for policy-decision and translation generation.
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Figure 3: StreamST performance of different methods.

For SimulST task, we compare our method with encoder-decoder DiSeg (Zhang & Feng, 2023),
NAST (Ma et al., 2023), EDAtt (Papi et al., 2023a), StreamSpeech (Zhang et al., 2024b), LSG
(Guo et al., 2025), MonoAttn-Transducer (Ma et al., 2025) and EASiST (Fu et al., 2025). We
also design a baseline called Phi4-Wait-k, which also uses fine-tuned Phi-4-Multimodal as our
StreamUni but employs a generation policy that waits for k−1 chunks and then outputs one word
for each subsequently received chunk.

For the StreamST task, we compare our method with StreamAttFW and StreamAttP (Papi et al.,
2024). Furthermore, we implement a baseline called Phi-4-VAD, which replaces our truncation
policy with VAD (Team, 2024) while keeping all other components consistent with our approach. In
addition, we propose an additional cascaded method named Phi-4-Cascaded: we adopt Whisper-
Large-V3 (Radford et al., 2022) as the ASR model and feed its outputs into Phi-4-Mini-Instruct for
translation. The prompt used for Phi-4-Mini-Instruct is: “Translate the English text to German based
on the given German translation. English text: {cot asr}. German translation: {cot st}”.

4.3 EVALUATION

In evaluating streaming generation systems, we need to assess two critical aspects: latency and
generation quality. To quantify latency, we utilize the Average Lagging (AL) (Ma et al., 2019) and
Length-Adaptive Average Lagging (LAAL) metrics (Papi et al., 2022b), which measures the delay
between input reception and output generation. For translation quality, we use the SacreBLEU (Post,
2018) and COMET (Rei et al., 2022) metrics. For the SimulST task, we employ the SimulEval tool
(Ma et al., 2020a) to evaluate our StreamUni. In the StreamST task, we follow the setup of Papi
et al. (2024). We first use mWERSegmenter (Matusov et al., 2005) for aligning document-level
translation with references and then convert these alignments into consistent metrics used in the
SimulST task. In this task, The latency metric is termed StreamLAAL, and translation quality is
evaluated using Stream SacreBLEU by comparing the segmented document-level translations with
the reference translations.

4.4 MAIN RESULTS

We evaluate our methods on SimulST and StreamST tasks.

As illustrated in Figure 2, our method achieves optimal SimulST performance across all datasets.
Compared to traditional SimulST approaches employing Encoder-Decoder architectures (e.g.,
NAST and EDAtt), our method harnesses the comprehension and reasoning capabilities of LSLMs
(Microsoft et al., 2025), yielding substantial performance improvements across all latency settings.
Although methods like LSG also leverage LSLMs and demonstrate promising results, their policy
decisions rely on heuristic rules (Guo et al., 2025), resulting in suboptimal performance. Further-
more, compared to EASiST built on larger-scale foundation models as backbones and trained with
customized policy data (Fu et al., 2025), our model achieves equally better performance. This is
mainly attributed to our method’s utilization of intermediate outputs from speech CoT, which en-
ables real-time detection of valid user inputs and allows generation decisions to be made at optimal
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timings. Through our superior policy and streaming CoT training scheme, we achieve further per-
formance gains.

Our method also demonstrates superior performance on the StreamST task, as shown in Figure 3.
Traditional StreamST approaches, including StreamFW and StreamAttP (Papi et al., 2024), rely
on attention interpretability to determine generation and truncation policies for streaming transla-
tion. In contrast, our approach utilizes speech CoT for real-time detection of valid speech inputs
to inform generation policies, while implementing truncation policies through alignments between
speech input and translations. This design enables more effective policy decisions and enhanced per-
formance. Compared to Phi-4-VAD, which employs VAD for truncation policy, our method achieves
truncation policy through the semantic alignments between speech inputs and translation, resulting
in more appropriate timing and enhanced performance. Relative to Phi-4-Cascaded, our method
delivers a more substantial performance boost—particularly in terms of latency—highlighting the
significant advantages of end-to-end models over cascaded counterparts. Notably, we anticipate that
Phi-4-Mini-Instruct will achieve further improvements with dedicated training.

In addition to the above results, we also considered the usability of our method. To this end, we
additionally incorporated the actual machine inference time into the latency metric when calculating
latency, which is denoted as Computation-Aware LAAL (Xu et al., 2024). It essentially measures the
average delay from the user’s speech input to the machine’s output of the corresponding translation.
For details, refer to Appendix E.

5 ANALYSIS

To provide deeper understandings into our approach, we conduct comprehensive analyses, with each
experiment detailed below.

5.1 ABLATION STUDY

We first conduct ablation studies to investigate the impact of different configurations.

Figure 4 presents a performance comparison of our method under various training methods and
generation policies. Unlike Phi4-Wait-k, which employs heuristic rules for generation decisions
without considering speech content (Ma et al., 2019), our method determines generation timing by
detecting valid speech inputs, thereby achieving superior performance through more informed gen-
eration policies. Beyond generation policy, our proposed streaming CoT training scheme enhances
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performance across all latency settings, particularly under low-latency. However, the streaming CoT
training data must be combined with non-streaming data to achieve maximum performance gains.

To validate this hypothesis, we conduct experiments using training data from a single language
direction. As illustrated in Figure 5, simply increasing data volume when using only streaming
CoT data fails to yield performance improvements. Superior performance across different latency
settings is achieved exclusively when both streaming and non-streaming CoT data are employed
simultaneously. We hypothesize that this mixed-data approach effectively stimulates the streaming
generation capabilities of model while enabling it to perceive complete speech input boundaries,
thereby preventing over-translation and achieving enhanced overall performance.

Table 1: Performance on MuST-C with document-level
speech inputs when the generation policy is disabled and
only truncation is employed. ‘Human’ uses annotated
truncation timing, while ‘Model’ lets the system decide
automatically.

Direction Truncation COMET SacreBLEU

En⇒De official 82.45 32.51
Model 83.42 31.59

En⇒Es official 80.83 35.84
Model 82.86 34.97

Furthermore, we investigate the ef-
fectiveness of our proposed truncation
policy. Rather than comparing the
accuracy of model-determined trunca-
tion timing against official truncation
points, we focus on the final genera-
tion quality, which represents our ulti-
mate objective. Given document-level
speech inputs with an average duration
exceeding 10 minutes (Di Gangi et al.,
2019), we evaluate the generation qual-
ity of our fine-tuned model under dif-
ferent truncation policies. Table 1 illus-
trates the results, where we report document-level metrics rather than sentence-level metrics after
alignment. Notably, while our proposed truncation strategy performs slightly below the human-
annotated policy on SacreBLEU, it surpasses official annotation on COMET score. This demon-
strates the effectiveness of our approach and provides valuable insights for future research utiliz-
ing semantic alignment models to implement truncation policies. We also provide an analysis in
Appendix F of why our method, despite a slightly lower SacreBLEU, outperforms the officially
provided truncation policy in terms of COMET.

Furthermore, we also demonstrate the impact of adopting Speech CoT on translation performance.
Herein, we use the RealSI dataset (Cheng et al., 2024) to explore full-sentence speech translation
performance with and without Speech CoT. Please refer to Appendix D for more details. We find
that Speech CoT significantly enhances speech translation performance in real-world scenarios.

5.2 SPEECH COT ARGUMENTATION

StreamUni unifies streaming translation generation and policy decisions through speech CoT. The
accuracy of outputs at each CoT stage significantly impacts overall StreamST performance, partic-
ularly under low-latency settings. To investigate this, we construct a low-latency speech evaluation
dataset based on CoVoST2 En⇒Zh to assess generation capabilities across different CoT stages.

For dataset construction, we randomly truncate speech clip and obtain transcriptions using Whis-
perX (Bain et al., 2023), then generate reference translations using the DeepSeek-V3-0324 model
(DeepSeek-AI et al., 2025b). We evaluate models trained with different schemes through speech
CoT inference. More details are in Appendix C. As shown in Table 4, our approach achieves su-
perior performance across all CoT stages, delivering excellent capabilities of policy decision and
streaming translation generation.

5.3 EXTENDING TO OTHER LSLMS

Beyond the analytical experiments of our method, we further extend our evaluation to Qwen2.5-
Omni-7B (Xu et al., 2025) to validate the generalizability of our approach across different LSLMs.
The experimental results are presented in Table 2. Phi-4-Multimodal consistently outperforms
Qwen-Omni on both ST and SimulST tasks, demonstrating that LSLMs with stronger speech trans-
lation capabilities achieve superior SimulST performance. This finding further validates that our
StreamUni method can effectively leverage and scale with the enhanced capabilities of LSLMs,
thereby demonstrating the generalizability of our approach.
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Table 2: Performance of various vanilla LSLMs on ST and SimulST tasks. ‘ST’ denotes speech
translation that utilizes complete speech inputs for translation, while ‘SimulST’ represents the si-
multaneous speech translation task that incorporates our proposed generation policy. The evaluation
dataset is the MuST-C En⇒De sentence-level dataset.

Task Base Model LAAL(↓) SacreBLEU(↑)

ST Phi-4-Multimodal N/A 28.55
Qwen2.5-Omni N/A 24.21

SimulST
Phi-4-Multimodal 1112.48 22.51

1448.43 24.27

Qwen2.5-Omni 949.36 20.64
1449.83 21.80

6 RELATED WORK

Streaming speech translation (StreamST) aims to generate real-time translations for continuously
arriving speech stream, requiring the simultaneous completion of generation policy, segmentation
policy, and streaming translation generation. Early research focused on sentence-level speech seg-
ments and is called simultaneous speech translation (SimulST), predominantly employing encoder-
decoder architectures (Vaswani et al., 2017). Initial SimulST methods (Ma et al., 2020c) determine
generation policy based on the number of input chunks. Subsequently, researchers explore content-
adaptive generation policy by leveraging auxiliary ASR tasks (Zeng et al., 2021; Chen et al., 2021;
Zhang et al., 2024b), integrate-and-fire (Dong et al., 2022), monotonic attention (Communication
et al., 2023), transducer (Liu et al., 2021; Tang et al., 2023), and CTC (Graves et al., 2006; Ma et al.,
2023) to make decisions based on speech content. At the same time, some methods (Weller et al.,
2021; Papi et al., 2023b; Omachi et al., 2022) attempt to accomplish translation by continuously
refreshing the output translations.

With the advancement of Large Speech-Language Models (LSLMs), researchers have begun explor-
ing their application to SimulST tasks (Agostinelli et al., 2024; Guo et al., 2025; Fu et al., 2025).
Hibiki (Labiausse et al., 2025) even achieves simultaneous speech-to-speech translation in an end-
to-end manner. However, relying solely on LSLMs for SimulST still requires coordination with
multiple auxiliary models to achieve complete StreamST, introducing cascaded errors and hinder-
ing end-to-end optimization (Li et al., 2021). Consequently, researchers have attempted to develop
unified methods capable of handling all StreamST tasks within a single model framework. Early
attempts utilize attention mechanisms for generation and segmentation decisions (Papi et al., 2024),
while subsequent work constructs dedicated policy-specific datasets to enable autoregressive predic-
tion for policy decisions (Cheng et al., 2024; Ouyang et al., 2025). Nevertheless, these approaches
suffer from significant challenges in large-scale data construction and advanced model transferabil-
ity, while facing difficulties in fully leveraging the pre-training capabilities of foundation models.

7 CONCLUSION

In this paper, we propose StreamUni, a framework that efficiently enables unified LSLM to accom-
plish all subtasks of StreamST in a cohesive manner. By unifying different subtasks formats into
autoregressive generation, StreamUni can achieve streaming translation with only a small amount of
streaming CoT training data. Experiments show that our method efficiently attains state-of-the-art
performance on StreamST tasks across multiple language directions with the same volume of train-
ing data. Furthermore, analytical experiments verify the effectiveness of each module in StreamUni
as well as its practical usability.
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ishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol,
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Table 3: Settings of StreamUni.
Hyperparameters Settings

LSLM

Base model Base model Phi-4-Multimodal

Training Details

batch size 32
learning rate 4e-5
weight decay 0.01
lr scheduler WarmupLR

betas (0.9, 0.95)
optimizer AdamW

zero optimization stage 2
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Speech: Simultaneous speech-to-speech translation with multi-task learning. In Proceedings of
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A TRUNCATION POLICY IN STREAMUNI

Our truncation policy is designed to truncate historical speech inputs and translations in real-time,
enabling the model to focus on recent speech inputs while avoiding additional inference costs. To
this end, we establish two key principles: (1) preventing elimination of speech segments contain-
ing untranslated content, which would compromise generation quality, and (2) avoiding removal of
already-translated content from remaining speech segments, which would result in repetitive trans-
lations. Our approach first identifies the truncation timing for source speech inputs, then uses this as
an anchor to determine the corresponding truncation point for output translations.

For speech inputs, we consider appropriate truncation timing to be when users pause speaking or
complete a sentence. Therefore, we design two triggering rules for speech truncation. The first
rule targets prolonged user silence, while the second targets moments when users finish speaking
a complete sentence. When neither condition is met for an extended period, causing the processed
speech duration to exceed a predefined threshold (30 seconds), our method designates this moment
as the truncation point.

After determining the speech truncation timing, we identify the corresponding truncation point for
target translations to ensure semantic consistency between discarded content on both source and
target sides. To achieve this alignment, we instruct the model to output all translations preceding the
source truncation point and subsequently discard them.

This approach implements an effective truncation policy that maintains translation quality while
ensuring computational efficiency.

B TRAINING AND EVALUATION DETAILS

We provide comprehensive details of our training methodology. For training data construction, we
focus on building streaming CoT data for the En⇒Zh direction and incorporate an equal duration
of non-streaming CoT data. For other language pairs, we directly utilize non-streaming data. The
dataset released in this work is intended for academic research purposes only. Any commercial use
is strictly prohibited. Our training details are detailed in Table 3.
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Table 4: Performance of multiple stages of speech CoT under different training configurations.
‘Streaming CoT + Non-Streaming CoT’ denotes our employed training recipe. ’Non-Streaming
CoT’ only utilizes Non-Streaming CoT training data. ’Vanilla’ represents the baseline without any
further training.

Training Settings WER (↓) SacreBLEU (↑)
Streaming CoT

+ Non-Streaming CoT 20.74 35.22

Non-Streaming CoT 27.83 33.60

Vanilla 31.62 33.34

Table 5: Full-Sentence Translation Performance: With vs. Without Speech CoT Argumentation.
Settings SacreBLEU

Direct Trans 22.08
CoT Trans 25.23

For SimulST evaluation, we employ SimulEval (Ma et al., 2020a) as the standard assessment frame-
work. For StreamST evaluation, we first utilize mWERSegmenter (Matusov et al., 2005) alignment
tools to map the generated document-level translations to sentence-level references. Subsequently,
we compute latency metrics and translation quality on the aligned sentences. We refer to these
metrics as Stream LAAL (Papi et al., 2024) and Stream SacreBLEU, respectively.

C SPEECH COT ARGUMENTATION

For streaming speech translation, the key challenge lies in real-time performance. This challenge is
amplified under extremely low latency, where very short input segments make accurate translation
and policy decision-making especially important. To evaluate these aspects, we construct a dedi-
cated Low-Latency Speech Evaluation dataset. This evaluation set was derived from conventional
speech translation corpora (consisting of speech segments, transcripts, and translations) through the
following modifications:

• For each complete speech segment, we randomly sample speech prefixes with shorter du-
ration based on the given complete speech segment.

• Using WhisperX (Bain et al., 2023), we obtain word-level timestamps for the complete
speech segment, which allows us to extract the corresponding ground-truth transcript pre-
fixes for the sampled speech prefixes.

• With DeepSeek-V3-0324 (DeepSeek-AI et al., 2025b), we generate ground-truth transla-
tions of the transcript prefixes, yielding the low-latency speech evaluation dataset.

During evaluation, the model is encouraged to generate intermediate results of speech CoT based on
speech prefixes at different stages. For the ASR transcription outputs of speech CoT, we compute
the WER against the ground-truth transcription prefixes to assess its low-latency transcription ca-
pability, which further reflects its policy-decision ability under low latency for our StreamUni. For
the translation results of speech CoT, we calculate SacreBLEU against the ground-truth references
to measure its low-latency translation capability. Based on the constructed evaluation dataset, We
evaluate models trained with different schemes through speech CoT inference.

The detailed experimental results are shown in Table 4. Our employed ‘Streaming CoT + Non-
Streaming CoT’ training scheme achieves lower WER and higher SacreBLEU scores, our approach
achieves superior performance across all CoT stages, delivering excellent capabilities of policy de-
cision and streaming translation generation.
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Table 6: Computation-Aware latency and translation results on MuST-C En⇒De task.
Computation-Aware Stream LAAL (ms) Stream LAAL (ms) Stream SacreBLEU

3193.94 1762.85 25.65
3690.02 2223.69 26.89

Table 7: Computation-Aware latency and translation results on MuST-C En⇒Es task.
Computation-Aware Stream LAAL (ms) Stream LAAL (ms) Stream SacreBLEU

3077.07 1802.59 29.02
3405.03 2087.39 30.18

D FULL-SENTENCE TRANSLATION PERFORMANCE WITH SPEECH COT
ARGUMENTATION

In this section, we compare the performance of direct translation and CoT translation with on the
full-sentence speech translation task. Here, we use RealSI (Cheng et al., 2024), a speech test set
from real-world scenarios containing English⇒Chinese directions. It can be observed in Table 5
that CoT also brings significant improvements in translation performance.

E COMPUTATION-AWARE LATENCY

To validate the feasibility of our method for real-world deployment, we explicitly incorporate com-
putational latency into our evaluation framework when conducting experiments on the NVIDIA
GeForce RTX 3090 (a consumer-grade GPU). Specifically, we adopt the computation-aware LAAL
metric (Papi et al., 2022a; Xu et al., 2024), which quantifies the end-to-end latency from the user’s
speech input to the model’s translation output. The table below reports our method’s StreamST per-
formance on the MuST-C En⇒De and En⇒Es datasets, with both computation-aware latency and
non-computation-sensitive metrics included for comprehensive comparison.

As can be seen from the Table 6 and Table 7, our method achieves promising performance with a
latency of approximately 3 seconds when computational costs are taken into account, and around 2
seconds when computational delays are not considered. Notably, these results are obtained without
leveraging any inference optimization frameworks or advanced GPUs. It is anticipated that the
adoption of the aforementioned optimization techniques will enable us to achieve even much lower
latency.

F ANALYSIS ON THE PATTERN OF DIFFERENT TRUNCATION POLICIES

To explore Why the ours truncation strategy outperforms MuST-C’s official truncation policy in
terms of COMET scores, we conduct a detailed analysis of the average duration of processed speech
inputs and average translation length obtained from two truncation policies. The results are shown
in the Table 8.

We find that the truncation policy of our method enables the model to process longer speech seg-
ments and reference lengthier historically generated translations. This provides sufficient context

Table 8: Analysis of input and output patterns of different truncation policies on MuST-C En⇒De
task.

Settings Avg Duration Avg Translation Length
StreamUni 9.34 27.91

MuST-C 5.77 15.6
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for the model during translation, thus ensuring that our truncation policy outperforms the truncation
approach of MuST-C.
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